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Abstract
One of the fundamental representation learning
tasks is unsupervised sequential disentanglement,
where latent codes of inputs are decomposed to
a single static factor and a sequence of dynamic
factors. To extract this latent information, ex-
isting methods condition the static and dynamic
codes on the entire input sequence. Unfortunately,
these models often suffer from information leak-
age, i.e., the dynamic vectors encode both static
and dynamic information, or vice versa, leading
to a non-disentangled representation. Attempts to
alleviate this problem via reducing the dynamic di-
mension and auxiliary loss terms gain only partial
success. Instead, we propose a novel and simple
architecture that mitigates information leakage by
offering a simple and effective subtraction induc-
tive bias while conditioning on a single sample.
Remarkably, the resulting variational framework
is simpler in terms of required loss terms, hyper-
parameters, and data augmentation. We evalu-
ate our method on multiple data-modality bench-
marks including general time series, video, and
audio, and we show beyond state-of-the-art results
on generation and prediction tasks in comparison
to several strong baselines. Code is at GitHub.

1. Introduction
Modern representation learning (Bengio et al., 2013;
Schölkopf et al., 2021) identifies unsupervised disentangle-
ment as one of its fundamental challenges, where the main
goal is to decompose input data to its latent factors of varia-
tion. Separating the learned representation into independent
factors can improve multiple machine learning tasks from
three aspects: (1) explainability, (2) generalizability (3) con-
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trollability. Capturing distinct variation allows filtering out
undesired variations, reducing the sample complexity of
downstream learning (Villegas et al., 2017; Denton & Birod-
kar, 2017), and facilitating more controllable generations
(Tian et al., 2021). Further, disentangled representations are
instrumental in numerous applications including classifica-
tion (Locatello et al., 2020), prediction (Hsieh et al., 2018),
and interpretability (Higgins et al., 2016; Naiman & Azen-
cot, 2023), to name just a few. In the sequential case, inputs
are typically split to a single static (time-invariant) factor
encoding features that do not change over time, and to mul-
tiple dynamic (time-varying) components, one per sample.
For instance, in a smiling face video, the latent representa-
tion can be disentangled into a static component encoding
the person’s identity (time-invariant factor) and a dynamic
component encoding the smiling motion (time-variant fac-
tor). Such disentangled representations hold promise for
various downstream tasks such as classification, retrieval,
and synthetic video generation with style transfer.

Existing sequential disentanglement works are commonly
based on variational autoencoders (VAEs) (Kingma &
Welling, 2014) and their dynamic extensions (Girin et al.,
2021). To model the variational posterior, Li & Mandt
(2018); Bai et al. (2021) and others condition the static and
dynamic factors on the entire input sequence. However,
under this modeling perspective, highly expressive deep
encoder modules struggle with information leakage prob-
lems. Namely, the learned time-varying components capture
dynamic as well as static information, whereas the static
vector encodes non-meaningful features, or vice versa. To
resolve this issue, Li & Mandt (2018) propose to reduce the
dynamic dimension drastically, and Zhu et al. (2020); Bai
et al. (2021) introduce additional mutual information (MI)
loss terms. While these approaches generally improved dis-
entanglement and leakage issues, new challenges emerged.
First, small time-varying vectors are limited in modeling
complex dynamics. Second, sampling good positive and
negative examples to estimate mutual information is hard
(Naiman et al., 2023). Finally, optimizing models with
multiple losses and balancing their MI penalties is difficult.
These challenges raise the question: can we design an unsu-
pervised sequential disentanglement framework that avoids
the above complexities and avoids information leakage?
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To induce deep neural networks with a certain behavior,
prior successful attempts opted for designing tailored archi-
tectures, often arising from an overarching assumption. For
instance, convolutional neural networks (LeCun et al., 1989)
use shared kernel filters across natural images, exploiting
their translation-invariance structure. Similarly, natural lan-
guage processing methods (Bahdanau et al., 2015) employ
attention modules, assuming not all words in the source
sentence share the same effect on the target sentence. In-
spired by these successes, we suggest a novel sequential dis-
entanglement model that drastically alleviates information
leakage, based on the assumption that the static posterior
can be conditioned on a single sample from the sequence.
Further, our modeling guides architecture design, where
we eliminate static features from the dynamic factors, and
static and dynamic codes are learned separately from one
another. The resulting framework has no MI terms and thus
less hyper-parameters, and further, it requires no constraints
on the dimension of factors.

Our main contributions can be summarized as follows:

1. We introduce a novel sequential disentanglement
model whose static posterior is conditioned on a single
series element, leading to a new neural architecture that
learns the static code independently from the sequence,
and subtracts its contents from the dynamic factors.

2. Our method does not restrict the dimension of disentan-
gled factors, and thus, it supports complex dynamics.
Further, it mitigates information leakage without mu-
tual information loss terms, yielding a simple training
objective with only two hyper-parameters.

3. We extensively evaluate our approach both qualitatively
and quantitatively on several data modalities obtaining
state-of-the-art results on standard challenging bench-
marks. Additionally, we extend current benchmarks
to assess information leakage issues, and we show the
superiority of our framework in mitigating information
leakage in comparison to SOTA techniques.

2. Related Work
Unsupervised disentanglement. A large body of work is
dedicated to studying unsupervised disentanglement using
VAEs (Kingma & Welling, 2014). For instance, Higgins
et al. (2016) augment VAEs with a hyper-parameter weight
on the Kullback–Liebler divergence term, leading to im-
proved disentanglement. In (Kumar et al., 2018), the authors
regularize the expectation of the posterior, and Bouchacourt
et al. (2018) learn multi-level VAE by grouping observa-
tions. Kim & Mnih (2018) promote independence across
latent dimensions, and Chen et al. (2018) decompose the
objective function and identify a total correlation term. In

addition, generative adversarial networks (GANs) are used
to maximize mutual information (Chen et al., 2016) and to
compute an attribute dependency metric (Wu et al., 2021).

Sequential disentanglement. Early probabilistic models
suggest conditioning on the mean of past features (Hsu et al.,
2017), and directly on the features (Li & Mandt, 2018). Dis-
entangling video sequences is achieved using generative
adversarial networks (Villegas et al., 2017; Tulyakov et al.,
2018) and a recurrent model with an adversarial loss (Den-
ton & Birodkar, 2017). To address information leakage
issues, Zhu et al. (2020) introduce modality-based auxil-
iary tasks and supervisory signals, whereas Bai et al. (2021)
utilize contrastive estimation using positive and negative
examples. Optimal transport and the Wasserstein distance
are used to regularize the evidence lower bound in (Han
et al., 2021). Tonekaboni et al. (2022) extract local and
global representations to encode non-stationary time series
data. Recently, Naiman et al. (2023) developed a modality-
independent method to sample latent positive and negative
examples. Others considered the more general multifactor
disentanglement, where every sequence is decomposed to
multiple static and dynamic factors (Bhagat et al., 2020;
Yamada et al., 2020; Berman et al., 2023).

3. Background
Problem formulation. We generally follow the notation
and terminology introduced in (Li & Mandt, 2018). Let
x1:T = {x1, . . . , xT } denote a multivariate sequence of
length T , where xt ∈ Rd for every t. Given a dataset
D = {xj1:T }Nj=1, the goal of sequential disentanglement
is to extract an alternative representation of x1:T , where
we omit j for brevity, via a static (time-invariant) factor
s and multiple dynamic (time-varying) components d1:T .
For instance, given a sequence of frames depicting a person
making a facial expression, we expect s to encode the iden-
tity of the person, and d1:T to capture the expressions as
they change along the sequence. Importantly, we note that s
is shared across x1:T as the person’s identity remains fixed.

