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Abstract

Federated learning (FL) for Video Action Recognition (VAR) faces significant chal-
lenges in balancing privacy preservation, communication efficiency, and model
performance. This paper introduces FLAMeST (Federated Learning for Action
Recognition with Multimodal embeddings and Spacio-Temporal Fusion), a FL
framework that synergizes Vision-Language Models (VLMs) and spatiotemporal
CNNs to address these challenges. Unlike existing works that use BLIP (VLM)
solely for caption generation, FLAMeST leverages BLIP in a dual manner. To
enhance temporal modeling, complementary spatiotemporal features are extracted
using a pre-trained 3D CNN (Slow network). These semantic (BLIP) and mo-
tion (Slow) embeddings are concatenated into a unified representation to train
a lightweight Multi-Layer Perceptron (MLP). Within the FL paradigm, only the
MLP parameters are shared with the server, ensuring raw video data and gener-
ated captions remain local. FLAMeST employs the FedAvg algorithm for model
aggregation, achieving 99%(↓) lower communication overhead compared to full-
model training. Experiments on UCF101 and HMDB51 datasets demonstrate the
framework’s robustness, achieving improved accuracies of 5.13%(↑) and 2.71%(↑),
respectively, against the baseline.

1 Introduction

Video Action Recognition (VAR) plays a vital role in computer vision, with applications spanning
human-computer interaction, surveillance, healthcare, and autonomous systems (Al-Faris et al.
(2020); Javaid et al. (2024); Gumbs et al. (2022)). Traditional VAR approaches leverage deep learn-
ing architectures—such as 3D Convolutional Neural Networks (3D-CNNs) (Ji et al. (2012); Tran
et al. (2015)), Recurrent Neural Networks (RNNs) (Ji et al. (2012); Tran et al. (2015); Yang et al.
(2022)), and Transformers (Ulhaq et al. (2022)), to model spatiotemporal dynamics from large-scale
datasets like UCF101 (Soomro et al. (2012)) and Kinetics (Carreira & Zisserman (2017)). However,
these centralized training paradigms face limitations due to data privacy laws, e.g., GDPR (General
Data Protection Regulation,(European Union (2016))) , data decentralization, and communication
bottlenecks (AbdulRahman et al. (2020)).
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In real-world deployments, video streams from surveillance or wearable devices often contain sen-
sitive user data, rendering inter-institutional sharing infeasible (Posner (2008)). To address these
challenges, Federated Learning (FL) has emerged as a promising solution by enabling decentral-
ized training across clients without transferring raw data (Mammen (2021); Kairouz et al. (2021)).
Clients update a shared global model through local training and only communicate parameter up-
dates (McMahan et al. (2017)). While this paradigm preserves privacy, most existing FL-based VAR
methods rely on unimodal visual features and overlook the semantic richness of Vision-Language
Models (VLMs) (Zhang et al. (2024)). VLMs such as CLIP (Radford et al. (2021)) and BLIP (Li
et al. (2022)) have shown superior performance in zero-shot and few-shot tasks by aligning visual
and textual modalities through joint representations (Saha et al. (2024)). These models offer rich
semantic context—e.g., captions like “a person opening a door” can enhance action understanding
when fused with visual features.

To address this issue of privacy-preserving VAR without compromising efficiency, we propose a
framework for VAR in a cross-silos FL environment called FLAMeST , which stands for Federated
Learning for Action Recognition with Multimodal embeddings and Spacio-Temporal Fusion, that
integrates spatiotemporal CNNs with VLM-based embeddings. In FLAMeST as shown in Figure 1,
each client uses a pre-trained BLIP model to generate a caption from a sampled video frame and
then derives cross-modal embeddings by reprocessing the image-caption pair through BLIP’s cross-
attention module. This dual use of BLIP, beyond standard caption generation, yields stronger
semantic representations. In parallel, a SlowFast-3D CNN 1 (

Although VLMs are large-scale models, we assume clients can execute them in inference mode
(Zhuang et al. (2023)), enabling practical deployment while leveraging their strong semantic priors.
Our primary objective is to explore the underutilized potential of VLMs in FL environments.

2 RELATED WORK

Human Action Recognition (HAR) tasks, particularly those relying on wearable sensors, generated
considerable attention in both academia and industry (Gani et al. (2019); Wang et al. (2020); Hassan
et al. (2018); Kalabakov et al. (2023)), subsequently motivating the extension of such techniques to
video-based applications.

Early VAR methods primarily relied on hand-crafted features such as motion-energy images (MEI)
and motion-history images (MHI) to capture spatiotemporal dynamics (Bobick & Davis (2001)).
Despite being computationally efficient, these methods exhibited limited robustness to variations
in viewpoint and complex motion patterns (Bobick & Davis (2001); Zhao et al. (2024)).

Centralized Action Recognition: With deep learning, 2D CNNs like AlexNet and VGGNet
(Krizhevsky et al. (2012); Simonyan & Zisserman (2014)) enabled robust spatial feature extraction
from frames but lacked temporal modeling. To address this, two-stream networks emerged, combin-
ing RGB frames (spatial stream) and optical flow (temporal stream) (Alomar et al. (2024); Le et al.
(2022)). While these improved accuracy, they required separate optical flow computation, thus in-
creasing complexity. Subsequently, 3D CNNs such as C3D, I3D and SlowFast networks (Tran et al.
(2015); Carreira & Zisserman (2017); Feichtenhofer et al. (2019)) enabled end-to-end spatiotemporal
learning. Transformer-based models have also shown promise for VAR. Vision Transformers (ViTs)

1For SlowFast, we used a Slow pathway with 8 frames as input.
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and Video Swin Transformers capture long-range temporal dependencies via attention mechanisms
(Ulhaq et al. (2022); Liu et al. (2022)), while hybrids like PSO-ConvNet Transformers combine CNN
and transformer features for improved accuracy (Nguyen & Ribeiro (2023)). VideoMAE extends
masked autoencoding to videos using spatiotemporal tube masking (Tong et al. (2022)).

InternVideo2.5(Wang et al. (2025)) builds on the InternVideo2 architecture by introducing long-
context modeling and hierarchical visual-token compression to efficiently process extended video
sequences. It integrates a video encoder (for spatial–temporal features) with a language model
backbone via a unified cross-modal adapter, enabling frame-level reasoning over long clips. The
training follows a three-stage pipeline—progressive pretraining on image–text and short video–text
pairs, followed by long-video alignment—to improve temporal coherence and cross-modal under-
standing.

However, these models are trained in centralized settings and focus on unimodal visual features,
raising concerns over privacy, data sharing, and regulatory compliance (Kazakos et al. (2021);
Akbari et al. (2021)).

