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ABSTRACT

Neural Ordinary Differential Equations (ODEs) have been successful in vari-
ous applications due to their continuous nature and parameter-sharing efficiency.
However, these unique characteristics also introduce challenges in training, par-
ticularly with respect to gradient computation accuracy and convergence analysis.
In this paper, we address these challenges by investigating the impact of activation
functions. We demonstrate that the properties of activation functions—specifically
smoothness and nonlinearity—are critical to the training dynamics. Smooth acti-
vation functions guarantee globally unique solutions for both forward and back-
ward ODEs, while sufficient nonlinearity is essential for maintaining the spectral
properties of the Neural Tangent Kernel (NTK) during training. Together, these
properties enable us to establish the global convergence of Neural ODEs under
gradient descent in overparameterized regimes. Our theoretical findings are val-
idated by numerical experiments, which not only support our analysis but also
provide practical guidelines for scaling Neural ODEs, potentially leading to faster
training and improved performance in real-world applications.

1 INTRODUCTION

In recent years, deep neural networks have achieved remarkable success across a wide range of appli-
cations. Among these advancements, Neural Ordinary Differential Equations (ODEs) (Chen et al.,
2018b) stand out due to their continuous nature and parameter efficiency through shared parame-
ters. Unlike conventional neural networks with discrete layers, Neural ODEs model the evolution
of hidden states as a continuous-time differential equation, allowing them to better capture dynamic
systems. This parameter-sharing mechanism ensures consistent dynamics throughout the continu-
ous transformation and reduces the number of parameters, improving both memory efficiency and
computational complexity. These unique properties make Neural ODEs particularly effective not
only for traditional machine learning tasks like image classification (Chen et al., 2018b) and natural
language processing (Rubanova et al., 2019), but also for more complex tasks involving continu-
ous processes, such as time series analysis (Kidger et al., 2020), reinforcement learning (Du et al.,
2020), and diffusion models (Song et al., 2020). However, while these features offer flexibility and
efficiency, they also introduce significant challenges during training, particularly in gradient compu-
tation and convergence analysis.

One of the key challenges in training Neural ODEs is accurately computing gradients. Unlike tradi-
tional networks, where backpropagation can be computed through a discrete chain of layers, Neural
ODEs require solving forward and backward ODEs using numerical solvers. These solvers intro-
duce numerical errors, which can lead to inaccurate gradients and slow convergence or even sub-
optimal model performance (Rodriguez et al., 2022). Moreover, ensuring the well-posedness of
ODE solutions during training is nontrivial. According to the Picard–Lindelöf Theorem, solutions
may not always exist or may only exist locally, which can cause training divergence or significant
numerical errors (Gholami et al., 2019; Ott et al., 2020; Sander et al., 2022). Even with advanced
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solvers (Zhuang et al., 2020a;b; Matsubara et al., 2021; Ko et al., 2023), it remains an open problem
whether simple first-order methods, such as stochastic gradient descent (SGD), can reliably train
Neural ODEs to convergence. While discretizing Neural ODEs as finite-depth networks offers a po-
tential solution, it results in a deeper computation graph (Zhuang et al., 2020a;b), raising questions
about whether the gradients computed in this manner truly match those of the continuous model.

Another essential challenge lies in analyzing the training dynamics of Neural ODEs. The optimiza-
tion problem in training neural networks is inherently nonconvex, making theoretical analysis diffi-
cult. Recent work by Jacot et al. (2018) has shown that the training dynamics of overparameterized
networks can be understood through the lens of the Neural Tangent Kernel (NTK), which converges
to a deterministic limit as network width increases. This convergence has enabled researchers to
establish global convergence guarantees for gradient-based methods in overparameterized regimes,
provided the NTK remains strictly positive definite (SPD) (Du et al., 2019a; Allen-Zhu et al., 2019;
Nguyen, 2021; Gao et al., 2021). The analysis of the NTK’s strict positive definiteness began with
Daniely et al. (2016), who introduced the concept of dual activation for two-layer networks, later
extended to deeper, finite networks (Jacot et al., 2018; Du et al., 2019a). However, these results are
limited to networks with discrete layers, raising the question of whether the same properties hold for
continuous models like Neural ODEs.

In this paper, we address these challenges by exploring the impact of activation functions on training
Neural ODEs. We show that activation function properties—specifically, smoothness and nonlinear-
ity—play critical roles in determining the well-posedness of ODE solutions and the spectral prop-
erties of the NTK. Through our analysis, we demonstrate that smooth activation functions lead to
globally unique solutions for both forward and backward ODEs, ensuring the stability of the training
process. Additionally, we extend existing results on the NTK from discrete-layered neural networks
to continuous models, demonstrating that the NTK for Neural ODEs is well-defined. Importantly,
we find that a higher degree of nonlinearity in the activation function not only helps maintain the
SPD property of the limiting NTK, but also practically speeds up Neural ODE convergence.

1. We investigate the significance of the smoothness of activation functions for the well-posedness
of forward and backward ODEs in Neural ODEs. Using random matrix theory, we demonstrate
the existence of globally unique solutions. Additionally, we show that no additional regularity is
needed if forward and backward ODEs are combined in a weakly coupled ODE system.

2. We propose a new mathematical framework for studying continuous models from the approxi-
mation theory perspective. By using a sequence of finite-depth neural networks to approximate
Neural ODEs, we show that key properties like activation and gradient propagation are preserved
as depth approaches infinity. This allows us to apply the Moore-Osgood theorem from functional
analysis to prove that the NTK of Neural ODEs is well-defined.

3. Unfortunately, the SPD property of the NTK may not hold at infinite depth, even we can show
every finite-depth approximation satisfies it. To address this, we conduct a fine-grained analysis
and derive an integral form for the limiting NTK of Neural ODEs. This form reveals that the NTK
remains SPD if the activation function is non-polynomial. Leveraging this integral representation
provides valuable insights into continuous models and may inspire further research.

4. We conduct a series of numerical experiments to support our theoretical findings. Beyond validat-
ing our analysis, these experiments also provide practical guidelines for training Neural ODEs.
We show that activation function smoothness and nonlinearity accelerate convergence and im-
prove performance (see Figure 7-8). Conversely, improper ODE scaling leads to damping from
accumulated numerical errors (see Figure3), while adaptive solvers struggle with efficiency in
large-scale Neural ODEs (see Figure 14), causing instability and high computational overhead.

2 PRELIMINARIES

2.1 NEURAL ODES

In this paper, we consider a simple Neural ODE f(x;θ) 1 defined as follows

f(x;θ) =
σv√
n
vTϕ(hT ), (1)

1The general form of Neural ODEs is discussed in Appendix I.
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where ht ∈ Rn is the hidden state that satisfies the following ordinary differential equation

h0 = σuUx/
√
d, and ḣt = σwWϕ(ht)/

√
n, ∀t ∈ [0, T ], (2)

where ϕ is the activation function2, x ∈ Rd is input, U ∈ Rn×d, W ∈ Rn×n, and v ∈ Rn are
learnable parameters. These parameters, denoted by θ := vec(U ,W ,v), are randomly initialized
(Glorot & Bengio, 2010; He et al., 2015) from standard Gaussian distribution:

Uij , Wij , vi
i.i.d.∼ N (0, 1), (3)

with variance hyperparameters σu, σw, σv > 0. Due to the continuous nature of Neural ODEs,
computing gradients through standard backpropagation is not feasible. Instead, we use the adjoint
method (Chen et al., 2018b) to compute gradients by solving the backward ODE:

λT = σvdiag(ϕ′(ht))v/
√
n, and λ̇t = −σwdiag(ϕ′(ht))W

Tλt/
√
n, (4)

where λt is the adjoint state. When both forward and backward ODEs are well-posed, we can
compute the gradients of fθ with respect to (w.r.t.) the parameters θ as follows

∇vf(x;θ) =
σv√
n
ϕ(ht), ∇W f(x;θ) =

∫ T

0

σw√
n
λtϕ(ht)

⊤dt, ∇Uf(x;θ) =
σu√
d
λ0x

⊤. (5)

Further details on these derivations are provided in Appendix B. In Section 3, we demonstrate that
if ϕ is Lipschitz continuous, the forward and backward ODEs have globally unique solutions. Ad-
ditionally, in Section 5, we prove this well-posedness holds throughout the entire training process.

2.2 NEURAL TANGENT KERNEL

Given a training dataset {(xi, yi)}Ni=1, the objective is to learn a parameter θ that minimizes the
empirical loss:

L(θ) =

N∑
i=1

1

2
(f(xi;θ)− yi)

2 =
1

2
∥u− y∥2, (6)

where u = (u1, · · · , uN ) is the prediction vector with ui = f(xi;θ), and y = (y1, · · · , yN ) is the
output vector. Gradient descent with a learning rate η > 0 is used to minimize the loss:

θk+1 = θk − η∇θL(θ
k). (7)

Following (Du et al., 2019a) and (Jacot et al., 2018), under some required conditions, the evolution
of the prediction vector uk can be approximated as follows:

uk+1 − y ≈
(
I − ηHk

)
(uk − y), (8)

where Hk ∈ RN×N is a Gram matrix defined through the NTK (Jacot et al., 2018):
K(x, x̄; θ) := ⟨∇θf(x;θ),∇θf(x̄;θ)⟩ . (9)

The training dynamics Eq. (8) is governed by the spectral property of the NTK Gram matrix Hk.
If there exists a strictly positive constant λ0 > 0 s.t. λmin(H

k) ≥ λ0 for all k, then the residual
uk−y decreases to zero exponentially, provided the learning rate η > 0 is sufficiently small (Allen-
Zhu et al., 2019; Nguyen, 2021). As the parameters θk are updated during training, the NTK Kθ

changes over time, making its spectral analysis challenging. Fortunately, previous research (Yang,
2020; Jacot et al., 2018) shows that the time-varying Kθ converges to a deterministic limiting NTK
K∞ as the network width n → ∞. By leveraging this result and the concept of dual activation
(Daniely et al., 2016), we can study the spectral properties of Kθ during training through K∞ using
perturbation theory.

However, these prior results apply only to finite-depth neural networks, while Neural ODEs are
infinite-depth networks due to their continuous nature. Moreover, as prior analyses are based on
induction techniques, there is no guarantee that these essential properties will also hold as depth
tends to infinity. In Section 4.1 and Section 4.2, we introduce a new framework to study Neural
ODEs as infinite-depth networks. We demonstrate that the smoothness of the ϕ is crucial to ensure
these essential properties hold in Neural ODEs. Additionally, to study the spectral properties of the
limiting NTK K∞, we provide a fine-grained analysis by expressing the limiting NTK of Neural
ODEs in an integral form, which we conclude that the nonlinearity of activation plays a critical role
in ensuring the strict positive definiteness of K∞.

2To simplify the analysis, we assume the activation threshold value for ϕ is at 0 and further ϕ(0) = 0.
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3 WELL-POSEDNESS OF NEURAL ODES AND ITS GRADIENTS

As continuous models, Neural ODEs pose a significant challenge in accurately computing gradi-
ents. In this section, we explore the challenges associated with two methods for computing gra-
dients: optimize-then-discretize and discretize-then-optimize (Gholami et al., 2019; Finlay et al.,
2020; Onken et al., 2021). Through our exploration, we emphasize the essential role of smoothness
in activation functions to guarantee the well-posedness of Neural ODEs and their gradients.

3.1 OPTIMIZE-THEN-DISCRETIZE METHOD

As discussed in Section 2, Neural ODEs require numerical ODE solvers to solve the forward and
backward ODEs Eq. (2) and Eq. (4) to compute the gradients, employing a method known as the
optimize-then-discretize method. When solving ODEs, ensuring their well-posedness is of primary
concern. In Proposition 1, we demonstrate that if ϕ is Lipschitz continuous, the forward and back-
ward ODEs have globally unique solutions, thus ensuring the well-posedness. The detailed proofs
are provided in Appendix C.

Proposition 1. For any given T > 0, if the activation function ϕ is Lipschitz continuous with
Lipschitz constant L1, then the forward ODE Eq. (2) and the backward ODE Eq. (4) have unique
solutions ht and λt for all t ∈ [0, T ] and x ∈ Rd almost surely over random initialization Eq. (3).
In addition, λt(x) = ∂f(x;θ))/∂ht is the solution to the backward ODE.

Although Neural ODEs and their gradients are well-defined under these conditions, this does not
guarantee that gradients can be computed accurately by solving the ODEs numerically. One primary
issue is that the magnitudes of the hidden state ht and adjoint state λt can grow exponentially over
the time horizon T , leading to accumulated numerical errors. This issue is illustrated in Figure 3,
where long-time horizon leads to damping in the early stages of training. To mitigate this problem,
we suggest scaling the dynamics by setting σw = O (1/T ), which ensures that the magnitudes of
ht and λt remain mild and independent of T . This scaling stabilizes the norms, thereby allowing
numerical solvers to produce much more accurate gradient estimates.

Additionally, calculating gradients using Eq. (5) requires storing the values of ht and λt at every
time step t ∈ [0, T ], which can consume a significant amount of memory in practice. To address
this, Chen et al. (2018b) propose solving an augmented backward ODE (defined in Appendix 36
for our setup), which combines an additional gradient state with both the backward ODE and the
reversed forward ODE. This approach eliminates the need for storing intermediate states. However,
since the hidden state ht is no longer constant in the augmented ODE, additional regularization
conditions on the dynamics are typically required to ensure the stability of the solution. Fortunately,
we demonstrate that such regularization conditions are unnecessary for Neural ODEs because the
Lipschitz continuity of ϕ ensures that ht is well defined for all t ∈ [0, T ]. Therefore, the augmented
ODE approach can be used without the need for additional regularization. A detailed discussion of
this result can be found in Appendix C.

3.2 DISCRETIZE-THEN-OPTIMIZE METHOD

Alternatively, we can discretize the ODE using Euler’s method, treating the continuous ODE as a
finite-depth Residual Network (ResNet) fL(x;θ)3 with shared parameters across layers:

fL(x;θ) =
σv√
n
v⊤ϕ(hL(x)), (10a)

hℓ = hℓ−1 + κ · σw√
n
Wϕ(hℓ−1), ∀ℓ ∈ {1, 2, · · · , L} (10b)

h0 =
σu√
d
Ux, (10c)

where κ = T/L represents the time step. The gradient can then be estimated using backpropagation
through the finite depth ResNet fL(x;θ), referred to as the discretize-then-optimize approach.

3Here the superscript in fL
θ indicates it has L time steps, while actually fL

θ has totally L+ 2 layers.
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As a finite-depth ResNet, the gradients of fL(x;θ) are always well defined. However, it remains an
open question whether the gradients of the finite-depth approximation fL(x;θ) converge to the gra-
dients of the continuous Neural ODE f(x;θ) as the depthL→ ∞. In Proposition 2, we demonstrate
that the smoothness of ϕ ensures this convergence. Thus, in the limit of infinite depth (or infinites-
imally small time steps), both the optimize-then-discretize and discretize-then-optimize methods
yield the same gradients, provided that the activation function is sufficiently smooth. The detailed
proofs are provided in Appendix E.

Proposition 2. Given x ∈ Rd, if the activation function ϕ and its derivative ϕ′ are L1- and L2-
Lipschitz continuous, respectively, the following inequalities hold a.s. over random initialization:

∥∇θf
L(x)−∇θf(x)∥ ≤ CL−1, ∀ℓ ∈ {0, 1, · · · , L}, (11)

where C > 0 is a constant depending only on L1, L2, T , σv , σw, σu, and ∥x∥.

To further validate our theoretical findings, we conduct experiments that compare training efficiency
and gradient accuracy with and without the Lipschitz continuity of ϕ′. These experiment results, il-
lustrated in Figure 7, demonstrate the necessity of Lipschitz continuity for ensuring smooth gradient
computation and achieving faster convergence during training.

4 NNGP AND NTK FOR NEURAL ODES

Understanding how activation and gradient propagate through neural networks is crucial for analyz-
ing their training dynamics and generalization abilities, as emphasized in previous studies (Glorot
& Bengio, 2010; Poole et al., 2016; Schoenholz et al., 2017). The frameworks of Neural Network
Gaussian Processes (NNGP) (Lee et al., 2018) and Neural Tangent Kernels (NTK) (Jacot et al.,
2018), grounded in mean-field theory, provide powerful analytical tools to study these dynamics. In
this section, we establish theoretical results that demonstrate the well-defined nature of NNGP and
NTK for Neural ODEs and explore their properties with respect to information propagation.

4.1 NNGP: FORWARD PROPAGATION OF INPUTS

Previous work has shown that in the infinite-width limit, randomly initialized finite-depth neural net-
works converge to Gaussian processes with mean zero and recursively defined covariance functions,
known as NNGP kernels (Neal, 2012; Lee et al., 2018; Daniely et al., 2016; Yang, 2019; Gao et al.,
2023; Gao, 2024). When approximating Neural ODEs using a sequence of finite-depth ResNets fLθ ,
we can establish the NNGP for fLθ . Detailed proofs are provided in Appendix D.
Proposition 3. Suppose ϕ is L1-Lipschitz continuous. Then, as width n → ∞, the finite-depth
neural network fLθ defined in Eq. (10) converges in distribution to a centered Gaussian Process with
a covariance function or NNGP kernel ΣL+1 := CL+1,L+1 defined recursively:

C0,k(x, x̄) = δ0,k
σ2
u

d
xT x̄, ∀k ∈ {0, 1, · · · , L+ 1} (12)

Cℓ,k(x, x̄) = σ2
wEϕ(uℓ−1)ϕ(ūk−1), ∀ℓ, k ∈ {1, 2, · · · , L+ 1} (13)

where κ = T/L and (uℓ, ūk) are centered Gaussian random variables with covariance

E(uℓūk) = C0,0(x, x̄) + κ2
ℓ,k∑

i,j=1

Ci,j(x, x̄), ∀ℓ, k ∈ {0, 1, · · · , L}. (14)

Although Proposition 3 shows that a sequence of Gaussian processes (GPs) can be derived for the
sequence of fLθ , this does not necessarily mean that the Neural ODE fθ will also converge to a Gaus-
sian Process as L → ∞. The challenge lies in the difference between two convergence patterns:
infinite-width-then-depth and infinite-depth-then-width. These often lead to different limits. For
example, consider the simple double sequence an,ℓ := n/(ℓ + n). This double sequence demon-
strates how taking different convergence paths—first in width, then in depth, or vice versa—can
yield different results. Specifically, we observe that

lim
ℓ→∞

( lim
n→∞

an,ℓ) = 1, while lim
n→∞

( lim
ℓ→∞

an,ℓ) = 0.
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This phenomenon has been noted in several recent studies (Hayou & Yang, 2023; Yang et al., 2024;
Gao et al., 2023; Gao, 2024) across various neural network architectures. Specifically, for commonly
used neural networks, the two convergence patterns often do not coincide, leading to different limits
for infinite-depth networks. Hence, the NNGP correspondence does not generally hold for infinite-
depth neural networks. For Neural ODEs, the infinite-depth-then-width convergence pattern is more
relevant, as Neural ODEs are equivalent to infinite-depth neural networks from the standpoint of
numerical discretization. However, the continuous nature and parameter sharing in Neural ODEs
present unique challenges that make previous mathematical tools inapplicable directly.