Sequential probabilistic modeling. Typically, the static
and dynamic features are assumed to be independent, and
thus the joint distribution P := p(x1:T , z ; θ, ψ) is given by

P =

[
p(s)

T∏
t=1

p(dt | d<t ; ψ)

]
·
T∏
t=1

p(xt | s, dt ; θ) , (1)

where z := (s, d1:T ) combines static and dynamic com-
ponents, dt depends on prior features d<t, and xt can be
reconstructed from the static and current dynamic codes.
The static prior distribution is modeled by a standard
Gaussian distribution p(s) := N (0, I), whereas the dy-
namic prior is computed via a recurrent neural network
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Figure 1. Our network is composed of an encoder (left), a decoder (right) and two paths in-between for computing the static factor (top)
and the dynamic components (bottom). For full architecture details, see App. A.4.

p(dt | d<t ; ψ) := N (µ(d<t), σ
2(d<t) ; ψ) to capture non-

linear dynamics (Chung et al., 2015; Naiman et al., 2024).
Exploiting the independence between time-varying and time-
invariant factors, the posterior Q := q(s, d1:T |x1:T ; ϕ) is
parameterized by ϕ = (ϕs, ϕd), and it reads

Q = q(s |x1:T ; ϕs)

T∏
t=1

q(dt | d<t, x≤t ; ϕd) . (2)

Information preference and information leakage. In-
formation preference (Chen et al., 2017; Zhao et al., 2019),
is a property where the input and the latent codes lack of
mutual information. In the context of sequential disentan-
glement, information preference means that the MI between
latent codes and the input is low. A separate problem is
information leakage, where static information is leaked into
the dynamic code or vice versa. Formally, Iq(s,Xd) > 0 or
Iq(d,Xs) > 0. Where Xd and Xs respectively defined as
the ground truth static and dynamic information of the data,
and Iq(·, ·) denotes mutual information.

Objective function. The corresponding evidence lower
bound related to Eqs. 1 and 2 is given by

max
θ,ϕ,ψ

EpD
[
Ez∼qϕL− βK

]
, (3)

where pD is the train set distribution, qϕ := q(z |x1:T ; ϕ),
β ∈ R+ is a balancing scalar, L := log p(x1:T | z ; θ), and
K := KL[q(z |x1:T ; ϕ) ∥ p(z ; ψ)].

Unfortunately, the above model is prone to information leak-
age and information preference. To alleviate these issues,
Li & Mandt (2018) decreased the dimension of dt such
that dim(dt) ≪ dim(s). The intuition behind this heuris-
tic is to provide the model with a minimal subspace for
learning dynamics, without extra degrees of freedom to cap-
ture the static information. Other approaches (Zhu et al.,

2020; Bai et al., 2021) aim to mitigate these problems by
augmenting the objective function with mutual information
terms, minimizing Iq(s; d1:T ) and maximizing Iq(s;x1:T )
and Iq(d1:T ;x1:T ). However, evaluating Iq(u; v) is difficult
(Chen et al., 2018), and it is approximated by contrastive
estimation (Oord et al., 2018) which requires positive and
negative data samples. Overall, while the above solutions
lessen the detrimental effects of the mentioned problems,
several challenges still exist. 1) the hyper-parameter dim(dt)
may be difficult to tune, and it limits model expressivity in
capturing complex dynamics; 2) contrastive estimation is of-
ten implemented with domain-dependent data augmentation,
hindering its use on arbitrary data modalities (Tonekaboni
et al., 2022); and 3) models with multiple loss terms (includ-
ing MI) may be sensitive to hyper-parameter choices and
their optimization is computationally expensive.

4. Method
Motivated by the challenges described in Sec. 3, our main
goal is to answer the question:

“Can we perform sequential disentanglement by a biased
architecture and a simpler loss?”

To this end, we make the following two observations: (i)
the approximate posterior distribution is ultimately respon-
sible for extracting latent factors of variation from input
sequences, and thus, information leakage issues mainly ap-
pear in the posterior; and (ii) the static features are, by
definition, time-invariant and shared across the sequence,
and therefore, they could be extracted from a single sam-
ple in the sequence. Based on these simple observations,
we propose a new posterior distribution that conditions the
static factor on one sequential element, e.g., on some item
xi where i ∈ {1, . . . , T}. Intuitively, xi may be viewed as
an anchor example, from which we extract the static infor-
mation. Moreover, we assume that the time-invariant factor
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is not required in modeling the time-varying components.
Formally, our posterior distribution is defined as follows

q(s, d1:T |x1:T ; ϕ) = qϕs · qϕd
:=

q(s |xi ; ϕs) ·
T∏
t=1

q(dt | d<t, x≤t ; ϕd) ,
(4)

where we set ϕ = (ϕs, ϕd), that is, the static and dynamic
codes are computed using neural networks parameterized
by ϕs and ϕd, respectively.

In addition to the posterior above, our model uses the same
prior distribution as in Eq. 1. Further, given the unique
role of xi in our posterior, we also need to describe the
modifications to the loss function in Eq. 3. Specifically, the
reconstruction term is split to

Lrecon = Es∼qϕs
[Ed2:T∼qϕd

log p(x2:T | s, d2:T ; θ)]

+ αEs∼qϕs
[log p(x1 | s, d1 ; θ)] ,

(5)

where, w.l.o.g and to simplify notations we choose i = 1,
i.e., xi := x1. Notably, α ∈ R+ could potentially be taken
as 1. However, we often got better results when α ̸= 1. The
regularization KL term can be elaborated as follows

Lreg = β KL[q(s |x1 ; ϕs) ∥ p(s)]
+ β KL[q(d1:T |x1:T ; ϕd) ∥ p(d1:T ; ψ)] ,

(6)

with β ∈ R+, q(d1:T |x1:T ; ϕd) = qϕd
and p(d1:T ; ψ) =∏T

t=1 p(dt | d<t ; ψ) via Eq. 1. Overall, combining Eqs. 5
and 6 yields the following total objective function

L = max
θ,ϕ,ψ

EpD (Lrecon − Lreg) . (7)

An architectural bias. Our sequential disentanglement
model takes the sequence x1:T as input, and it outputs its
reconstruction. The inputs are processed by a problem-
dependent encoder, yielding an intermediate sequential rep-
resentation g1:T . Notice, that this module is not recurrent,
and thus every xt is processed independently of other xu
where u ̸= t. The sequence g1:T is split into two parts g1
(or any other gi) and g2:T , undergoing two paths. To extract
the static information, g1 is passed to a simple multilayer
perceptron (MLP) consisting of a linear layer and tanh ac-
tivation, producing s̃. Then, two linear layers learn the mean
µ(s̃) and variance σ2(s̃), allowing to sample the static factor
s via the reparametrization trick. We define g̃1 ∼ N (0, I).
To extract the dynamic information, {g̃1, g2:T − g1} is fed
to a long short-term memory (LSTM) module (Hochreiter
& Schmidhuber, 1997) with a hidden state ht. We can
also consider Lipschitz recurrent networks (Erichson et al.,
2021). Subtracting g1 from g2:T in the same latent manifold
mitigates information leakage by “removing” static features
that exist in g2:T , and thus limiting the ability of the LSTM

module to extract time-invariant information. We use h1:T
to compute µ(ht) and σ2(ht) using two linear layers, and
we sample d1:T by the reparametrization trick. The static
and dynamic factors are combined (s, dt) and passed to a
domain-dependent decoder, to produce the reconstruction
of xt. See Fig. 1 for an annotated scheme of our model.