Federated Learning for Action Recognition: FL addresses privacy by enabling decentralized
training. Several works have applied FL to HAR using wearable sensor data (Gani et al. (2019);
Hassan et al. (2018)). For video, most methods simplify the problem to image-level classification
(Doshi & Yilmaz (2022)) or apply self-supervised learning to improve generalization (Rehman et al.
(2022)). Personalization and heterogeneity have been addressed through techniques like Meta-HAR
(Li et al. (2021)), FedCLAR (Presotto et al. (2022)), and FedMAT (Shen et al. (2022)), which bal-
ance shared and user-specific learning. An activity recognition framework in FL is proposed in (Yang
et al. (2024)), where both global (modality-agnostic) and private (modality-specific) classifiers are
learned collaboratively across clients. This design effectively separates shared and unique modality
characteristics through adversarial training. Architecture-aware FL approaches like FedConv (Xu
et al. (2023)) study CNN configurations under heterogeneity have also been explored. Addressing
the limited computational capacity of edge devices, (Jain et al. (2021)) proposed a knowledge dis-
tillation (KD) strategy involving two teacher models to facilitate efficient model deployment in an
FL environment. This hierarchical distillation pipeline introduces a teaching assistant model as an
intermediary, effectively bridging the gap between the complex teacher and the constrained student.
For few-shot learning under FL, (Tu et al. (2024a)) employed CNNs to capture spatiotemporal cues
and applied meta-learning for improved generalization. FedVision enabled FL for object detection
with YOLOv3 (Liu et al. (2020)), while recent transformer-based FL work targets video anomaly
detection (Doshi & Yilmaz (2023)).

Although these methods support video or multimodal learning in FL, they do not incorporate
vision-language models (VLMs), missing the benefits of semantic context.

Vision-Language Models and FL Integration: CLIP and BLIP (Radford et al. (2021); Li et al.
(2022)) demonstrate strong image-text alignment for zero-shot tasks, but their application in video
tasks remains limited. A few recent efforts addressed this gap—for example, (Zhuang et al. (2023))
analyzes how foundation models can be incorporated into FL, outlining both opportunities for
collaboration and the associated technical hurdles. ActionCLIP (Wang et al. (2023)), which adapts
VLMs like CLIP for video VAR by leveraging the semantic alignment between visual and textual
modalities. Unlike traditional methods that treat action labels as discrete classes, ActionCLIP
treats them as rich textual descriptions. JoVALE (Son et al. (2024)) combines BLIP with person
detection and audio-visual fusion, but the added modalities increase computational overhead.
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Figure 1: Overview of the FLAMeST pipeline. (A) Keyframes are selected using k-means clustering.
(B-C) A keyframe is sampled and captioned using a VLM. (D1) All keyframes are passed through
a 3D CNN; (D2) the sampled keyframe-caption pair is reprocessed for cross-modal embeddings.
(E-F) CNN and VLM features are concatenated to train a lightweight MLP, which participates
in the FL. Only the MLP parameters are updated and sent to the server, which aggregates via
FedAvg and redistributes the global MLP (step G). The foundation models remain frozen and are
not transmitted, reducing communication overhead (Supplementary Figure A-1).

To address these gaps, we propose FLAMeST, a framework that combines BLIP-based vision-
language embeddings with spatiotemporal CNN features for efficient, privacy-preserving FL in
VAR. Our approach achieves competitive accuracy on UCF101 and HMDB51 while significantly
reducing communication overhead.

3 FLAMeST FRAMEWORK

The pipeline for the FLAMeST framework is shown in Figure 1. We consider an FL set-up com-
prising N clients {C1, . . . , CN }, where each client Ci holds a private labeled video dataset. Vi

j

represents the jth video clip of the ith device.

Di = {(Vi
j , yi

j)}Mi

j=1

where |Di| = M i.
(1)
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Each video sample consists of ni
j RGB frames of spatial dimension H × W where the associated

action class yi
j belongs in a label space of K action classes.

Vi
j ∈ Rni

j×H×W ×3

yi
j ∈ {1, . . . , K}

(2)

3.1 Key Frame Selection via Clustering

To reduce the temporal redundancy in video sequences, we apply k-Means based clustering in a
learned feature space to identify a reduced set of informative keyframes. Across all devices and
their data elements, we set mi

j = k, where k is the number of clusters. We experimented with
k ∈ {2, 3, 5, 8} and selected k=3 using the elbow method and silhouette confidence intervals. This
makes the keyframe selection systematic and reproducible, rather than heuristic. Method details
are presented in Supplementary Section A.1, Algorithm A-1.

Fi
key,j = {f i

1, . . . , f i
mi

j
}

where f i
l ∈ RH×W ×3, l ∈ {1, . . . , mi

j}
(3)

3.2 Random Key Frame Sampling

From the set of keyframes Fi
key,j a single representative frame f̃ i

j is sampled uniformly at random.

f̃ i
j ∼ U(Fi

key,j)

where P (f̃ i
j) = 1

mi
j

(4)

3.3 Multimodal Embedding Generation via VLM

The sampled frame f̃ i
j is first passed through a VLM ΦVLM to generate a descriptive caption ti

j .

ti
j = ΦVLM(f̃ i

j), (5)

Subsequently, the caption ti
j and the frame f̃ i

j are fed into the VLM cross-attention module to
produce a joint vision-language embedding, i.e, the [CLS] token embedding of the last hidden layer
is extracted (Algorithm 1). Without loss of generality, we consider the BLIP VLM.

ei
VLM,j = Φcross

VLM(f̃ i
j , ti

j) ∈ Rde ,

where de = 1 × 768.
(6)

3.4 Visual Embedding via CNN Backbone

In parallel, the set of keyframes Fi
key,j is processed using a 3D CNN-based backbone ΦCNN (e.g.,

ResNet-3D, I3D, Slow) to obtain a visual-only embedding. Without loss of generality, we consider
the Slow -3D CNN model.

ei
CNN,j = ΦCNN(Fi

key,j) ∈ Rdv ,

where dv = 1 × 2048.
(7)

The embeddings are obtained from the last dense layer of the CNN model (Algorithm 1).

5



Under review as submission to TMLR

3.5 Joint Feature Representation

The final multimodal feature vector is formed by concatenating the VLM-based and CNN-based
embeddings. We also experimented with a gated-attention-based fusion technique. However, the
performance is not any better than simple concatenation (The results are provided in Section 6.5).

ei
j = [ei

VLM,j ; ei
CNN,j ] ∈ Rde+dv

where dimensionality of ei
j is 1 × 2816.