Fortunately, if the activation function ϕ is sufficiently smooth, we can show that these two lim-
its commute, and both convergence patterns share the same limit. One crucial intermediate result
involves proving that the double sequence ⟨ϕ(hL), ϕ(h̄L)⟩/n converges in depth L uniformly in
width n (almost surely). This uniform convergence ensures that as depth increases, the behavior of
the system remains stable regardless of width, which is crucial for showing that the limits commute
and establishing the well-posedness of the NNGP for Neural ODEs. The proof relies on Euler’s
convergence theorem and is provided in Appendix D.
Lemma 1. Let ϕ be L1-Lipschitz continuous. For any x, x̄ ∈ Sd−1, the double sequence
⟨ϕ(hL), ϕ(h̄L)⟩/n satisfies∣∣⟨ϕ(hL), ϕ(h̄L)⟩ − ⟨ϕ(hT ), ϕ(h̄T )⟩

∣∣ /n ≤ CL−1, (15)

where C > 0 is a constant depending solely on L1, σw, σu, and T .

By combining Lemma 1 and Proposition 3 with Moore-Osgood theorem, as stated in Theorem 8 of
Appendix A, we can establish the NNGP correspondence for the Neural ODE fθ.
Theorem 1. Suppose L1-Lipschitz continuous ϕ. As width n → ∞, the Neural ODE fθ defined
in Eq. (1) converges in distribution to a centered Gaussian process with covariance function Σ∗

defined as the limit of ΣL given in Proposition 3.
Remark 1. Thanks to the uniform convergence result established in Lemma 1, the covariance func-
tion ΣL converges to Σ∗ with a rate of |ΣL(x, x̄) − Σ∗(x, x̄)| ∼ CL−1. This polynomial rate of
convergence preserves the geometry of the input space (Yang & Schoenholz, 2017). This stands in
contrast to classical feedforward networks, where the input space geometry often collapses unless
the variance hyperparameters are set precisely on the edge of chaos (Poole et al., 2016).

4.2 NTK: BACKPROPAGATION OF GRADIENTS

While NNGP governs the forward propagation of inputs, the NTK (Jacot et al., 2018) governs the
backward propagation of gradients. Understanding both is key to comprehending the full dynamics
of Neural ODEs during training. As defined for Neural ODEs in Eq. (9), we can also define the NTK
KL

θ for the finite-depth network fLθ in Eq. (10) as follows:

KL(x, x̄;θ) :=
〈
∇θf

L(x;θ),∇θf
L(x̄;θ)

〉
. (16)

In the same infinite-width limit, as highlighted in previous works (Jacot et al., 2018; Yang, 2020),
the NTK KL

θ converges to a deterministic kernel KL
∞ that remains constant throughout training.

Notably, this deterministic limiting NTK KL
∞ (and K∞ defined in Theorem 2) governs the training

dynamics of Neural ODEs under gradient descent.

Below are the results for our setup, with proofs provided in Appendix E.
Proposition 4. Suppose ϕ is L1-Lipschitz continuous. Then, as the network width n→ ∞, the NTK
KL

θ converges almost surely to a deterministic limiting kernel: ∀L ≥ 0

KL
∞(x, x̄) = CL+1,L+1(x, x̄) + κ2

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄), (17)

where Cℓ,k are defined in Proposition 3 and Dℓ,k are defined recursively:

DL,k(x, x̄) = σ2
wEϕ′(uL)ϕ′(ūL), ∀k ∈ {0, 1, · · · , L}, (18)

Dℓ,k(x, x̄) = κ2
ℓ+1,k+1∑
i,j=L

Di,j(x, x̄)E[ϕ′(ui)ϕ′(ūj)] ∀ℓ, k ∈ {1, 2, · · · , L− 1}. (19)
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The same problem of different convergence patterns converging to different limits, observed in the
NNGP kernel Σ∗, also arises when computing the NTK of Neural ODEs. While the Lipschitz conti-
nuity of ϕ enables well-posed forward propagation of inputs in Neural ODEs, additional regularity
is required for backward propagation of gradients. Specifically, Lipschitz continuity of ϕ′ is suffi-
cient to ensure uniform convergence in the NTK. With ϕ and ϕ′ both being Lipschitz continuous,
we can obtain a uniform convergence result similar to Lemma 1.
Lemma 2. If ϕ is L1-Lipschitz continuous and ϕ′ is L2-Lipschitz continuous, then the following
inequality holds almost surely:∣∣KL

θ (x, x̄)−Kθ(x, x̄)
∣∣ ≤ CL−1, ∀x, x̄ ∈ Sd−1, (20)

where C > 0 is a constant dependent only on the constants σv , σw, σu, L1, L2, and T .

Combining Lemma 2 with Proposition 4 and Moore-Osgood Theorem 8, we can interchange the
limits L and n in the double sequence KL

θ (x, x̄) and show that the NTK Kθ of Neural ODE con-
verges to a deterministic limiting kernel.
Theorem 2. Suppose ϕ is L1-Lipschitz continuous and ϕ′ is L2-Lipschitz continuous. As the net-
work width n→ ∞, the NTK Kθ converges almost surely to a deterministic limiting kernel:

Kθ → K∞, as n→ ∞, (21)

where K∞ is the limit of the NTK KL
∞ defined in Proposition 4, as depth L→ ∞.

Remark 2. Using the uniform convergence from Lemma 2, we observe that ∥KL
∞(x, x̄) −

K∞(x, x̄)∥ ∼ CL−1. This polynomial convergence not only guarantees that gradients neither
explode nor vanish as L → ∞ (Yang & Schoenholz, 2017; Schoenholz et al., 2017), but also im-
plies that the limiting NTK, K∞, has an integral form, as suggested by Eq. (17) and provided in
Appendix E.5. This integral form provides a key insight for studying the spectral properties of the
NTK K∞ directly, without relying on the inductive techniques used in previous works.

5 GLOBAL CONVERGENCE ANALYSIS FOR NEURAL ODES

As discussed in Eq. (8), the dynamics of the residual uk − y under gradient descent can be char-
acterized using the NTK Kθ. In the infinite-width limit, as shown in Theorem 2, this time-varying
kernel Kθ converges to a deterministic limiting kernel K∞, provided the activation function ϕ is
sufficiently smooth. Therefore, in this section, we establish the global convergence of Neural ODEs
under gradient descent by examining the spectral property of the NTK Kθ and its limit K∞.

The limiting NTKK∞ is a deterministic kernel function, and its spectral properties are key to under-
standing global convergence. Previous studies (Jacot et al., 2018; Nguyen, 2021) have highlighted
that the strictly positive definiteness (SPD) of the NNGP kernel Σ∗ is sufficient to guarantee the
SPD property of K∞. Since Σ∗ is a component of K∞ defined in Eq. (9), demonstrating the SPD
property of Σ∗ is critical for proving convergence.

However, prior analyses have relied on inductive proofs for finite-depth neural networks, which
are not directly applicable to infinite-depth and continuous networks like Neural ODEs. That is
because, as depth increases, information propagation can become trivial (i.e., gradients vanishing or
exploding), potentially diminishing the SPD property at the infinite-depth limit (Poole et al., 2016;
Schoenholz et al., 2017; Hayou & Yang, 2023). Fortunately, results in Section 4 demonstrated stable
information propagation in both forward and backward directions, regardless of the choice of σv ,
σw, and σu. This allows us to retain the SPD property of the NTK of Neural ODEs as the depth L
approaches infinity.

Specifically, recall from Theorem 1 that we can express Σ∗ as:
Σ∗(x, x̄) = E[ϕ(u)ϕ(ū)],

where (u, ū) are centered Gaussian random variables with covariance S∗(x, x̄) defined by

S∗(x, x̄) = lim
L→∞

C0,0(x, x̄) + κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄)

with κ = T/L. This expression S∗ can be interpreted as a double integral form whose explicit form
is included in Appendix E.5. By leveraging the results from Section 4, we can derive key properties
of S∗ in Lemma 3. These properties serve as a fundamental basis for analyzing the SPD properties
of the NNGP and NTK.
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Lemma 3. For any x, x̄ ∈ Sd−1, we have

1. S∗(x, x̄) is well defined, and 0 < S∗(x,x) = S∗(x̄, x̄) <∞,

2. S∗(x,x) ≥ S∗(x, x̄) and the equality holds if and only if x = x̄.

Lemma 3 implies S∗(x,x) = Θ(1) for all x ∈ Sd−1. This allows us to study the SPD property of
the NNGP kernel Σ∗ using its Hermitian expansion from the perspective of dual activation (Daniely
et al., 2016). Detailed analysis and proofs are provided in Appendix F. Additionally, S∗(x,x) >
S∗(x, x̄) for all x ̸= x̄ implies that the pathology known as the loss of input dependence, observed
in other large-depth networks such as feedforward (Poole et al., 2016), ResNet (Hayou & Yang,
2023), and RNN (Gao et al., 2023), does not occur here. This stability results from a combination of
several factors, including skip connections, scaling κ, and smoothness and nonlinearity of ϕ. With
stable information propagation in Neural ODEs, we can use the nonlinearity of ϕ to show that the
NNGP kernel Σ∗ and the limiting NTK K∞ are SPD.
Proposition 5. If ϕ is Lipschitz, nonlinear but non-polynomial, then the NNGP kernel Σ∗ is SPD.
Corollary 1. Suppose ϕ and ϕ′ are Lipschitz continuous. If ϕ is nonlinear but non-polynomial, then
the limiting NTK K∞ is SPD.

With these results, we can establish the global convergence of Neural ODEs under gradient descent
with appropriate assumptions about the activation function ϕ and the training data.
Assumption 1. Let {xi, yi}Ni=1 be a training set. Assume

1. Training set: xi ∈ Sd−1 and xi ̸= xj for all i ̸= j; |yi| = O (1),

2. Smoothness: ϕ and ϕ′ are L1- and L2-Lipschitz continuous, respectively,

3. Nonlinearity: ϕ is nonlinear and non-polynomial.

Under Assumption 1, we can employ inductive proofs to show that in the overparameterized regime,
the parameters θk remain close to their initialization θ0. This proximity ensures that the Neural
ODE and its gradients are well-posed not only at initialization, as proved in Proposition 1, but also
throughout the entire training. This consistency in parameter updates enables us to prove that the
NTK Kθ retains SPD during training, ensuring that the training errors of Neural ODEs consistently
decrease to zero at a linear rate. Detailed analysis and proofs are provided in Appendix G.
Theorem 3. Suppose Assumption 1 holds and the learning rate η is chosen such that 0 < η ≤
1/∥X∥2. Then for any δ > 0, there exists a natural number nδ such that for all widths n ≥ nδ the
following results hold with probability at least 1− δ over random initialization Eq. (3):

1. The parameters θk stay in a neighborhood of θ0, i.e.,

∥θk − θ0∥ ≤ C∥X∥
√
L(θ0)/λ0. (22)

2. The loss function L(θk) consistently decreases to zero at an exponential rate, i.e.,

L(θk) ≤
(
1− ηλ0

16

)k

L(θ0), (23)

where λ0 := λmin(K∞) > 0, and the constant C > 0 only depends on L1, L2, σv , σw, σu, and T .

6 EXPERIMENTS

In this section, we validate our theoretical findings through several experiments on Neural ODEs. We
focus on the approximation errors between the continuous Neural ODE and its finite-depth ResNet
approximations, the NTK behavior, and the empirical convergence properties of Neural ODEs under
gradient descent. Further experimental details, including additional experiments on smooth vs. non-
smooth activations and scaling for long-horizon stability, can be found in the appendix.

Gradient and Output Approximation by Finite-Depth ResNet. As established in Section 3, Neu-
ral ODE outputs and gradients can be approximated by a finite-depth ResNet, with an error rate that
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(a) (b) (c) (d)

Figure 1: Analysis of Neural ODE output, gradient differences, and NTK convergence. (a) Output
differences between Neural ODE and finite-depth ResNet across different widths using Softplus
activation. (b) Gradient differences for Neural ODE and ResNet models under Softplus activation.
(c) NTK convergence behavior across different widths, showing the NTK approximation converging
to the limiting NTK as width increases. (d) NTK convergence behavior on a log-log scale, further
emphasizing the rapid convergence at larger widths.

decays as 1/L, where L is the depth of the ResNet. We empirically verify this by measuring the
output and gradient differences between the continuous Neural ODE and its finite-depth approxi-
mation at initialization. Both the Neural ODE and ResNet were initialized with the same random
weights and evaluated on the MNIST dataset, with ResNet depths L ranging from 10 to 1,000. We
used Softplus activation to ensure smoothness. Figure 1(a)-(b) demonstrates that the approximation
error for both outputs and gradients decreases as 1/L, with convergence being uniform across dif-
ferent widths, consistent with our theoretical results. These findings confirm that smooth activation
functions lead to well-posed ODE solutions, with accurate approximations by finite-depth networks.

NTK Approximation Error from Finite-Depth ResNet. As discussed in Section 4, the NTK of
Neural ODEs can be approximated by the NTK of a finite-depth ResNet, with the approximation
error decaying as 1/L. This follows from the fact that the NTK is the inner product of gradients,
and as shown in Proposition 2 and Figure 1(a)-(b), the gradient difference between Neural ODEs
and finite-depth ResNets also decays as 1/L. By applying the triangle inequality to the gradient
differences, it is straightforward to conclude that the NTK approximation error inherits the same
1/L decay rate. Given this reasoning and the page limit, we skip this experiment, but refer readers
to Section 4 and Theorem 3 for a detailed theoretical analysis.

NTK Convergence to Deterministic Limiting NTK. In Theorem 2, we prove that as the width
of Neural ODEs tends to infinity, the NTK converges to a deterministic limiting NTK. While no
theoretical convergence rate is provided, we conducted experiments to empirically investigate this
convergence. We evaluated Neural ODE models with increasing widths, ranging from 10 to 1, 000,
and computed the NTK for each width. These NTKs were then compared to an approximate limiting
NTK derived from random matrix theory. As shown in Figure 1(c)-(d), the NTK converges to the
limiting NTK as the width increases. The empirical convergence rate falls between 1/m and 1/

√
m,

with a tendency closer to 1/
√
m when plotted on a logarithmic scale. This indicates that Neural

ODEs exhibit rapid convergence to their limiting NTK, validating the theoretical analysis.

NTK’s SPD and Global Convergence. In Proposition 5 and Corollary 1, we established that the
NTK of Neural ODEs is SPD when the activation function is nonlinear but not polynomial, which
guarantees global convergence under gradient descent. Specifically, the NTK’s smallest eigenvalue
remains positive, ensuring the well-conditioning of the model during training. Additionally, we
showed that the model parameters remain close to their initial values during training, further sup-
porting the global convergence claim.

To empirically verify these results, we conducted experiments with Neural ODE models of varying
widths—500, 1000, 2000, and 4000—while monitoring both the NTK’s smallest eigenvalue and the
distance of the model parameters from their initial values over 100 epochs. Softplus was used as
the activation function to ensure smoothness and non-polynomial nonlinearity. At each epoch, we
computed the smallest eigenvalue of the NTK and the Euclidean distance between the current and
initial parameter values.

The Smallest Eigenvalue of NTK: As shown in Figure 2(a), we observed that as the width of the
Neural ODE increases, the smallest eigenvalue of the NTK becomes larger. For widths greater than
the number of training samples (i.e., which is 1000 in our experiments), the smallest eigenvalue
remains strictly positive throughout the training process, confirming the NTK’s strict positive defi-
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niteness and ensuring that the model is well-conditioned for gradient descent. However, for widths
smaller than the number of training samples, the smallest eigenvalue becomes negative, indicating
poor conditioning at smaller widths.

Parameter Distance: The results also confirm that the parameter distance remains stable as train-
ing progresses, staying within a manageable bound of O (1), as shown in Figure 2(b). As the
width increases, the parameter distance grows, but the growth remains stable and does not devi-
ate significantly. This supports the theoretical result that the parameters do not stray far from their
initialization, ensuring stable training and global convergence.

Train and Test Loss: Finally, as depicted in Figure 2(c)-(d), we observed that larger widths lead to
faster convergence of the gradient descent. Models with larger widths (2000 and 4000) exhibited
lower test losses and faster convergence rates compared to smaller widths (500 and 1000). This
behavior demonstrates that larger widths allow the model to generalize better and converge more
efficiently during training.

(a) (b) (c) (d)

Figure 2: Empirical results of Neural ODEs with varying widths: (a) NTK smallest eigenvalue grows
and stabilizes as the width increases, with negative values for widths below the training size. (b)
Parameter distances stay stable and bounded within O (1). (c) Linear-scale train and test losses show
faster convergence for larger widths. (d) Log-scale losses further confirm improved generalization
for wider models.

Additional Experimental Results. In the appendix, we present supplementary experiments that
validate and extend our findings. Without proper scaling (e.g., σw ∼ 1/T ), Neural ODEs exhibit
early-stage damping during training over long-time horizons (see Figure 3). Smooth activations
like Softplus converge faster than non-smooth ones like ReLU, likely due to more accurate gradient
computation (see Figure 7). Additionally, while non-polynomial nonlinearity is sufficient for an
SPD NTK, our experiments show that quadratic activations also yield SPD NTKs, though with
slower convergence (see Figure 8). These results highlight the importance of activation functions
and model design for Neural ODE performance. We also include convergence analysis on diverse
datasets, such as CIFAR-10, AG News, and Daily Climate, as well as additional activations like
GELU, further demonstrating the generalizability of our findings.

7 CONCLUSIONS
In this paper, we examined the crucial role of activation functions in the training dynamics of Neu-
ral ODEs. Our findings demonstrate that the choice of activation function significantly impacts
the dynamics, stability, and global convergence of the Neural ODE models under gradient descent.
Specifically, we found that using smooth activations like Softplus ensures that the forward and back-
ward dynamics in Neural ODEs are well-posed, allowing for accurate approximation by finite-depth
ResNets. As a result, the NTK of Neural ODEs converges to a deterministic limiting NTK that gov-
erns the model’s training dynamics. Additionally, we demonstrated that when using nonlinear but
non-polynomial activations, the NTK remains SPD, ensuring well-conditioned training and global
convergence. Through extensive experiments, we verified that suitable activation functions, Neural
ODEs exhibit stable parameter behavior, rapid NTK convergence, and faster optimization, particu-
larly at larger widths. These findings highlight the importance of selecting activation functions with
appropriate smoothness and nonlinearity to ensure the robustness and scalability of Neural ODEs,
establishing them as a powerful approach for continuous-time deep learning.

10



Published as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Thirty-third Conference on Neural
Information Processing Systems, 2019.

Zhi-Dong Bai and Yong-Qua Yin. Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix. In Advances In Statistics. World Scientific, 2008.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 2018b.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. Advances in neural information
processing systems, 2016.

Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for
semi-markov decision processes with neural odes. Advances in Neural Information Processing
Systems, 33:19805–19816, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019a.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019b.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Tianxiang Gao. Mastering infinite depths: Optimization and generalization in deeper neural net-
works. PhD thesis, Iowa State University, 2024.

Tianxiang Gao and Hongyang Gao. Gradient descent optimizes infinite-depth relu implicit networks
with linear widths. arXiv preprint arXiv:2205.07463, 2022a.

Tianxiang Gao and Hongyang Gao. On the optimization and generalization of overparameterized
implicit neural networks. arXiv preprint arXiv:2209.15562, 2022b.

