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Abstract

Pre-trained language models (PLM) have revo-
lutionized the NLP landscape, achieving stellar
performances across diverse tasks. These models,
while benefiting from vast training data, often re-
quire fine-tuning on specific data to cater to distinct
downstream tasks. However, this data adaptation
process has inherent security and privacy concerns,
primarily when leveraging user-generated, device-
residing data. Federated learning (FL) provides a
solution, allowing collaborative model fine-tuning
without centralized data collection. However,
applying FL to finetune PLMs is hampered by
challenges, including restricted model parameter
access due to the high encapsulation, high com-
putational requirements, and communication over-
heads. This paper introduces Federated Black-box
Prompt Tuning (FedBPT), a framework designed
to address these challenges. FedBPT allows the
clients to treat the model as a black-box inference
API. By focusing on training optimal prompts
and utilizing gradient-free optimization methods,
FedBPT reduces the number of exchanged
variables, boosts communication efficiency, and
minimizes computational cost and memory con-
sumption. Experiments highlight the framework’s
ability to drastically cut communication and
memory costs while maintaining competitive per-
formance. Ultimately, FedBPT presents a promis-
ing solution for efficient, privacy-preserving
fine-tuning of PLM in the age of large language
models. Our code is available in NVIDIA FLARE.
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1. Introduction
Large language models (LLM) have shown increasing power
on various NLP tasks (Devlin et al., 2018; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2022; Zhang et al., 2021;
Zeng et al., 2021; Sun et al., 2021; Qiu et al., 2020). Typically,
these models are trained on a diverse range of text from books,
articles, and websites to gain a broad understanding of human
language and are known as the pre-trained language models
(PLMs). However, task-specific data is often required to
adapt PLMs to perform specific tasks or be more accurate in
real-world scenarios. This fine-tuning process relies heavily
on user-generated data on devices, providing a wealth of
contextual insights and nuanced use cases that reflect actual
human interaction and needs. In practice, it is challenging
to use these devices and data securely. Data needs to be col-
lected and stored for training, but exchanging and storing
sensitive data carries security risks and privacy concerns. To
overcome the issue of data isolation, federated learning (FL)
can be applied to enable numerous devices to collaboratively
finetune PLMs over decentralized data while preserving data
privacy (McMahan et al., 2017; Sun et al., 2020).

Although fine-tuning PLMs through FL presents promis-
ing opportunities, three challenges constrain their real-world
application on edge devices. Especially for LLMs, these chal-
lenges include (1) limited access to the model parameters due
to the high encapsulation, (2) computational and memory
costs for local clients, and (3) communication overhead in the
FL system. In the real world, mobile frameworks like Tensor-
Flow Lite, PyTorch Mobile, and Apple CoreML, deep learn-
ing models are usually integrated or ‘encapsulated’ within
a mobile application. This encapsulation involves converting
the model into a binary format that is optimized for efficient
mobile inference, and the direct manipulation of model pa-
rameters after conversion is typically restricted. Such a high
encapsulation is also preferred by the model developers to en-
sure that the model is used as intended and protects its intellec-
tual property, and it also means that end-users or third-party
developers have limited ability to alter or inspect the model.
Additionally, even if the clients could access the model param-
eters, it is impractical for devices with limited resources (Wen
et al., 2013; Alyamkin et al., 2019) to conduct local PLM
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Figure 1. Overview of FedBPT. The clients in FedBPT adopt a
gradient-free optimization (CMA-ES) to search for optimal dis-
tributions of the prompt based on local data. The clients are not
required to access the PLM parameters, and only inference of the
PLM is conducted during the search. The server aggregates the up-
loaded local distributions to derive the globally optimal distribution
of the prompt. The global distribution will be sent back to the clients
for the next round of search.

fine-tuning, which is extremely memory-intensive and brings
high computational overhead. Moreover, fine-tuning PLMs
through FL requires the clients and server to frequently ex-
change model parameters or gradients, usually on a scale of
millions or even billions of parameters. Such intensive com-
munication cost is unfeasible for commercial edge devices
with limited communication bandwidth. To this end, exist-
ing works (Sun et al., 2022a; Chen et al., 2022b; Zhao et al.,
2023; Xu et al., 2023) apply parameter-efficient fine-tuning
(PEFT) methods of PLMs to FL to reduce resource costs.
Effective PEFT methods include adapter tuning (Houlsby
et al., 2019), prefix tuning (Li & Liang, 2021), LoRA (Hu
et al., 2021) and BitFit (Zaken et al., 2021). These techniques
primarily freeze most parameters of PLMs and update only
a few additional parameters, which can reduce communica-
tion costs significantly. However, these PEFT methods still
require the clients to access model parameters and gradients
for local training. Even if the computational cost could be
reduced, these gradient-based PEFT methods requiring back-
propagation are still unfeasible for most edge devices with
limited resources, such as mobile phones and AR headsets.