(8)

Each client prepares its transformed data set,

Di
VLM,CNN = {(ei

j , yi
j)}j=Mi

j=1 (9)

The CNN (ei
CNN,j) and VLM (ei

VLM,j) embeddings often differ in dimensionality, making element-
wise operations like the dot product infeasible. While projecting them to a common space is
possible, it may introduce complexity and risk of information loss. To retain the full representation
of both modalities without additional transformations, we adopt simple concatenation for fusion.

Algorithm 1 High-level steps for obtaining VLM and CNN embeddings on each client
1: Determine keyframes (EQ. 3)
2: Determine a representative frame (EQ. 4)
3: Obtain caption for the frame (EQ. 5)
4: Obtain text-visual cross-embedding for the caption text and the corresponding frame (EQ. 6)
5: Obtain CNN embedding for the representative frame (EQ. 7)
6: Obtain combined embedding (EQ. 8)
7: Prepare a transformed data set (EQ. 9)

3.6 Local Training and Federated Aggregation at Server

On each client Ci train a local multi-layer perceptron (MLP) classifier gi(·) parameterized on wi 2

on the transformed dataset Di
VLM,CNN.

gi(wi) : Rde+dv → RK (10)

Each client trains gi(·) by minimizing the cross-entropy loss using Stochastic Gradient Descent
(SGD) as,

J (wi) = 1
|D|

∑
(e,y)∈D

LCE(g(e), y)

wi
t+1 = wi

t − η∇wiJ (wi
t)

(11)

where D is Di
VLM,CNN, g is gi(wi), LCE(·, ·) denotes the cross-entropy loss and η is the learning

rate. After local training, each client transmits its updated parameters wi (EQ. 11) to a central
2wi is wi

(t) at time t
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server. The server aggregates these received models by weighted averaging of the models’ parameters
(EQ. 12, Algorithm 2).

w∗
(t+1) =

N∑
i=1

αiwi
(t), αi = |Di|∑N

j=1 |Dj |
(12)

Where α corresponds to the data proportion of each client. It denotes the weight given to each
client during model aggregation. The aggregated global model w∗

(t+1) is broadcast to all clients,
and the training proceeds for T communication rounds.

Each client has a pre-trained VLM and a CNN model, both frozen during training and inference.
The only trainable component is the MLP, which participates in the FL cycle.

An alternative is to employ recent video-language captioners such as Qwen-VL or Cosmos-
Reasoning. However, deploying multi-billion parameter captioners on each FL client is infeasible due
to memory and latency constraints, and server-side captioning would require uploading raw video,
violating privacy. Our FLAMeST pipeline is lightweight, client-friendly, and privacy-preserving.
Exploring distilled captioners in FL is an avenue for future work.

Algorithm 2 Federated Learning with federated averaging
1: Initialize server model to random weights w∗

0
2: for t ∈ [1 . . . T ] do
3: for i ∈ [1, . . . , N ] do
4: Initialize client weights (EQ. 10)

wi = w∗
(t−1)

5: Prepare (or update) client data set (Algorithm 1)
6: Minimize client specific loss (EQ. 11)

wi = argmin
w

J i(w)

7: end for
8: Perform federated averaging on server (EQ. 12) to obtain w∗

(t)
9: end for

4 Experimental Set-Up

We design a comprehensive experimental framework to evaluate the performance of FLMeST for
VAR. Table 1 shows the details regarding each model and embedding size. All the experiments
are done on NVIDIA A100. All references to BLIP embeddings in this work pertain to the cross-
attention embeddings derived from the visual-semantic alignment within the BLIP model.

Benchmark Datasets and Data Partitioning Strategy: The experiments in this study
are conducted on two widely recognized benchmark datasets: UCF101 (Soomro et al. (2012))
and HMDB51 (Kuehne et al. (2011)). UCF101 comprises 13,320 video clips spanning 101 action
categories. The dataset is split into 10,619 training and 2,701 testing samples. HMDB51 consists
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of 6,766 video clips categorized into 51 action classes. The dataset is partitioned with 5,413 videos
for training and 1,353 videos for testing, following an 80:20 train-test split. To simulate real-world
Non-IID conditions, we partition data across clients using a Dirichlet distribution Dir(β), where a
smaller β indicates higher label skew. For baseline comparisons, we use IID splits (β = 1), while
Non-IID settings use β = 0.6 to evaluate robustness under data heterogeneity.

Benchmarking Methods and Feature Extractors: We use two popular vision-language models
(VLMs): BLIP-2 (Li et al. (2022)) and CLIP-ViT/L-14 (Radford et al. (2021)). For benchmark-
ing, we evaluate four spatiotemporal models: (1) ResNet-3D (Tran et al. (2015)) as a 3D CNN
baseline; (2) I3D (Carreira & Zisserman (2017)), which inflates 2D kernels into 3D; (3) SlowFast
(Feichtenhofer et al. (2019)) using an 8-frame Slow pathway to capture appearance and motion;
(4) VideoMAE (Tong et al. (2022)), a masked autoencoder-based ViT for video representation and
InternVideo2.5(Wang et al. (2025)) a VLM for video QA. All models use public code and pretrained
weights from PyTorchVideo (Fan et al. (2021)), Torchvision, and HuggingFace. Feature vectors are
extracted from the final convolutional layer before classification to capture spatiotemporal seman-
tics. In addition to the feature extractors discussed above, we benchmark our method against the
work of Jain et al. (2021)3 We have also considered the recent method ActionCLIP by (Wang et al.
(2023)) in a non-FL setting that uses a CLIP model for action recognition on unseen classes. We
do not compare our method with existing FL-based VAR approaches such as FL for Driving Action
Recognition (DAR) (Doshi & Yilmaz (2022)), which targets driver-specific actions using 2D CNNs
and FedGKT (He et al. (2020)) for communication efficiency. Their task-specific focus differs from
our objective of general-purpose action recognition. Similarly, FSAR (Guo et al. (2023)) is an-
other VAR method in the FL setting, but it operates on skeleton-based datasets rather than video
data, making direct comparison with our approach inappropriate. Few-shot FL methods (Tu et al.
(2024b)) are also excluded, as they address a different problem setting. However, we consider the
extension of our framework to few-shot FL-based VAR as an interesting direction for future work.