Tianxiang Gao, Hailiang Liu, Jia Liu, Hridesh Rajan, and Hongyang Gao. A global convergence
theory for deep relu implicit networks via over-parameterization. In International Conference on
Learning Representations, 2021.

Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and Hongyang Gao. Wide neural networks as gaussian
processes: Lessons from deep equilibrium models. Advances in Neural Information Processing
Systems, 36:54918–54951, 2023.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: unconditionally accurate memory-efficient
gradients for neural odes. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, 2019.

Amir Gholaminejad, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-
efficient gradients for neural odes. In International Joint Conferences on Artificial Intelligence,
2019.

11



Published as a conference paper at ICLR 2025

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Tilmann Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli, 2013.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

Soufiane Hayou and Greg Yang. Width and depth limits commute in residual networks. In Interna-
tional Conference on Machine Learning, pp. 12700–12723. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
ntk for deep attention networks. In International Conference on Machine Learning, pp. 4376–
4386. PMLR, 2020.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 2018.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Joon-Hyuk Ko, Hankyul Koh, Nojun Park, and Wonho Jhe. Homotopy-based training of neuralodes
for accurate dynamics discovery. Advances in Neural Information Processing Systems, 36:64725–
64752, 2023.
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A USEFUL MATHEMATICAL RESULTS

Theorem 4 (Bai-Yin law, see Vershynin (2010); Bai & Yin (2008)). LetA be anN×n random ma-
trix whose entries and independent copies of a random variable with zero mean, unit variance, and
finite fourth moment. Suppose that N and n grow to infinity while the aspect ratio n/N converges
to a constant in [0, 1]. Then

smin(A) =
√
N −

√
n+ o

(√
n
)
, smax(A) =

√
N +

√
n+ o

(√
n
)
, almost surely. (24)

Theorem 5 (Picard-Lindelöf theorem). Let f : [a, b]× Rn → Rn be a function. If f is continuous
in the first argument and Lipschitz continuous with coefficient L in the second argument, then the
ODE

x̄(t) = f(t, x(t)), (25)

possesses a unique solution on [a− ε, a+ ε] for each possible initial value x(a) = x0 ∈ Rn, where
ε < 1/L.
Theorem 6 (Peano Existence Theorem). If the function f is continuous in a neighborhood of
(t0, x0), then the ODE equation 25 has at least one solution defined in a neighborhood of t0.
Theorem 7 (Convergence for Euler’s Method). Let xn be the result of applying Euler’s method to
the ordinary differential equation defined as follows

ẋ = f(x, t), t ∈ [t0, t1], and x(0) = x0. (26)

If the solution x has a bounded second derivative and f is L-Lipschitz continuous in x, then the
global truncation error is bounded by

∥x(tn)− xn∥ ≤ hM

2L
(eL(tn−t0) − 1), (27)

where h is the time step, and M is an upper bound on the second derivative of x on the given
interval.
Lemma 4 (Gronwall’s inequality). Let I = [a, b] for an interval such that a < b < ∞. Let u, α, β
be real-valued continuous functions that satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

0

β(s)u(s)ds, ∀t ∈ I. (28)

Then

u(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
, ∀t ∈ I. (29)

If, in addition, α(t) is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
, ∀t ∈ I.

Theorem 8 (Moore-Osgood Theorem). If lim
n→∞

an,m = bm uniformly in m, and lim
m→∞

an,m = cn

for each n, then both limm→∞ bm and limn→∞ cn exists and are equal to the double limit, i.e.,

lim
m→∞

( lim
n→∞

an,m) = lim
n→∞

( lim
m→∞

an,m) = lim
n→∞
m→∞

an,m (30)

B DERIVATION OF GRADIENT THROUGH ADJOINT METHOD

In this section, we provide the detailed derivation of the adjoint method to compute the gradients.
We first recall the forward ODE as follows:

ḣt =
σw√
n
Wϕ(ht),

h0 =
σu√
d
Ux.
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To compute the gradients, we introduce the Lagrange function

L(h̃, θ, λ, µ) = fθ(x) +

∫ T

0

λ⊤t

(
σw√
n
Wϕ(h̃)− ˙̃

h

)
dt+ µ⊤

(
σu√
d
Ux− h̃(0)]

)
where h̃ is an extra variable that are independent from θ and (λ, µ) are Lagrangian multipliers.
Observe that with h̃ = h, we have

L(h, θ, λ, µ) = fθ(x), ∀(λ, µ).

Thus, the derivatives of L w.r.t. θ is equal to gradients of fθ w.r.t. θ.

Now, we consider a variation (δh, δθ) at point (h, θ). Then the correspondence variation of L is
given by

δL(h, θ, λ, µ) = σv√
n
(δv)⊤ϕ(h(T )) +

σv√
n
v⊤diag(ϕ′(h(T )))δh(T ) + µ⊤

[
σu√
d
(δU)x− δh(0)

]
+

∫ T

0

λ⊤
[
σw√
n
(δW )ϕ(h) +

σw√
n
Wdiag(ϕ′(h))δh− δḣ

]
dt

=
σv√
n
(δv)⊤ϕ(h(T )) +

σv√
n
v⊤diag(ϕ′(h(T )))δh(T ) + µ⊤

[
σu√
d
(δU)x− δh(0)

]
− λ⊤δh|T0 +

∫ T

0

λ̇⊤δhdt+

∫ T

0

λ⊤
[
σw√
n
(δW )ϕ(h) +

σw√
n
Wdiag(ϕ′(h))δh

]
dt

=
σv√
n
(δv)⊤ϕ(h(T )) +

[
σv√
n
v⊤diag(ϕ′(h(T )))− λ(T )T

]
δh(T )

+ µ⊤
[
σu√
d
(δU)x

]
+ (λ(0)− µ)

⊤
δh(0)

+

∫ T

0

[
λ̇⊤ +

σw√
n
λ⊤Wdiag(ϕ′(h))

]
δhdt+

∫ T

0

σw√
n
λ⊤(δW )ϕ(h)dt,

where we use integration by parts in the second equality. Then we choose (λ, µ) such that

µ =λ(0),

λ(T ) =
σv√
n

diag(ϕ′(h(T )))v,

λ̇(t) =− σw√
n

diag(ϕ′(h(t)))W⊤λ(t).

Then the variation of L becomes

δL(h, θ, λ, µ) = σv√
n
ϕ(h(T ))⊤δv +

σu√
d
µ⊤(δU)x+

∫ T

0

σw√
n
λ⊤(δW )ϕ(h)dt.

Thus, we obtain the gradients of fθ as

∇vfθ(x) =
σv√
n
ϕ(h(T ))

∇W fθ(x) =

∫ T

0

σw√
n
λtϕ(ht)

⊤dt

∇Ufθ(x) =
σu√
d
λ(0)x⊤.

C WELL POSEDNESS OF NEURAL ODES AND ITS GRADIENTS

To show the existence and uniqueness, we first recall the Picard-Lindelöf theorem as follows.

16



Published as a conference paper at ICLR 2025

C.1 FORWARD ODE IS WELL-POSED

As we assume the activation function is Lipschitz continuous, we can immediately obtain the local
result that the hidden state ht exists near the initial time.
Lemma 5 (Local solution). If the activation function ϕ is L1-Lipschitz continuous, then ht uniquely
exists for all |t| ≤ ε, where ε < 1/σwL1.

Proof. By using Bai-Yin law 4, we know ∥W∥ ∼
√
n a.s. Accordingly, we can show the mapping

f : x 7→ σw√
n
Wϕ(x) is Lipschitz continuous:

∥f(x)− f(z)∥ =∥ σw√
n
Wϕ(x)− σw√

n
Wϕ(z)∥

≤σw∥ϕ(x)− ϕ(z)∥
≤σwL1∥x− z∥.

Hence f is σwL1-Lipschitz continuous a.s. As t0 = 0, it follows from Picard-Lindelöf theorem that
unique ht exists locally for all |t| ≤ ε, where ε < 1/σwL1.

Lemma 6 (Global solution). For any given T > 0, if ϕ is L1-Lipschitz continuous, then ht uniquely
exists for all |t| ≤ T .

Proof. We have shown unique ht exists locally. Specifically, let ϕt(x) be the solution flow from
initial condition x to the solution at t. For any h0, we chose ε < 1/σwL1. Then the solution
h1 := ϕε(x0) is well-defined based on the local solution result. As the dynamics is the same and
the Lipschitz coefficient is uniform, we have h2 := ϕε(h1) is also well-defined. By repeating this
process for any finite steps N , we have hN = ϕε(hN−1) is well-defined. Hence, as T < ∞, there
exist N such that εN ≥ T . Therefore, ht is well-defined for all |t| ≤ T and the desired result is
obtained.

Then the result for global solution simply implies that result in Proposition 1.

C.2 BACKWARD ODE IS WELL POSED

Recall the backward ODE as follows

λT =
σv√
n

diag(ϕ′(hT )v, (31)

λ̇t =− σw√
n

diag(ϕ′(ht))W⊤λt. (32)

Observe that if ht is well defined in t ∈ [0, T ], then the dynamics of λt becomes a linear dynamics.
Hence, with similar argument, we can easily show the corresponding VIP of λt is well posed.
Lemma 7. Given T , if the activation function ϕ is L1-Lipschitz continuous, then λt is uniquely
determined for all |t| ≤ T and λt = ∂fθ/∂ht is the solution.

Proof. It follows Lemma 5 and 6 that ht is well defined for all t ∈ [0, T ] a.s. By Theorem 5, it
suffices to show g : x 7→ − σ√

n
diag[ϕ′(ht)]W⊤x is Lipschitz continuous:

∥g(x)− g(z)∥ = ∥ σw√
n

diag[ϕ′(ht)]W⊤(x− z)∥ ≤ σwL1∥x− z∥,

where we use the fact ∥W∥ ∼
√
n a.s. by Theorem 4 and |ϕ′| ≤ L1. Hence, the mapping g is

σwL1 Lipschitz continuous. It follows from Theorem 5 that λt uniquely exist for t ∈ [T − ε, T + ε]
for ε < 1/σwL1. Then with similar argument, we can show the existence of local solution can be
extended to global solution since ϕ is uniformly Lipschitz continuous. Therefore, λt is well defined
for all t ∈ [0, T ].

Additionally, we can show λ(t) = ∂fθ(x)
∂h(t) is a solution. Specifically, the differential of fθ is given by

dfθ = dv⊤ϕ(h(T ))/
√
n =

1√
n
v⊤diag(ϕ′(h(T )))dh(T ).
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Then we have
∂fθ(x)

∂h(T )
=

1√
n

diag(ϕ′(h(T )))v. (33)

Moreover, for any ε > 0, it follows the chain rule that
∂fθ(x)

∂h(t)
=
∂h(t+ ε)

∂h(t)

∂fθ(x)

∂h(t+ ε)
.

where we have

h(t+ ε) = h(t) +

∫ t+ε

t

1√
n
Wϕ(h(s))ds. (34)

Then we have

d

dt

(
∂fθ(x)

∂h(t)

)
= lim

ε→0+

∂fθ
∂h(t+ε) −

∂fθ
∂h(t)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

∂h(t+ε)
∂h(t)

∂fθ
∂h(t+ε)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

∂
∂h(t)

(
h(t) + 1√

n
Wϕ(h(t))ε+O

(
ε2
))

∂fθ
∂h(t+ε)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

(
I + ε√

n
diag(ϕ′(h(t)))W⊤ +O

(
ε2
))

∂fθ
∂h(t+ε)

ε

=− 1√
n

diag(ϕ′(h(t)))W⊤ ∂fθ
∂h(t)

.

Thus, we can see ∂fθ(x)/∂h(t) is the solution to backward ODEs.

C.3 AUGMENTED BACKWARD ODE IS WELL POSED UNDER THE SAME REGULARITY

It can be seen from equation 5 that to compute gradient of fθ w.r.t. W , we need to evaluate values
of ht and λt for every t ∈ [0, T ]. However, Chen et al. (2018b) suggested to solve an augmented
backward ODE. As a result, there is no need to store the intermediate values of ht and λt.

We first recall the gradients of fθ w.r.t. θ in a vectorization form:

∂vfθ(x) =
σv√
n
ϕ(h(T )) (35a)

∂W fθ(x) =

∫ T

0

σw√
n
(ϕ(ht)⊗ λt)dt (35b)

∂Ufθ(x) =
σu√
d
[x⊗ λ(0)] . (35c)

The according augmented backward ODE is given byḣtλ̇t
ġt

 =
σw√
n

 Wϕ(ht)
−diag[ϕ′(ht)W⊤]λt

−ϕ(ht)⊗ λt

 , ∀t ∈ [0, T ] (36)

where gt ∈ Rn2×1 and the initial condition is hT and λT combined with gT = 0.

Once this augmented backward ODE is solved, the gradients of fθ(x) w.r.t. W can be obtained by
∇W fθ(x) =g(0)

=g(T ) +

∫ 0

T

ġtdt

=g(T ) +

∫ 0

T

− σw√
n
ϕ(ht)⊗ λtdt

=

∫ T

0

σw√
n
[ϕ(ht)⊗ λt] dt,
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where we use the fact gT = 0. Unlike ht is known in equation 4, ht is an unknown state in the
augmented backward ODE equation 36. Hence, it follows from Theorem 5 that extra smoothness is
generally required to ensure the well posedness such as ϕ′ probably need to be Lipschitz continuous.
However, the dynamics of ht is decoupled from the dynamics of λt and gt. Hence, one can solve
ht first (in the backward manner), then solve the dynamics system for λt and gt. In this manner, ht
is still an known states. Hence, one can use the same regularity condition in Proposition 2 to show
existence of unique solutions for t ∈ [0, T ]. Therefore, no additional smoothness is needed to solve
the augmented backward ODE.

D NNGP CORRESPONDENCE FOR NEURAL ODES

In this section, we establish the NNGP correspondence for Neural ODEs. It follows from the Euler
method that Neural ODE can be approximated by a finite-depth neural network fLθ equation 10.
From the asymptotic perspective, Neural ODEs is equivalent to an infinite-depth ResNet with shared
parameters in its all hidden layers and a special depth-dependent scaling hyperparameter T/L.

D.1 FINITE-DEPTH NEURAL NETWORKS AS GAUSSIAN PROCESSES

As the finite-depth neural network fLθ can be considered as an approximation to the Neural ODE fθ,
we first study its signal propagation by establishing the NNGP correspondence for fLθ .

We define vectors gℓ ∈ Rn

g0(x) :=
σv√
d
Ux, (37)

gℓ(x) :=
σw√
n
Wϕ(hℓ−1), ∀ℓ ∈ [1, 2, · · · , L]. (38)

The vectors gℓ are G-vars in Tensor program Yang (2019). Tensor program is an representation of the
neural network computations that only involves linear and element-wise nonlinear operations. In the
paper Yang (2019), the authors claim that a computation using G-vars is equivalent to another com-
putation that using corresponding a list of one-dimensional Gaussian variables in the infinite-width
limit, as long as the computation only involves controllable nonlinear functions. The corresponding
definitions and Theorems are reformulated as follows.
Definition 1. (Yang, 2019, Simplified version of Definition 5.3) A real-valued function ψ : Rk → R
is called controllable if there exists some absolute constants C, c > 0 such that |ψ(x)| ≤
Cec

∑k
i=1|xi|.

Theorem 9. (Yang, 2019, Theorem 5.4) Consider a NETSOR program that has forward computation
for a given finite-depth neural network. Suppose the Gaussian random initialization and controllable
activation functions for the given neural network. For any controllable ψ : RM → R, as width
n→ ∞, any finite collection of G-vars gα with size M satisfies

1

n

n∑
α=1

ψ(g0α, . . . , g
M
α )

a.s.→ Eψ(z0, · · · , zM ), (39)

where {z0, · · · , zM} are Gaussian random variables whose mean and covariance are computed by
the corresponding NETSOR Program.

Notably, controllable functions are not necessarily smooth, although smooth functions can be eas-
ily shown to be controllable. Moreover, controllable functions, as defined in (Yang, 2019, Defi-
nition 5.3), can grow faster than exponential but remain L1 and L2-integrable with respect to the
Gaussian measure. However, the simplified definition presented here encompasses almost most
functions encountered in practice. Moreover, the vectors gℓ or G-vars are not necessary to encode
the same input x. Hence, gℓ(x) and gℓ(x̄) are two different G-vars in Tensor program. However,
Theorem 9 still holds for any finite collection of G-vars, even they have the different input encoded.
Therefore, by utilizing Theorem 9, we can show as n → ∞, the finite-depth network fLθ tends to a
Gaussian Process weakly and the result is stated in Proposition 3 and the associated Tensor program
for fLθ is provided in Algorithm 1.
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Algorithm 1 ResNet fLθ Forward Computation on Input x

Input: Ux/
√
d : G(n)

Input: W : A(n, n)
Input: v : G(n)

1: h0 := Ux/
√
d : G(n)

2: for ℓ ∈ [L] do
3: xℓ := ϕ(hℓ) : H(n)
4: gℓ :=Wxℓ−1/

√
n : G(n)

5: hℓ := hℓ−1 + κ · gℓ : G(n)
6: end for
7: xL = ϕ(hL) : H(n)

Output: vTxL/
√
n

In the rest of this subsection, we will provide rigours proof to show the NNGP correspondence for
fLθ through induction. For simplicity, the proof assume only one input x is given, while the result
for multiple inputs is similar. Additionally, we also assume σv = σw = σu = 1 since their values
are not significant in the proof as long as their values are strictly positive.

BASIC CASE L = 0

As L = 0, we have f0θ (x) = vTϕ(h0)/
√
n. Hence, we don’t have the hidden layers. Based on the

random initialization equation 3, we have

g0k
i.i.d.∼ :=Σ0(x,x)

Let B0 be the smallest σ-algebra generated by g0. By condition on B0, we have

f0θ |B0 ∼ N (0, ∥ϕ0∥2/n),

where ϕ0 := ϕ(h0). It follows from the law of large that

σ2
v∥ϕ0∥2/n =

σ2
v

n

n∑
k=1

∣∣ϕ(h0k)∣∣2 =
σ2
v

n

n∑
k=1

∣∣ϕ(g0k)∣∣2 a.s.−→ Eϕ(z0)2 := Σ1(x, x),

where z0 ∼ N (0,Σ0(x, x)). As the limit is deterministic, the conditional and unconditional distri-
bution converge to the same limit. Therefore, we have

f0θ → GP(0,Σ1),

where

Σ1(x, x̄) = Ez0∼Σ0ϕ(z0(x))ϕ(z0(x̄)).

where we use z0 ∼ Σ0 to denote centered Gaussian random variable(s) whose (co)variances can be
computed using covariance function Σ0.

GENERAL CASE L

Now consider fLθ (x) = vTϕ(hL)/
√
n. Here we have hL = hL−1 + βgL and gL = Wϕ(hL−1),

where β := T
L . As W is used before, let BL−1 be the smallest σ-algebra generated by

{g0, · · · , gL−1}. Then we can have

gℓ =Wϕ(hℓ−1), ∀ℓ ∈ {1, 2, · · · , L− 1}

or equivalently [
g1 · · · gL−1

]︸ ︷︷ ︸
:=G

=W
[
ϕ0 · · · ϕL−2

]︸ ︷︷ ︸
:=Φ

where G ∈ Rn×(L−1) and Φ ∈ Rn×(L−1).
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We can obtain the conditional distribution of W by solving the following optimization problem

min
W

1

2
∥W ∥2F , s.t . G = WΦ.