To solve these challenges simultaneously, we propose a
new framework called Federated Black-box Prompt Tuning
(FedBPT) as shown in Figure 1. The goal of FedBPT is
to train an optimal prompt to improve the performance
of the frozen PLMs. The clients and the server exchange
prompts rather than model parameters, which reduces the
communicated variables from millions or billions to only
hundreds, improving communication efficiency significantly.
The clients in FedBPT adopt a gradient-free optimization
method rather than gradient-based methods to conduct local
training, which frees the clients from being required to access
the model parameters. In addition, only forward-propagation
without back-propagation is needed for local training, which

can reduce computational cost and memory consumption.

We conducted experiments on multiple datasets using
SOTA PLMs. The results show that FedBPT reduces the
communication cost by more than 500k× while achieving
comparable results with the baselines that require model
parameter access and back-propagation for optimization.
FedBPT can also reduce the memory footprint by more
than 3×without applying any additional efficient inference
technique. By proposing FedBPT, we offer a solution to
break down data silos in the era of LLMs without the limiting
factors of requiring full model parameter access, large
communication bandwidth, and device compute capacity.

We summarize our contributions as follows:

• We present three challenges in applying FL to adapt
PLMs in the real world, including the requirement
of model access, communication cost, and on-device
compute capacity.

• We propose a federated black-box prompt tuning
framework (FedBPT) that enables the devices to adapt
PLMs in the real world collaboratively by solving the
above-mentioned challenges simultaneously.

• We evaluate FedBPT on multiple datasets with SOTA
PLMs. FedBPT achieves comparable accuracy with the
gradient-based methods that require clients to access
model parameters while reducing communication and
memory costs significantly.

2. Related Works
2.1. Federated Learning

Federated learning (FL) (Konečnỳ et al., 2016; McMahan
et al., 2017; Sun et al., 2022b) is a prominent distributed
learning strategy, particularly beneficial for tasks that
prioritize privacy. However, its application faces challenges
due to the non-IID nature of distributed datasets. The
heterogeneous data distribution across devices compromises
accuracy relative to traditional centralized training. Numer-
ous research efforts (Kairouz et al., 2021; Zhao et al., 2018;
Chai et al., 2020; Li et al., 2018) have sought to mitigate
this performance degradation. Recent works (Chen et al.,
2022a; Nguyen et al., 2022) demonstrate that fine-tuning the
pre-trained models through FL suffers less from the non-IID
issue. Empirical research by Weller et al. (2022) suggests
that Pretrained Language Models (PLMs) can diminish the
effects of non-IID data and bridge the accuracy discrepancy
with centralized training. Their results show that when apply-
ing PLMs, even the vanilla FedAvg can achieve comparable
model performance with centralized training. These works
indicate that FL presents a promising avenue for fine-tuning
PLMs by leveraging user data while upholding privacy
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standards. However, PLMs, especially large-scale ones,
introduce considerable communication overheads in FL
scenarios, making federated training cumbersome and often
unsuitable for practical applications. Additionally, the train-
ing of PLMs typically demands ample labeled data to ensure
satisfactory accuracy – a condition that may be unattainable
for individual device users. Notably, many local devices are
constrained by limited computational capacity and memory,
making the local training of PLMs a challenging endeavor.
Diverging from these studies, our work delves into adapting
PLMs within FL, especially under tight resource constraints.

2.2. Prompt-based Learning

Prompt-based learning has gained significant attention in
the realm of LLMs. Its essence is rooted in leveraging
minimal examples or specific cues to guide a PLM toward
the desired output. This contrasts with traditional supervised
learning, where a model is trained explicitly using extensive
labeled data. OpenAI’s GPT-3 (Brown et al., 2020) marked a
pivotal turn in the exploration of prompt-based learning. The
sheer scale of GPT-3 made it possible to produce relevant
outputs with carefully crafted prompts (Brown et al., 2020;
Lester et al., 2021) without the need for task-specific model
fine-tuning. However, manually designed prompts still suffer
a performance gap compared with a fine-tuned model (Brown
et al., 2020; Schick & Schütze, 2020; Gao et al., 2020; Sun
et al., 2022d). Recent works demonstrate that the prompt
does not have to represent natural language. It can also
be optimized efficiently in continuous space with gradient
descent (Li & Liang, 2021; Hambardzumyan et al., 2021;
Qin & Eisner, 2021; Liu et al., 2023; Zhong et al., 2021; Liu
et al., 2021). In the case of only tuning the continuous prompt
while keeping the parameters of large PLMs untouched, one
can retain the efficient training benefits while matching the
performance of full model tuning. Prompt tuning (Lester
et al., 2021; Li & Liang, 2021) was proposed to fine-tune a
continuous vector concatenated to the input embeddings. Un-
like manual prompt design conducted at the vocabulary level,
prompt tuning optimizes the prompt in the embedding space.
Based on this idea, p-tuning (Liu et al., 2021; 2022; 2023)
was proposed to improve the performance further. Similar
to prompt tuning, p-tuning also learns concrete prompts in
the embedding space. However, in p-tuning, an additional
LSTM model is required to predict token embeddings.

