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Abstract

For accelerated magnetic resonance imaging (MRI), conditional generative adver-
sarial networks (cGANs), when trained end-to-end with a fixed subsampling mask,
have been shown to compete with contemporary diffusion-based techniques while
generating samples thousands of times faster. To handle unseen sampling masks
at inference, we propose “guided reconstruction” (GR), wherein the cGAN code
vectors are projected onto the measurement subspace. Using fastMRI brain data,
we demonstrate that GR allows a cGAN to successfully handle changes in sampling
mask, as well as changes in acceleration rate, yielding faster and more accurate
recoveries than the Langevin approach from (Jalal et al., 2021) and the DDRM
diffusion approach from (Kawar et al., 2022). Our code will be made available at
https://github.com/matt-bendel/rcGAN-agnostic.

1 Introduction

We consider multi-coil accelerated magnetic resonance imaging (MRI), where the goal is to recover
the N -pixel MR image x ∈ CN from multi-coil k-space measurements y, where [1]

y = Ax+w with A =

MFS1...
MFSC

 . (1)

In (1), M ∈ RM×N is a subsampling operator containing rows from the N × N identity matrix,
F ∈ CN×N is the unitary 2D discrete Fourier transform, Sc ∈ CN×N is a diagonal matrix
containing the sensitivity map of the cth coil (estimated via ESPIRiT [2]), C is the number of coils,
and w ∈ CMC is noise. The ratio R ≜ N/M is known as the acceleration rate.

For MRI recovery, classical methods like SENSE [1] or GRAPPA [3] work well at low acceleration
rates. To deal with higher R, compressed-sensing (CS) algorithms exploit image sparsity in a
transformed domain [4]. Plug-and-play methods offer improved performance by replacing the
proximal step in CS algorithms with a sophisticated image denoiser [5]. More recently, deep neural
networks have been employed, either as denoisers in PnP algorithms [6], unrolled versions of those
algorithms [7, 8], or as direct-estimation networks [9, 10].

The aforementioned MRI recovery techniques return “point estimates,” i.e., a single best estimate of
x from y. A fundamental challenge with point estimates is the perception-distortion tradeoff [11],
which says that the estimate can have either low distortion (i.e., x̂ close to x) or high perceptual quality
(i.e., x̂ close to the manifold of clean images), but not both. Consequently, neural networks trained to
minimize distortion metrics like L2 or L1 loss give blurry images, while those trained to give realistic,
sharp images (e.g., using adversarial loss) tend to hallucinate. Another fundamental shortcoming of
point estimators is that they do not acknowledge or report reconstruction uncertainty [12].
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Posterior sampling. To address the aforementioned limitations of point estimation, posterior
sampling has been proposed. There, the goal is to generate samples {x̂i}Pi=1 from the posterior
distribution px|y(·|y). Posterior sampling facilitates various forms of uncertainty quantification, e.g.,
pixel-wise standard-deviation maps or confidence bounds on the results of downstream tasks like
classification or segmentation [13, 14]. Furthermore, when there is a need to construct a single
“best” estimate x̂, the posterior sample-average x̂(P ) ≜ 1

P

∑P
i=1 x̂i allows one to straightforwardly

navigate the perception-distortion tradeoff. For instance, as P increases, x̂(P ) has lower distortion
(with P → ∞ yielding the minimum mean-squared error estimate) but lower perceptual quality.
Posterior sampling is also useful for adaptive acquisition [15] and counterfactual diagnosis [16].

There are several ways to design posterior samplers for imaging inverse problems. Methods like
conditional generative adversarial networks (cGANs) [17–20], conditional variational auto-encoders
(cVAEs) [21–23], and conditional normalizing flows (cNFs) [24–27] train networks in an end-to-end
(E2E) manner to map random code vectors to posterior samples. Once trained, these approaches
generate samples rapidly. However, they are usually trained on a specific forward model A (e.g.,
a specific MRI sampling mask), in which case they don’t generalize well to other forward models.
Langevin/diffusion methods [28–33] avoid these generalization issues by training a denoiser and
generating posterior samples using an iterative algorithm that invokes the forward model A. However,
they tend to be orders-of-magnitude slower at sample generation than cGANs, cVAEs, or cNFs.