The Lagrange function is given by

L(W,V ) =
1

2
∥W∥2F + ⟨V,G−WΦ⟩

Then

∇WL(W,V ) =W − V ΦT = 0 =⇒W ∗ = V ΦT .

As G =WΦ, we have

G =WΦ = V ΦTΦ =⇒ V = G(ΦTΦ)† =⇒W ∗ = G(ΦTΦ)†ΦT .

Thus, we have

W |B =W ∗ + W̃ΠT = G(ΦTΦ)†ΦT + W̃
(
In − ΦΦ†) ,

where Π = In − ΦΦ†, W̃ is i.i.d.copy of W , and Φ† = (ΦTΦ)†ΦT .

Since gL =Wϕ(hL−1), we have the conditional distribution of gLk as follows

gLk |B
independent∼ N (Gk∗(Φ

TΦ)†ΦTϕ, ∥ΠTϕ∥2/n).

where Gk∗ denotes the k-th row of matrix G and ϕ = ϕL−1 for simplicity.

As Lipschitz continuous activation is controllable function, it follows from Theorem 9 and inductive
hypothesis that〈

ϕi, ϕj
〉
/n =

1

n

n∑
k=1

ϕ(hik)ϕ(h
j
k)

=
1

n

n∑
k=1

ϕ(g0k + βg1k + · · ·+ βgik)ϕ(g
0
k + βg1k + · · ·+ βgjk)

a.s.→Eϕ(z0 + βz1 + · · ·+ βzi)ϕ(z0 + βz1 + · · ·+ βzj)

=:Eϕ(ui)ϕ(uj),

where we define another Gaussian random variable ui to simplify the notation:

ui = z0 + βz1 + · · ·+ βzi.

Therefore, we have

(ΦTΦ)ij/n =
〈
ϕi, ϕj

〉
/n

a.s.→ Eϕ(ui)ϕ(uj),

(ΦTϕ)i/n =
〈
ϕi, ϕ

〉
/n

a.s.→ Eϕ(ui)ϕ(uL−1).

For ℓ ∈ {0, 1, · · · , L − 1}, let U ℓ = {u0, · · · , uℓ} be a collection of ui. We define Σ(U ℓ, Uk) ∈
R(ℓ+1)×(k+1) as

Σ(U ℓ, Uk)ij = Σ(ui, uj) = Eϕ(ui)ϕ(uj), ∀i ∈ {0, 1, · · · , ℓ}, j ∈ {0, 1, · · · , k}.

Therefore, we have

(ΦTΦ)†ΦTϕ = (ΦTΦ/n)†
(
ΦTϕ/n

)
→ Σ(UL−2, UL−2)†Σ(UL−2, uL−1).

Moreover, observe that

∥ΠTϕ∥2/n =
1

n
ϕT (In − ΦΦ†)ϕ

=
1

n
ϕTϕ− 1

n
ϕTΦ(ΦTΦ)†ΦTϕ

=ϕTϕ/n− (ϕTΦ/n)(ΦTΦ/n)†(ΦTϕ/n)

→Σ(uL−1, uL−1)− Σ(uL−1, UL−2)Σ(UL−2, UL−2)†Σ(UL−2, uL−1)
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Therefore, for any controllable function ψ, it follows from Theorem 9 that

1

n

n∑
k=1

ψ(g0k, g
1
k, · · · , gLk ) → E

[
ψ(z0, z1, · · · , zL)

]
,

where
Cov(z0(x), zℓ(x̄)) = 0, ∀ℓ ≥ 1

Cov(zℓ(x), zk(x̄)) = E
[
ϕ
(
uℓ−1(x)

)
ϕ
(
uk−1(x̄)

)]
, ∀ℓ, k ≥ 1

Let BL be the smallest σ-algebra generated by {g0, · · · , gL}. By condition on BL, we have

fLθ (x)|BL ∼ N (0, ∥ϕL∥2/n) (40)
where

∥ϕL∥2/n =
1

n

n∑
k=1

ϕ(hLk )
2

=
1

n

n∑
k=1

[
ϕ

(
g0k + β

L∑
i=1

gik

)]2

a.s.→E

[
ϕ

(
z0 + β

L∑
i=1

zi

)]2
= E[ϕ(uL)]2 := ΣL+1(x, x)

Thus, we obtain
fLθ → GP(0,ΣL+1)

where
ΣL+1(x, x̄) = E

[
ϕ
(
uL(x)

)
ϕ
(
uL(x̄)

)]
.

D.2 NEURAL ODES AS GAUSSIAN PROCESSES

In this subsection, we prove Neural ODEs tends to a Gaussian process as the width n → ∞. As
the output parameter v is independent from all previous weights, by conditioning on the previous
hidden layers, the Neural ODEs becomes a Gaussian random variable with covariance ∥ϕL(x)∥2/n,
i.e.,

fθ(x)|B ∼ N
where we denote ϕT (x) := ϕ(hT (x)) to simplify the notation, hT is the exact solution from the
forward ODE, and B is the smallest σ-algebra generated by previous hidden layers. Here we also
assume σv = σw = σu = σ as their values are not important in the proof as long as they are strictly
positive.

It follows from convergence analysis of Euler’s method, stated in Theorem 7, that

ϕL(x) → ϕT (x), as L→ ∞,

where we denote ϕℓ(x) := ϕ(hℓ(x)).

Thus, the focus of analysis becomes to study the convergence of this double sequence

an,L :=
〈
ϕL(x), ϕL(x̄)

〉
/n.

By leveraging the convergence result for Euler’s method in Theorem 7, we can show the double
sequence an,L converges as L→ ∞ and this convergence is uniform in n a.s.
Lemma 8. If ϕ is L1-Lipschitz continuous, then the following inequalities hold for every x ∈ Sd−1

a.s.:
∥ht∥ ≤ C

√
neCσL1t, ∀t ∈ [0, T ] (41)

and

∥hℓ − h(tℓ)∥ ≤ A

2B

(
eBtℓ − 1

) T
L

√
n, (42)

where A := Cσ2L2
1e

CσL1T and B := CσL1 for some absolute constant C > 0.
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Proof. Recall from Lemma 5 that the mapping f : x 7→ σ√
n
Wϕ(x) is σL1-Lipschitz continuous.

Observe that

d(ḣ) =dσWϕ(h(t))/
√
n

=
σ√
n
Wdiag [ϕ′(h(t))] dh(t)

=
σ√
n
Wdiag [ϕ′(h(t))] ḣ(t)dt

=
σ√
n
Wdiag [ϕ′(h(t))]

σ√
n
Wϕ(h(t))dt.

Then we have

ḧ =
d

dt
ḣ =

σ√
n
Wdiag [ϕ′(h(t))]

σ√
n
Wϕ(h(t))

and

∥ḧ∥ ≤ C2σ2L2
1∥h(t)∥

where we use the fact ∥W∥ ≤ C
√
n a.s. from Theorem 4 for some absolute constant C > 0 and ϕ

is L1-Lipschitz continuous.

Then

h(t) = h(0) +

∫ t

0

ḣds

implies

∥h(t)∥ ≤∥h(0)∥+
∫ t

0

∥ σ√
n
Wϕ(h(s))∥ds

≤∥h(0)∥+
∫ t

0

CσL1∥h(s)∥ds.

By using the Gronwall’s inequality, we have

∥h(t)∥ ≤ ∥h(0)∥ exp
(∫ t

0

CσL1ds

)
= ∥h(0)∥eCσL1t

Additionally, as ∥U∥ ≤ C
√
n almost surely and ∥x∥ = 1, we have ∥h(0)∥ ≤ C

√
n, and so we

obtain

∥h(t)∥ ≤ C
√
neCσL1t, ∀t ∈ [0, T ].

Therefore, we obtain

∥ḧ(t)∥ ≤ Cσ2L2
1

√
neCσL1t, ∀t ∈ [0, T ].

By the Euler’s convergence theorem stated in Theorem 7, we have

∥hℓ − h(tℓ)∥ ≤ A

2B

(
eBtℓ − 1

) T
L

√
n,

where A := Cσ2L2
1e

CσL1T and B := CσL1.

Lemma 9. Suppose L1-Lipschitz continuous activation ϕ and ht(x) is the exact solution with input
x. Given L, we have∣∣∣∣ 1n 〈ϕ(hk(x)), ϕ(hℓ(x̄))〉− 1

n
⟨ϕ(htk(x)), ϕ(htℓ(x̄))⟩

∣∣∣∣ ≤ C1L
−1, ∀k, ℓ ∈ [L] (43)

where tk = kβ and C1 > 0 is some constant that does not dependent on n and L. Therefore, the
double sequence

〈
ϕ(hk(x)), ϕ(hℓ(x̄))

〉
/n converges w.r.t. L and uniformly w.r.t. n.
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Proof. For simplicity, we assume the activation function is 1-Lipschitz continuous, i.e., L1 = 1. For
ℓ ≤ k ≤ L, we denote ϕℓ = ϕ(hℓ(x)), ϕ̄ℓ = ϕ(hℓ(x̄)), ϕ(t) = ϕ(ht(x)), and ϕ̄(t) = ϕ(ht(x̄)),
where ht(x) is the exact solution to the ordinary differential equation that encodes input x. Then we
consider〈

ϕk, ϕ̄ℓ
〉
/n−

〈
ϕ(kβ)), ϕ̄(ℓβ)

〉
/n =

1

n

〈
ϕk, ϕ̄ℓ − ϕ̄(ℓβ)

〉
+

1

n

〈
ϕk − ϕ(kβ)), ϕ̄(ℓβ)

〉
,

where β = T/L is the time step.

Note that

∥hℓ+1∥ = ∥hℓ + T

L

σ√
n
Wϕ(hℓ)∥ ≤ ∥hℓ∥+ Cσ

T

L
∥hℓ∥ = (1 + CσT/L)∥hℓ∥.

where we use the fact that ϕ is 1-Lipschitz continuous and ∥W∥ ≤ C
√
n a.s. Repeat this argument

ℓ times and we have

∥hℓ+1∥ ≤ (1 + CσT/L)ℓ+1∥h0∥

Therefore, we obtain

∥ϕℓ∥ ≤ ∥hℓ(x)∥ ≤ (1 + CσT/L)ℓ∥h0∥ ≤ eCσTℓ/L∥h0∥ ≤ C
√
neCσTℓ/L,

where we also use ∥U∥ ≤ C
√
n a.s. and ∥x∥ = 1.

Moreover, we have

∥ϕℓ − ϕ(ℓβ)∥ ≤ ∥hℓ − h(ℓβ)∥ ≤ C1

√
nL−1,

where C1 > 0 is a constant that does not dependent on n and L.

Therefore, we obtain∣∣〈ϕk, ϕ̄ℓ〉 /n−
〈
ϕ(kβ)), ϕ̄(ℓβ)

〉
/n
∣∣ ≤ 1

n
· C1

√
n · C1

√
nL−1 = C1L

−1.

Hence,
〈
ϕ(hℓ(x)), ϕ(hk(x̄))

〉
/n converges w.r.t. L and uniformly in n.

Combining Lemma 9 with Moore-Osgood theorem, stated in Theorem 8, the double sequence
an,L :=

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n has both iterated limits that are equal to the double limit, i.e.,

lim
n→∞

⟨ϕ(hT (x)), ϕ(hT (x̄))⟩ /n = lim
n→∞

lim
L→∞

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n

= lim
L→∞

lim
n→∞

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n

= lim
L→∞

ΣL+1(x, x̄)

=Σ∗(x, x̄).

As Σ∗ is a deterministic function, the conditioned and unconditioned distributions of fθ(x) are equal
in the limit: they are centered Gaussian random variables with covariance Σ∗(x, x). This complete
the proof of Theorem 1

E NTK FOR NEURAL ODE

In this section, we derive the neural tangent kernel (NTK) for Neural ODEs and provide sufficient
condition to show when the NTK is well defined for Neural ODEs. Under our exploration, the
smoothness of the activation function play an significant role to study the NTK of Neural ODEs.
For example, additionally smoothness is required to ensure the uniqueness and existence of the
adjoint state λt in the backward ODE equation 4 or augmented backward ODE equation 36.
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E.1 CONVERGENCE ANALYSIS OF EULER’S METHOD FOR BACKWARD ODE

Similar to the forward ODE, we can also discretize the backward ODE as follows:

λ̃ℓ+1 = λ̃ℓ − β · σw√
n

diag[ϕ′(htℓ)]W
T λ̃ℓ, ∀ℓ ∈ [1, 2, · · · , L] (44)

where β = T/L and ht is the solution from the forward ODE equation 2 and tℓ := βℓ. Additionally,
we can further discretize ht and obtain

λℓ+1 = λℓ − β · σw√
n

diag[ϕ′(hℓ)]WTλℓ, ∀ℓ ∈ [1, 2, · · · , L]. (45)

As L → ∞ or β → ∞, we have hℓ → htℓ and λℓ → λtℓ . By utilizing the result from convergence
analysis of Euler’s method equation 7, we obtain the convergence rate, that indicates this conver-
gence is uniform in width n, if the activation function is smooth. This result serves as a fundamental
result to ensure the NTK for Neural ODE is well defined and allow us to study the training dynamics
of Neural ODEs under gradient-based methods.
Lemma 10. If ϕ and ϕ′ are L1- and L2-Lipschitz continuous, then the following inequalities hold
for every x ∈ Sd−1 a.s.:

∥λt∥ ≤ CσL1e
CσL1(T−t), ∀t ∈ [0, T ] (46)

and

∥λℓ − λt∥ ≤ T

L

(
C1

C2
eC2(T−tℓ) − 1

)
, (47)

whereC1 = CL2
1L2σ

3eCσL1T ,C2 = CσL1+Cσ
2L1L2e

CσL1T for some absolute constantC > 0.

Proof. For the mapping f : (λ, t) 7→ − 1√
n

diag[ϕ′(ht)]WTλ, we consider

dλ̇ =d

(
− σ√

n
diag [ϕ′(h(t))]WTλ

)
=d
(
−ϕ′(h(t))⊙ W̃Tλ

)
=− [dϕ′(ht)]⊙ W̃Tλ

=− ϕ′′(ht)⊙ dht ⊙ W̃Tλ

=− ϕ′′(ht)⊙ W̃Tλ⊙ ḣdt

=− ϕ′′(ht)⊙ W̃Tλ⊙ W̃ϕ(ht)dt

=− diag (ϕ′′(ht)) diag
(
W̃Tλ

)
W̃ϕ(ht)dt,

where ⊙ denotes element-wise product and we denote W̃ = σW/
√
n. Thus, we have

∂tf(λ, t) = −diag (ϕ′′(ht)) diag
(
W̃Tλ

)
W̃ϕ(ht).

Let w̃k be the k-th column of W̃ . As in this case we consider λ as fixed, w̃T
k λ follows Gaussian

distribution with zero mean and variance σ2∥λ∥2/n. We obtain the inequality

∥∂tf(λ, t)∥ ≤ |ϕ′′| · σ√
n
∥λ∥ · ∥W̃∥ · ∥ϕ(ht)∥ ≤ CL1L2σ

2∥λ∥ · ∥ht∥/
√
n,

where we use the assumption |ϕ′′| ≤ L2 and C > 0 is some absolute constant.

Observe that

∥λt∥ ≤ ∥λT ∥+
∫ T

t

∥λ̇∥ts ≤ CσL1 +

∫ T

t

CσL1∥λs∥ds.

Then it follows from the Gronwall’s inequality that

∥λt∥ ≤ CσL1 exp

(∫ T

t

CσL1ds

)
≤ CσL1e

CσL1(T−t).
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Combining the above bound of λt with equation 41, we have

∥∂tf(λ, t)∥ ≤ CL2
1L2σ

3eCσL1T := C1.

Note that C1 > 0 is independent from L and n.

With argument alike in Theorem 7, we can obtain the global truncation error for λℓ. In Proposition 1
and Proposition 2, we have shown the uniqueness and existence of ht and λt for all t ∈ [0, T ]. To
study the convergence of λℓ to λtℓ , it is equivalent to apply Euler’s method to numerically solve λt
in the reverse order from t = 0 to t = T . Hence, we will assume λ0 is know and provide the global
truncation errors for λℓ.

Note that

∥λℓ+1 − λ(tℓ+1)∥ =

∥∥∥∥λℓ − βdiag[ϕ′(hℓ)]W̃Tλℓ −
[
λ(tℓ) + βλ̇(tℓ) +

β2

2
λ̈(tℓ)

]∥∥∥∥
≤∥λℓ − λ(tℓ)∥+ β∥diag[ϕ′(hℓ)]W̃Tλℓ − diag[ϕ′(h(tℓ))]W̃Tλ(tℓ)∥+

β2

2
C1,

where β = T/L and we use λ̈(tℓ) = ∥∂tf(tℓ)∥ ≤ C1. Additionally, the triangle inequality implies
that

∥diag[ϕ′(hℓ)]W̃Tλℓ − diag[ϕ′(h(tℓ))]W̃Tλ(tℓ)∥
≤∥diag[ϕ′(hℓ)]W̃T (λℓ − λtℓ)∥+ ∥(diag[ϕ′(hℓ)]− diag[ϕ′(h(tℓ))])W̃Tλ(tℓ)∥
≤L1∥W̃∥∥λℓ − λtℓ∥+ L2∥hℓ − htℓ∥∥W̃∥∥λtℓ∥
≤C2

(
∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥

)
,

where the constant C2 = CσL1 + Cσ2L1L2e
CσL1T . Hence, we have

∥λℓ+1 − λtℓ+1
∥ ≤ ∥λℓ − λ(tℓ)∥+ βC2

(
∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥

)
+ β2C1.

Denote Eℓ = ∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥, then we have

∥λℓ − λtℓ∥ ≤ Eℓ ≤ (1 + βC2)E
ℓ−1 + β2C1.

By the induction, we have

Eℓ ≤ (1 + βC2)
ℓE0 + β2C1 ·

(1 + βC2)
ℓ − 1

(1 + βC2)− 1
.

Since E0 = 0 and β = T/L, we have

Eℓ ≤ T

L

(
C1

C2
eC2(T−tℓ) − 1

)
.

This completes the proof.

Additionally, as we have λt = ∂fθ/∂ht is the solution to the backward ODE. We have∥∥∥∥ ∂fθ∂htℓ
− ∂fLθ
∂hℓ

∥∥∥∥ ≤ C0L
−1, ∀ℓ ∈ [1, 2, · · · , L], (48)

where C0 > 0 is some constant that is not dependent on n and L.
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E.2 GRADIENT ALIGNMENTS

By using Lemma 8 and 10, we can show the gradients obtained from the optimize-then-discrete and
discrete-then-optimize as the depth L→ ∞. Observe that for any x, we have

∥∇vf
L −∇vfθ∥ =

σ√
n
∥ϕ(hL)− ϕ(h(T )∥ ≤ σ√

n
· CL−1 ·

√
n ≤ CL−1,

∥∇W fL −∇W fθ∥ =

∥∥∥∥∥
∫ T

0

1√
n

∂f

∂ht
ϕ(ht)dt−

L∑
ℓ=1

T

L

1√
n

∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥∥
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂htϕ(ht)− ∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥ dt
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂ht − ∂fL

∂hℓ

∥∥∥∥ ∥ht∥+ ∥∂f
L

∂hℓ
∥∥ht − hℓ−1∥dt

≤ C√
n

L∑
ℓ=1

∫ tℓ

tℓ−1

√
nL−1dt

≤C
L∑

ℓ=1

L−2 = CL−1,

∥∇Uf
L −∇Ufθ∥ ≤ σ√

d
∥x∥∥λ0 − λ0∥ ≤ CL−1.