Client-Side Training Protocol: In the proposed FL framework, foundation models remain
frozen during training and inference and do not participate in FL communication. Each client
trains a local MLP classifier, whose parameters are shared with the server during aggregation. By
default, the MLP comprises two hidden layers (512 and 256 neurons) and an output layer matching
the number of action classes. The input layer aligns with the dimensionality of the frozen backbone
embeddings. Clients train locally for five epochs per round using a batch size of 128. Optimization
is performed using Adam with a learning rate of 0.01 and weight decay of 1 × 10−4, with cross-
entropy loss as the loss objective. Additional MLP configurations are explored in Section 6. Unless
stated otherwise, experiments use four clients in a cross-silo IID-FL setting over 80 rounds.

Model Aggregation, Client Update and Evaluation Metrics: The model aggregation is
accomplished via FedAvg (McMahan et al. (2017)), which simply averages model weights across
participating clients. For client-side model update, we have considered two methods, FedProx (Li
et al. (2020)) and FedDyn (Acar et al. (2021)), apart from simple gradient update, which were
compared in ablation studies (Section 6). Performance is assessed using two primary metrics. The
top-1 classification accuracy of the global model and communication efficiency are measured as the
number of model parameters exchanged per communication round.

3The code for this paper was not publicly available. Therefore, the accuracy values reported in our work are those
quoted directly from the original paper.
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• Parameter reduction by using only
the MLP in FL :

= (

279,868,172︷ ︸︸ ︷
BLIP + Slow +MLP) − MLP

(BLIP + Slow + MLP)

= (279, 868, 172 + 1, 573, 889) − 1, 573, 889
279, 868, 172 + 1, 573, 889

= 0.994 or 99.4% (13)

• Parameter reduction compared to
Knowledge Distillation (KD) :

= KD − Our
KD , Our = MLP

= 11, 689, 512 − 1, 573, 889
11, 689, 512

= 0.865 or 86.5%

(14)

Resource Usage and Storage Requirements: We use the VLM BLIP4 model for generating
the caption and subsequently visual-semantic cross embeddings. For the 3D-CNN backbone, we
used the Slow-3D CNN model5, which is part of Facebook AI’s PySlowFast framework. An analysis
of resource usage during inference mode shows that the Slow-3D CNN model recorded a maximum
memory allocation of 319.51 MB per point, while the BLIP model utilized 1023.97 MB per point
as inspected using watch6 and torch.7 The execution times for Slow-3D CNN and BLIP are 1.315
seconds and 1.362 seconds, respectively, when processing a single input point. The storage require-
ment8 for BLIP is approximately 941.44 MB, the Slow-3D CNN model is 131.85 MB, and the MLP
model is 6.02 MB (Refer to Table 1).

5 Results and Evaluation
In this section, we conduct a quantitative evaluation of FLAMeST , focusing on its communication
overhead and performance in both FL and centralized learning setups. We compare FLAMeST
against various foundation model extractors to assess its effectiveness and efficiency in these different
learning environments.
5.1 Communication Overhead

We assume that each participating client possesses sufficient storage and computational resources
to host pre-trained foundation models, such as BLIP, CLIP, and 3D-CNN. Table 1 outlines the
parameter count of the models employed. We propose a lightweight communication strategy to
overcome the significant communication overhead typically associated with federated training of
large-scale models. Instead of exchanging the full parameter sets of these massive foundation models,
we freeze the pre-trained model’s backbone during local training and extract fixed embeddings from
it. A lightweight MLP classifier is trained on these embeddings. This is the only component that
solely participates in the FL optimization loop. This decouples the representation learning phase
from the federated aggregation step, substantially reducing communication costs.

As shown in Table 1, the number of parameters involved in FL is smaller than the size of the
underlying foundation models. For instance, while the BLIP+Slow model comprises approximately
279 million parameters, only 1,573,889 parameters from the MLP are involved in FL communi-
cation, resulting in a parameter transfer reduction of approximately 99.4% (EQ. 13). Similarly,

4Salesforce/blip-image-captioning-base
5https://pytorch.org/hub/facebookresearch_pytorchvideo_resnet
6watch -n 1 nvidia-smi
7torch.cuda.max_memory_allocated()/(1024**2)
8The Floating Point (FP) is 32
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Table (1): Model Comparison: Parameters and Input Dimensions for Feature Extractors and FL
Models, where the last column refers to the learnable parameters participating in FL. Details are
presented in Section 4.

S.No Feature
Extractor Models

Input
Frame

Base Model
Parameters

Input
Dimension

Parameters
in FL

1 BLIP (Li et al. (2022)) 1 247,414,076 768 525,311
2 CLIP (Radford et al. (2021)) 1 151,277,313 1024 656,3855
3 KD (Baseline) (Jain et al. (2021)) 8 49,482,360 - 11,689,512
4 ResNet3D (Tran et al. (2015)) 3 33,371,472 512 394,241
5 I3D Carreira & Zisserman (2017) 8 28,043,472 2048 1,180,673
6 Slow (Feichtenhofer et al. (2019)) 8 34,566,488 2048 1,180,673
7 VideoMAE (Tong et al. (2022)) 16 86304869 786 525,313
8 BLIP (Text Only) 1 247,414,076 768 525,313
9 BLIP + I3D 9 (1+8) 275,457,548 2816 1,573,889
10 BLIP + ResNet3D 4 (1+3) 280,785,548 1280 797,457
11 BLIP + Slow (FLAMeST) 9 (1+8) 279,868,172 2816 1,573,889
12 BLIP (Text Only) + ResNet3D 4 (1+3) 280,785,548 1280 797,457
13 BLIP (Text Only) + I3D 9 (1+8) 275,457,548 2816 1,573,889
14 BLIP (Text Only) + Slow 9 (1+8) 279,868,172 2816 1,573,889
15 ActionCLIP (non-FL) (Wang et al. (2023)) 3 150,000,000 - -
16 InternVideo2.5 (Wang et al. (2025)) 8 8,075,422,270 1024 682,085

compared to the baseline KD, the parameter transfer reduction is approximately 86.5% (EQ. 14).
This selective participation significantly enhances the communication efficiency of the proposed
framework without compromising representation quality. Freezing the foundation models strikes a
balance between performance and efficiency, preserving the strong semantic priors of these models
while avoiding the prohibitive cost of fine-tuning and communicating billions of parameters across
clients.

5.2 Comparison of FLAMeST and other Feature Extractors

Figure 2: Accuracy achieved
by the global model
(FLAMeST) over 50 rounds
(cycles) for the UCF101 and
HMDB51 datasets.

Table 2-(A, B) presents a comparative study of different VLMs,
various CNN and transformer-based feature extractors in FL train-
ing settings on the UCF101 and HMDB51 datasets.