3. Preliminary: Black-box Prompt Tuning
Common language understanding tasks can be formulated
as a classification task to predict for a batch of input texts X
the labels Y . Prompt tuning is to train a continuous prompt
vector p∈RD such that the prediction performance can be
improved when the model is fed the optimal prompt vector
p∗ together with the inputX . The objective of prompt tuning

can be formulated as

p∗=argmin
p∈P
L(f(p;X),Y ), (1)

where f(·) is the PLM inference API, L(·) is the loss
function andP is some search space of interest. To optimize
p, gradient-based methods (e.g., SGD) can be applied by
conducting back-propagation of the model f . Recently, a
gradient-free optimization, Black-Box Tuning (BBT) (Sun
et al., 2022c), was also proposed to optimize the prompt p
without back-propagation. Based on the observation that
large-scale PLMs have a low intrinsic dimensionality (Agha-
janyan et al., 2020; Qin et al., 2021), BBT optimizes z∈Rd

in a much smaller subspace (d ≪ D) and uses a random
projection matrix A ∈ RD×d to project z on the original
prompt spaceP . The objective can be formulated as

z∗=argmin
z∈Z
L(f(Az;X),Y ). (2)

To optimize z, BBT adopts a gradient-free optimizer
CMA-ES (Covariance Matrix Adaptation Evolution
Strategy) (Hansen, 2016), a widely used evolutionary
algorithm for non-convex black-box optimization in the
continuous domain. CMA-ES maintains a parameterized
search distribution, i.e., a multivariate normal distribution.
In each iteration, CMA-ES samples a population of new
query solutions from the multivariate normal distribution as

zt+1,i∼mt+σtN (0,Ct), (3)

where i=1,...,λ and λ is the population size. mt∈Rd and
Ct∈Rd×d are the mean vector and covariance matrix of the
search distribution at iteration step t, respectively. σt is the
standard deviation that controls the step length. mt,Ct and
σt are updated by maximizing the likelihood of successful
steps, which are the steps with lower loss values (cf. (Hansen,
2016) for more details).

4. Method
To solve the challenges of model access, communication
cost, and computational cost simultaneously, we propose
Federated Black-box Prompt Tuning method (FedBPT)
to train an optimal prompt in a federated fashion by
adapting BBT to federated learning. Unlike FL methods
communicating model parameters, the clients in FedBPT
train and communicate with the server prompts rather than
the model parameters, which is communication efficient. To
optimize prompts, the clients only need to conduct inference
rather than back-propagation, significantly reducing the com-
putational cost and memory usage. The FL server aggregates
the local prompts uploaded by the client and is completely
agnostic to the employed LLM architecture. During training,
the clients can treat the model as a black box: neither the
clients nor the server requires access to the PLM parameters.
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4.1. Problem Formulation

Suppose there are K clients in FL, and each client hosts
a private dataset Dk = (Xk,Y k) consisting of nk samples
{xk

i , y
k
i }i∈[nk]. Given a global projected matrix A in

Equation (2), the clients collaboratively train an optimal z
with the objective to solve:

z∗=argmin
z

∑
k∈[K]

nk∑
k∈[K]n

k
F k(z), (4)

where F k(z) is the loss of client k:

F k(z)=L
(
f(Az;Xk),Y k

)
=

∑
i∈[nk]

L
(
f(Az;xk

i ),y
k
i

)
.

(5)

4.2. Overview of FedBPT

In FedBPT, the clients optimize local objectives based on
BBT. Thus, unlike previous FL works, FedBPT aggregates
the CMA-ES parameters applied by the clients to conduct
BBT rather than the deep learning models. At the start of the
training, the server initializes and distributes the projection
matrix A to the clients. Then, the server and clients will
freeze and apply A to calculate the prompt with the received
z. In each communication round (e.g., the t-th round), the
server first sends the up-to-date global CMA-ES parameters,
including the mean vector zt, covariance matrix Ct and
the search step σt to clients. Then, the clients (e.g., the
k-th client) conduct BBT to optimize the received CMA-ES
parameters by minimizing their local loss, i.e., Equation (5).
After local optimization, the clients upload their locally
optimal parameters and the local loss value F k(zk

t+1) to the
server. After the server receives all CMA-ES parameters,
it aggregates the local parameters and updates the global
CMA-ES parameters for the next communication round.
After the training is completed (e.g., T communication
rounds), the mean vector of the global CMA-ES zT will be
adopted to compute the optimal prompt pT =AzT .

The primary distinction between FedBPT and earlier FL
algorithms lies in the use of BBT for optimization. Yet,
integrating BBT into FL algorithms, such as FedAvg, is not
straightforward. Simply combining BBT and FedAvg cannot
achieve decent performance. The first challenge is how to
aggregate CMA-ES parameters on the server effectively.
Unlike aggregating deep learning models, directly averaging
CMA-ES parameters, mostly consisting of distribution
statistics, is not feasible. The second challenge is the prompt
overfitting problem caused by data distribution shifts across
clients, which is common under non-IID settings. We will
introduce these challenges in detail and our solutions in the
following sections.