Hence, combining the three results together prove Propostion 2.

E.3 NTK FOR FINITE-DEPTH NEURAL NETWORKS

For Neural ODE define equation 1, its NTK is given by

Kθ(x, x̄) = ⟨∇θfθ(x),∇θfθ(x̄)⟩ . (49)

As we have shown in Proposition 1 and 2, ∇θfθ(x) is well defined for every x ∈ Sd−1 (a.s). Hence,
Kθ(x, x̄) is well defined for every x, x̄ ∈ Sd−1. While Kθ is random and varies during the training,
as observed in Jacot et al. (2018), in the infinite-width limit, it converges to an explicit deterministic
kernel K∞ called limiting NTK. Hence, we will show that K∞ is well-defined and provides its
explicit form.

Recall that we use a finite-depth neural network fLθ defined in equation 10 that approximates Neural
ODE fθ. As a result, we can also approximate the NTK Kθ using KL

θ defined as follows

KL
θ (x, x̄) :=

〈
∇θf

L
θ (x),∇θf

L
θ (x̄)

〉
. (50)

We denote KL
∞ be the limit of KL

θ as width n → ∞. In this subsection, we provide the explicit
form for KL

∞. For the convergence analysis, we leverage the Master Theorem introduced in (Yang,
2020, Theorem 7.2). This result is similar to Theorem 9 but it consider the backward information
propagation, and it is reformed as follows.

Theorem 10. (Yang, 2020, Theorem 7.2) Consider a NETSOR⊤ program that has both forward and
backward computation for a given finite-depth neural network. Suppose the Gaussian random ini-
tialization and controllable activation functions for the given neural network. For any controllable
ψ : RM → R, as width n→ ∞, any finite collection of G-vars gα with size M satisfies

1

n

n∑
α=1

ψ(g0α, . . . , g
M
α )

a.s.→ Eψ(z0, · · · , zM ), (51)

where {z0, · · · , zM} are Gaussian random variables whose mean and covariance are computed by
the corresponding NETSOR⊤.
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Algorithm 2 ResNet fLθ Forward and Backward Computation on Input x

Input: Ux/
√
d : G(n)

Input: W : A(n, n)
Input: v : G(n)

1: h0 := Ux/
√
d : G(n)

2: for ℓ ∈ {1, 2, · · · , L} do
3: xℓ = ϕ(hℓ−1) : H(n)
4: gℓ :=Wxℓ/

√
n : G(n)

5: hℓ := hℓ−1 + κ · gℓ : G(n)
6: end for
7: xL = ϕ(hL) : H(n)
8: dxL = v/

√
n : G(n)

9: dhL = dxL ⊙ ϕ′(hL) : H(n)
10: for ℓ ∈ {L,L− 1, · · · , 1} do
11: dgℓ = κ · dhℓ : H(n)
12: dxℓ =W⊤dgℓ/

√
n : G(n)

13: dhℓ−1 = dhℓ + ϕ′(hℓ − 1)⊙ dxℓ : H(n)
14: end for
Output: ∥xL∥2/n+

∑L
ℓ=1

〈
dgℓxℓ⊤, dgℓxℓ⊤

〉
/n+

〈
dh0x⊤, dh0x⊤

〉
/d

As a result, this type of Tensor program is called NESTOR⊤ and it includes additional G-vals from
the backward information propagation. In our setup, to compute the gradients of fLθ defined in
equation 10, the following new G-vals are introduced

dgL+1 :=
σv√
n

diag[ϕ′(hL)]v,

dgℓ :=
σw√
n

diag[ϕ′(hℓ−1)]WT , ∀[1, 2, · · · , L].

and the associated NESTOR⊤ is given in Algorithm 2 In the rest of this subsection, we provide
rigorous proof to show the convergence of KL

θ to KL
∞, as stated in Proposition 4.

Without loss of generality, we assume σu = σw = 1 and σv/
√
d = 1. As θ = vec(v,W,U), we

have

KL
θ (x, x̄) =

〈
∇vf

L
θ (x),∇vf

L
θ (x̄)

〉
+
〈
∇W fLθ (x),∇W fLθ (x̄)

〉
+
〈
∇Uf

L
θ (x),∇Uf

L
θ (x̄)

〉
.

Hence, we will show the convergence of each term. To simplify the notation, we abbreviate f :=
fLθ (x) and f̄ := fLθ (x̄).

CONVERGENCE OF
〈
∇vf,∇v f̄

〉
By using simple calculus, we have

∇vf = ϕ(hL)/
√
n (52)

∇hLf = v ⊙ ϕ′(hL)/
√
n. (53)

By Theorem 10, we have

〈
∇vf,∇v f̄

〉
=

1

n
ϕ(hL)⊤ϕ(h̄L)

a.s.→ Eϕ(uL)ϕ(ūL) = CL+1,L+1(x, x̄),

where uℓ = z0 + κ
∑ℓ

i=1 z
i is a centered Gaussian random variable, zi are centered Gaussian

random variables defined in Proposition 3, the convergence result follows Theorem 9.
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CONVERGENCE OF
〈
∇W f,∇W f̄

〉
To show the convergence, we first rewrite the forward propagation suggested by the Tensor program:
for all ℓ ∈ {1, 2, · · · , L}

gℓ =
1√
n
Wxℓ−1

hℓ = hℓ−1 + κgℓ,

xℓ = ϕ(hℓ).

By using the chain rule, we obtain

∇W f =
1√
n

L∑
ℓ=1

(∇gℓf) · (xℓ−1)⊤ (54)

Then, the quantity can be written as follows:

〈
∇W f,∇W f̄

〉
=

L∑
ℓ,k=1

〈
dgℓ, dḡk

〉
·
〈
xℓ−1, x̄k−1

〉
/n

where dz is denoted the gradient of f w.r.t. a vector z occurred in the forward propagation.

It follows from Theorem 9 that
1

n

〈
xℓ−1, x̄k−1

〉
=

1

n

〈
ϕ(hℓ−1), ϕ(h̄k−1)

〉 a.s.→ Cℓ,k(x, x̄). (55)

Moreover, we have

dxℓ−1 =
1√
n
W⊤dgℓ

and

dgℓ = κdhℓ = κ(dhℓ+1 + dxℓ ⊙ ϕ′(hℓ)) = dgℓ+1 + κ
[
dxℓ ⊙ ϕ′(hℓ)

]
Repeat this recursive relation, and we obtain

dgℓ =κ

L∑
i=ℓ

dxi ⊙ ϕ′(hi) (56)

By Theorem 10 or Yang (2020), it is equivalent to consider the coordinates in dxℓ−1 are asymptoti-
cally i.i.d. following some centered Gaussian random variables which satisfies:

E[Zdxℓ−1

Zdxk−1

] =κ2E

 ℓ,k∑
i,j=L

Zdxi

Z̄dxj

ϕ′(ui)ϕ′(ūj)


=κ2

ℓ,k∑
i,j=L

E
[
Zdxi

Z̄dxj
]
E[ϕ′(ui)ϕ′(ūj)]

Hence, we obtain

Dℓ,k(x, x̄) = κ2
ℓ+1,k+1∑
i,j=L

Di,j(x, x̄)E[ϕ′(ui)ϕ′(ūj)] (57)

As a result, we have

〈
∇W f,∇W f̄

〉 a.s.−→ κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) (58)
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CONVERGENCE OF
〈
∇Uf,∇U f̄

〉
As h0 = Ux, h0i =

∑d
j=1 Uijxj implies

∂h0k/∂Uij = δk,ixj .

Observe that 〈
∇Uf,∇U f̄

〉
=
∑
i,j

∂f

∂Uij

∂f̄

Uij

=
∑
ij

(∑
α

∂h0α
∂Uij

∂f

∂h0α

)∑
β

∂h̄0β
∂Uij

∂f̄

∂h̄0β


=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β

∑
i,j

∂h0α
∂Uij

∂h̄0β
∂Uij

=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β

∑
i,j

δα,ixjδβ,ix̄j

=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β
· δα,βxT x̄

=
∑
α

∂f

∂h0α

∂f̄

∂h̄0α
· xT x̄

a.s.→ D0,0(x, x̄)C0,0(x, x̄),

where C0,0(x, x̄) = xT x̄.

Putting everything together yields〈
∇θf,∇θf̄

〉
=
〈
∇vf,∇v f̄

〉
+
〈
∇W f,∇W f̄

〉
+
〈
∇Uf,∇U f̄

〉
a.s.−→ CL+1,L+1(x, x̄) +

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄)

Hence, we obtain KL
θ (x, x̄) converges a.s. to KL

∞(x, x̄) defined as follows

KL
∞(x, x̄) = CL+1,L+1(x, x̄) +

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄).

E.4 NTK FOR NEURAL ODES

In the previous subsection, we have shown the NTK KL
θ converges to a deterministic limiting NTK

KL
∞ as the width n→ ∞. In this subsection, in the same limit, we will show the NTK Kθ of Neural

ODE fθ defined in equation 1 converges to the limiting NTK K∞.

Similar to the NNGP kernel Σ∗, the NTK K∞ can be considered as the limit of a double sequence:

K∞(x, x̄) = lim
n→∞

〈
∇θfθ,∇θf̄θ

〉
= lim

n→∞
lim

L→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
We have shown lim

n→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= KL

∞(x, x̄) in the previous subsection. Hence, the con-
vergence of K∞ is equivalent to show the two indices, i.e., depth and width, are interchangeable.
Fortunately, if the activation function ϕ is sufficiently smooth, the two indices are indeed swappable
and so the NTK K∞ is well defined.

Based on Moore-Osgood Theorem stated in Theorem 8, a double sequence has well defined iterated
limits that are equal to the double limit if the double sequence converges in one index and uniformly
in the other. Hence, we will show the NTK KL

θ as the double sequence converges in depth L and
uniformly with respect to the width n.
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Proof. Without loss of generality, we will assume σv = σw = 1 and σu/
√
d = 1. Observe that

Kθ(x, x̄) = ⟨∇vfθ(x),∇vfθ(x̄)⟩+ ⟨∇W fθ(x),∇W fθ(x̄)⟩+ ⟨∇Ufθ(x),∇Ufθ(x̄)⟩ .

Hence, the rest proof is to establish the convergence rate for each term in the summation.

Note that∣∣〈∇vf
L(x),∇vf

L(x̄)
〉
− ⟨∇vfθ(x),∇vfθ(x̄)⟩

∣∣
=

∣∣∣∣ 1n 〈ϕ(hL(x)), ϕ(hL(x̄))〉− 1

n
⟨ϕ(h(x, T )), ϕ(h(x̄, T ))⟩

∣∣∣∣
=
1

n

〈
ϕ(hL(x)), ϕ(hL(x̄))− ϕ(h(x̄, T ))

〉
+

1

n

〈
ϕ(hL(x))− ϕ(h(x, T )), ϕ(h(x̄, T ))

〉
≤L

2
1

n
∥hL(x)∥∥hL(x̄)− h(x̄, T )∥+ L2

1

n
∥hL(x)− h(x, T )∥∥h(x̄, T )∥

≤ 1

n
C
√
n ·

√
nL−1

=CL−1,

where we use Lipschitz continuous of ϕ and Lemma 8.

Next, we can first show ∥∇W f∥ and ∥∇W fL∥ are upper bounded by some constants as long as
T <∞. Observe that

∥∇W f(x)∥ =∥
∫ T

0

1√
n
λtϕ(ht)dt∥

≤∥
∫ T

0

1√
n
· eCσ(T−t) ·

√
neCσtdt∥

≤CσTeCσT ,

where we use Lemma 8 and 10.

Similarly, we have

∥∇W fL(x)∥ =∥
L∑

ℓ=1

T

L

1√
n

∂fL

∂hℓ
ϕ(hℓ−1)∥

≤T
L

L∑
ℓ=1

1√
n
∥∂f

L

∂hℓ
∥∥hℓ−1∥

≤T
L

L∑
ℓ=1

1√
n
· (1 + σT/L)L−ℓ · (1 + σT/L)ℓ−1 · Cσ

√
n

≤CσTeσT ,

where we have the facts

∥hℓ∥ ≤ (1 + σT/L)ℓ∥h0∥, (59)

∥∂f
L

∂hℓ
∥ ≤ (1 + σT/L)L−ℓ∥∂fL/∂hL∥, (60)

for all ℓ ∈ {0, 1, · · · , L}.
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Additionally, it follows from Lemma 8 and 10 that

∥∇W fL(x)−∇W fθ(x)∥

=

∥∥∥∥∥
∫ T

0

1√
n

∂f

∂ht
ϕ(ht)dt−

L∑
ℓ=1

T

L

1√
n

∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥∥
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂htϕ(ht)− ∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥ dt
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂ht − ∂fL

∂hℓ

∥∥∥∥ ∥ht∥+ ∥∂f
L

∂hℓ
∥∥ht − hℓ−1∥dt

≤ C√
n

L∑
ℓ=1

∫ tℓ

tℓ−1

√
nL−1dt

≤C
L∑

ℓ=1

L−2 = CL−1.

Hence, we obtain〈
∇W fL(x),∇W fL(x̄)

〉
− ⟨∇W fθ(x),∇W fθ(x̄)⟩

≤
〈
∇W fL(x),∇W fL(x̄)−∇W fθ(x̄)

〉
+
〈
∇W fL(x)−∇W fθ(x),∇W fθ(x̄)

〉
≤∥∇W fL(x)∥ · ∥∇W fL(x̄)−∇W fθ(x̄)∥+ ∥∇W fL(x)−∇W fθ(x)∥∥∇W fθ(x̄)∥
≤CL−1,

or equivalently ∣∣〈∇W fL(x),∇W fL(x̄)
〉
− ⟨∇W fθ(x),∇W fθ(x̄)⟩

∣∣ ≤ CL−1. (61)

Next, observe that 〈
∇Uf

L(x),∇Uf
L(x̄)

〉
− ⟨∇Ufθ(x),∇Ufθ(x̄)⟩

= ⟨x, x̄⟩
〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)

〉
− ⟨x, x̄⟩

〈
∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(x̄, 0)

〉
.

Then we have〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)

〉
−
〈
∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(x̄, 0)

〉
≤
〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)
− ∂fθ(x̄)

∂h(x̄, 0)

〉
+

〈
∂fL(x)

∂h0(x)
− ∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(0, x̄)

〉
≤∥∂f

L(x)

∂h0(x)
∥ · ∥∂f

L(x̄)

∂h0(x̄)
− ∂fθ(x̄)

∂h(x̄, 0)
∥+ ∥∂f

L(x)

∂h0(x)
− ∂fθ(x)

∂h(x, 0)
∥ · ∥ ∂fθ(x̄)

∂h(0, x̄)
∥

≤CL−1,

where we use the Lipschitz smoothness of ϕ′ and Lemma 10. Therefore, we have∣∣〈∇Uf
L(x),∇Uf

L(x̄)
〉
− ⟨∇Ufθ(x),∇Ufθ(x̄)⟩

∣∣ ≤ CL−1.

Then putting everything together yields∣∣〈∇θf
L(x),∇θf

L(x̄)
〉
− ⟨∇θfθ(x),∇θfθ(x̄)⟩

∣∣ ≤ CL−1. (62)

Therefore, it converges uniformly in L and uniformly in n.
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Combining Lemma 2 with Proposition 4 and Moore-Osgood Theorem 8, we can switch L and n in
the double sequence Kθ(x, x̄) and obtain the desired result

K∞(x, x̄) = lim
n→∞

Kθ(x, x̄)

= lim
n→∞

〈
∇θfθ,∇θf̄θ

〉
= lim

n→∞
lim

L→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= lim

L→∞
lim
n→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= lim

L→∞
KL

∞(x, x̄).

E.5 INTEGRAL FORM OF NNGP AND NTK

In this subsection, we provide the explicit form of the NNGP and NTK of Neural ODEs as the limits
of ΣL and KL

∞. It follows from Proposition 5 and Lemma 8 that

Σ0,t(x, x̄) =δ0,t
σ2
u

d
x⊤x̄, ∀t ∈ [0, T ] (63)

Σt,s(x, x̄) =σ2
wEϕ(ut)ϕ(ūs), ∀t, s ∈ [0, T ], (64)

where (ut, ūs) are centered Gaussian random variables with covariance

E(ut, ūs) = Σ0,0 +

∫ t

0

∫ s

0

Σt′,s′(x, x̄)dt′ds′. (65)

Hence, the NNGP kernel of Neural ODE is given by

Σ∗(x, x̄) = ΣT,T (v, x̄) = σ2
vEϕ(uT )ϕ(ūT ) (66)

For the NTK of Neural ODEs, we have

Kt,s(x, x̄) =

∫ T

t

∫ T

s

Kt′,s′(x, x̄)Σ̇t′,s′(x, x̄)dt′ds′, (67)

where Σ̇t′,s′(x, x̄) := Eϕ′(ut′)ϕ′(ūs′). As a result, the NTK of Neural ODE is given by

K∞(x, x̄) = Σ∗(x, x̄) +

∫ T

0

∫ T

0

Σt,s(x, x̄)Kt,s(x, x̄)dtds+Σ0,0(x, x̄)K0,0(x, x̄). (68)

F STRICT POSITIVE DEFINITENESS OF NEURAL ODE’S NTK

In this subsection, we will prove the NTK K∞ of Neural ODEs are strictly positive definite. We
first recall the definition of strict positive definite for a kernel function.

Definition 2. A kernel function k : X × X → R is strictly positive definite (SPD) if, for any finite
set of distinct points x1, · · · , xN ∈ X, the symmetric matrix K = [k(xi, xj)]

N
i,j=1 is strictly positive

definite, i.e., c⊤Kc > 0 for all nonzero vector c.

Recall that

Kθ(x, x̄) = ⟨∇vfθ(x),∇vfθ(x̄)⟩+ ⟨∇W fθ(x),∇W fθ(x̄)⟩+ ⟨∇Ufθ(x),∇Ufθ(x̄)⟩ .

In Theorem 2, we have shown that Kθ(x, x̄) → K∞(x, x̄) as n → ∞, provided ϕ is sufficient
smooth, and

⟨∇vfθ(x),∇vfθ(x̄)⟩ → Σ∗(x, x̄).

Hence, to show K∞ is SPD, it is sufficient to show Σ∗ is SPD.

Moreover, it follows from Theorem 1 that lim
L→∞

ΣL(x, x̄) = Σ∗(x, x̄). We first show ΣL is SPD.
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F.1 DUAL ACTIVATION AND SPD OF FINITE-DEPTH NETWORK’S NNGP KERNEL

We first provide the result for finite-depth network fLθ defined by 10, where the depth L <∞.