5. Experiments
5.1. Experimental Setup

We perform an extensive qualitative, quantitative, and ab-
lation evaluation of our method on datasets of different
modalities: video sequences, general time series, and audio
recordings. For video sequences, we use the Sprites dataset
that contains moving cartoon characters (Reed et al., 2015),
and the MUG dataset that includes several subjects with
various facial expressions (Aifanti et al., 2010). The general
time series datasets are PhysioNet, consisting of medical
records of patients (Goldberger et al., 2000), Air Quality
which includes measurements of air pollution (Zhang et al.,
2017), and ETTh1 that measures the electricity transformer
temperature (Zhou et al., 2021). For audio recordings, we
consider the TIMIT dataset, consisting of read speech of
short sentences (Garofolo, 1993). The evaluation tests and
tasks we consider serve as the standard benchmark for se-
quential disentanglement. We compare our approach to
recent state-of-the-art (SOTA) techniques including FHVAE
(Hsu et al., 2017), DSVAE (Li & Mandt, 2018), MoCo-
Gan (Tulyakov et al., 2018), R-WAE (Han et al., 2021),
S3VAE (Zhu et al., 2020), C-DSVAE (Bai et al., 2021),
SKD (Berman et al., 2023), GLR (Tonekaboni et al., 2022),
and SPYL (Naiman et al., 2023). See the appendices for
more details regarding datasets (App. A.1), evaluation met-
rics (App. A.2), training hyper-parameters (App. A.3), and
neural architectures (App. A.4).

5.2. Quantitative Evaluation

5.2.1. VIDEO AND AUDIO SEQUENCES

Disentangled generation. We follow sequential disentan-
glement works and their protocol to quantitatively evaluate
our method and its generative disentanglement features, see
e.g., (Zhu et al., 2020; Bai et al., 2021; Naiman et al., 2023).
Specifically, we sample a sequence x1:T from the test set,
and we disentangle it to static s and dynamic d1:T factors.
Then, we sample a new static code from the prior, which we
denote by s. Finally, we reconstruct the video sequence cor-
responding to x1:T := dec(s, d1:T ). Naturally, we expect
that the reconstruction will share the same dynamic features
as the inputs, but will have a different static behavior, e.g., a
different person with the same expression.

We estimate the new sequences quantitatively by using a pre-
trained classifier. For every reconstructed x1:T , the classifier
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Table 1. Benchmark disentanglement metrics on Sprites and MUG. Results with standard deviation appear in Tab. 10. Arrows denote
whether higher or lower results are better.

Sprites MUG
Method Acc↑ IS↑ H(y|x)↓ H(y)↑ Acc↑ IS↑ H(y|x)↓ H(y)↑
MoCoGAN 92.89% 8.461 0.090 2.192 63.12% 4.332 0.183 1.721
DSVAE 90.73% 8.384 0.072 2.192 54.29% 3.608 0.374 1.657
R-WAE 98.98% 8.516 0.055 2.197 71.25% 5.149 0.131 1.771
S3VAE 99.49% 8.637 0.041 2.197 70.51% 5.136 0.135 1.760
SKD 100% 8.999 1.6e−7 2.197 77.45% 5.569 0.052 1.769
C-DSVAE 99.99% 8.871 0.014 2.197 81.16% 5.341 0.092 1.775
SPYL 100% 8.942 0.006 2.197 85.71% 5.548 0.066 1.779

Ours 100% 8.942 0.006 2.197 86.90% 5.598 0.041 1.782

Table 2. Comparing information leakage of static and dynamic features in MUG dataset.

Static Features Dynamic Features
Classifier Method Static Acc ↑ Dynamic Acc ↓ Leakage Gap ↑ Static Acc ↓ Dynamic Acc ↑ Leakage Gap ↑

Generation

random - 16.66% - 1.92% - -
C-DSVAE 99.12% 29.9% 69.22% 3.75% 81.16% 77.41%
SPYL 99.45% 27.65% 71.8% 3.63% 85.71% 82.08%
Ours 99.42% 20.85% 78.57% 2.89% 86.90% 84.01%

Ours w.o. loss 52.97% 18.93% 34.04% 2.58% 66.28% 63.70%
Ours w.o. sub 34.41% 19.22% 15.19% 39.82% 83.31% 43.18%
Ours w.o. both 10.94% 17.86% 6.92% 15.76% 71.95% 56.19%

Latent

random - 16.66% - 1.92% - -
C-DSVAE 98.75% 76.25% 22.25% 26.25% 82.50% 56.25%
SPYL 98.12% 68.75% 29.37% 10.00% 85.62% 75.62%
Ours 99.35% 45.06% 54.29% 11.36% 85.51% 74.15%

outputs its dynamic class, e.g., facial expression in MUG
and action in Sprites. We measure the performance of our
model with respect to the classification accuracy (Acc), the
inception score (IS), intra-entropy H(y|x) and inter-entropy
H(y). See App. A.2 for more details on the metrics. We
detail in Tab. 1 the results our method obtains, and we
compare it to recent SOTA approaches, evaluated on the
Sprites and MUG datasets. Similarly to recent works, we
achieve 100% accuracy on Sprites, and strong measures on
the other metrics (equivalent to SPYL). Further, we report
new state-of-the-art results on the MUG dataset with an
accuracy of 86.90%, IS= 5.598, H(y|x) = 0.041 and
H(y) = 1.782. In Tab. 10 in the appendix, we present
the above results with standard deviations; these results
emphasize our method’s statistical significance.

Information leakage gap in video. We extend the last
experiment to show how our method mitigates information
leakage. As mentioned above, the dynamics accuracy of
x1:T should be high. In contrast, the static category of
this series should be random. However, if the static accu-
racy is higher than random, then some static information
is encoded in d1:T , i.e., there is information leakage. Ad-

ditionally, we also perform the opposite test, namely, we
sample a new dynamic code from the prior denoted by d̂1:T ,
and we reconstruct x̂1:T := dec(s, d̂1:T ). In this case, we
expect for high static accuracy and low dynamic classifi-
cation. Testing both cases gives us a better understanding
of the information leakage of each baseline approach. In
Tab. 2 (Generation), we show the accuracy for each test
using the pre-trained classifier. We find that our approach
yields high static and dynamic accuracy measures when
sampling dynamic and static features, respectively, as ex-
pected. Notably, our method presents the best leakage gaps,
obtaining 78.57% and 84.01% improving SOTA by nearly
7% and 2%, respectively. We also analyze in App. B.1 the
failure cases in MUG, showing that the fear and surprise
are challenging to distinguish, and thus, even a 2% improve-
ment is significant for the dynamic gap.

We further extend our tests above, to highlight the latent
encoding capabilities of our approach. We follow (Naiman
et al., 2023) and perform latent classification by extract-
ing static codes {sj}Nj=1, and split the resulting data into
80− 20 train-test sets. Then, we train two classifiers, where
the first is trained to predict the static label of sj , and the
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Figure 2. t-SNE plots on MUG dataset of the latent static and dynamic factors. Latent static codes, colored by subject identity (left), and
latent dynamic codes, colored by dynamic attribute (right).

second is trained to predict the dynamics of sj , for every
j. Ideally, the first classifier would be able to predict the
static features perfectly, and the second would fail to pre-
dict the corresponding dynamics, dj1:T .We also perform the
complementing test where we train another two classifiers
for dj1:T . Furthermore, we include in the experiment table a
theoretical random guess baseline, illustrating the optimal
outcome when the classifier is unable to predict the labels.
In Tab. 2 (Latent), we obtain a mitigation of information
leakage where the gap over the static features is improved
from 29.37% (second best) to 54.29% (ours), presenting a
substantial improvement. In Tab. 11 in the appendix, we
show the above results with standard deviations, highlight-
ing the significance of our method.