Our contribution. In this work, we focus on cGANs, which have recently been shown to yield fast
and accurate posterior sampling in accelerated multicoil MRI [20]. Although one could train a cGAN
(or any E2E method) to perform well on average over a wide range of sampling masks, doing so
degrades performance on any fixed mask (see, e.g., [5, Table 2]). Thus, we propose a novel approach
to agnostically training cGANs that we dub “guided reconstruction” (GR). When used in conjunction
with the data-consistency procedure from [34], we find that GR allows the cGAN to generalize to
a wide range of masks and sampling rates R without significant loss in performance. In particular,
we demonstrate speed and accuracy improvements over recent Langevin/diffusion methods on the
recovery of fastMRI [10] brain data.

2 Proposed method

Let Gθ(A
+y, ·) be a conditional generator with parameters θ that maps random code vectors zi

to samples x̂i of the posterior px|y(·|y). Here, A+ denotes the pseudo-inverse of A, and so the
generator is given aliased image-space data A+y, rather than measurement-space data y, as this is
standard practice for end-to-end reconstruction networks (see, e.g., the UNet in [10]). Note that, for
A in (1) with ESPIRiT-estimated coil maps {Sc}, we have that A+ = AH [2].

Guided reconstruction. Typically, the generator is fed with codes zi ∼ N (0, I). To provide
side-information on the A-specific aliasing pattern in A+y, we propose to project zi onto the
measurement subspace via

vi = A+Azi, (2)

and feed vi to the generator instead of zi. Then we train the generator using many random realizations
of A, as well as many (x,y) pairs, so that it learns to associate the statistics of the modified code
vectors vi with the statistics of the aliasing in A+y. To our knowledge, using (2) in a cGAN is novel.

Data-consistency. In addition, we employ the data-consistency (DC) procedure proposed in [34]:

x̂i = (I −A+A)x̂raw
i +A+y, (3)

where x̂raw
i is the raw generator output. This ensures that the generated samples are consistent with

the measurements in the sense that Ax̂i = y. The DC approach (3) is recommended only for
low-noise settings, since it makes no attempt to remove measurement noise. In high-noise settings,
the dual-decomposition approach from [35] could be used instead.

A diagram of our proposed approach is provided in Fig. 1.
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Figure 1: The proposed approach.

Table 1: Average PSNR, SSIM, LPIPS, and DISTS vs. R. Bold indicates the best score in each
column and italics the second-best. (PE) denotes a point-estimator and (PS) denotes a posterior
sampler. Time was measured on a server with 4 NVIDIA A100 GPUs, each with 82 GB RAM.

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ CFID↓ FID↓
Model R=4 R=8 R=4 R=8 R=4 R=8 R=4 R=8 R=4 R=8 R=4 R=8 Time (4)↓

E2E-VarNet [8] (PE) 38.93 35.34 0.9629 0.9450 0.0344 0.0602 0.0908 0.1227 7.47 8.89 8.84 13.96 316ms
Langevin [29] (PS) 38.27 34.17 0.9292 0.8958 0.0316 0.0572 0.0777 0.1120 5.29 7.34 6.12 14.32 14 min
DDRM [33] (PS) 34.97 32.48 0.9289 0.9046 0.0609 0.0943 0.1193 0.1392 16.88 18.99 22.91 24.59 11s

Ours (PS) 38.58 35.21 0.9510 0.9254 0.0216 0.0354 0.0583 0.0807 2.13 3.92 2.57 7.33 217ms

3 Experiments

Generator. We use the MRI architectures from the rcGAN paper [20], leveraging the authors’ code
implementation [36] but doubling the number of channels in the generator.

Data. We use the first 8 slices of all fastMRI [10] T2 brain training volumes with at least 8 coils,
cropping to 384× 384 pixels and compressing to 8 virtual coils [37]. We apply the same procedure to
the fastMRI T2 brain validation volumes, yielding 12 200 training, 2 376 testing, and 784 validation
images. From the 2 376 testing images, we randomly select 72 on which to compute metrics due to
computational limits imposed by the long sample-generation time of the Langevin method [29].

Training/Validation. For our cGAN, we use the regularized adversarial training approach from
[20]. For training and validation, we use randomly generated vertical-line subsampling masks with
acceleration R uniformly distributed in {2, 3, 4, 5, 6, 7, 8}. Further details are given in Appendix A.