Proposition 6. Suppose ϕ is L1-Lipschitz continuous. If ϕ is non-polynomial nonlinear, then ΣL is
SPD on Sd−1 for 1 ≤ L <∞.

The proof is based on the concept of dual activation and Hermitian expansion. Here a brief intro-
duction is provided as follows. For details, we refer readers to Appendices from (Gao et al., 2021;
Daniely et al., 2016).

Let x ∼ N (0, 1) and f : R → R be a real-valued function. We can define an inner product using
expectation:

⟨f, g⟩ := Ex∼N (0,1)f(x)g(x).

Thus, we can further define a Hilbert space of functions H, that is, f ∈ H if and only if

∥f∥2 = ⟨f, f⟩ = Ex∼N (0,1) |f(x)|
2
<∞.

Apply Gram-Schmidt process to the polynomial functions {1, x, x2, · · · , } w.r.t. to the inner product
we defined before, and we obtain {hn} the (normalized) Hermite polynomials that is an orthonor-
mal basis to the Hilbert space H:

hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 ,

The dual activation ϕ̂ : [−1, 1] → R of an activation function ϕ is defined by

ϕ̂(ρ) := E(u,v)∼Nρ
ϕ(u)ϕ(v).

where Nρ is multidimensional Gaussian distribution with mean 0 and covariance matrix
[
1 ρ
ρ 1

]
.

Then the dual kernel Kϕ is defined over the unit sphere Sd−1: for every pair x, x̄ ∈ Sd−1, the dual
kernel Kϕ : Sd−1 × Sd−1 → R is defined by

Kϕ(x, x̄) := ϕ̂(xT x̄).

If a function ϕ ∈ H, we not only can obtain an expansion of ϕ by using the orthonormal basis of
Hermitian polynomials but also an expansion to the dual activation ϕ̂ by using the same Hermitian
coefficients. As a consequence, the corresponding dual kernel Kϕ can be shown to be strict positive
definite by using the Hermitian expansion.
Lemma 11. (Daniely et al., 2016, Lemma 12) If ϕ ∈ H, then the Hermitian expansion is given by

ϕ(x) =

∞∑
n=0

anhn(x), (69)

ϕ̂(ρ) =

∞∑
n=0

a2nρ
n. (70)

where an := ⟨hn, ϕ⟩ is the Hermite coefficients.

Theorem 11. (Jacot et al., 2018, Theorem 3)(Gneiting, 2013, Theorem 1) For a function f :
[−1, 1] → R with f(ρ) =

∑∞
n=0 bnρ

n, the kernel Kf : Sd−1 × Sd−1 → R defined by

Kf (x, x̄) := f(xT x̄)

is strictly positive define for any d ≥ 1 if and only if the coefficients bn > 0 for infinitely many even
and odd integer n.

Now, with these results, we are ready to prove the SPD of ΣL.
Lemma 12. If ϕ is nonlinear and non-polynomial, then Σ1 is SPD.
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Proof. We first show Σ1 is SPD. As Σ0(x, x̄) =
σ2
u

d ⟨x, x̄⟩ and we have

Σ1(x, x̄) = σ2
wE(u,v)∼N (0,G0) [ϕ(u)ϕ(v)] ,

where

G0 =
σ2
u

d

[
1 ⟨x, x̄⟩

⟨x̄, x⟩ 1

]
.

By the notion of dual activation, we have

Σ1(x, x̄) = σ2
wµ̂(x

T x̄),

where µ(x) := ϕ(σux/
√
d).

Clearly, µ is Lipschitz continuous since ϕ is. Then µ ∈ H and let the expansion of µ in Hermite
polynomials {hn}∞n=0 to be given as µ =

∑∞
n=0 anhn, where an = ⟨µ, hn⟩ are the Hermitian

coefficients. Then we can write µ̂ as µ̂(ρ) =
∑∞

n=0 a
2
nρ

n and we have

Σ1(x, x̄) = σ2
wµ̂(x

T x̄) = σ2
w

∞∑
n=0

a2n(x
T x̄)n.

Note that µ is non-polynomial if and only if ϕ is non-polynomial. As we assume ϕ is non-
polynomial, we have µ is non-polynomial, hence there are infinitely many number of nonzero an in
the expansion. That indicates bn := a2n > 0 for infinitely many even and odd numbers. As σ2

w > 0,
we have Σ1 is strictly positive definite.

Next, we can show if ΣL is SPD, then ΣL+1 is also SPD for all L ≥ 1.

Lemma 13. Suppose nonlinear non-polynomial ϕ. Given L <∞, then

1. E[uℓūℓ] = C0,0(x, x̄) + κ2
∑ℓ

i,j=1 C
i,j(x, x̄) is SPD for all ℓ ∈ {1, 2, · · · , L+ 1},

2. ΣL is also SPD.

Proof. As we are working with finite-depth network fLθ , it is fine to assume κ = 1 to simplify the
notations. Then Σℓ and ΣL have the recurrent relation, stated in Proposition 3, and so as Cℓ,k and
CL,K . By Theorem 12, we have C1,1 is SPD. Additionally, we have

C1,ℓ(x, x̄) = Eϕ(u0)ϕ(ū1) = Eϕ(u0)ϕ(ū0) = C1,1,

where we use the fact E[z0z̄ℓ] = δ0,ℓC
0,0(x, x̄). Thus, C1,ℓ is SPD for all ℓ. Recall that E[uℓūk] =

C0,0(x, x̄) +
∑ℓ

i=1

∑k
j=1 C

i,j(x, x̄). Using this relation, we can write

E[uℓūℓ] = C0,0(x, x̄) + C1,1(x, x̄) + 2

ℓ∑
i=2

C1,i(x, x̄) +

ℓ∑
i,j=2

Ci,j(x, x̄).

As C1,i is SPD for all i, the symmetry of Ci,j implies E[uℓūℓ] is SPD.

Now, assume the contrary, i.e., Σℓ+1 = Cℓ+1,ℓ+1 is not SPD. Then there exists distinct
{x1, · · · , xN} and nonzero a ∈ RN such that

0 =

N∑
i,j=1

aiajC
ℓ+1,ℓ+1(xi, xj) =

∑
i,j

aiajE[ϕ(uℓi)ϕ(uℓj)] = E

[
N∑
i=1

aiϕ(u
ℓ
i)

]2
.

We must have
∑

i aiϕ(u
ℓ
i) = 0. As we already show uℓ := (uℓ1, · · · , uℓN ) ∈ RN is a non-degenerate

Gaussian random variables, nonlinearity of ϕ implies a = 0, which contradicts a ̸= 0. Hence,
Σℓ+1 = Cℓ+1,ℓ+1 is SPD.
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F.2 STRICT POSITIVE DEFINITENESS OF NEURAL ODE’S NNGP KERNEL

Observe that the previous result uses induction to show ΣL is SPD. However, the strict positive
definiteness of ΣL might diminish as L →. To address this, we conduct a fine-grained analysis of
the properties of ΣL and demonstrate that these properties persist when L→ ∞. Consequently, Σ∗

retains these essential properties, which are crucial for proving that Σ∗ is SPD.

Recall from Theorem 1 that
Σ∗(x, x̄) = E[ϕ(u∗)ϕ(ū∗)],

where (u∗, ū∗) are centered Gaussian random variables with covariance S∗(x, x̄) defined as the limit
of SL(x, x̄), i.e.,

SL(x, x̄) = C0,0(x, x̄) + κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄) → S∗(x, x̄), as L→ ∞. (71)

Based on the proof of Theorem 1, S∗ is well defined. Some essential properties of SL and S∗ are
given as follows.
Lemma 14. Suppose L <∞. For any x, x̄ ∈ Sd−1, we have

1. SL(x, x) = SL(x̄, x̄)

2. SL(x, x) ≥ SL(x, x̄) and the equality holds if and only if x = x̄

Proof. As L <∞, we can assume κ = 1 for simplicity. To prove the result, we make the inductive
hypothesis that Cℓ,k(x, x) = Cℓ,k(x̄, x̄) for all ℓ, k ≤ L. Then observe that

SL+1(x, x̄) = SL(x, x̄) + 2

L∑
ℓ=1

Cℓ,L+1(x, x̄) + CL+1,L+1(x, x̄).

Using the inductive hypothesis, for any ℓ ∈ {1, 2, · · · , L+ 1} we have

Cℓ,L+1(x, x) = Eϕ(uℓ−1)ϕ(uL) = Eϕ(ūℓ−1)ϕ(ūL) = Cℓ,L+1(x̄, x̄),

where (uℓ−1, uL) are centered Gaussian random variables with covariance

E[uℓ−1uL] = C0,0(x, x) +

ℓ−1,L∑
i,j=1

Ci,j(x, x) = C0,0(x̄, x̄) +

ℓ−1,L∑
i,j=1

Ci,j(x̄, x̄) = E[ūℓ−1ūL].

This shows SL+1(x, x) = SL+1(x̄, x̄) and also Cℓ,k(x, x) = Cℓ,k(x̄, x̄) for all ℓ, k ≤ L+ 1.

Next, using Cℓ,k(x, x) = Cℓ,k(x̄, x̄), we have

SL(x, x)− SL(x, x̄) =
1

2
∥x− x̄∥2 + 1

2
E
∣∣gL(x)− gL(x̄)

∣∣2 ,
where the function gL(x) := κ

∑L
ℓ=1 ϕ(u

ℓ). This indicates SL(x, x) ≥ SL(x, x̄) and the equality
holds if and only if x̄ = x.

Corollary 2. For any x, x̄ ∈ Sd−1, we have

1. 0 < S∗(x, x) = S∗(x̄, x̄) <∞

2. S∗(x, x) ≥ S∗(x, x̄) and the equality holds if and only if x = x̄.

Proof. Observe that
S∗(x, x̄) = xT x̄+ E [g(x)g(x̄)] ,

where g(x) := lim
L→∞

gL(x) for gL(x) = L−1
∑L

ℓ=1 ϕ(u
ℓ). By Lemma 17, we obtain

∣∣gL(x)∣∣ =
O (1) uniform in L. Hence, g(x) is well defined and |g(x)| = O (1). Therefore, we obtain
S∗(x, x̄) = Θ(1). Additionally, it follows from the relation of SL(x, x)− SL(x, x̄) that

S∗(x, x)− S∗(x, x̄) =
1

2
∥x− x̄∥2 + 1

2
E |g(x)− g(x̄)|2 ,

which allows us to obtain the second result.
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Now, we are ready to prove the SPD of Σ∗.
Lemma 15. If ϕ is nonlinear and non-polynomial, then Σ∗ is SPD.

Proof. As ϕ is Lipschitz continuous, we can use Hermitian expansion to rewrite Σ∗:

Σ∗(x, x̄) = E(u,ū)∼S∗(x,x̄)[ϕ(u)ϕ(ū)] =

∞∑
n=0

a2n[S
∗(x, x̄)/S0]

n,

where we use (u, ū) ∼ S∗(x, x̄) to denote centered Gaussian random variables with covariance
computed using kernel S∗(x, x̄), an is the Hermitian coefficients of function ψ(u) := ϕ(

√
S0u) with

S0 := S∗(x, x), and we also use the facts S0 = S∗(x, x) = S∗(x̄, x̄) for all x, x̄ and S0 = Θ(1)
from Corollary 2.

Suppose we are given any finite distinct {xi}Ni=1 from Sd−1 and nonzero c ∈ RN . Observe that

N∑
i,j=1

cicjΣ
∗(xi, xj) =

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj [S
∗(xi, xj)]

n

=

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj
[
xTi xj + Eg(xi)g(xj)

]n
,

where we use S∗(x, x̄) = xT x̄+ Eg(x)g(x̄). By using fundamental properties for positive definite
matrices from linear algebra, we have

N∑
i,j=1

cicj
[
xTi xj + Eg(xi)g(xj)

]n
=cT (XXT + Eg(X)g(X)T )⊙nc

≥cT (XXT )⊙nc =

N∑
i,j=1

cicj
[
xTi xj

]n
,

where ⊙ is Hadamard product. Then we obtain
N∑

i,j=1

cicjΣ
∗(xi, xj) ≥

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj
(
xTi xj

)n
=

N∑
i,j=1

cicj

∞∑
n=0

a2n(x
T
i xj/S0)

n

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj/S0

[ψ(u)ψ(ū)]

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj

[ψ(u/
√
S0)ψ(ū/

√
S0)]

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj

[ϕ(u)ϕ(ū)]

=

N∑
i,j=1

cicjΣ
1(xi, xj),

where we use the definitions of Hermitian coefficients an and ψ. By Lemma 12, Σ1 is SPD and so
Σ∗ is also SPD.

As a corollary result, we have the NTK of Neural ODE is also SPD.
Corollary 3. Suppose ϕ and ϕ′ are nonlinear Lipschitz continuous. If ϕ is non-polynomial, then the
NTK K∞ of Neural ODE is SPD.
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Theorem 12. Let {xi, yi}Ni=1 be a training set. Assume

1. xi ∈ Sd−1, |yi| ≤ 1, and xi ̸= xj for all i ̸= j.

2. the activation ϕ is L1-Lipschitz nonlinear continuous, but non-polynomial,

3. its derivative ϕ′ are L2-Lipschitz nonlinear continuous,

4. and we choose the learning rate η ≤ 1/∥X∥2.

For any δ > 0, there exists a natural number nδ such that for all n ≥ nδ the parameter θk stays in
a neighborhood of θ0, i.e.,

∥θk − θ0∥ ≤ C∥X∥∥u0 − y∥/λ0, (72)
and the loss function L(θk) consistently decrease to zero at an exponential rate, i.e.,

L(θk) ≤
(
1− ηλ0

16

)k

L(θ0), (73)

where C > 0 is some constant only depends on L1, L2, σv , σw, σu, and T .

Proof. Given a distinct {xi}Ni=1, we consider the limiting NTK matrix H∞ ∈ RN×N defined as
H∞

ij = K∞(xi, xj). As ϕ is non-polynomial, we have λ0 := λmin{H∞} > 0. Let θ0 denote
the parameters at initialization and H(0) ∈ RN×N be the corresponding NTK computed by θ0 at
initialization.

By Theorem 2, we have H(0) converges a.s. to H∞, as the width n → ∞. Then for any δ0 > 0,
there exists a natural number n0 such that with probability at least (1−δ0) over random initialization
λmin{H(0)} ≥ λ0/2 for all n ≥ n0. By Lemma 19, there exists another natural number n1 such
that with probability at least (1−δ0), the initial residual ∥u0−y∥ ≤ σ∗

√
2N logN/δ for all n ≥ n1.

Therefore, for any δ > 0, we choose δ0 = δ/2, and it follows from Lemma 16 that, with probability
at least (1− δ) over random initialization, we have

∥vk − v0∥, ∥W k −W 0∥, ∥Uk − U0∥ ≤ C∥X∥∥u0 − y∥/λ0,
and

∥uk − y∥ ≤
(
1− ηλ0

16

)k

∥u0 − y∥,

for all
n ≥ max

{
n0, n1, C0N

3 log(N/δ)/λ30
}
.

G GLOBAL CONVERGENCE OF NEURAL ODES

In this section, we provide the convergence analysis of Neural ODEs defined equation 1 under
gradient descent.

As we use square loss, the loss function is given by

L(θ) :=

N∑
i=1

1

2
(fθ(xi)− yi)

2. (74)

By using the vectorization form equation 35 and chain rule, the gradients are given by

∂L(θ)

∂v
=

N∑
i=1

σv√
n
ϕ(hT (xi))(fθ(xi)− yi), (75)

∂L(θ)

∂W
=

N∑
i=1

[∫ T

0

σw√
n
ϕ(ht(xi))⊗ λt(xi)dt

]
(fθ(xi)− yi), (76)

∂L(θ)

∂U
=

N∑
i=1

σu√
d
[xi ⊗ λ0(xi)] (fθ(xi)− yi). (77)
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Consider the gradient descent

θk+1 = θk − η
∂L(θk)

∂θ
. (78)

Assume the inductive hypothesis: For all i ≤ k, there exist some constants αv, αw, αu > 0 such
that

1. ∥vi∥, ∥Wi∥, ∥Ui∥ ≤ C
√
n,

2. ∥ui − y∥ ≤ (1− ηα2
0)

i∥u0 − y∥,

where C > 0 is a constant and α0 := σmin

(
σv√
n
Φ0
)

.

Without loss generality, we assume σv = 1, σw = σ, σu/
√
d = 1 and L1 = L2 = 1.

Observe that

∥∂fθ
∂v

∥ = ∥ 1√
n
ϕ(hT )∥ ≤ 1√

n
∥U∥∥x∥eσT∥W∥/

√
n.

Note that

∥ ∂fθ
∂W

∥ ≤ σ√
n

∫ T

0

∥ϕ(ht)∥∥λt∥dt

≤ σ√
n

∫ T

0

∥U∥∥x∥eσt∥W∥/
√
n · ∥v∥√

n
eσ(T−t)∥W∥/

√
ndt

=(σT )
∥U∥√
n

∥v∥√
n
∥x∥eσT∥W∥/

√
n.

Observe that

∥∂fθ
∂U

∥ ≤ ∥x∥∥λ0∥ ≤ ∥x∥ · ∥v∥√
n
exp

{
σT∥W∥/

√
n
}

By using the inductive hypothesis, we obtain

∥∂fθ
∂v

∥ ≤ CeCσT ∥x∥, (79)

∥ ∂fθ
∂W

∥ ≤ (σT )CeCσT ∥x∥, (80)

∥∂fθ
∂U

∥ ≤ CeCσT ∥x∥. (81)

Then we obtain

∥vk+1 − v0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂v
∥

≤η
k∑

i=0

CeCσT ∥X∥∥ui − y∥

≤ηCeCσT ∥X∥
k∑

i=0

(1− ηα2
0)

i∥u0 − y∥

≤CeCσT ∥X∥∥u0 − y∥/α2
0

Note that the RHS is an constant after initialization. If we assume ∥x∥ = 1 and |y| = 1, then we
need to ensure

CeCσT ∥X∥∥u0 − y∥/α2
0 ≤ C

√
n. (82)
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And as a result, we have
∥vk+1∥ ≤ ∥vk+1 − v0∥+ ∥v0∥ ≤ C

√
n.

Similarly, we have

∥W k+1 −W 0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂W
∥

≤η
k∑

i=0

(σT )CeCσT ∥X∥∥ui − y∥

≤η(σT )CeCσT ∥X∥
k∑

i=0

(1− ηα2
0)∥u0 − y∥

≤(σT )CeCσT ∥X∥∥u0 − y∥/α2
0.

Then we need to ensure
(σT )CeCσT ∥X∥∥u0 − y∥/α2

0 ≤ C
√
n. (83)

Then we obtain
∥W k+1∥ ≤ ∥W k+1 −W 0∥+ ∥W 0∥ ≤ C

√
n.

Observe that

∥Uk+1 − U0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂U
∥

≤η
k∑

i=0

CeCσT ∥X∥∥ui − y∥

≤ηCeCσT ∥X∥
k∑

i=0

(1− ηα2
0)

i∥u0 − y∥

≤CeCσT ∥X∥∥u0 − y∥/α2
0.

Hence, we obtain
∥Uk+1∥ ≤ ∥Uk+1 − U0∥+ ∥U0∥ ≤ C

√
n.