For UCF101, the highest accuracy is achieved by the combination
of embeddings extracted from the Slow model along with the cross-
attention embeddings obtained from the BLIP model. Our method
achieves an improvement of 5.13% against the baseline (Table 2-A,
row 14, row 3). The Slow model, being a 3D CNN, effectively cap-
tures the spatial-temporal aspects of video sequences. In contrast,
the BLIP model integrates visual and textual information through
its vision-language alignment mechanism. Fusing these embeddings
provides a richer video content representation, allowing the classi-
fier to make more informed predictions. The integration of BLIP
embeddings with the 3D CNN features leads to a significant im-
provement in accuracy. Specifically, there is an 18.05% increase
(Table 2-A, row 1 - row 14) in accuracy for BLIP embeddings when
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combined with the Slow model, while the Slow model benefits from an improvement of 3.47%
(Table 2-A, row 5, row 14).

This trend underscores the advantage of utilizing multimodal embeddings that encapsulate textual
and visual semantics. The second-best performing combination comprises the I3D model coupled
with BLIP alignment embeddings. This pairing results in an accuracy improvement of 4.23%
(Table 2-A, row 6 - row 13) and 17.38% (Table 2-A, row 1, row 13) for the I3D model and the
BLIP embeddings, respectively. Similarly, the ResNet-3D model, when fused with cross-attention
embeddings from BLIP, exhibits an increase of accuracy of 16.15% (Table 2-A, row 4, row 12) for
UCF101. The highest accuracy achieved on the HMDB51 dataset is significantly lower compared to
UCF101, which can be attributed to the inherent complexity and challenging nature of HMDB51.

Even in a centralized learning setup, the best performance achieved was approximately 71% (Ta-
ble 3-B, row 15 ). In the FL setting, the highest accuracy of 67% (Table 2-B, row 14) was attained
using the BLIP model and the Slow architecture. Our method achieves an improvement of 4.58%
(Table 2-B, row 3, row 14) against the baseline. The BLIP and Slow models individually con-
tributed to performance gains of 11.63% (Table 2-B, row 1, row 14) and 2.59% (Table 2-B, row
5, row 14), respectively, over their standalone performance. Furthermore, when BLIP embeddings
were fused with the I3D model, an improvement of 4.89% (Table 2-B, row 6, row 13) in accuracy
was observed, while the integration with ResNet-3D resulted in a 20.91% (Table 2-B, row 4, row
12) performance gain for the 3D CNN models. These findings suggest that incorporating semantic-
visual embeddings alongside spatial-temporal embeddings enhances model performance by enriching
feature representations with complementary contextual information. Both the VLM and the CNN
model benefit from the collaboration. Regarding the training accuracy of FLAMeST (Figure 2),
the training accuracy improves and stabilizes with the subsequent communication cycle. We also
calculate the cross-validation accuracy on UCF101 and HMDB51 over 20 folds across 80 rounds
to get the average estimate over different train-test splits. The mean accuracy for UCF101 was
approximately 94% with a standard deviation of 0.32 (Table 2-A, row 15), whereas for HMDB51,
the mean calculated was 70% with a standard deviation of 0.98 (Table 2-B, row 15).

The InternVideo2.5 framework attains superior recognition performance, yielding an accuracy im-
provement of 1.32% over the proposed BLIP + Slow embeddings on the UCF101 dataset (Table 2–A,
rows 16 and 14) and 3% on the HMDB51 dataset (Table 2–B, rows 16 and 15). The excellent quality
of InternVideo2.5 embeddings is expected given its scale as the variant evaluated is 8B parameters,
trained using a mixture of visual-text and long-video data (e.g., 3.7 M video-text pairs, 3.5 M image
descriptions, and 0.7 M long videos). In contrast, our caption-based embedding backbone (BLIP)
operates at an order of magnitude smaller size (hundreds of millions of parameters) and trained
on fewer image-caption pairs. Though the quality of embeddings is very good with InternVideo2.5,
it imposes stringent hardware requirements, thereby constraining its feasibility for deployment on
platforms with limited computational or memory resources.

In addition to action recognition, we evaluated the effectiveness of the BLIP cross-modal embeddings
for image classification on the CIFAR-10 dataset. Our experiments achieved an accuracy of 90%
after 30 communication rounds. Details are provided in Supplementary Section E.
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Table (2): Federated Learning: Accuracy Comparison of Different Feature Extractors on UCF101
and HMDB51 Datasets. The bold-faced text denotes baseline and above accuracies. The baseline
and FLAMeST values are indicated by * and ** prefixes, respectively.

(a) UCF101 Dataset

S.No Feature Extractor Accuracy (%)
1 BLIP 76.38
2 CLIP 60.98
3 KD (Baseline) *89.30
4 ResNet-3D 64.01
5 Slow 90.96
6 I3D 89.53
7 Video MAE 65.04
8 BLIP (Text Only) 30.28
9 BLIP (Text Only) + ResNet-3D 64.00
10 BLIP (Text Only) + Slow 91.03
11 BLIP (Text Only) + I3D 89.92
12 BLIP + ResNet-3D 80.16
13 BLIP + I3D 93.76
14 BLIP + Slow (FLAMeST) **94.43
15 FLAMeST (Cross Validation) 94±0.32
16 InternVideo2.5 95.75

(b) HMDB51 Dataset

S.No Feature Extractor Accuracy (%)
1 BLIP 54.75
2 CLIP 30.98
3 KD (Baseline) *61.80
4 ResNet-3D 38.95
5 Slow *63.79
6 I3D 59.62
7 Video MAE 33.45
8 BLIP (Text Only) 27.18
9 BLIP (Text Only) + ResNet-3D 40.04
10 BLIP (Text Only) + Slow 63.19
11 BLIP (Text Only) + I3D 60.13
12 BLIP + ResNet-3D 59.86
13 BLIP + I3D 64.51
14 BLIP + Slow (FLAMeST) **66.38
15 FLAMeST (Cross Validation) 70±0.98
16 InternVideo2.5 73.45

5.3 Poor Performance of Static Text Embeddings Generated by CLIP

Unlike BLIP, which can generate captions directly for a given image, CLIP operates in a retrieval-
based manner. To facilitate this process, we first generate a set of action-specific captions for each
action in the UCF101 and HMDB51 datasets using large-scale language models such as ChatGPT.
Each caption is then encoded using the text encoder of the CLIP model, and the resulting text em-
beddings are stored in a dictionary for efficient retrieval during training and inference (More details
in the Supplementary A.3). Though computing embeddings in prior reduces the computational cost
due to their static nature, the quality of embeddings is observed to be poor. As shown in Table
2-A, for UCF101, the accuracy obtained is 61% (Table 2-A, row 2), and for HMDB51, it is 33%
(Table 2-B, row 2). Since these captions are generated before training, they are inherently generic
and may fail to reflect individual video frames’ unique visual and contextual attributes. As a result,
the fixed textual representation may not align well with the dynamic and heterogeneous nature of
the visual embeddings, leading to suboptimal multimodal fusion and reduced classification accuracy.
As the CLIP-generated embedding was not well refined, we did not conduct further studies on it,
as most of the improvement would have come from the embeddings of the CNN model rather than
the VLM in this joint learning.