Testing. When testing, we use the GRO [38] sampling mask at specific R values. Multi-coil
outputs are combined using SENSE-based coil combining and converted to magnitude images for
performance evaluation. For the posterior samplers, we leverage the perception-distortion tradeoff,
choosing the P ∈ {1, 2, 4, 8, 16, 32} for which x̂(P ) has the best performance for the given metric. A
comprehensive table of performance metrics versus P and R can be found in Appendix B.

Competitors. As a baseline, we consider the state-of-the-art point estimator E2E-VarNet [8]. For
competing posterior samplers, we consider the Langevin approach from [29] and the DDRM diffusion
approach from [33]. As suggested by the DDRM paper [33], we used η = 0.85, and as suggested
by the DDRM application to fastMRI knee data in [39], we used 100 steps and the “oracle” DDPM
denoiser from [40]. We trained DDPM on the fastMRI brain data using advice gained from personal
communication with the authors of [39]. Further details are given in Appendix A.

Main results. Table 1 shows PSNR, SSIM [41], LPIPS [42], DISTS [43], CFID [44], FID [45],
and the generation time for 4 posterior samples or one E2E-VarNet sample at R = 4. CFID is the
only metric that aims to directly measure posterior-sampling performance, and we computed it using
VGG-16 (not Inception-v3) to better align with radiologists’ perceptions [46]. Our proposed cGAN
performed best in all metrics but PSNR and SSIM, where it was second-best. Also, our cGAN is
3 800 times faster than the Langevin approach and 50 times faster than DDRM. We note that DDRM
performs relatively poorly, which we conjecture is due to the DDPM denoiser we trained. Although
we spent significant effort tuning DDPM (see Appendix A), the authors of [39] warned us (in an
email) that it is “very sensitive to training hyperparameters.”

Fig. 2 shows examples of x̂(P ), along with the corresponding pixel-wise absolute errors |x̂(P ) − x|
and pixel-wise standard deviation (SD) ( 1

P

∑P
i=1(x̂(P ) − x̂i)

2)1/2 at P = 4 and R = 4. The error
images of the proposed approach look similar to those of the E2E-VarNet and quite different from
those of the Langevin/diffusion techniques. Relative to the proposed approach, the pixel-wise SD
maps show no variability for the E2E-VarNet (which is expected as it is a point estimator), lower
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Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure 2: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.

Table 2: Ablation study on the effect of GR and DC. Bold indicates the best score in each column.

PSNR↑ SSIM↑ LPIPS↓ DISTS↓
Model R=2 R=4 R=6 R=8 R=2 R=4 R=6 R=8 R=2 R=4 R=6 R=8 R=2 R=4 R=6 R=8

Ours w/o GR, w/o DC 37.86 35.37 33.19 32.87 0.9433 0.9194 0.9006 0.8915 0.0368 0.0610 0.0713 0.0782 0.0948 0.1249 0.1310 0.1397
Ours w/o GR 42.46 37.79 35.87 34.66 0.9741 0.9488 0.9340 0.9230 0.0121 0.0366 0.0444 0.0579 0.0485 0.0931 0.1044 0.1171
Ours w/o DC 38.70 36.08 33.80 33.33 0.9537 0.9295 0.9146 0.9003 0.0346 0.0539 0.0649 0.0721 0.0929 0.1219 0.1255 0.1359
Ours 43.01 38.58 36.41 35.21 0.9748 0.9507 0.9360 0.9249 0.0110 0.0310 0.0413 0.0517 0.0475 0.0891 0.1017 0.1137

variability and strange hot-spots for the Langevin method (also seen in [20]), and higher variability for
DDRM (expected due to its larger estimation error). Additional examples are given in Appendix C.

Ablation study. Table 2 shows the performance of the proposed approach with and without GR and
DC at P = 32. There we see that both GR and DC are important ingredients of the proposed method.

4 Conclusion

We proposed a “guided reconstruction” technique that helps to make posterior-sampling cGANs
agnostic to the MRI mask and acceleration factor. Experiments with fastMRI brain data show our
method outperforming the Langevin method from [29] and the DDRM diffusion method from [33] in
all accuracy/perceptual metrics while generating samples orders-of-magnitude faster.
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Limitations. Although the proposed approach helps to make the cGAN agnostic to the forward
model, it still requires that the cGAN is trained over a representative range of forward models and
may not generalize well to forward models outside that range.
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Supplementary Materials

A Implementation details

A.1 Masks

We use vertical-line subsampling masks in all experiments. To facilitate ESPIRiT-based coil sensitivity
estimation, these masks include an auto-calibration signal (ACS) region that takes the form of an
NACS-wide collection of vertical lines in the center of k-space. At acceleration R = 2 we use
NACS = 32, at acceleration R = 8 we use NACS = 16, and at any other acceleration, we choose
NACS by linearly extrapolating these values.