4.3. Server-level CMA-ES Algorithm
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Figure 2. Comparison of aggregation between directly using Fe-
dAvg and FedBPT. FedAvg derives the global distribution by di-
rectly averaging the local distribution statistics. Mathematically,
the arithmetic mean of the covariance matrices is not equivalent to
the covariance matrix of our targeted optimal global distribution. In
FedBPT, the server applies CMA-ES to derive the global prompt
distributions with the awareness of the evaluation results of the
uploaded local distributions.

After receiving local CMA-ES parameters, the server con-
ducts aggregation on the server to derive a global search
distribution that can guide the clients’ search in the next com-
munication round. Directly averaging the models uploaded
by the clients following FedAvg is not effective for FedBPT.
In FedBPT, the clients locally optimize the CMA-ES parame-
ters parameterized by multivariate normal distribution statis-
tics. Mathematically, the arithmetic mean of the covariance
matrices is not equivalent to the covariance matrix of our tar-
geted optimal global distribution, as is empirically shown in
Sec. 5.2. In addition, CMA-ES is a random search algorithm
that cannot guarantee to achieve a local optimum as with
gradient-based optimization algorithms. Directly averaging
optimal and inferior local search results makes it difficult to
achieve a global optimum. To derive an optimal global search
distribution on the server, we adopt a server-level CMA-ES
algorithm to update the search distribution statistics based on
the local search results. The comparison of aggregations by
directly applying FedAvg and FedBPT is shown in Figure 2.

The intuition of the server-level CMA-ES is to consider the
local search results as a set of solutions sampled by the server.
The server then evaluates these sampled solutions and up-
dates the search distributions for the next communication
round. Suppose a set of clients St participate in training in the
t-th communication round. The server-level CMA-ES takes
the received mean vectors {zk

t+1}k∈St as the sampled solu-
tions and the local loss values {F k(zk

t+1)}k∈St as the corre-
sponding search step loss. To update the CMA-ES parame-
ters, the search step length is required. However, the server-
level “sampling” is conducted by multiple local search
steps, and the server-level search step length σt is in-
tractable. Directly applying a local search step length causes
the model to diverge. We provide a theoretical explanation for
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this divergence later. To solve this problem, we theoretically
derive a corrected search step σ′

t on the server formulated as

σ′
t=2

√√√√√∑
k∈S′

t

I∑
j=1

(
σk
t,j

)2
/(|St|·λk), (6)

where S′
t is the set of |St|

2 clients that upload zkt+1 with the
lowest local loss values F k(zk

t+1). σk
t,j is the step length

of client k’s j-th local search iteration in communication
round t. I is the number of local search iterations, and λk

is the local search population of client k. Then, the overall
algorithm of FedBPT is shown in Algorithm 1.

Algorithm 1 Training Algorithm of FedBPT.

Server executes:
1: initialize the projection matrix A and distribute it to the

clients
2: initialize the global CMA-ES parameters {z0,σ0,C0}
3: for each round t=0,1,... do
4: for each client k∈St in parallel do
5: {zk

t+1, {σk
t,j}j∈[I], F k(zk

t+1)} ←
ClientUpdate(zt,σt,Ct)

6: end for
7: σ′

t=2
√∑

k∈S′
t

∑I
j=1

(
σk
t,j

)2
/(|St|·λk)

8: {zt+1,σt+1,Ct+1} ← CMA-
ES

({
zk
t+1,F

k
(
zk
t+1

)}
k∈St

;zt,σ
′
t,Ct

)
9: end for

ClientUpdate(zt,σt,Ct):
10: zk

t,1,σ
k
t,1,C

k
t,1←zt,σt,Ct

11: for each local iteration j from 1 to I−1 do
12: Randomly sample a set of binary masks Mk

j with
the same shape of Xk with a rate rp of elements that are
zeros

13: Randomly sample a set of tokens X̂k with the same
shape of Xk

14: for i∈λk do
15: zk

t,j,i∼N (zt,j ,σt,jCt,j)

16: F̂ k(zk
t,j,i) =

L(f(Azk
t,j,i;X

k),Y k)
L(f(Azk

t,j,i;X
k⊙Mk

j +X̂k⊙(1−Mk
j )),Y k)

17: end for
18:

{
zk
t,j+1,σ

k
t,j+1,C

k
t,j+1

}
← CMA-

ES
({

zk
t,j,i,F̂

k
(
zk
t,j,i

)}
i∈[λk]

;zk
t,j ,σ

k
t,j ,C

k
t,j

)
19: end for
20: zk

t+1←zk
t,I

21: F k(zk
t+1)=L

(
f(Azk

t+1;X
k),Y k

)
22: return {zk

t+1,{σk
t,j}j∈[I],F

k(zk
t+1)} to server

We then introduce how we derive the corrected search
step σ′

t. After the server receives the locally updated
prompt vectors {zkt+1}k∈St and the corresponding loss

values {F k(zk
t+1)}k∈St

, the server updates the CMA-ES
parameters as shown in Algorithm 2.

Algorithm 2 CMA-ES update.