Next, observe that
uk+1 − y =uk+1 − uk + (uk − y)

=

(
∂ũ

∂θ

)⊤

(θk+1 − θk) + (uk − y)

=

(
∂ũ

∂θ

)⊤(
−η ∂u

k

∂θ

)
(uk − y) + (uk − y)

=

[
I − η

(
∂ũ

∂θ

)⊤(
∂uk

∂θ

)]
(uk − y)

=

[
I − η

(
∂uk

∂θ

)⊤(
∂uk

∂θ

)]
(uk − y) + η

(
∂uk

∂θ
− ∂ũ

∂θ

)⊤(
∂uk

∂θ

)
(uk − y)

where ũ = u(θ̃) and θ̃ is an interpolation in between θk and θk+1.

Note that

∥∂f
∂v

− ∂f̄

∂v
∥ =∥ 1√

n
ϕ(hT )−

1√
n
ϕ(h̄T )∥

≤ 1√
n
∥hT − h̄T ∥

≤ C√
n
∥θ − θ̄∥eCσT ∥x∥

40



Published as a conference paper at ICLR 2025

where we use the Lemma and the inductive hypotheses.

Similarly, note that

∥ ∂f
∂W

− ∂f̄

∂W
∥ ≤ σ√

n
∥
∫ T

0

ϕ(ht)⊗ λt − ϕ(h̄t)⊗ λ̄tdt∥

≤ σ√
n

∫ T

0

(
∥ht − h̄t∥∥λt∥+ ∥h̄t∥∥λt − λ̄t∥

)
dt

≤C σ√
n

∫ T

0

∥θ − θ̄∥eCσt∥x∥ · eCσ(T−t)dt

≤(σT )
C√
n
∥θ − θ̄∥eCσT ∥x∥.

and

∥ ∂f
∂U

− ∂f̄

∂U
∥ ≤ ∥x∥∥λ0 − λ̄0∥ ≤ C√

n
∥θ − θ̄∥eCσT ∥x∥.

Hence, we have

∥∂f
∂θ

− ∂f̄

∂θ
∥ = ∥∂f

∂v
− ∂f̄

∂v
∥+ ∥ ∂f

∂W
− ∂f̄

∂W
∥+ ∥ ∂f

∂U
− ∂f̄

∂U
∥ ≤ (σT )

C√
n
∥θ − θ̄∥eCσT ∥x∥.

Then

∥∂u
k

∂θ
− ∂ũ

∂θ
∥ ≤ (σT )

C√
n
∥θk − θ̃∥eCσT ∥X∥ ≤ (σT )

C√
n
∥θk − θk+1∥eCσT ∥X∥,

where we use the fact θ̃ = αθk + (1− α)θk+1 for some α ∈ [0, 1].

Observe that

∥θk+1 − θk∥ = η∥∂L(θ
k)

∂θ
∥ = η∥

(
∂uk

∂θ

)⊤

(uk − y)∥ ≤ η(σT )CeCσT ∥X∥∥uk − y∥.

Hence, we obtain

∥∂u
k

∂θ
− ∂ũ

∂θ
∥ ≤ η(σT )2

C√
n
eCσT ∥X∥2∥uk − y∥,

and

∥∂u
k

∂θ
− ∂u0

∂θ
∥ ≤(σT )

C√
n
∥θk − θ0∥eCσT ∥X∥

≤(σT )
C√
n
eCσT ∥X∥

k−1∑
i=0

∥θi+1 − θi∥

≤η(σT )2 C√
n
eCσT ∥X∥2

k−1∑
i=0

∥ui − y∥

≤η(σT )2 C√
n
eCσT ∥X∥2

k−1∑
i=0

(1− ηα2
0)

i∥u0 − y∥

≤(σT )2
C√
n
eCσT ∥X∥2∥u0 − y∥/α2

0

≤α0/2,

where we use the assumption
√
n ≥ C(σT )2eCσT ∥X∥2∥u0 − y∥/α3

0. (84)
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It follows from the Weyl’s inequality that

σmin

(
∂uk

∂θ

)
≥ σmin

(
∂u0

∂θ

)
− ∥∂u

k

∂θ
− ∂u0

∂θ
∥ ≥ α0/2.

and so

λmin

[(
∂uk

∂θ

)T (
∂uk

∂θ

)]
≥ α2

0/4.

Therefore, we obtain

∥uk+1 − y∥ ≤
[
1− ηα2

0/4
]
∥uk − y∥+ η2(σT )3

C√
n
eCσT ∥X∥3∥uk − y∥2

≤
[
1− ηα2

0/4 + η2(σT )3
C√
n
eCσT ∥X∥3∥u0 − y∥

]
∥uk − y∥

=

[
1− η

(
α2
0/4− η(σT )3

C√
n
eCσT ∥X∥3∥u0 − y∥

)]
∥uk − y∥

≤
[
1− ηα2

0/8
]
∥uk − y∥,

where we assume
√
n ≥ 8Cη(σT )3eCσT ∥X∥3∥u0 − y∥/α2

0.

This finishes proving Lemma 16.

Lemma 16. Assume ϕ and ϕ′ are L1- and L2-Lipschitz continuous and λ0 := λmin(Kθ0) > 0.
Suppose we choose the width n = Ω(∥X∥4∥u0 − y∥2/λ30) and the learning rate η ≤ 1

∥X∥2 . Then
the parameters θk stays in the neighborhood of θ0, i.e.,

∥vk − v0∥, ∥W k −W 0∥, ∥Uk − U0∥ ≤ C∥X∥∥u0 − y∥/λ0, (85)

and the residual ∥uk − y∥ consistently decreases, i.e.,

∥uk − y∥ ≤
(
1− ηλ0

8

)k

∥u0 − y∥, (86)

where C > 0 is some constant only depends on L1, L2, σv , σw, σu, and T .

Lemma 17. Given θ, we have

∥ht∥ ≤ ∥U∥∥x∥ exp
{
σt√
n
∥W∥

}
, (87)

∥λt∥ ≤ ∥v∥√
n
exp

{
σ(T − t)√

n
∥W∥

}
, (88)

for all t ∈ [0, T ]

Proof. Observe that

ht = h0 +

∫ t

0

σ√
n
Wϕ(hs)ds

and so

∥ht∥ ≤ ∥h0∥+
σ√
n
∥W∥

∫ t

0

∥hs∥ds

Then it follows from the Gronwall’s inequality that

∥ht∥ ≤ ∥U∥∥x∥ exp
{
σt√
n
∥W∥

}
, ∀t ∈ [0, T ]. (89)
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Similarly, we have

λt = λT +

∫ T

t

− σ√
n

diag[ϕ′(ht)]W⊤λsds

implies

∥λt∥ ≤ ∥λT ∥+
σ√
n
L1∥W∥

∫ T

t

∥λs∥ds.

By the Gronwall’s inequality, we obtain

∥λt∥ ≤∥λT ∥ exp

{∫ T

t

σ∥W∥/
√
nds

}
≤∥λT ∥ exp

{
σ∥W∥/

√
n(T − t)

}
.

By λT = 1√
n

diag[ϕ′(hT )]v, we obtain the final result.

Lemma 18. Given θ, θ̄, we have

∥ht − h̄t∥ ≤∥θ − θ̄∥ ∥U∥
∥W∥

eσt(∥W∥+∥W̄∥)/
√
n∥x∥ (90)

∥λt − λ̄t∥ ≤∥θ − θ̄∥ ∥v∥
∥W∥

eσ(T−t)(∥W∥+∥W̄∥)/
√
n/

√
n (91)

for all t ∈ [0, T ]

Proof. Observer that

ht − h̄t = (h0 − h̄0) +
σ√
n

∫ t

0

[
Wϕ(hs)− W̄ϕ(h̄s)

]
ds

Then we have

∥ht − h̄t∥ ≤∥h0 − h̄0∥+
σ√
n

∫ t

0

[
∥W − W̄∥∥hs∥+ ∥W̄∥∥hs − h̄s∥

]
ds

≤∥h0 − h̄0∥+
σ√
n
∥W − W̄∥

∫ t

0

∥Ux∥ exp
{
σs∥W∥/

√
n
}
ds+

σ√
n
∥W̄∥

∫ t

0

∥hs − h̄s∥ds

Using the bound of ∥hs∥, we have

σ√
n
∥Ux∥∥W − W̄∥

∫ t

0

exp
{
σs∥W∥/

√
n
}
ds

=
σ√
n
∥Ux∥∥W − W̄∥ ·

(
σ√
n
∥W∥

)−1 (
eσt∥W∥/

√
n − 1

)
=

∥U∥
∥W∥

∥W − W̄∥
(
eσt∥W∥/

√
n − 1

)
∥x∥.

Then by Grownwall’s inequality, we obtain

∥ht − h̄t∥ ≤
(
∥h0 − h̄0∥+ ∥W − W̄∥ ∥U∥

∥W∥

(
eσ∥W∥t/

√
n − 1

)
∥x∥
)
eσ∥W̄∥t/

√
n

≤
(
∥U − Ū∥+ ∥W − W̄∥

) ∥U∥
∥W∥

eσt(∥W∥+∥W̄ )∥/
√
n∥x∥.

Then we obtain the result.

Observe that

λt − λ̄t = (λT − λ̄T ) +
σ√
n

∫ T

t

diag[ϕ′(hs)]W⊤λs − diag[ϕ′(h̄s)]W̄⊤λ̄sds.
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Then we obtain

∥λt − λ̄t∥ ≤ ∥λT − λ̄T ∥+
σ√
n

∫ T

t

(
∥W − W̄∥∥λs∥+ ∥W̄∥∥λs − λ̄s∥

)
ds

By using the bound of ∥λs∥, we obtain

σ√
n
∥W − W̄∥∥v∥√

n

∫ T

t

exp

{
σ(T − s)√

n
∥W∥

}
ds

≤ σ√
n
∥W − W̄∥∥v∥√

n

(
σ√
n
∥W∥

)−1 (
eσ(T−t)∥W∥/

√
n − 1

)
=

1√
n
∥W − W̄∥ ∥v∥

∥W∥

(
eσ(T−t)∥W∥/

√
n − 1

)
.

Then by Grownwall’s inequality, we have

∥λt − λ̄t∥ ≤
(
∥λT − λ̄T ∥+

1√
n
∥W − W̄∥ ∥v∥

∥W∥

(
eσ(T−t)∥W∥/

√
n − 1

))
eσ(T−t)∥W̄∥/

√
n

≤ 1√
n

(
∥v − v̄∥+ ∥W − W̄∥

) ∥v∥
∥W∥

eσ(T−t)(∥W∥+∥W̄∥)/
√
n

Lemma 19. Given δ > 0, there exists a natural number nδ such that for all n ≥ nδ , with probability
at least 1− δ over random initialization, we have

∥u∥ ≤ σ
√

2N log(N/δ), (92)

where σ2 := Σ∗(x, x) for x ∈ Sd−1.

Proof. Fix x, denote u := fθ(x) = vTϕ(hT (x))/
√
n. By Theorem 1, we have u converges in

distribution to a centered Gaussian random variable with variance σ2 := Σ∗(x, x). Hence, given
δ > 0, we have there exists nδ such that n ≥ nδ implies

|P (u ≥ ε)− P (z ≥ ε)| ≤ δ/2,

where z ∼ N (0, σ2). Then we have

P (u ≥ ε) ≤ δ/2 + P (z ≥ ε) ≤ δ/2 + e−ε2/2σ2

≤ δ,

where the last inequality is due to ε := σ
√

2 log(2/δ). Similarly, we obtain two two-tailed bound,
i.e.,

P (|u| ≥ ε) ≤ δ.

Now, denote u = fθ(X) ∈ RN as a vector. We have

P (∥u∥ ≥ ε0) =P (∥u∥2 ≥ ε20) = P (

N∑
i=1

|ui|2 ≥ ε20)

≤
N∑
i=1

P (|ui|2 ≥ ε20/N) =

N∑
i=1

P (|ui| ≥ ε0/
√
N)

≤δ,

where we use the fact P (
∑N

i=1 xi ≥ ε) ≤
∑N

i=1 P (xi ≥ ε/N) and ε0 := σ
√

2N log(N/δ).

H ADDITIONAL EXPERIMENTS

In this appendix, we provide supplementary experiments that complement the results in the main
paper. These experiments explore the impact of different activation functions, scaling for long time
horizons, and the behavior of Neural ODEs when approximated by Gaussian processes. Addition-
ally, we examine the behavior of the NTK when using polynomial activations.
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H.1 SCALING FOR LONG-TIME HORIZONS

As discussed in Proposition 1 and Proposition 2, smooth activations ensure that the forward and
backward dynamics of Neural ODEs have globally unique solutions. However, extending the time
range or working with long-time horizons in the dynamics can introduce difficulties for numerical
solvers, leading to higher numerical errors. To understand how Neural ODEs behave over extended
time horizons, we investigated their behavior at initialization as the time horizon increases, focusing
on how output magnitudes and variance are affected. The objective was to understand how extending
the time horizon impacts the model’s outputs and the subsequent training process.

At initialization, as the time horizon T increases, the output magnitudes grow larger, resulting in
increased variance, as shown in Figure 3(a). This increased variance negatively impacts the training
of Neural ODEs with gradient descent, leading to damping in the early stages of training as illus-
trated in Figure 3(b). We observed that increasing the width of neural networks reduced the output
variance, as shown in Figure 3(a). Additionally, for long-time horizons, where T is large, we suggest
scaling the dynamics by setting the weight variance σw ∼ 1/T . This approach effectively mitigates
the growth in output magnitudes, as shown in Figure 3(c), and reduces early-stage damping during
training, as illustrated in Figure 3(d).

(a) (b) (c) (d)

Figure 3: Effects of increasing time horizons on Neural ODE outputs and training. (a) Output
variance increases as the time horizon T becomes large at initialization. (b) This leads to damping
during the early stages of training with gradient descent. (c) Scaling the dynamics by setting the
weight variance σw ∼ 1/T reduces the output variance. (d) This scaling also mitigates early-stage
damping, improving training stability.

H.2 GAUSSIAN PROCESS APPROXIMATION

In Section 4, we established that Neural ODEs tend toward a Gaussian Process (GP) as their width
increases, as demonstrated in Theorem 1. The associated NNGP kernel of this Gaussian process is
non-degenerate, as stated in Lemma 5. To empirically verify these theoretical findings, we conducted
a series of experiments.

First, we fixed an input x and initialized 10,000 random Neural ODEs. We then plotted the output
histograms for various network widths and fitted the distributions with a Gaussian model, as shown
in Figure 4. Additionally, we ran statistical tests to confirm whether the output distributions followed
a Gaussian distribution. The Kolmogorov-Smirnov (KS) test statistics and p-values indicated that as
long as the width exceeds 100, the outputs closely follow a Gaussian distribution.

Next, we analyzed the independence of the output neurons by plotting pairwise outputs across two
coordinates. According to Theorem 1, the output neurons should become independent as the width
increases. Figure 5 confirms this: while the diagonal plots show Gaussian bell shapes, the off-
diagonal plots resemble random ball shapes, indicating that the neurons are uncorrelated and, there-
fore, independent as the width increases.

Finally, we investigated whether Neural ODEs preserve the structure of input data at the output. We
constructed a matrix X of 10 samples and calculated the input covariance matrix XX⊤. Then, we
initialized 10,000 Neural ODEs with random weights and evaluated them on the input X , computing
the output covariance matrix. As shown in Figure 6, the output covariance matrix retained the cor-
relation patterns of the input matrix but with reduced magnitudes, indicating that Neural ODEs act
as structure-preserving smoothers, reducing the spread of the data while maintaining its underlying
relationships.
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(a) KS Statistic: 0.0730,
P-value: 0.0000.

(b) KS Statistic: 0.0200,
P-value: 0.0366.

(c) KS Statistic: 0.0130,
P-value: 0.3609.

(d) KS Statistic: 0.0085,
P-value: 0.8600.

(e) KS Statistic: 0.0079,
P-value: 0.9084.

(a) KS Statistic: 0.0069,
P-value: 0.9688.

Figure 4: Gaussian fit of the sample distribution from 10,000 randomly initialized Neural ODEs
across widths 10, 50, 100, 200, 500, and 1000. The corresponding KS statistics and p-values are
displayed, showing improved Gaussian fit as width increases.

Figure 5: Pairplots of output neurons given the same input data, showing that output neurons become
independent as network width increases.

Additionally, we computed the smallest eigenvalues of the output covariance matrix. By sampling
500 examples from the MNIST training set and computing the covariance matrix for 10,000 inde-
pendently initialized Neural ODEs, we found that the smallest eigenvalues became strictly positive
when the width exceeded the number of samples. This result indicates that the NNGP and NTK
kernels are strictly positive definite, aligning with our theoretical findings.

H.3 SMOOTH VS. NON-SMOOTH ACTIVATIONS

To compare the performance of smooth and non-smooth activation functions, we evaluated both
Softplus (smooth) and ReLU (non-smooth) across different widths, measuring their training and test
losses, parameter distances, and NTK least eigenvalues. The results highlight several key differences
between these activations.
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(a) Input Covariance (b) Output Covariance (c) Least Eigenvalues

Figure 6: Comparison of input and output covariance matrices. (a) Input covariance matrix. (b)
Output covariance matrix from Neural ODEs, showing similar structure but reduced variance. (c)
Least eigenvalues of the covariance matrices, confirming positive definiteness as width increases.

Training and Test Loss Behavior: As illustrated in Figure 7(a)-(b), the log-scale plots show that
Softplus consistently converges faster than ReLU. ReLU experiences slower convergence, particu-
larly during the early stages of training, while Softplus benefits from smoother and faster optimiza-
tion, especially at larger widths.

Parameter Distance: We also measured the distance between the model parameters and their initial
values throughout training. As shown in Figure 7(c), parameters remained relatively closer to their
initialization for Softplus, while the parameter distance for ReLU was significantly higher. This
suggests that Softplus’s smoother nature results in more stable parameter updates during training,
contributing to its faster convergence.

NTK Least Eigenvalues: Regarding the NTK least eigenvalues, the results shown in Figure 7(d)
indicates both activations exhibited strictly positive eigenvalues, with ReLU’s slightly larger than
Softplus’s. However, despite this, Softplus converged more rapidly based on both training and test
loss results. We hypothesize that Softplus’s smoothness allows for more accurate gradient computa-
tion by the numerical solver, leading to more efficient optimization compared to ReLU, which may
suffer from less precise gradient calculations due to its non-smooth nature.

In summary, Softplus not only converges faster in terms of loss, but it also leads to more stable
parameter behavior during training, despite the slightly smaller NTK least eigenvalues compared to
ReLU. These findings suggest that the smoother nature of Softplus provides significant advantages
for Neural ODE training.

(a) (b) (c) (d)

Figure 7: Comparison of Smooth (Softplus) and Non-Smooth (ReLU) Activation Functions across
Neural ODE Training. (a) Log-scale plot of training loss shows faster convergence for Softplus
compared to ReLU, especially at larger widths. (b) Log-scale plot of test loss similarly demon-
strates faster convergence for Softplus, with ReLU exhibiting slower progress in the early stages.
(c) Parameter distance from initialization, showing that Softplus keeps parameters closer to their
initial values, suggesting more stable updates. (d) NTK least eigenvalues for both activations, where
ReLU’s eigenvalues are slightly larger, though Softplus achieves faster overall convergence.
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(a) (b) (c) (d)

Figure 8: Comparison of Neural ODEs with Softplus (non-polynomial) and Quadratic (polynomial)
activation functions. (a) Training loss for Softplus and Quadratic activations, showing slower con-
vergence for the Quadratic case. (b) Test loss comparison, further illustrating the slower convergence
for Quadratic activations. (c) Parameter differences from initialization, showing that Quadratic ac-
tivations lead to slightly larger parameter drift compared to Softplus. (d) NTK least eigenvalues,
where both activations show strictly positive eigenvalues, with Quadratic’s being slightly larger than
Softplus’s.