Furthermore, we consider more challenging datasets; we
conduct experiments on the Jesters dataset (Materzynska
et al., 2019). This real-world complicated dataset of hun-
dreds of subjects performing different hand gestures be-
fore a camera. This dataset is used in disentanglement
tasks in (Naiman et al., 2023) as part of the latent classifi-
cation benchmark (Tab. 2 in our paper). We follow their
benchmark protocol and evaluate our method according to it.
We achieved significant improvement over the best current
method. SPYL (Naiman et al., 2023) obtains a score of 27%
on the dynamic labels classification task with the dynamic
features. At the same time, our method achieves more than
two times better performance with a classification score of
68.2% ± 2.1%. Note that SPYL states that because only
the hand gesture labels exist, only dynamic feature accuracy
can be measured. These results illuminate our method’s
potential to perform well on large and complicated datasets.
Image quality. In addition to the disentanglement qual-
ity, we asses quantitatively the image quality of our
model. We provide here the reconstruction losses (MSE)
224.35, 243.94 and 223.36 for C-DSVAE, SPYL, and our
approach, respectively. These results indicate that our
method achieves on par MSE in comparison to existing
works, while significantly outperforming them on disentan-
glement tasks. In addition, we include a qualitative compar-
ison of swaps and reconstructions in Figs. 4, 5.

Information leakage gap in audio. The TIMIT dataset
consists of different people that read different sentences.
While every person reads unique sentences, distinguishing
between speakers is possible by utilizing their static codes.
We use the standard TIMIT benchmark for sequential dis-
entanglement and report its results in App. B.2. We obtain
a static EER of 3.50%, dynamic EER of 34.62%, and dis-
entanglement gap of 31.11%. Our results present a 1.3%
gap improvement compared to current SOTA results. These
results align with the above video experiments, reinforcing
our model’s ability to mitigate information leakage between
latent codes also for audio modalities.

5.2.2. TIME SERIES ANALYSIS

In what follows, we evaluate the effectiveness of our ap-
proach in disentangling static and dynamic features of time
series information. We test the usefulness of the represen-
tations we extract for downstream tasks such as prediction
and classification. This evaluation methodology aligns with
previous work (Oord et al., 2018; Franceschi et al., 2019;
Fortuin et al., 2020; Tonekaboni et al., 2022). Our results
are compared with recent sequential disentanglement ap-
proaches and with techniques for time series data such as
GP-VAE (Fortuin et al., 2020) and GLR (Tonekaboni et al.,
2022). For a fair comparison, we use the same encoder and
decoder modules for all baseline methods.

Downstream prediction tasks. We consider two cases:
(i) predicting the risk of in-hospital mortality using the Phy-
sioNet dataset; and (ii) predicting the oil temperature of
electricity transformer with ETTh1. In both cases, we train
our model on sequences x1:T to learn disentangled static
and dynamics features, denoted by s and d1:T , respectively.
Then, we use the extracted codes as the train set of a simple
predictor network. Please see further details in App. A.3.
We compute the AUROC and AUPRC error measures on
PhysioNet, and the mean absolute error (MAE) for ETTh1,
and we report the results in Tab. 3. We also include the
baseline results for training directly on the raw features,
appearing as ‘RF‘ in the table. Remarkably, our method
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achieves SOTA results and it outperforms all other base-
line approaches on the mortality prediction task, including
the baseline that trains on the original data. Thus, our re-
sults highlight that unlike previous works, our disentangled
representations effectively improve downstream prediction
tasks–a highly-sought characteristic in representation learn-
ing (Bengio et al., 2013; Tonekaboni et al., 2022).

Static patterns identification. Reducing prediction er-
rors could be potentially achieved by considering global
patterns (Trivedi et al., 2015), however, the given data may
include non-useful features. Here, we explore if our model
can extract global patterns through the static features. We
follow (Tonekaboni et al., 2022) and select the ICU unit as
the global label for PhysioNet and month of the year for the
Air Quality dataset. We train our model and compute static
features, followed by training a simple MLP for classifying
the extracted codes. The classification results are summa-
rized in Tab. 4, where we find that our model better encodes
global patterns in s in comparison to baseline techniques.

5.3. Qualitative Evaluation

We qualitatively assess our approach on video sequences and
general time series data. To this end, we analyze the learned
latent space of static and dynamic factors by utilizing t-
SNE (Van der Maaten & Hinton, 2008). In addition, we also
swap factors of variation between two separate sequences,
similar to e.g., Li & Mandt (2018).

Static and dynamic clustering. To assess the capacity of
our approach to disentangle data into distinct subspaces, we
perform the following: First, we randomly select a batch
of samples from a given test set. Second, we extract the
static sj and dynamic dj1:T latent disentangled representa-
tions for each sample j from the batch. Third, we compute
dj :=

∑
t d
j
t/T . Thus, dj ∈ Rk is the averaged dynamic

sequence across time. The latent dimension k is a user pa-

Table 3. Time series prediction benchmark.

PhysioNet ETTh1
Method AUPRC ↑ AUROC ↑ MAE ↓
VAE 0.157± 0.05 0.564± 0.04 13.66± 0.20
GP-VAE 0.282± 0.09 0.699± 0.02 14.98± 0.41
C-DSVAE 0.158± 0.01 0.565± 0.01 12.53± 0.88
GLR 0.365± 0.09 0.752± 0.01 12.27± 0.03
SPYL 0.367± 0.02 0.764± 0.04 12.22± 0.03

Ours w.o. loss 0.274± 0.02 0.692± 0.01 18.32± 0.32
Ours w.o. sub 0.411± 0.02 0.798± 0.01 16.53± 0.13
Ours w.o. both 0.255± 0.02 0.631± 0.02 17.42± 0.04
Ours 0.473 ± 0.02 0.858 ± 0.01 11.21 ± 0.01

RF 0.446± 0.04 0.802± 0.04 10.19± 0.20

rameter, and we set it to match the dimension of the static
code to emphasize that in our approach, these vectors could
be of the same dimension while obtaining good disentan-
glement, unlike competing works such as DSVAE. Given
dj and s, we compute their t-SNE embedding, where we
observed that computing it separately or together did not
change the results. We visualize the obtained embedding of
MUG dataset in Fig. 2, where static factors are colored per
subject and the dynamic factors per expression. The results
show that our approach clearly clusters between the time-
varying and time-invariant factors of variation. Further, we
can observe distinct static sub-clusters, which may indicate
a hierarchical clustering based on the identities of subjects.
Indeed, our model learns a clustered representation with re-
spect to people’s identities without any explicit constraints.
In addition, we plot the dynamic embeddings colored by
their labels. We observe a clustered representation for most
of the attributes. The ’fear’ and ’surprise’ dynamics rep-
resentations seem to overlap, and we elaborate on this in
App. B.1.

10 0
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Figure 3. t-SNE visualization of static features from the Air Quality
dataset, depicting the model’s ability to distinguish days based on
precipitation, irrespective of season. Each point represents a day,
colored by season and scaled by the amount of rain, illustrating the
model’s nuanced clustering of dry and wet days within the static
seasonal context.