CMA-ES({zi,fi}i∈[λ],z,σ,C,pσ,pc):
1: z1...λ←zs(1)...s(λ) with s(i)=argsort(f1...λ,i)
2: z′← 1

µ

∑µ
k=1zi

3: pσ←Update-pσ(z′,z,C,pσ)
4: pc←Update-pc(z′,z,C,pσ,pc)
5: σ′←σ×exp( |pσ|

E|N(0,I)|−1)
6: C ′ ← (1 − c1 − cµ + cs)C + c1pcp

T
c +

1
µcµ

∑µ
k=1

zi−z
σ ( zi−z

σ )T

7: Return z′,σ′,C ′,pσ,pc

Without the loss of generality, we assume that
[
z1t+1,...,z

|St|
t+1

]
is ordered satisfying that F 1(z1

t+1)< ... < F |St|(z
|St|
t+1) as

stated in line 1 of Algorithm 2. The server updates zt+1
following

zt+1=

µ∑
k=1

1

µ
zkt+1=zt+

µ∑
k=1

1

µ
(zkt+1−zt), (7)

where we apply Rank-µ-Update (Hansen, 2016) and the
µ best zkt+1 with lowest zkt+1 are averaged to update zt+1.
There is no issue to update zt+1 on the server (line 2 in
Algorithm 2), but to update σt+1 and Ct+1, the intermediate
coefficients evolution path values pσ,t+1 and pc,t+1 for this
round should be derived first (line 3&4 in Algorithm 2). For
simplicity, we derive σ′

t from the computation of pσ,t+1,
which is also applicable to pc,t+1. CMA-ES derives the
evolution path pσ,t+1 following

pσ,t+1←(1−cσ)pσ,t+
√

1−(1−cσ)2
√
µC

−1/2
t

zt+1−zt
σt

,

(8)

where cσ is an artificial hyper-parameter satisfying
cσ≤1 (Hansen, 2016). The σt is intractable in FedBPT, and
we need to derive an estimated σ′

t to conduct CMA-ES on the
server correctly. The key to estimating the global search step
on the server is to guarantee that the term

√
µC

−1/2
t

zt+1−zt
σt

follows a standard normal distribution
√
µC

−1/2
t

zt+1−zt
σt

∼N (0,I) (9)

under neutral selection, which means that the server
randomly selects zkt+1 to update the CMA-ES parameters.
Based on this rule of estimation, we first derive the
distribution of zt+1−zt. From Equation (7), we have

zt+1−zt=
µ∑

k=1

1

µ
(zkt+1−zt), (10)

where zkt+1 is formulated as

zkt+1=zt+

J∑
j=1

σk
t,j×

µl∑
i=1

1

µl
zkt,j,i∼N

(
0,Ck

t,j

)
, (11)
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where J is the number of local iterations in one round of
training, and µl is the rank of local Rank-µ-Update. σk

t,j is
the search step length of client k’s j-th iteration in round t.
zkt,j,i is the i-th sampled point in client k’s j-th iteration of
search in round t. When the clients conduct limited iterations
of local training in one round, we make an assumption that
the local covariance matrix Ck

t,j in one round will not change
significantly, then we have

zkt+1≈zt+

J∑
j=1

σk
t,j×

µl∑
i=1

1

µl
zkt,j,i∼N

(
0,Ck

t

)
. (12)

Therefore, we have

C
−1/2
t (zt+1−zt)√∑µ

k=1

(
1
µ

)2∑J
j=1

(
σk
t,j

)2∑µl
i=1

(
1
µl

)2

=
√
µ

C
−1/2
t (zt+1−zt)√∑µ

k=1

∑J
j=1

(
σk
t,j

)2
/(µ·µl)

∼N (0,I).

(13)

Compared with Equation (9), we derive an estimated global
search step length as

σ′
t=

√√√√ µ∑
k=1

J∑
j=1

(
σk
t,j

)2
/(µ·µl). (14)

In this paper, we set λ1 = ... = λK and µl =
λk

2 , where
λk is the local population size of the k-th client, and we
set µ = |St|

2 . Then without the restriction on the order of[
z1t+1,...,z

|St|
t+1

]
, we have

σ′
t=2

√√√√√∑
k∈S′

t

J∑
j=1

(
σk
t,j

)2
/(|St|·λk), (15)

where S′
t is the set of |St|

2 clients that upload zkt+1 with the
lowest local loss values F k(zk

t+1).