5.4 Significance of Textual Embeddings

An additional set of experiments was conducted using only the textual embeddings generated by
the VLM. The MLP model, in this case, was only trained on the text embeddings obtained from the
VLM. Our findings resonate with recent analyses of embedding-based retrieval limits Weller et al.
(2025). They highlight weaknesses of single-vector representations, consistent with our observation
that BLIP-only text embeddings are weak.
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Table (3): Centralized Learning: Accuracy Comparison of Different Feature Extractors on UCF101
and HMDB51 Datasets. The bold-faced text denotes baseline and above accuracies. The baseline
and FLAMeST values are indicated by * and ** prefixes, respectively.

(a) UCF101 Dataset

S.No Feature Extractor Accuracy (%)
1 BLIP 85.01
2 CLIP 62.80
3 KD (Baseline) *91.10
4 ResNet-3D 78.05
5 Slow 91.37
6 I3D 92.71
7 Video MAE 66.38
8 BLIP (Text Only) 34.73
9 BLIP (Text Only) + ResNet-3D 79.30
10 BLIP (Text Only) + Slow 90.67
11 BLIP (Text Only) + I3D 88.78
12 BLIP + ResNet-3D 85.82
13 BLIP + I3D 93.97
14 ActionCLIP 95
15 BLIP + Slow (FLAMeST) **94.30
16 InternVideo2.5 96.75

(b) HMDB51 Dataset

S.No Feature Extractor Accuracy (%)
1 BLIP 62.36
2 CLIP 55.87
3 KD (Baseline) 64.10
4 ResNet-3D 53.87
5 Slow 63.17
6 I3D 65.24
7 Video MAE 39.38
8 BLIP (Text Only) 35.50
9 BLIP (Text Only) + ResNet-3D 52.92
10 BLIP (Text Only) + Slow 66.64
11 BLIP (Text Only) + I3D 65.98
12 BLIP + ResNet-3D 64.21
13 BLIP + I3D 68.04
14 ActionCLIP 76
15 BLIP + Slow (FLAMeST) **71.94
16 InternVideo2.5 74.20

For the BLIP model, when only text embeddings (captions generated) are used to train the MLP
model, the accuracies obtained for UCF101 and HMDB51 are only 30.28% (Table 2-A, row 8) and
27.18% (Table 2-B, row 8), respectively.

Aligning the text embeddings with the visual embeddings of the BLIP model improved accuracy
by more than 27.57% for the HMDB51 dataset (Table 2-B, row 8 to row 1) and by 46.1% (Table 2-
A, row 8 to row 1) for the UCF101 dataset. From this observation, we conclude that textual
information alone cannot fully capture the dynamic nature of actions in video sequences.

While textual descriptions can introduce supplementary contextual details, they do not encompass
the full range of spatial and temporal dependencies in videos. However, textual information when
used with visual features can enhance the overall representative quality (Tables 2-(A, B), row 14).
An illustration of the text captions generated by BLIP are shown in Supplementary C.2.

5.5 Comparison with Centralized Training

Table 3-(A, B) reports results under a centralized training setting, where all data is aggregated
at a single site, effectively eliminating the challenges posed by data decentralization in FL. In this
scenario, a single client possesses the entire dataset, and the MLP model is trained for 80 epochs
using the same optimizer and learning rate as in the FL setup (Section 4). As expected, centralized
training consistently outperforms federated learning across most feature extractor combinations for
a single cycle (Tables 2 and 3). This is primarily because, in FL, the model undergoes incremental
updates over multiple communication rounds rather than maturing in a single training cycle. Con-
sequently, in FL, the learning process is more gradual, and convergence takes longer compared to
a centralized setting where the model has access to the complete dataset at all times. Evaluating
models in a centralized setup provides a valuable baseline for assessing the effectiveness of different
feature extractors in a non-FL environment. The results help determine whether a feature extractor
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Table (4): Comparison of ActionCLIP and FLAMeST across different datasets and performance
metrics in Centralized Non-FL Setting.

Dataset Method Accuracy
(%)↑

Train Time
(sec)↓

Test Time
(sec)↓

Trainable
Parameters↓

UCF101 ActionClip 95 242.993 96.51 150-155 million
FLAMeST 93.34 5.862 0.595 1 million

HMDB51 ActionClip 75.89 159.170 15.001 150-155 million
FLAMeST 73.36 3.637 0.379 1 million

Figure 3: Centralized training accuracy trends of ActionCLIP and FLAMeST over 80 epochs. The
graph illustrates how the models perform across training, highlighting the stability and convergence
behavior of each method.

is inherently strong or is hindered by federated constraints such as non-IID data distribution and
communication limitations. The highest accuracy is achieved by the Internvideo2.5 model whereas
the highest accuracy obtained with BLIP variation is 94.30% (Table 3-A, row 15) by the Slow and
BLIP model when taken in conjunction with UCF101 and 71% (Table 3-B, row 15) for the HMDB51
dataset.

5.6 Comparison of ActionCLIP and FLAMeST

We trained the ActionCLIP9 model from scratch, utilizing its default parameter settings, for a total
of 80 epochs on our specific data partition (Section4). The results of this training are presented
in Table 4, which provides a comparative analysis between FLAMeST and ActionCLIP. The com-
parison reveals that ActionCLIP outperforms FLAMeST by achieving a 2% higher accuracy on
both UCF101 and HMDB51. However, FLAMeST demonstrates notable advantages in terms of
efficiency, with significantly reduced training and inference times compared to ActionCLIP. Fur-
thermore, FLAMeST operates with a substantially lower number of training parameters, making it
a more lightweight and computationally efficient option relative to ActionCLIP. Figure 3 shows that

14



Under review as submission to TMLR

(a) FLAMeST (b) FLAMeST

Figure 4: UMAP visualization of different embedding strategies on selected classes from the UCF101
and HMDB51 datasets. For UCF101, we consider the classes ’Apply Lipstick’ and ’Archery’. For
HMDB51, the selected classes are ’Catch’ and ’Cartwheel.’

over the epochs, FLAMeST also acquires comparable training accuracy to ActionCLIP, leading to
the model convergence.
5.7 Understanding Embedding Quality through UMAP Projections

To assess the quality of the embeddings generated by the BLIP and Slow 3D CNN, we utilize
UMAP—a widely used dimensionality reduction and visualization technique for high-dimensional
data (McInnes et al. (2018)). For this analysis, we randomly select two classes from each dataset,
UCF101 and HMDB51, and visualize the corresponding embeddings in a two-dimensional space.
As illustrated in Figure 4 (a,b), the FLAMeST embeddings for UCF101 and HMDB51 form well-
separated and compact clusters, indicating that the combined representation effectively distinguishes
between the two selected classes, demonstrating the discriminative power of the embeddings. More
UMAP Figures A-3 are provided in Supplementary C.1 .