Moreover, we also embed the static codes of Air Quality
in Beijing using t-SNE in Fig. 3. We scale each point by
the amount of rainfall corresponding to that day, and we
color the points by the related season. Our results show a
clear clustering of the latent codes with respect to the rainy
seasons. That is, the Summer and its adjacent days from
Spring and Autumn are clustered together as opposed to the
Winter, which is very dry in Beijing.

Sequential swap. We will now show the ability of our
model to swap between static and dynamic representations
of two different sequences. Specifically, we take x11:T , x

2
1:T

from a given test set, and we extract their static and dy-
namic codes, s1, s2 and d11:T , d

2
1:T . Then, we swap the rep-

resentations by joining the static code of the first sequence
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with the dynamic factors of the second sequence, and vice
versa. Formally, we generate new samples x11:T and x21:T via
x11:T := dec(s1 , d21:T ), and x21:T := dec(s2 , d11:T ), where
dec is the decoder. In Fig. 4, we show two swap examples
for the MUG dataset. Additional examples for Sprites and
MUG are shown in Figs. 12, 13.

Table 4. Time series classification benchmark.

Method PhysioNet ↑ Air Quality ↑
VAE 34.71± 0.23 27.17± 0.03
GP-VAE 42.47± 2.02 36.73± 1.40
C-DSVAE 32.54± 0.00 47.07± 1.20
GLR 38.93± 2.48 50.32± 3.87
SPYL 46.98± 3.04 57.93± 3.53

Ours w.o. loss 42.16± 0.104 50.14± 0.013
Ours w.o. sub 46.15± 0.014 56.11± 0.021
Ours w.o. both 41.42± 0.019 48.32± 0.102
Ours 56.87± 0.34 65.87± 0.01

RF 62.00± 2.10 62.43± 0.54

5.4. Ablation Studies

Objective function and architecture. We perform an
ablation study to justify our split loss term and our archi-
tectural choice of the subtraction module. This study com-
prises three specific variations of training our method: (1)
without the static loss in Eq. 5 (no loss), (2) without sub-
tracting the static representation from the learned dynamics
(no sub), and (3) without both of them (no both). In all these
cases, we kept the hyper-parameters constant. We show the
ablation results in Tab. 2 for MUG, and in Tab. 3 for Phy-
sioNet and ETTh1. Evidently, the removal of components
negatively impacts the disentanglement capabilities of our
method across multiple tasks. For instance, we observe a
significant information leakage on the MUG dataset, illus-
trated in low accuracy results for the ablation models, e.g.,
performance drops by ≈ 46% and ≈ 65% for the no loss
and no sub baselines, respectively. Similarly to the MUG
case, we also identify a significant performance decrease in
the time series tasks.

Dependence on the i-th sample. One potential shortcom-
ing of our approach is its dependence on extracting static
information from the i-th sample. Here, we would like to
empirically verify the robustness of our method to the choice
of sample. Thus, instead of using the i-th sample, we also
consider taking the middle xT/2 and last xT samples, i.e.,
we train models learning the distributions q(s |xT/2 ; ϕs)
and q(s |xT ; ϕs). We further extend our evaluation of the
dependence on the i sample experiment. Instead of pick-
ing i from 1, T/2, T , we randomly sample i and run the

Table 5. Ablation study of our model components (top) and its
robustness to index choice (bottom).

PhysioNet ETTh1
Method AUPRC ↑ AUROC ↑ MAE ↓
xrob 0.276± 0.013 0.501± 0.033 13.56± 0.051
xrandom 0.425± 0.006 0.837± 0.018 11.26± 0.011
xT/2 0.434± 0.001 0.842± 0.016 11.32± 0.014
xT 0.441± 0.009 0.839± 0.002 11.11± 0.006

x1 0.473± 0.021 0.858± 0.006 11.21± 0.001

experiment. To ensure variability in the choice of i and to
demonstrate the robustness of our method, we repeat the
experiment six times with randomly picked i. We report
the average result across all runs and the standard deviation
under the method name xrandom. Additionally, we emphasize
that randomly picking samples from the sequence during
training for each batch leads to information leakage. This
training process ”exposes” the static module that is responsi-
ble for extracting static information to the different samples
from the same sequence. Therefore, dynamic information
can leak into the static representation. We add the results
of this experiment under the method name xrob (random
on batch) to demonstrate this phenomenon. We present in
Tab. 5, Tab. 8, and Tab. 9 the ablation results on several
datasets and tasks. Our results indicate that selecting other
samples does not impact the results significantly, highlight-
ing the robustness of our method to the choice of sample.

6. Limitations and Conclusion
There are two limitations of our approach. The first limita-
tion is the dependency on the VAE model and it is shared
by most existing works, often leading to low quality recon-
structed and generated samples. The second shortcoming is
unique to our approach and it is related to the dependency
on a single element for extracting the static information.
While this inductive bias may seem too limiting, our exten-
sive evaluation and ablation results show that the choice of
sample we use has little effect on the model behavior and
overall performance over the standard benchmark. Similar
to previous works, our model assumes that the static factor
exists in every element of the sequence. With a glance to the
future, our new inductive bias might be limiting in settings
where there are sequence elements that do not include any
static information. We emphasize that the current sequential
disentanglement literature does not deal with this scenario
at all, since all models assume that the static factor is shared
across the entire sequence. We leave further exploration and
additional investigation of this aspect for future work.

In this work, we considered the sequential disentanglement
challenge, in which input sequences are decomposed to a
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A AB B

C CD D

Figure 4. Two qualitative examples of swap between source and target sequences. A is the source, B is the target, C is when static is
swapped from source to target, and D is when dynamics are swapped. See details in Sec. 5.3.

Originial

SPYL

Ours

A

B

C
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E

Figure 5. Qualitative example of swap between source and target sequences. A is the source, B is the target, C (E) is when static is
swapped from source to target, and D (F) is when dynamics are swapped. C and D are the swaps for SPYL method and E and F are swaps
of our method. We observe in D that the identity is changed when transferring the dynamics. See more in Sec. 5.3, Fig. 14 and Fig. 15.

single time-invariant component and a series of time-varying
factors of variation. Unfortunately, existing variational mod-
els suffer from information leakage issues, where the dy-
namic factors encode all of the information in the data,
and the static code remains non-meaningful. Resolving in-
formation leakage issues via changing the latent subspace
dimension and by incorporating mutual information loss
terms have been showing limited success. In our work, we
observe that the static code may be extracted from a single
sample, yielding a new posterior variational model. Further,
we design a new neural network that alleviates information
leakage issues by subtracting the extracted static code from
the learned dynamic factors. The resulting model is easy-
to-code and it has less hyper-parameters in comparison to
state-of-the-art approaches. We extensively evaluate our
method on standard sequential disentanglement benchmarks
including general time series, video and audio datasets. Our
model outperforms existing work on generation and predic-
tion tasks as measured by various qualitative and quanti-
tative metrics. In the future, we would like to investigate
other architectural backbones such as diffusion models, and
we would like to explore sequential disentanglement on
real-world datasets and problems.

Impact Statement
Extracting static and dynamic features creates opportunities
to interchange between identities and actions. This capabil-
ity could be exploited for malicious purposes, such as the
creation of fake news or identity theft. While our disentan-
glement approach may not allow for the seamless switching
of intricate actions and identities, it is crucial to broaden
the discussion regarding the ethical implications associated
with the development and application of these methods.
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A. Setup
A.1. Datasets

MUG. Introduced by (Aifanti et al., 2010), MUG encompasses a collection of image sequences featuring 52 subjects
exhibiting six distinct facial expressions, namely, anger, fear, disgust, happiness, sadness, and surprise. Each video within
the dataset is composed of a variable number of frames, ranging from 50 to 160. To standardize sequence length, as
previously demonstrated by (Bai et al., 2021), we employed a procedure in which 15 frames were randomly sampled from
the original sequences. Subsequently, Haar Cascades face detection was implemented to isolate facial regions, resizing them
to dimensions of 64× 64 pixels. This process resulted in sequences denoted as x ∈ R15×3×64×64. The post process dataset
size is approximately 3500 samples.