4.4. Local Black-box Prompt Tuning against Overfitting
In real life, client data are non-IID distributed, which causes
label-skew across clients (Li et al., 2018). The server-level
CMA-ES evaluates the clients’ search results based on the
uploaded local loss values. Such label-skew makes local
searches overfitted to local data distributions by achieving
low local loss values and makes it difficult for the server to
evaluate their performance on the global data distribution.
This overfitting issue is more serious when adopting BBT
for local training. Gradient-based optimizations (e.g.,
SGD) incorporate both data and label information into the
gradient for updating. In contrast, when using Equation (2)
as the local training objective, BBT modifies the CMA-ES

parameters based primarily on how close predictions are to
the labels while using the data only indirectly. It is a practical
label-skew case in which most of a client’s data is distributed
in one class (Tang et al., 2022). In this case, a local CMA-ES
might learn a prompt that triggers the frozen PLM to generate
predictions corresponding to the dominant class, regardless
of the input. We conduct experiments to demonstrate such
an issue, which can be found in Appendix A

To mitigate this overfitting issue, we propose a perturbation
method to regularize the local training objective and avoid
CMA-ES selecting overfitting prompts. For a sample
{xk

i ,y
k
i } of client k, we randomly generate a binary mask

mk
i with an artificial rate rp of elements that are zeros. We

then randomly sample a sentence x̂k
i from the vocabulary

with the same length of xk
i as shown in Figure 3, and the

local training objective for the k-th client is formulated as

z∗=argmin
z∈Z

∑
i∈[nk]

L
(
f(Az;xk

i ),y
k
i

)
L
(
f
(
Az;xk

i ⊙mk
i +x̂k

i ⊙
(
1−mk

i

))
,yk

i

) .
(16)

The intuition is that given a perturbed input, the PLM should
not be confident of generating a correct prediction even when
fed an optimal prompt.

A detailed algorithm of applying server-level CMA-ES and
the local perturbation method can be found in Algorithm 1.

5. Experiments
5.1. Experimental Setup

Datasets and Models We conduct experiments on three
language understanding datasets: (1) The SST-2 (Socher
et al., 2013) is a popular sentiment analysis dataset. The
SST-2 dataset consists of sentences taken from movie re-
views along with their corresponding sentiment labels. Each
sentence is annotated as either "positive" or "negative" based
on the sentiment conveyed. (2) The Yelp polarity (yelp) is
another sentiment analysis dataset, which consists of reviews
on Yelp along with their corresponding sentiment labels of
"positive" or "negative". (3) The AG’s News dataset (Ope-
nAI) is a large-scale topic classification dataset for the task of
categorizing news articles into one of four predefined topic
classes. The dataset is based on the AG’s corpus, a collection
of news articles from various sources. We evaluate our
FedBPT on two PLMs: (1) RoBERTa (Liu et al., 2019) is a
variation of the BERT model. It is pre-trained using a variant
of the masked language modeling (MLM) objective, whose
objective is to predict masked tokens in a given text sequence.
In this paper, we apply the version of 356 million parameters.
(2) Llama 2 (Touvron et al., 2023) is a SOTA PLM released
by Meta, which is a collection of foundation language
models ranging from 7 billion to 70 billion parameters.
Llama 2 models are trained on 2 trillion tokens and have
double the context length than Llama 1. In this paper, we
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7 

I have zero complaints about the restaurant

I have dog execution about the service

Randomly mask & Replace the tokens 

p[0] …

p[0] …

𝒑𝒑

𝒑𝒑

𝒙𝒙𝒊𝒊𝒌𝒌

𝒙𝒙𝒊𝒊𝒌𝒌 ⊙𝒎𝒎𝒊𝒊
𝒌𝒌 + �𝒙𝒙𝒊𝒊𝒌𝒌 ⊙ (𝟏𝟏 −𝒎𝒎𝒊𝒊

𝒌𝒌)

Figure 3. We randomly mask and replace the tokens to perturb a sentence. The PLM should be confused about the perturbed sentence even
given an optimal prompt.

evaluate FedBPT on the model with 7 billion parameters.

Baselines We compare our black-box tuning FL frame-
work with several gradient-based and gradient-free methods.
For gradient-based methods, we compare with four baselines:
(1) FedAvg (McMahan et al., 2017) is the most widely-used
algorithm for FL. In FedAvg, the clients fine-tune the whole
model and transmit the updated model parameters. (2)
FedPrompt (Zhao et al., 2023) is the SOTA work of applying
FL to adapt the PLM with high communication efficiency.
The clients in FedPrompt learn and transmit prompts,
which reduces the communication cost significantly. (3)
FedP-tuning is built on FedPrompt by replacing the local
training from prompt tuning to p-tuning (Liu et al., 2022),
which is more advanced and proven to achieve higher
performance on downstream tasks. (4) FedLoRA (Yi et al.,
2023) applies LoRA (Hu et al., 2021) for local training and
transmits the low-rank adapter parameters, which can reduce
communication cost. For gradient-free methods, we consider
three baselines: (1) Manual Prompt is adapted following
the templates and label words in Appendix C to conduct zero-
shot evaluation. (2) In-context Learning Following (Brown
et al., 2020), we randomly select up to 5 training samples and
concatenate them with the input texts. (3) FedAvg-BBT is
a baseline by simply combining BBT (Sun et al., 2022c) and
FedAvg. We build this baseline for comparison to show the
effectiveness of our designed server-level prompt searching.

FL setup & Hyperparameters We follow Fed-
Prompt (Zhao et al., 2023) to design our FL setup. The sys-
tem has ten clients, and all of the clients participate in training
in each round. Considering the real world, where many users
possess only a limited amount of labeled data, we conduct
experiments under few-shot settings. We randomly select
40 samples for each class to construct a training set Dtrain.
We conduct experiments in both IID and non-IID settings.
More detailed hyperparameters can be found in Appendix B.