6 Ablation Studies

The experimental configuration for the ablation study, including the model architecture, hyperpa-
rameters, and data partitioning strategies, remains consistent with the setup outlined in Section 4.
The results quoted are the best accuracy obtained by the global model over 80 rounds.

6.1 Client-Side Model Update

Table 5 evaluates federated optimization algorithms—FedAvg (McInnes et al. (2018)), FedProx (Li
et al. (2020)) and FedDyn (Acar et al. (2021)) under both IID and Non-IID data distributions.
FedAvg (EQ. 11) is the baseline aggregation method, where client updates are averaged without
accounting for data distribution differences. In contrast, FedProx introduces a proximal term in the
local objective function to address client data heterogeneity (EQ. A-1). Whereas FedDyn uses a
dynamic update of the local objective loss function to ensure consistency of the local model update

9https://github.com/sallymmx/ActionCLIP
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Table (5): Comparison of client update methods
on IID and Non-IID settings across datasets (4
clients).

Dataset Method IID (%) Non-IID (%)
UCF101 FedAvg 90 84

FedProx 93 86
FedDyn 91 84

HMDB51 FedAvg 65 60
FedProx 67 62
FedDyn 69.15 60.81

Table (6): Performance of different MLP archi-
tectures on the UCF101 dataset.

S.no Hidden Layers Train Acc. (%) Test Acc. (%)
1 [512, 256] 99.07 93.89
2 [256, 256] 98.50 94.30
3 [1024, 512] 99.37 96.22
4 [1024, 512, 256] 98.48 94.14
5 [1024, 1024, 1024] 98.80 96.30

with the global model update (EQ. A-2). Table 5 shows that all three methods perform comparably
under the IID setting. Whereas for the Non-IID case, FedProx outperforms FedAvg and FedDyn
for the UCF101 and HMDB51 datasets. This improvement highlights the effectiveness of FedProx
in handling the statistical challenges posed by heterogeneous data environments, making it a more
suitable choice in real-world scenarios where data is often non-uniformly distributed across clients.

6.2 Classifier Network Architecture

As shown in Table 6, increasing the width of hidden layers improves test performance, with the [1024,
1024, 1024](row 5) model achieving the highest accuracy of 96.3%. However, deeper networks do not
always yield better results—[1024, 512, 256](row 4) underperforms compared to the simpler [1024,
512](row 3) model, suggesting that additional depth may introduce optimization difficulties or lead
to diminishing returns. All architectures achieve high training accuracy (>98%), indicating minimal
overfitting. A moderately deep and wide MLP is often sufficient to achieve strong generalization,
while excessively deep models may not offer significant gains.

6.3 Effect of Epochs on Model Performance

Table 7 presents the impact of training epochs on model accuracy. For UCF101 under IID settings,
accuracy begins at 96% with 5 epochs and stabilizes near 94.8% by epoch 15, indicating early
convergence. In contrast, Non-IID performance fluctuates. It rises from 84% to a peak of 86%
at epoch 10, then declines to 83%, suggesting potential overfitting under data heterogeneity. On
HMDB51, the IID model improves consistently from 70% to 73%, whereas the Non-IID model
shows modest gains from 58% to 61%, further highlighting the challenges of learning from skewed
distributions While increasing the number of epochs helps improve or stabilize performance under
IID settings, the same trend does not hold under Non-IID conditions.

6.4 Scalability with Increasing Clients

For Scalability Approaches 1A, 1B, and 2, the total dataset size remains constant, so as the number
of clients increases, the amount of data per client decreases. In contrast, for Approaches 3A and
3B, the data assigned to each client remains fixed, meaning the per-client dataset size does not
decrease when the number of clients increases.
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6.4.1 Scaling Approach: 1A & 1B

Table 8 presents the performance of FLAMeST as the number of clients increases in a cross-silo
FL setting, where each client typically represents an institution. We limit the client count to 10
to reflect realistic deployment scenarios. The data is divided among the clients unequally, i.e., one
client may get more data and the other may get much less. Experiment 1A corresponds to an
IID distribution, and Experiment 1B corresponds to a non-IID distribution among the clients. As
the number of clients increases, classification accuracy declines for both the UCF101 and HMDB51
datasets in the IID (rows 1 and 2) and Non-IID scenarios (rows 3 and 4). The degradation is
primarily due to reduced data per client as the number of clients increases, which weakens local
training and limits global model generalization.

6.4.2 Scaling Approach: 2

We investigate label-skewness scaling under the constraint that the per-class-per-client dataset sizes
remain fixed. Each client is first assigned a balanced base dataset containing an equal number of
samples from every class. Class-specific heterogeneity is then introduced through a probabilistic
allocation mechanism (Supplementary Section A.4). Specifically, class proportions are drawn from
a Beta distribution to determine the relative representation of each class, while a Bernoulli distri-
bution identifies the subset of clients (takers) associated with that class. Once the participating
clients for a given class are selected, the corresponding sample quotas are evenly distributed among
them, thereby ensuring fairness in allocation while preserving skewness in label distribution. As
observed in Table 8 (rows 5 and 6), an increase in the number of clients leads to a gradual decline
in classification accuracy for both UCF101 and HMDB51, primarily due to the heightened data
heterogeneity and decrease in the data per client. Interestingly, for HMDB51, scaling results in an
accuracy improvement that even surpasses the performance achieved under the IID setting.