For training and validation, we use randomly generated vertical-line subsampling masks, where
the acceleration R is uniformly distributed in {2, 3, 4, 5, 6, 7, 8} and, for a given R, the lines are
uniformly distributed over the non-ACS region. Each batch element gets a different mask realization.
For testing, we use (deterministic) GRO [38] sampling masks, with the same ACS region, at fixed
values of R. With very high probability, these GRO masks are unseen during training/validation.

A.2 Models

cGAN. For our proposed method, we build on the regularized cGAN from [20] and the authors’
implementation in [36]. This model, dubbed “rcGAN,” was shown to produce state-of-the-art MRI
posterior samples, outperforming several existing cGANs, as well as the score-based diffusion
technique from [29], in all accuracy metrics, while generating samples thousands of times faster
than [29].

For our implementation, we use the same UNet generator from [36], but we double the number of
channels to increase network capacity, since the network has a harder problem to solve. Also, we use
the same discriminator and training hyperparameters as [36], except that we reduce the batch size
from 32 to 20. Running PyTorch on a server with 4 Tesla A100 GPUs, each with 82 GB of memory,
the training of our cGAN takes approximately 2 days.

E2E-VarNet. We use the E2E-VarNet [8] to exemplify a state-of-the-art point estimator. For this,
we use the same E2E-VarNet hyperparameter settings that were used in [29], including the use of the
SENSE-based coil-combined images as ground-truth when training. Like our cGAN, the E2E-VarNet
is trained with random masks as described above. However, it is trained to minimize a weighted
combination of L1 and (negative) SSIM loss, as described in [8].

Langevin. For the Langevin approach to MRI from [29], we use the authors’ implementation
from [47] but with the sampling mask changed to the GRO mask. We generated P = 32 samples for
each of the 72 different test images using a batch-size of 4, which took approximately 6 days for each
tested acceleration rate R on a server with 4 NVIDIA V100 GPUs, each with 32 GB of memory. The
reconstruction times in Table 1, however, correspond to our A100 server, for fair comparison to the
other methods.

DDRM. To configure DDRM [33], we take guidance from [39] and the accompanying codebase [48],
where DDRM was used to recover fastMRI knee data. Using minor changes to the code from [48], we
first trained a DDPM denoiser [40] for our fastMRI T2 brain data using the suggested hyperparameters
for the “oracle” model. We then found that the DDPM performance could be significantly improved
by reducing the batch size to 20 and increasing the training time to 400 epochs (or 262k iterations),
which took about 3 days on our A100 server. Once DDPM was trained, we integrated it into the
DDRM code from [49]. This required making only a small modification to the inpainting forward
model, as confirmed through emails with the authors. Beyond this, we used the default DDRM
hyperparameters from [33] (e.g., η = 0.85) and we ran DDRM for 100 time steps to be consistent
with the fastMRI knee implementation in [39]. Using this DDRM setup, we generated P = 32
samples for each of the 72 different test images using a batch-size of 4, which took roughly 2 hours
for each tested acceleration rate R on our A100 server.
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B Additional results

Table B.1: Average PSNR, SSIM, LPIPS, and DISTS of x̂(P ) versus number of posterior samples P
for R ∈ {2, 4, 6, 8}-accelerated fastMRI T2 brain recovery. The point estimators produce only P = 1
sample. The UNet has the same architecture as our cGAN generator but is a point estimator trained
with the same L1+SSIM loss as the E2E-VarNet. Bold indicates the best score for each metric, for
each R, across all P .