5.2. Experimental Results

Results of RoBERTa. The results when adopting
RoBERTa as the PLM are shown in Tab. 1. Compared with
the gradient-based methods, FedBPT achieves comparable
or even higher accuracy with drastically reduced trainable
parameters. Specifically, FedBPT achieves an accuracy of
0.92% higher than FedPrompt and only 0.69% lower than
the best gradient-based baseline FedP-tuning for SST-2

under the non-IID setting. Meanwhile, FedBPT reduces
the trainable parameters by more than 100× and 30,000×
compared with FedPrompt and FedP-tuning, respectively.
The trainable parameters are required to be transmitted
in each communication round, which means that FedBPT
reduces the communication cost of one device in one round
from 120MB to only 4KB compared with FedP-tuning. For
AG’s News and Yelp, FedBPT can also achieve comparable
accuracy under IID and non-IID settings. Notably, FedAvg
and FedLoRA cannot improve the accuracy under both
IID and non-IID settings. This demonstrates that directly
fine-tuning the parameter space of LLMs is not feasible in
realistic FL settings, even if adapting LoRA when the clients
hold limited labeled samples. We document the memory
usage by one client of different methods on SST-2 in Tab. 2.
It is shown that FedBPT can reduce memory costs by more
than 3× compared with gradient-based methods.

Method Mem.
FedPrompt 5.8 GB

FedP-tuning 6.1 GB
FedAvg 7.2 GB

FedLoRA 2.0 GB
In-context Learning 2.1 GB

FedBPT 1.8 GB

Table 2. Memory footprint on
SST-2 by applying RoBERTa.

Compared with gradient-
free baselines, FedBPT
achieves higher accuracies
under IID and non-IID set-
tings for all the datasets.
FedBPT achieves accu-
racies of 2.3%, 4.57%,
and 1.08% higher than
FedAvg-BBT under non-
IID settings for SST-2,
AG’s News, and Yelp, re-
spectively. It is shown that FedAvg-BBT achieves limited
accuracy improvement compared with manual prompts for
all the datasets, which demonstrates that simply combining
FedAvg and BBT cannot achieve decent performance.

Results of Llama 2. The number of trainable parameters
when applying Llama 2 as the PLM is shown in Tab. 3. The
trade-off between the communication cost of one device in
one round and model accuracy is shown in Figure 4. We
have two important observations: (1) For Llama 2, FedBPT
can improve the accuracy significantly compared with the
gradient-free baselines and achieve comparable accuracies
with the gradient-based methods in most settings. Specifi-
cally, FedBPT improves accuracy by more than 12%, 11%,
and 13% for SST-2, AG’s News, and Yelp compared with
the manual prompts under non-IID settings, respectively.
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SST-2 AG’s NEWS Yelp

Method Trainable
Params.

Acc.(%)
IID

Acc.(%)
non-IID

Acc.(%)
IID

Acc.(%)
non-IID

Acc.(%)
IID

Acc.(%)
non-IID

Gradient-based methods
FedPrompt 51K 90.25 85.55 87.72 85.62 91.44 91.47
FedP-tuning 15M 90.6 87.16 88.17 86.11 93.61 91.63
FedAvg 355M 84.7 82.4 77.43 76.54 88.25 88.03
FedLoRA 786K 84.6 84.53 77.85 75.9 88.52 88.2

Gradient-free methods
Manual prompt 0 83.6 75.75 88.37
In-Context Learning 0 79.7 76.96 89.65
FedAvg-BBT 500 84.45 84.17 76.54 76.46 89.64 89.72
FedBPT 500 87.16 86.47 82.36 81.03 91.12 90.8

Table 1. Results under both IID and non-IID settings with RoBERTa as the backbone model.
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Figure 4. The results under IID and non-IID settings with Llama 2 as the backbone model.

Method FedPrompt FedP-tuning FedAvg FedLoRA Manual FedAvg-BBT FedBPT
Trainable Params. 205K 235M 7B 4M 0 500 500

Table 3. Number of trainable parameters when adopting Llama 2 as the backbone model.

FedBPT can achieve slightly higher accuracy than Fed-
Prompt under the AG’s News IID setting, while the gradient-
free baselines experience declines in accuracy of over 15%.
(2) FedBPT reduces the number of trainable parameters com-
pared with gradient-based methods even more significantly
than adopting RoBERTa. Specifically, compared with FedP-
tuning, FedBPT reduces the trainable parameters from 235M
to only 500, which makes FedBPT reduce the communication
cost of one device in one round from nearly 2GB to 4KB.