6.4.3 Scaling Approach: 3A & 3B

To assess the scalability of federated learning (FL) under realistic distributed conditions, we perform
a single Dirichlet partition of the dataset with concentration parameter β = 0.6(Non-IIID) and
β = 10(IID) into ten clients. This partition is created once and reused across all experiments
(Supplementary Section A.5). Each client permanently retains its assigned local dataset, ensuring
that the per-client data remains fixed irrespective of the number of participating clients. No
data reshuffling or redistribution is performed when varying the number of clients participating
in FL. Initially, 4 randomly selected clients participate in FL, and we compute the metrics. The
next 8 clients participate in FL, including the 4 previously selected ones and 4 newly randomly
selected; however, all models are reinitialized from scratch. The next 10 clients participate in
FL, including the 8 previously selected ones and 2 newly randomly selected; however, all models
are reinitialized from scratch. The nested design i.e. incremental client addition is essential to
maintain experimental consistency as it guarantees that any observed performance variation arises
solely from the increase in the number of participating clients, rather than from changes in data
composition. Experiments 3A and 3B correspond to IID and Non-IID distributions, respectively.
As shown in the Table 8 (rows 7,8,9,10), the average improves as the number of participating clients
increases. For IID there is an increases from 89.18% (4 clients) to 91.40% (10 clients) for UCF101
and textbf59.70% (4 clients) to 64.68%(10 clients) for HMDB51 respectively(row 7,8) The average
global accuracy in the case of Non-IID also increases from 82.91% (4 clients) to 87.63% (8 clients)
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Table (7): Accuracy (%) across varying training
epochs on UCF101 and HMDB51 over 80 cycles
for 4 clients.

S.no Epochs UCF101 HMDB51
IID Non-IID IID Non-IID

1 5 96.0 84.0 70.0 58.0
2 10 94.7 86.0 71.0 59.0
3 15 94.8 83.0 73.0 61.0

Table (8): Accuracy (%) across varying client
counts on UCF101 and HMDB51 over 80 cycles
with 5 local epochs. Rows are partitioned based
on the scalability experiments 1A, 1B, 2, 3A and
3B.

S.no Setting 4 Clients 8 Clients 10 Clients
Scalability 1A

1 UCF101 (IID) 96 93 91
2 HMDB51 (IID) 67 63 57

Scalability 1B
3 UCF101 (Non-IID) 86 82 77
4 HMDB51 (Non-IID) 55 47 37

Scalability 2
Fixed class per client

5 UCF101 84.93 83.93 82.49
6 HMDB51 74 72.96 72

Scalability 3A
Fixed dataset per client

7 UCF101 (IID) 89.18 90.74 91.40
8 HMDB51 (IID) 59.70 63.30 64.68

Scalability 3B
Fixed dataset per client

9 UCF101 (Non-IID) 82.91 87.63 88.04
10 HMDB51 (Non-IID) 49.67 58.44 59.68

and 88.04% (10 clients) for UCF101 (row 9) and 49.67% (4 clients) to 59.68% (10 clients) for
HMDB51 (row 10).

This trend indicates that adding more clients contributes to broader data coverage and richer
inter-client diversity, allowing the global model to generalize better. A similar pattern is observed
across different random seeds, where increasing the federation size enhances model performance.
Overall, these results confirm that the proposed FL framework effectively scales with distributed
data growth, demonstrating stable convergence and improved accuracy as the federation expands.

6.5 Fusion by Gated-Attention

In order to study the effectiveness of a more advanced fusion technique than plain concatenation,
we have experimented with residual gated cross fusion (RGCF) between image and text embed-
dings (Refer to Supplementary section A.6). Table 9 shows that simple concatenation consistently
outperforms RGCF on both UCF101 and HMDB51, even when RGCF is trained for more epochs.
However, the accuracy of RGCF does improve with increased training—from 75% to 89.5% on
UCF101 and from 56% to 58.8% on HMDB51, indicating that RGCF may benefit from longer
training to stabilize. We suspect the average performance of RGCF is due to the added complexity
and parameterization of RGCF, leading to overfitting on limited local data. In contrast, simple
concatenation preserves the full representational capacity of CNN and VLM embeddings without
additional transformations.

18



Under review as submission to TMLR

Table (9): Performance comparison of Residual Gated Cross Fusion (RGCF) and simple concate-
nation method on UCF101 and HMDB51 datasets over 80 cycles and 4 clients.

S.no Dataset RGCF (5 epochs) RGCF (50 epochs) Simple Concatenation
1 UCF101 75 89.5 94.43
2 HMDB51 56 58.8 70

7 Failure Analysis

We observe that broadly, the error cases fall into three main categories: (A) selection of uninfor-
mative frames, (B) high inter-class similarity, and (C) noisy or incomplete caption VLM. Detailed
discussion of failure cases is presented in (Supplementary D) and their mitigation strategies are
discussed in (Supplementary D.1).

• Uninformative Frame Selection: In FLAMeST, frames are sampled randomly from the
video clips. Consequently, the selected frame may not adequately capture the action being
performed. The frames corresponding to the "kayaking" and "haircut" classes fail to depict
critical visual cues such as a kayak or scissors—objects that are central to recognizing the
activity (Figures A-5-A and A-6-A).

• High Inter-Class Similarity: Certain action classes exhibit substantial visual overlap,
particularly when temporal context is omitted. For example, “kayaking” and “rafting”
both involve similar water-based environments and the presence of boats, making static
frame-based distinction challenging (Figures A-5-B and A-6-B).

• Noisy or Incomplete Captions: The VLM’s inability to generate accurate and de-
scriptive captions for the selected frames (Supplementary Figures A-5-C and A-6-C) along
with the qualitative analysis of the captions generated by VLM shown in Supplementary
Section B suggests that captions alone are often insufficient for complex actions as text can
be noisy. Our fusion with Slow CNN embeddings mitigates this, but reliance on captions
remains a limitation.

8 Conclusions and Future Work

This study introduces FLAMeST, an approach for integrating foundation models within an FL
framework to enhance VAR performance. We leverage embeddings from the BLIP model along-
side features extracted by a 3D CNN model called Slow. These combined representations train a
lightweight MLP in the federated cycle, substantially reducing communication overhead compared
to transmitting the full foundation model. The fusion of semantic and visual embeddings yields
notable accuracy gains on challenging benchmarks such as HMDB51 and UCF101. Ablation studies
confirm FLAMeST’s robustness across diverse client-update schemes and its scalability under both
IID and Non-IID data distributions. Moreover, the FLAMeST embeddings form well-clustered
class representations, highlighting their discriminative richness. Comparative analyses against al-
ternative strategies further demonstrate how FLAMeST effectively addresses key challenges in VAR
tasks in a collaborative set-up.

As part of future work, we intend to investigate distilled variants of these foundation models to re-
duce storage and computation costs, thereby improving the practicality of edge-device FL. Another
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direction involves enabling client-side customization, wherein users can record and label video clips.
This introduces new challenges around server-side training and privacy preservation, which merit
deeper investigation. As future work, we plan to explore distilled or lightweight video-language cap-
tioners that could be feasible for deployment in federated learning without compromising privacy.
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