PSNR↑ SSIM↑
Accel Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

R = 2

E2E-VarNet [8] 41.77 - - - - - 0.9646 - - - - -
UNet 42.49 - - - - - 0.9755 - - - - -
Ours w/o GR, w/o DC 34.96 36.22 37.03 37.48 37.73 37.86 0.9301 0.9412 0.9442 0.9443 0.9438 0.9433
Ours w/o GR 39.81 40.99 41.72 42.13 42.35 42.46 0.9660 0.9713 0.9732 0.9738 0.9741 0.9741
Ours w/o DC 35.14 36.64 37.60 38.22 38.54 38.70 0.9343 0.9467 0.9513 0.9530 0.9536 0.9537
Ours 40.17 41.42 42.20 42.64 42.89 43.01 0.9671 0.9721 0.9738 0.9744 0.9747 0.9748
DDRM [33] 36.23 37.31 37.97 38.34 38.55 38.65 0.9277 0.9416 0.9488 0.9525 0.9544 0.9554

R = 4

E2E-VarNet [8] 38.93 - - - - - 0.9629 - - - - -
UNet 38.27 - - - - - 0.9542 - - - - -
Ours w/o GR, w/o DC 33.19 34.18 34.78 35.10 35.28 35.37 0.9114 0.9216 0.9233 0.9219 0.9205 0.9194
Ours w/o GR 35.51 36.56 37.17 37.52 37.70 37.79 0.9379 0.9464 0.9488 0.9491 0.9490 0.9488
Ours w/o DC 33.44 34.63 35.32 35.75 35.98 36.08 0.9170 0.9288 0.9313 0.9311 0.9303 0.9295
Ours 35.82 37.05 37.81 38.23 38.46 38.58 0.9391 0.9481 0.9506 0.9510 0.9509 0.9507
Langevin [29] 36.04 37.02 37.65 37.99 38.17 38.27 0.8989 0.9138 0.9218 0.9260 0.9281 0.9292
DDRM [33] 32.62 33.68 34.32 34.68 34.87 34.97 0.8864 0.9073 0.9186 0.9244 0.9274 0.9289

R = 6

E2E-VarNet [8] 36.71 - - - - - 0.9531 - - - - -
UNet 35.74 - - - - - 0.9366 - - - - -
Ours w/o GR, w/o DC 30.45 31.66 32.41 32.84 33.06 33.19 0.8770 0.8978 0.9039 0.9038 0.9020 0.9006
Ours w/o GR 33.15 34.34 35.09 35.52 35.75 35.87 0.9160 0.9295 0.9336 0.9344 0.9342 0.9340
Ours w/o DC 30.63 31.98 32.87 33.38 33.67 33.80 0.8767 0.9007 0.9107 0.9139 0.9145 0.9146
Ours 33.61 34.84 35.61 36.05 36.29 36.41 0.9187 0.9314 0.9354 0.9362 0.9361 0.9360
DDRM [33] 31.16 32.30 33.02 33.43 33.65 33.76 0.8675 0.8922 0.9056 0.9127 0.9163 0.9182

R = 8

E2E-VarNet [8] 35.34 - - - - - 0.9450 - - - - -
UNet 34.70 - - - - - 0.9257 - - - - -
Ours w/o GR, w/o DC 30.14 31.35 32.10 32.54 32.75 32.87 0.8721 0.8920 0.8970 0.8961 0.8935 0.8915
Ours w/o GR 32.27 33.35 34.01 34.36 34.56 34.66 0.9052 0.9191 0.9232 0.9237 0.9234 0.9230
Ours w/o DC 30.30 31.62 32.44 32.94 33.19 33.33 0.8769 0.8967 0.9023 0.9024 0.9013 0.9003
Ours 32.54 33.72 34.45 34.87 35.10 35.21 0.9068 0.9206 0.9247 0.9254 0.9252 0.9249
Langevin [29] 32.42 33.08 33.71 34.01 34.10 34.17 0.8607 0.8772 0.8866 0.8918 0.8943 0.8958
DDRM [33] 29.17 30.51 31.41 31.94 32.23 32.38 0.8410 0.8704 0.8877 0.8972 0.9021 0.9046

LPIPS↓ DISTS↓
Accel Model P =1 P =2 P =4 P =8 P =16 P =32 P =1 P =2 P =4 P =8 P =16 P =32

R = 2

E2E-VarNet [8] 0.0171 - - - - - 0.0564 - - - - -
UNet 0.0122 - - - - - 0.0504 - - - - -
Ours w/o GR, w/o DC 0.0289 0.0267 0.0293 0.0329 0.0353 0.0368 0.0859 0.0787 0.0821 0.0878 0.0918 0.0948
Ours w/o GR 0.0105 0.0099 0.0106 0.0113 0.0119 0.0121 0.0386 0.0375 0.0418 0.0453 0.0474 0.0485
Ours w/o DC 0.0296 0.0267 0.0286 0.0313 0.0333 0.0346 0.0861 0.0799 0.0819 0.0866 0.0907 0.0929
Ours 0.0095 0.0093 0.0099 0.0105 0.0108 0.0110 0.0355 0.0369 0.0410 0.0444 0.0466 0.0475
DDRM [33] 0.0401 0.0304 0.0288 0.0295 0.0304 0.0310 0.1014 0.0847 0.0791 0.0790 0.0801 0.0811