Sprites. Introduced by (Reed et al., 2015). This dataset features animated cartoon characters with both static and dynamic
attributes. The static attributes present variations in skin, tops, pants, and hair color, each offering six possible options. The
dynamic attributes involve three distinct types of motion (walking, casting spells, and slashing) that can be executed in three
different orientations (left, right, and forward). In total, the dataset comprises 1296 unique characters capable of performing
nine distinct motions. Each sequence within the dataset comprises eight RGB images, each with dimensions of 64× 64
pixels. We follow previous work protocol and we partitioned the dataset into 9000 samples for training and 2664 samples
for testing.

PhysioNet. The PhysioNet ICU Dataset (Goldberger et al., 2000) is a medical time series dataset, encompassing the
hospitalization records of 12,000 adult patients in the Intensive Care Unit (ICU). This comprehensive dataset incorporates
time-dependent measurements, comprising physiological signals and laboratory data, alongside pertinent patient demo-
graphics, including age and the rationale behind their ICU admission. Additionally, the dataset is augmented with labels
signifying in-hospital mortality events. Our pre-processing methodology aligns with the protocols outlined in (Tonekaboni
et al., 2022).

Air Quality. The UCI Beijing Multi-site Air Quality dataset, as detailed by (Zhang et al., 2017), is a collection of
hourly measurements of various air pollutants. These measurements were acquired over a four-year period, spanning
from March 1st, 2013, to February 28th, 2017, from 12 nationally regulated monitoring sites. To complement this data,
meteorological information for each site has been paired with the nearest weather station of the China Meteorological
Administration. In alignment with the methodology outlined by (Tonekaboni et al., 2022), our experimental approach
involves data pre-processing, entailing the segmentation of samples based on different monitoring stations and months of the
year.

ETTh1. The ETTh1 is a subset of the Electricity Transformer Temperature (ETT) dataset, focusing on 1-hour-level data.
It contains two years’ worth of data from two Chinese counties. The goal is Long Sequence Time-Series Forecasting (LSTF)
of oil temperature in transformers. Each data point includes the target value (oil temperature) and 6 power load features.
The data is split into train, validation, and test sets, with a 12/4/4-month split ratio.

TIMIT. Introduced by (Garofolo, 1993) the dataset is a collection of read speech, primarily intended for acoustic-
phonetic research and various speech-related tasks. This dataset encompasses a total of 6300 utterances, corresponding to
approximately 5.4 hours of audio recordings. Each speaker contributes 10 sentences, and the dataset encompasses a diverse
pool of 630 speakers, including both adult men and women. To facilitate data pre-processing, we adopt a methodology akin
to previous research conducted by (Li & Mandt, 2018). Specifically, we employ spectrogram feature extraction with a 10ms
frame shift applied to the audio. Subsequently, segments of 200ms duration, equivalent to 20 frames, are sampled from the
audio and treated as independent samples.
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A.2. Metrics

Accuracy This metric is the common evaluation protocol for assessing a model’s capacity to preserve fixed features
while generating others. Specifically, it entails the isolation of dynamic features while sampling static ones. This metric is
evaluated by employing a pre-trained classifier, referred to as ’C’ or the ’judge,’ which has been trained on the same training
dataset as the model. Subsequently, the classifier’s performance is tested on the identical test dataset as the model. For
example, in the case of the MUG dataset, the classifier examines the generated facial expression and verifies that it remains
consistent during the sampling of static features. We refer this metric along the paper as ”Acc” or ”Accuracy Dynamic”. In
addition, we present in the ablation study the metric ”Accuracy Static”. This metric is exactly the same, just with one small
modification. Fixing the static and sampling dynamic.

Inception Score (IS). This is a metric for the generator performance. First, we apply the judge on all the generated
sequences x1:T . Thus, getting p(y|x1:T ) which is the conditional predicted label distribution. Second, we take p(y) which
is the marginal predicted label distribution and we calculate the KL-divergence KL[p(y|x1:T ) || p(y)]. Finally, we compute
IS = exp (ExKL[p(y|x1:T ) || p(y)]).

Inter-Entropy (H(y|x)). Inter-Entropy, often referred to as H(y|x), serves as a metric that reflects the confidence of a
classifier (C) in making label predictions. A low value of Inter-Entropy indicates high confidence in the predictions made by
the classifier. To measure this, we input k generated sequences into the classifier and compute the average entropy over
these sequences, given by 1

k

∑k
i=1H(p(y|xi1:T )).

Intra-Entroy (H(y)). Intra-Entropy, denoted as H(y), is a metric that measures the diversity among generated sequences.
A high Intra-Entropy score indicates a high level of diversity among the generated data. This metric is computed by first
taking a generated sample from the learned prior distribution p(y) and then applying a judge to obtain the predicted labels y.
The entropy of this label distribution H(y) quantifies the variability or uncertainty in the generated sequences.

AUPRC. The AUPRC (Area Under the Precision-Recall Curve) metric quantifies the precision-recall trade-off by
measuring the area under the curve of the precision vs recall. A higher AUPRC indicates better model performance, with
values closer to 1 being desirable, indicating high precision and high recall.

AUROC. The AUROC (Area Under the Receiver Operating Characteristic Curve) metric quantifies the true positive (TPR)
vs false positive (FRR) trade-off by measuring the area under the curve of the those rates. A higher AUPRC indicates better
model performance, with values closer to 1 being desirable, indicating high precision and high recall.

MAE. The Mean Absolute Error (MAE) metric is a fundamental and widely-used measure in the field of regression
analysis and predictive modeling. It quantifies the average magnitude of errors between predicted and actual values,
providing a straightforward and intuitive assessment of model accuracy. Computed as the average absolute difference
between predicted and true values, MAE is robust to outliers and provides a clear understanding of the model’s precision in
making predictions.

EER. The Equal Error Rate (EER) metric is a vital evaluation measure employed in the context of the speaker verification
task, particularly when working with the Timit dataset. EER quantifies the point at which the false positive rate and
false negative rate of a model in the speaker verification task are equal. It provides a valuable assessment of the model’s
performance, specifically in the context of speaker recognition.

14



Sequential Disentanglement by Extracting Static Information From A Single Sequence Element

A.3. Hyper-parameters

We compute the following objective function:

L = max
θ,ϕ,ψ

EpD (Lrecon − Lreg) . (8)

Lreg = β KL[q(s |x1 ; ϕs) ∥ p(s)] + β KL[q(d2:T |x2:T ; ϕd) ∥ p(d2:T ; ψ)] , (9)

Lrecon = Es∼qϕs
[Ed2:T∼qϕd

log p(x2:T | s, d2:T ; θ)] + αEs∼qϕs
[log p(x1 | s, d1 ; θ)] , (10)

We determined optimal hyper-parameters, specifically α for the reconstruction loss and β for the static KL term, using
HyperOpt to search for values in the range of Zero to One. It’s important to note that we did not normalize the mean squared
error (MSE) loss by the batch size during this process. Additionally, optimization was carried out using the Adam optimizer
with a learning rate chosen from 0.001, 0.0015, 0.002, 0.003 and we considered feature dimensions of 8, 16, 32 for time
series datasets and 64, 110, 256 for the image and audio datasets for both static and dynamic dimensions. A comprehensive
summary of these optimal hyper-parameters for each task and dataset is available in Tab. 6, and all training processes were
limited to a maximum of 2000 epochs.