In summary, FedBPT can achieve much higher accuracy
than gradient-free baselines and comparable accuracy as
gradient-based methods for both RoBERTa and Llama 2
models. In addition, the number of trainable parameters does

not increase when the model scale is larger. The reason is that
FedBPT adopts a projection matrix to project the embedding
space to a low-dimension space, which enables the clients
to conduct CMA-ES learning to train a low-dimensional
vector. This scalability is essential considering the rapid
growth of the PLM parameter scale, which allows the clients
in FedBPT not to pay more communication costs when the FL
system adopts larger PLMs. Some gradient-based methods
outperform FedBPT in accuracy for some settings, which is
expected. However, we should realize that gradient-based
methods require conducting back-propagation, which are not
always realistic for most cases of FL on edge devices, and
only the gradient-free methods are feasible in many cases.
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5.3. Ablation studies

Local population size (λk). In each iteration of local
search, the clients (e.g., the k-th client) sample λk candi-
dates for evaluation. We study the effect of local population
λk on the model accuracy. We set λk from 5 to 20, and con-
duct experiments on SST-2 and AG’s News for RoBERTa.
The results are shown in Figure 5. It is shown that the model
accuracy of FedBPT is not sensitive to λk. Thus, in real
applications, λk can be set relatively small to reduce compu-
tational cost.

5 1 0 2 08 5

8 6

8 7

8 8 A G ' s  N e w s
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)

λ k

 I I D   n o n - I I DS S T - 2
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8 0

8 4
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acy
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)

λ k

Figure 5. Results of FedBPT adopting RoBERTa with different λk.

Local binary mask rate (rp). We study the effect of the
rate of zeros in the binary masks mk

i that local devices apply
to perturb input and avoid overfitting. We conduct experi-
ments on SST-2 and AG’s News under the non-IID setting for
RoBERTa. As introduced in Sec. 4.4, a larger rp means that
more tokens in a sentence will be randomly replaced. We set
rp from 0% to 80%, and the results are shown in Tab. 4. It
is shown that applying the random placement can improve
the global accuracy compared with simply adopting vanilla
BBT for local training (i.e., rp=0). This illustrates the effec-
tiveness of our designed random placement in mitigating the
local overfitting challenge.

Dataset SST-2
rp 0 0.2 0.4 0.6 0.8
Acc. (%) 84.86 85.21 86.03 86.47 86.12

Dataset AG’s News
rp 0 0.2 0.4 0.6 0.8
Acc. (%) 78.28 80.92 81.03 80.75 80.83

Table 4. Results of FedBPT adopting RoBERTa with different rp
under non-IID settings.

6. Conclusion
We introduced an FL framework, FedBPT, allowing clients
to adapt black-box PLMs efficiently using gradient-free op-
timization. This approach eliminates the need for clients
to access and finetune model parameters and only requires
forward propagation for local training, thus lowering com-
putational and memory demands for devices. Evaluations
of several datasets with SOTA PLMs revealed that FedBPT
matches the accuracy of gradient-based methods but with
markedly less communication and memory overhead.
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A. Overfitting Problem of Local Training via BBT
To demonstrate the overfitting problem of local training by applying BBT, we conduct experiments on AG’s NEWS (OpenAI),
a topic classification dataset with four data classes. We simulate an FL client to train prompts for a pre-trained RoBERTa (Liu
et al., 2019) model using BBT. The simulated client holds data following the Dirichlet distribution, commonly applied in
previous FL papers (Hsu et al., 2019; Tang et al., 2022) for non-iid setting, and more than 90% of its data are in class one. The
confusion matrix evaluated with the prompt trained by this client is shown in Figure 6. It is shown that all of the data will be
classified as class one after applying the prompt trained by this client, which demonstrates the problem of overfitting caused by
local BBT.
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(a) Results without prompt.
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(b) Results of locally trained prompts.

Figure 6. Confusion matrix of a client holding data that more than 90%
is in class one.
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B. Experimental Hyperparameters Setup
For IID settings, we split the training dataset Dtrain evenly. For non-IID settings, we follow previous works to split the data
following the Dirichlet distribution parameterized by α. We maintain a default setting of α = 1.0 throughout our experiments.
The initial search step length σ1 is 1. We set local iteration I to 8 and the local population λk to be 5 for all clients.
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C. Manual Prompt Templates

Model Dataset Template

RoBERTa
SST-2 ⟨S⟩. It was [MASK].
AG’s News [MASK] News: ⟨S⟩
Yelp ⟨S⟩. It was [MASK].

Llama 2
SST-2 What is the sentiment of this sentence: ⟨S⟩? [OUTPUT ]
AG’s News ⟨S⟩. The news is about [OUTPUT ]
Yelp ⟨S⟩. It is [OUTPUT ]

Table 5. Manual prompt templates. ⟨S⟩: sentence in the dataset. ⟨MASK⟩: mask token adopted by RoBERTa. [OUTPUT ]: output
placeholder of Llama 2.

We set manual prompts for different datasets as shown in Tab. 5. We set different prompts for RoBERTa and Llama 2 according
to their pre-training strategy. For RoBERTa pre-trained on masked language modeling (MLM) tasks, we apply manual prompts
to organize the datasets as MLM datasets. For Llama 2, which is pre-trained on causal language modeling (CLM) tasks, we
organize the samples to prompt the model to generate labels.
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