R = 4

E2E-VarNet [8] 0.0344 - - - - - 0.0908 - - - - -
UNet 0.0323 - - - - - 0.0892 - - - - -
Ours w/o GR, w/o DC 0.0465 0.0457 0.0503 0.0556 0.0588 0.0610 0.1055 0.1031 0.1086 0.1158 0.1210 0.1249
Ours w/o GR 0.0261 0.0260 0.0298 0.0332 0.0354 0.0366 0.0652 0.0683 0.0773 0.0853 0.0906 0.0931
Ours w/o DC 0.0467 0.0438 0.0463 0.0497 0.0521 0.0539 0.1096 0.1062 0.1101 0.1155 0.1191 0.1219
Ours 0.0227 0.0216 0.0244 0.0275 0.0296 0.0310 0.0583 0.0619 0.0735 0.0817 0.0878 0.0891
Langevin [29] 0.0545 0.0394 0.0336 0.0320 0.0317 0.0316 0.1116 0.0921 0.0828 0.0793 0.0781 0.0777
DDRM [33] 0.0745 0.0615 0.0609 0.0640 0.0672 0.0692 0.1439 0.1246 0.1193 0.1197 0.1219 0.1242

R = 6

E2E-VarNet [8] 0.0466 - - - - - 0.1070 - - - - -
UNet 0.0472 - - - - - 0.1078 - - - - -
Ours w/o GR, w/o DC 0.0608 0.0552 0.0586 0.0642 0.0685 0.0713 0.1147 0.1051 0.1093 0.1183 0.1261 0.1310
Ours w/o GR 0.0375 0.0317 0.0342 0.0387 0.0424 0.0444 0.0785 0.0745 0.0832 0.0934 0.1003 0.1044
Ours w/o DC 0.0641 0.0543 0.0546 0.0586 0.0623 0.0649 0.1274 0.1155 0.1140 0.1172 0.1218 0.1255
Ours 0.0344 0.0289 0.0314 0.0358 0.0392 0.0413 0.0731 0.0713 0.0803 0.0908 0.0976 0.1017
DDRM [33] 0.0902 0.0776 0.0788 0.0842 0.0891 0.0923 0.1514 0.1332 0.1290 0.1313 0.1356 0.1390

R = 8

E2E-VarNet [8] 0.0602 - - - - - 0.1227 - - - - -
UNet 0.0579 - - - - - 0.1175 - - - - -
Ours w/o GR, w/o DC 0.0633 0.0586 0.0632 0.0697 0.0748 0.0782 0.1195 0.1111 0.1163 0.1255 0.1337 0.1397
Ours w/o GR 0.0442 0.0408 0.0454 0.0510 0.0554 0.0579 0.0873 0.0859 0.0952 0.1058 0.1130 0.1171
Ours w/o DC 0.0645 0.0566 0.0590 0.0644 0.0689 0.0721 0.1264 0.1158 0.1189 0.1248 0.1308 0.1359
Ours 0.0421 0.0354 0.0389 0.0445 0.0488 0.0517 0.0824 0.0807 0.0910 0.1022 0.1097 0.1137
Langevin [29] 0.0759 0.0624 0.0577 0.0572 0.0582 0.0586 0.1282 0.1160 0.1120 0.1120 0.1127 0.1135
DDRM [33] 0.1070 0.0929 0.0943 0.1013 0.1079 0.1123 0.1598 0.1421 0.1392 0.1432 0.1485 0.1521
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C Additional reconstruction plots

Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure C.1: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.
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Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure C.2: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.
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Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure C.3: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.
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Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure C.4: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.
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Truth E2E-VarNet [8] cGAN (ours) Langevin [29] DDRM [33]

Figure C.5: Example R = 4 MRI reconstructions with P = 4. Rows 1 and 4: P -sample average x̂(P ).
Rows 2 and 5: pixel-wise absolute error |x̂(P ) − x|. Rows 3 and 6: pixel-wise SD ( 1

P

∑P
i=1(x̂i −

x̂(P ))
2)1/2. Rows 4 through 6 show a zoomed region.
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