Table 6. Dataset Hyper-parameters.

Dataset α β Learning Rate Batch Size Static (sd) Dynamic (dd)

MUG 0.35 0.28 1.5× 10−3 64 64 64
PhysioNet 0.1 0.01 3× 10−3 30 8 8
Air Quality 0.28 2× 10−4 3× 10−3 10 8 8

ETTh1 0.23 0.03 1× 10−3 10 8 8
Timit 6× 10−4 6× 10−4 1× 10−3 10 110 110

Sprites 0.2 0.2 2× 10−3 128 256 256

A.4. Architecture

In Fig. 1 we present our method architecture. Generally, our architecture comprises of three components. The encoder,
the disentanglement module and the decoder. The disentanglement module is similar to every data modality and it is fully
explained in the figure in the main text. The encoder and the decoder for each data modality are different, and in what
follows, we present the architecture details for each one of them.

Video:

1. Encoder - The encoder comprises of 5 layers of Conv2d followed by BatchNorm2D followed by LeakyReLU. Below
are the Conv2D (input channel dimension, output channel dimension, kernel size, stride, padding) hyper-parameters
given for a 64 × 64 × 3 input image, ordered as they appear in the encoder: (3, 32, 4, 2, 1) → (32, 64, 4, 2, 1) →
(64, 128, 4, 2, 1) → (128, 256, 4, 2, 1) → (256, 128, 4, 2, 1).

2. Decoder - Similarly to the encoder, the decoder comprises of 5 layers. The first 4 layers are Conv2DTranspose followed
by BatchNornm2D followed by LeakyRelu. The final layer is Conv2D followed by BatchNorm2D followed by a
Sigmoid function. Below are the Conv2DTranspose (input channel dimension, output channel dimension, kernel size,
stride, padding) hyper-parameters given for a latent code with size of the concatenated static and dynamic sd + dd
by the order of their appearance in the decoder: (sd + dd, 256, 4, 1, 0) → (256, 128, 4, 1, 0) → (128, 64, 4, 1, 0) →
(64, 32, 4, 1, 0) → (32, 3, 4, 1, 0).

Time Series: When training for this data, we adopt a strategy that involves selecting a window of data points, rather than a
single data point for the static part. This approach is tailored to each dataset, with the window size varying based on the
dataset’s length. Specifically, for the Air Quality and ETTh1 datasets, we utilize 28 distinct windows, each encompassing 24
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Figure 6. Different emotions may manifest similarly for different people, as seen in the fear expression of one person (left, top row) and
surprise expression of another person (left, middle row). We further quantify this effect in a confusion matrix (right).

data points. For the Physionet dataset, our methodology involves the use of 20 windows, where each window comprises of 4
data points. We found that this window-based approach enables a more comprehensive analysis of time series data.

1. Encoder - The encoder consists of three linear layers with the next dimensions: (10, 32) → (32, 64) → (64, 32).
ReLU activations are applied after each linear layer.

2. Decoder - The decoder is a linear layer that projects the latent codes into a 32-dimensional space, followed by a tanh
activation function. Subsequently, for the different tasks, the output is passed through an LSTM with a hidden size
of 32. The LSTM’s output is fed into two linear layers, each followed by a ReLU activation: Linear(32, 64)
and Linear(64, 32). Finally, the output is projected through two more linear layers to produce the mean and
covariance parameters, which are used to sample the final output.

B. Additional Experiments and details
B.1. Failure case analysis on MUG.

The MUG dataset is a common disentanglement benchmark, comprising of six expressions made by 52 different subjects.
Tab. 1 shows that all models fail to produce > 90% accuracy for this dataset. In what follows, we explore the failure cases
of our model, toward characterizing where and why the model fails. To this end, we observe that different facial expressions
may look similar for different subjects or even for the same subject. For example, we consider two persons, h1 and h2 and
we plot their facial expressions in Fig. 6 (left). The top row is the surprised expression of h1, the middle row is the fear
expression of h2, and the bottom row is the fear expression of h1. Clearly, all rows are similar to the human eye, and thus,
unsupervised methods such as the one we propose will naturally be challenged by such examples. To quantify this effect we
compute the confusion matrix of our model benchmark predictions in Fig. 6 (right). For each cell, we estimate the ratio of
predicted labels (columns) vs. the true labels (rows). Thus, the main diagonal represents the true positive rate, whereas off
diagonal cells encode false positive and false negative cases. Ideally, we would like to have 100% (dark blue) on the main
diagonal, which means that our disentangled generations are perfect. While this is largely the case for Anger, Disgust and
Happiness, we find that Fear, Sadness and Surprise may be confounded. For instance, there is ≈ 35% confusion between
Fear and Surprise. Our analysis suggests that hierarchical disentanglement based first on dominant features such as subject
identity, and only then on facial expression may be a strong inductive bias in modeling disentanglement (Schölkopf et al.,
2021). We leave further consideration and exploration of this aspect to future work.

B.2. Audio Dataset - TIMIT

Experiment description. To show the robustness of sequential disentanglement methods, previous works have used a
common audio verification benchmark on the TIMIT dataset. We evaluate our model using the common benchmark protocol
described in (Li & Mandt, 2018) and with the same encoding and decoding architecture for a fair comparison. Briefly,
the evaluation protocol is given two audio tracks, the goal of this task is to recognize if they come from the same speaker.
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Table 7. TIMIT voice verification task.

Method static EER↓ dynamic EER ↑ Disentanglement Gap ↑
FHVAE 5.06% 22.77% 17.71%
DSVAE 5.64% 19.20% 13.56%
R-WAE 4.73% 23.41% 18.68%
S3VAE 5.02% 25.51% 20.49%
SKD 4.46% 26.78% 22.32%
C-DSVAE 4.03% 31.81% 27.78%
SPYL 3.41% 33.22% 29.81%

Ours 3.50% 34.62% 31.11%

Table 8. Additional ablation study results on the time series benchmark.

Method Accuracy (PhysioNet) ↑ Accuracy (Air Quality) ↑
xrob 40.81%± 0.328 43.73%± 0.15
xrandom 54.87%± 0.138 62.73%± 0.1
xT/2 55.20%± 0.120 66.73%± 0.07
xT 55.19%± 0.260 69.53%± 0.22

x1 56.87%± 0.34 65.87%± 0.01

Unrelated to what the words context are. The verification is done by EER - Equal Error Rate (Chenafa et al., 2008) metric
where we use cosine similarity and ϵ ∈ [0, 1] threshold. Given two audio tracks x11:T , x

2
1:T we extract their static s1, s2

representations. We follow the exact extraction process as in (Bai et al., 2021; Li & Mandt, 2018). Then, we measure
the cosine similarity of the pairs, if it is higher than ϵ, we classify them as the same speaker, and as different speakers
otherwise. The ϵ is determined by calibration of the EER. We conducted the above procedure once for the static features
and separately for the dynamic features, then we report each experiment’s EER. In the static setup, lower error is desired,
since it should encapsulate information about the speaker. On the other hand, in the dynamic setup the higher the error the
better since it should not encapsulate information about the speaker. In addition, we show the information leakage gap,
the gap between the static and dynamic setups, which indicates the quality of the disentanglement. We report our model
performance in Tab. 7. Notably, our model achieves state-of-the-art disentanglement gap, surpassing by approximately 1.3%
the best previous method.

B.3. Ablation Studies

Due to space limitations, we extend here the ablation study results that were reported in the main text at Sec. 5.4.

Dependence on the i-th sample. In Tab. 8 and Tab. 9, we present the results of our ablation study on frame selection
across multiple datasets on classification tasks. The comparison is made between the first frame, the middle frame, and the
last frame. Notably, the outcomes indicate a high degree of consistency among these frames, showcasing the robustness of
our frame selection approach. The similarity in results across different frames suggests that our model is not overly sensitive
to the specific choice of frames.

Static and dynamic clustering. In this section, we expand our qualitative assessment of both the static s and dynamic
d1:T embeddings within the latent space of our approach. Specifically, we aim to demonstrate the significance of our loss
and subtraction choices on the overall performance of our model. In Fig. 7, we use t-SNE to project the static and dynamic
embeddings into a two-dimensional space. The static embeddings are depicted in orange, while the dynamic embeddings
are shown in blue (left). Additionally, we independently project each of the factors. This process is repeated for each of the
ablated models, wherein we eliminate the loss function, the subtraction module, and both of them. It becomes apparent that
in the absence of the loss function, the ’anger’ dynamics overlap with ’sadness’; similarly, ’fear’ and ’surprise’ overlap,
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Table 9. Additional ablation study results on the MUG benchmark.

Static Features Dynamic Features
Method Static Acc1 ↑ Dynamic Acc1 ↓ Static Acc2 ↓ Dynamic Acc2 ↑
xrob 99.53% 29.45% 3.35% 78.39%
xrandom 99.53% 22.91% 2.98% 85.55%
xT/2 99.71% 22.32% 3.01% 85.42%
xT 99.67% 22.42% 3.06% 85.35%

x1 99.42% 20.85% 2.89% 86.90%

Table 10. Sprites and MUG datasets with standard deviation measures.

MoCoGAN DSVAE R-WAE S3VAE SKD C-DSVAE SPYL Ours

Sprites
Acc↑ 92.89% 90.73% 98.98% 99.49% 100% 99.99% 100%± 0 100%± 0
IS↑ 8.461 8.384 8.516 8.637 8.999 8.871 8.942± 3.3e−5 8.942± 7e−5
H(y|x)↓ 0.090 0.072 0.055 0.041 1.6e−7 0.014 0.006± 4e−6 0.006± 3e−6
H(y)↑ 2.192 2.192 2.197 2.197 2.197 2.197 2.197± 0 2.197± 0

MUG
Acc↑ 63.12% 54.29% 71.25% 70.51% 77.45% 81.16% 85.71%± 0.9 86.90%± 0.9
IS↑ 4.332 3.608 5.149 5.136 5.569 5.341 5.548± 0.039 5.598± 0.068
H(y|x)↓ 0.183 0.374 0.131 0.135 0.052 0.092 0.066± 4e−3 0.041± 8e−3
H(y)↑ 1.721 1.657 1.771 1.760 1.769 1.775 1.779± 6e−3 1.782± 0.013

consistent with our previous observations. Moreover, when we remove the subtraction module (third row) or eliminate both
components (last row), a notable decline in performance is observed. In these scenarios, the dynamic embeddings become
cluttered, with different dynamics overlapping, indicating poor clustering and disentanglement. In conclusion, in addition to
the notable decline in performance we observe in the quantitative evaluation, we demonstrate how important the additional
loss term and subtraction are through qualitative assessment.

B.4. Disentanglement Generation with Standard Deviation

For simplicity, we present in Tab. 1 in the main text the results without standard deviation. Due to the nature of generative
models to produce unstable results it is important to validate that a model is stable and shows a statistically significant
improvement. Therefore, we present full results of our model with standard deviation measures in Tab. 10. We repeat the
task 300 times with different seeds and report its mean and standard deviation. The results show that our model is profoundly
stable.

B.5. Information leakage gap in video with standard deviation measures

Similar to App.B.4, we display the complete results of Tab.2. We repeat the same experiment protocol as in (Naiman et al.,
2023). The results are reported in Tab.11. The experiment results show the statistical significance of our model.

B.6. Generative Sampling

In this experiment, we show qualitatively our model’s capability to fix one factor and sample the other on the MUG and
Sprites datasets. In Fig. 8 and Fig. 10, we fix the static component and sample new dynamic component. In Fig. 9 and
Fig. 11, we fix the dynamic component and sample a new static component.

B.7. Swap Examples

We extend the swap experiment in the main text in Sec. 5.3 showing more swap examples between two samples on the MUG
and the Sprites in Fig. 12 and Fig. 13.
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Table 11. MUG dataset with standard deviation measures.

Static Features Dynamic Features
Classifier Method Static Acc ↑ Dynamic Acc ↓ Leakage Gap ↑ Static Acc ↓ Dynamic Acc ↑ Leakage Gap ↑

Latent

random 1.92% 16.66% - 1.92% 16.66% -
C-DSVAE 98.75%± 1.1 76.25%± 3.6 22.25% 26.25%± 3.4 82.50%± 2.1 56.25%
SPYL 98.12%± 0.9 68.75%± 4.5 29.37% 10.00%± 2.8 85.62%± 1.5 75.62%
Ours 99.35%± 1.2 45.06%± 3.8 54.29% 11.36%± 0.6 85.51%± 2.3 74.15%

B.8. Time Series Reconstruction

We present a qualitative analysis of our model reconstruction abilities of time series signals. We use the Air Quality dataset
in this analysis. This dataset is comprised of multiple features such as Temperature (TEMP), Carbon Monoxide (CO) and
other physical environmental features. In Fig. 16, each plot represents a different feature. The X axis of each plot is the
measurement of a specific measure in a specific day. The Y axis are the measurement values. Notably, we observe from this
experiment, that our model successfully captures the semantics of each of the time series features. Which in turn, explicitly
implies that the latent features of our model encapsulate valuable information about the observed data.
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Figure 7. t-SNE plots on MUG dataset of the latent static and dynamic factors. Latent static codes, colored by subject identity (left), and
latent dynamic codes, colored by dynamic attribute (right).
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Figure 8. Dynamics generation results in Sprites dataset. On the left side, the original sequence. On the right side, the same sequence with
different dynamics.

Figure 9. Static generation results in Sprites dataset. On the left side, the original sequence. On the right side, the same sequence with
different static features.

21



Sequential Disentanglement by Extracting Static Information From A Single Sequence Element

Figure 10. Dynamics generation results in MUG dataset. On the left side, the original sequence. On the right side, the same sequence with
different dynamics.

Figure 11. Static generation results in MUG dataset. On the left side, the original sequence. On the right side, the same sequence with
different static features.
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Figure 12. Swapping results in Sprites dataset. Each odd row (counting from One) contains Two original samples. Each even row contains
the Two swapped samples of their above row.

Figure 13. Swapping results in MUG dataset. Each odd row (counting from One) contains Two original samples. Each even row contains
the Two swapped samples of their above row.
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Figure 14. Qualitative example of swap between source and target sequences. A is the source, B is the target, C (E) is when static is
swapped from source to target, and D (F) is when dynamics are swapped. C and D are the swaps for SPYL method and E and F are swaps
of our method.
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Figure 15. Qualitative example of swap between source and target sequences. A is the source, B is the target, C (E) is when static is
swapped from source to target, and D (F) is when dynamics are swapped. C and D are the swaps for SPYL method and E and F are swaps
of our method.
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Figure 16. Reconstructed signal of Air Quality by our model
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