H.4 POLYNOMIAL ACTIVATIONS FOR NTK AND GLOBAL CONVERGENCE

In this experiment, we tested quadratic activation functions to assess their impact on NTK behavior
and convergence. While previous results suggested that nonlinearity but non-polynomiality is a
sufficient condition for the strict positive definiteness (SPD) of the NTK, our experiments reveal
that it is not a necessary condition.

We observed that the NTK of Neural ODEs using quadratic activation is also strictly positive definite,
with the smallest eigenvalue slightly higher than that of Softplus, as shown in Figure 8(d). Despite
this, the quadratic Neural ODE converged much more slowly than Softplus, as illustrated in the
training and test losses (Figure 8(a)-(b)).

In terms of parameter behavior (Figure 8(c)), the parameter differences for the quadratic activation
were slightly larger than those for Softplus, meaning the parameters drifted further from their initial
values. However, these differences remained within the same order of magnitude, indicating that the
model still satisfies the conditions for global convergence, even though it does not meet the sufficient
condition of being non-polynomial.

In summary, while quadratic activation functions result in strictly positive definite NTKs similar to
non-polynomial activations, they lead to slower convergence and slightly less stable parameter be-
havior compared to smoother activations like Softplus. This suggests that while non-polynomiality
is not strictly necessary for SPD and convergence, smoother activations may offer practical benefits
for faster and more stable training.

H.5 CONVERGENCE ANALYSIS ON DIVERSE DATASETS

In the main paper, we focused on the convergence properties of Neural ODEs using different activa-
tion functions on the MNIST dataset. To ensure that these findings generalize across different types
of data and tasks, we extended our experiments to three additional datasets: CIFAR-10 (image clas-
sification), AG News (text classification), and Daily Climate (time series forecasting). This section
details the performance of three key activation functions—Softplus, ReLU, and GELU—on these
datasets, highlighting their effects on convergence speed, stability, and generalization.

For each dataset, we trained Neural ODE models with different widths (i.e., 500, 1000, 2000, 3000)
using Softplus, ReLU, and GELU activations. We monitored the training loss and test loss, compar-
ing how different activations influence convergence behavior across datasets. The optimizer used
was gradient descent with a learning rate of 0.1, and models were trained for 100 epochs.

For CIFAR-10, the results showed minimal differences between the activation functions.

• Softplus, ReLU, and GELU all exhibited similar convergence patterns, with larger widths leading
to faster convergence across the board.
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• Larger widths consistently resulted in lower training and test losses, but the specific choice of
activation did not have a significant impact on the overall performance or convergence speed.

These results suggest that for CIFAR-10, the activation function choice is less critical, particularly
when the network is sufficiently wide, i.e., see Figure 9.

(a) Softplus (b) ReLU (c) GELU

Figure 9: Training and test loss behavior for CIFAR-10 across different activations: (a) Softplus, (b)
ReLU, and (c) GELU. All activations show similar convergence patterns, with larger widths leading
to faster convergence.

For AG News, we observed distinct convergence patterns across the activation functions:

• Softplus converged the fastest, followed by ReLU, with GELU converging the slowest. Despite
GELU being a smooth activation, its derivative differs significantly compared to the other activa-
tions, which may explain the slower convergence rate.

• All three activations shared the same trend: larger widths led to faster convergence and lower test
losses. However, the differences between activation functions were more pronounced at smaller
widths, where GELU lagged behind (Figure 10).

This suggests that while GELU’s smoothness offers theoretical benefits, in practice, its derivative
may cause slower optimization dynamics, particularly for text-based tasks like AG News.

(a) Softplus (b) ReLU (c) GELU

Figure 10: Training and test loss behavior for AG News across different activations: (a) Softplus, (b)
ReLU, and (c) GELU. Softplus converges fastest, while GELU lags due to its derivative behavior.

(a) Softplus (b) ReLU (c) GELU

Figure 11: Training and test loss behavior for Daily Climate time series forecasting: (a) Softplus,
(b) ReLU, and (c) GELU. All activations show similar convergence, with larger widths leading to
faster results.
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H.6 NON-SMOOTH ACTIVATION FUNCTIONS: COMPARING “DISCRETIZE-THEN-OPTIMIZE”
AND “OPTIMIZE-THEN-DISCRETIZE”

(a) (b) (c) (d)

Figure 12: Comparison of Neural ODEs and ResNets with Softplus (smooth) and ReLU (non-
smooth) activations. (a, b) Softplus: Output and gradient differences in log-log scale, both showing
1/L convergence. (c, d) ReLU: Output difference shows 1/L convergence, while gradient differ-
ence remains constant as depth L increases.

(a) (b) (c) (d)

Figure 13: Training comparison of Neural ODEs and ResNets with ReLU (non-smooth) activation.
(a) Training loss decreases consistently and aligns closely for both Neural ODEs and ResNets. (b)
Test loss shows a similar trend, consistently decreasing for both models. (c) Output difference
remains consistently small throughout training. (d) Gradient difference oscillates during training.

In this experiment, we investigate the impact of non-smooth activation functions, specifically ReLU,
on the performance of Neural ODEs and their ResNet approximations under the “Discretize-Then-
Optimize” and “Optimize-Then-Discretize” frameworks. While the output differences between the
two frameworks decrease as the depth L increases, our results reveal that the backward gradients
fail to converge due to the non-smooth nature of ReLU’s derivative.

Smooth Activation Functions (Softplus). For smooth activation functions like Softplus, both the
output difference and gradient difference between the two frameworks decrease at a rate of 1/L as
the depth L increases. This behavior aligns with Proposition 2 and is illustrated in Figure 12(a)-(b).

Non-Smooth Activation Functions (ReLU). In contrast, for ReLU, the output difference still
decreases at a rate of 1/L, as shown in Figure 12(c). However, the gradient difference fails to
converge, as illustrated in Figure 12(d). Initially, the gradient difference reduces as depth increases,
but it eventually stagnates at a fixed error level. Increasing the network width does not resolve this
issue. Notably, the largest gradient difference is observed at width 500, whereas smaller errors are
achieved for both smaller and larger widths, such as width 200 and 1000. These results confirm
that the lack of a continuous derivative in ReLU introduces inconsistencies in gradient computations
between the two frameworks.

Training Dynamics. Despite this mismatch in gradient computation, we did not observe signif-
icant differences in the training dynamics between Neural ODEs and ResNets. We trained Neural
ODEs and their finite-depth ResNet approximations (fixed at depth 200, as further depth increases
did not reduce errors, as shown in Figure 12(d)) on a subset of MNIST. As illustrated in Figure 13,
both models exhibit similar training and test losses. While the output differences remain consis-
tently small during training, the gradient differences oscillate, as shown in Figure 13. ResNets, as
finite-depth networks, are known to exhibit global convergence guarantees under gradient descent in
overparameterized regimes (Du et al., 2019a), so their convergence is unsurprising. What is unex-
pected, however, is the near-identical training dynamics between Neural ODEs and ResNets despite
the gradient mismatch caused by ReLU’s non-smoothness. Our hypothesis is that while gradient
differences oscillate during training, they remain within small magnitudes because MNIST is a sim-
ple dataset and ReLU’s derivative is almost continuous everywhere except at the origin. This partial
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smoothness may mitigate the adverse effects of the gradient mismatch. However, we anticipate that
in realistic applications involving more complex datasets, these differences could lead to divergent
training trajectories and dynamics for Neural ODEs and ResNets using non-smooth activations.

H.7 SENSITIVITY OF “OPTIMIZE-THEN-DISCRETIZE” TO ODE SOLVERS

(a) (b) (c)

Figure 14: Sensitivity of “Optimize-then-discretize” to ODE solvers. (a) Training and test losses
decrease consistently for all three solvers at width 500. (b) Training and test losses decrease consis-
tently for all three solvers at width 2000. (c) Time taken by each ODE solver across different widths,
highlighting the scalability advantage of fixed-step solvers.

In this subsection, we investigate the impact of different numerical ODE solvers on the accuracy of
gradient computation and overall training dynamics in the “Optimize-then-discretize” framework.
The solvers considered in our experiments are Euler, rk4, and dopri5.

As illustrated in Figure 14(a)-(b), the choice of ODE solver does not significantly affect the accuracy
of gradient computation or the overall training dynamics in our specific setting. This is consistent
with the theoretical guarantees established in Proposition 1, where we demonstrated that the ODE
dynamics in Equations Eq. (2) and Eq. (4) possess globally unique solutions under the smoothness
conditions on activation functions. Given the relatively simple nature of the system studied, the
numerical errors introduced by the solvers appear to be negligible in this context. However, this
observation may not generalize to more complex systems or practical applications where numerical
errors can be influenced by other factors such as stiffness or stability in the dynamics, which are
beyond the scope of this paper.

An interesting observation from our experiments is the computational efficiency of the solvers.
While adaptive solvers like dopri5 provide high accuracy, they require significantly more computa-
tion time as the neural network width increases. In contrast, fixed-step methods such as Euler and
rk4 scale more efficiently with width, making them preferable in scenarios where computational
cost is a concern. This is illustrated in Figure 14(c), where we compare the time taken by the solvers
across different widths.

I DISCUSSION ON GENERAL DYNAMIC FORM IN NEURAL ODES

In this section, we discuss extending our results from the specific form equation 1 and equation 2 to
a more general dynamic formulation. Specifically, we first consider a generalized nonlinear trans-
formation:

ḣt =
σw√
n
Wf(ht, t), ∀t ∈ [0, T ],

where the original nonlinear activation function ϕ in equation 2 is replaced by a general nonlinear
mapping f : Rn×R → Rn, defined as f : (h, t) 7→ f(h, t). This generalization introduces explicit
time dependence, transforming the system from an autonomous to a non-autonomous system. Non-
autonomous systems are prevalent in applications such as diffusion models (Song et al., 2020) and
physics-informed neural networks (PINNs) (Sholokhov et al., 2023). The function f can represent
another shallow neural network or more complex operations, such as convolution layers (LeCun
et al., 1998), gating mechanisms (Hochreiter, 1997), attention mechanisms (Vaswani, 2017), or batch
normalization (Ioffe, 2015).
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For this generalized form, the backward dynamics take the form:

λ̇t = − σw√
n
J(ht, t)W

⊤λt,

where J = ∂f/∂h ∈ Rn×n is the Jacobian matrix of f with respect to h. By Theorem 5, the
forward ODE has unique global solutions if f is continuous in t and Lipschitz continuous in h, with
a Lipschitz constant independent of t. This generalizes the continuity requirement for the activation
function ϕ to f . Additionally, if the Jacobian matrix J is globally bounded, the backward ODE
also admits a unique global solution. Since f is Lipschitz continuous in h, the boundedness of J
is naturally satisfied (on a compact set). Therefore, appropriate smoothness conditions on f ensure
well-posed forward and backward dynamics with unique solutions.

Using Euler’s method, we discretize the forward and backward dynamics as follows:

hℓ+1 = hℓ + κ · σw√
n
Wf(hℓ, tnℓ

),

λℓ+1 = λℓ − κ · σw√
n
J(hℓ, tnℓ

)W⊤λℓ,

where κ = T/L. Ensuring convergence of (hℓ,λℓ) to (ht,λt) is critical to aligning the gradients
obtained from the “discretize-then-optimize” and “optimize-then-discretize” methods. As discussed
in Proposition 2, additional smoothness of the backward ODE is required for gradient equivalence.
By Theorem 7, the mapping t 7→ J(ht, t) must be continuous in t, which implies that J is Lipschitz
continuous in h with a Lipschitz constant independent of t. The smoothness of J with respect to
h can be guaranteed by imposing second-order regularity conditions on f . Specifically, bounding
the Jacobian tensor ∂J/∂h under suitable norms, such as the operator norm or Frobenius norm,
ensures the required regularity. Although ∂J/∂h represents a higher-order tensor, these regularity
conditions allow the gradient consistency results from Proposition 2 to extend seamlessly to this
generalized formulation.

Theorem 7 provides not only convergence guarantees but also a uniform convergence rate un-
der globally uniform smoothness conditions. Consequently, by Theorem 8, the iterated limits in
Lemma 1 and Lemma 2 converge to the same double limit. As a result, the NNGP and NTK of
the generalized Neural ODE remain well-defined. If the limiting NNGP or NTK is strictly positive
definite (SPD), global convergence under gradient descent can also be established.

Finally, we discuss extending the dynamics to a post-activation formulation:

ḣt = f

(
σw√
n
Wht, t

)
,

where the linear transformation h 7→ σw√
n
Wh is applied before the nonlinear mapping f . The anal-

ysis remains analogous because the linear transformation is globally 1-Lipschitz continuous under
Theorem 4. However, we focus primarily on the pre-activation form, as it consistently achieves
superior empirical performance compared to the post-activation formulation (He et al., 2016b).

J RELATED WORKS

Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018b) introduced a continuous-
depth framework for modeling dynamics by replacing discrete-layer transformations with parame-
terized differential equations. This innovative framework has since inspired extensive research,
leading to both theoretical advancements and practical applications.

Neural ODEs are distinguished by their continuous-time representation and memory efficiency
through parameter sharing, setting them apart from traditional architectures like ResNet (He et al.,
2016a). Building on this foundation, several extensions have been proposed to address more
complex systems. Notable examples include Neural Stochastic Differential Equations (SDEs) for
stochastic dynamics (Li et al., 2020), Neural Partial Differential Equations (PDEs) for spatiotem-
poral systems (Sirignano & Spiliopoulos, 2018; Raissi et al., 2019), Neural Controlled Differential
Equations (CDEs) for irregular time-series data (Kidger et al., 2020), and Neural Variational and
Hamiltonian Systems for capturing conserved quantities in physical dynamics (Greydanus et al.,

52



Published as a conference paper at ICLR 2025

2019). These advanced formulations have broadened the applicability of Neural ODEs to diverse
domains, such as time-series modeling (Rubanova et al., 2019), computer vision (Chen et al., 2018b;
Park et al., 2021), and reinforcement learning (Du et al., 2020). In generative modeling, Neu-
ral SDEs underpin approaches like FFJORD (Grathwohl et al., 2018), score-based methods (Song
et al., 2020), and diffusion models (Ho et al., 2020). Similarly, in physics-informed machine learn-
ing, Neural PDEs and Physics-Informed Neural Networks (PINNs) have proven critical for solving
physical systems while incorporating domain-specific knowledge (Sholokhov et al., 2023; Karni-
adakis et al., 2021; Raissi et al., 2019). However, while these features offer flexibility and efficiency,
they also introduce significant challenges during training.

A key challenge in training Neural ODEs lies in gradient computation. The original adjoint method
introduced by Chen et al. (2018b) computes gradients with minimal memory overhead. However,
this approach can suffer from numerical instabilities, as observed in Gholaminejad et al. (2019). To
address these issues, advanced methods have been developed. For instance, Zhuang et al. (2020a)
integrates adjoint techniques with checkpointing to balance memory usage and computational cost,
while Matsubara et al. (2021) employs symplectic integrators to preserve ODE structure, ensuring
stability in long-time horizons and oscillatory systems. Finlay et al. (2020) regularizes the Jaco-
bian norm of the dynamics to improve stability and generalization. Ko et al. (2023) introduces a
homotopy-based approach, starting with simplified dynamics and gradually transitioning to target
dynamics. These methods generally follow an “optimize-then-discretize” approach, where (aug-
mented) backward ODEs are solved numerically to compute gradients. Conversely, the “discretize-
then-optimize” approach, which discretizes the forward ODE into a finite-depth network for gradient
computation via backpropagation, has been explored by Massaroli et al. (2020). However, as noted
in Zhuang et al. (2020a;b), this method often results in deeper computational graphs, raising con-
cerns about gradient accuracy.

To address the challenge in gradient computation, several theoretical studies have been conducted,
focusing on well-posedness and stability. For instance, Gholaminejad et al. (2019) highlighted sig-
nificant numerical instabilities when using ReLU activations in Neural ODEs. Meanwhile, Ro-
driguez et al. (2022) investigated the stability of Neural ODEs through a Lyapunov framework de-
rived from control theory. Despite these advancements, none of these works address when and how
the “discretize-then-optimize” and “optimize-then-discretize” methods can yield equivalent gradi-
ents. Moreover, the question of whether simple first-order optimization methods, such as stochastic
gradient descent, can reliably train Neural ODEs to convergence remains unexplored.

Another essential challenge lies in analyzing the training dynamics of Neural ODEs due to the in-
herent nonconvexity of neural network optimization. A significant breakthrough in this area came
from the Neural Tangent Kernel (NTK) framework introduced by Jacot et al. (2018), which demon-
strated that the NTK governs the training dynamics of feedforward networks (FFNs) under gradient
descent and converges to a deterministic limit as network width increases. This convergence facili-
tates global convergence guarantees for gradient-based optimization in overparameterized regimes,
provided the NTK remains strictly positive definite (SPD) (Du et al., 2019a; Allen-Zhu et al., 2019;
Nguyen, 2021). The strict positive definiteness of the NTK has been extensively studied, beginning
with dual activation analysis for two-layer networks (Daniely et al., 2016) and later extended to
finite-depth FFNs (Jacot et al., 2018; Du et al., 2019a). Recent work has further applied NTK the-
ory to diverse architectures, including convolutional neural networks (CNNs) (Arora et al., 2019),
recurrent neural networks (RNNs) (Yang, 2020), transformers (Hron et al., 2020), physics-informed
neural networks (PINNs) (Wang et al., 2022), and graph neural networks (GNNs) (Du et al., 2019b).
NTK analysis has also been explored for various optimization methods, such as stochastic gradient
descent (SGD) (Zou et al., 2020) and adaptive gradient algorithms (Chen et al., 2018a). A few recent
works start studying large-depth neural networks Gao & Gao (2022b;a); Gao (2024). However, ap-
plying NTK theory to continuous-depth models like Neural ODEs and determining whether similar
SPD and convergence properties hold remains an open and active area of research.

Despite significant advancements, challenges persist in understanding the training dynamics of Neu-
ral ODEs and ensuring gradient consistency between the “discretize-then-optimize” and “optimize-
then-discretize” approaches. Our work addresses these gaps by:

1. Gradient Equivalence: Establishing conditions under which the gradients computed by the two
methods are equivalent, as demonstrated in Proposition 1 and Proposition 2, emphasizing the role
of smooth activations.
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2. NTK Analysis: Providing rigorous conditions for the well-definedness of the Neural ODE NTK,
demonstrating its strict positive definiteness (SPD) under suitable activation function properties,
as stated in Theorem 2 and Corollary 1.

3. Global Convergence: Extending global convergence guarantees for gradient descent in overpa-
rameterized Neural ODEs, bridging the gap between discrete and continuous-depth models, as
outlined in Theorem 3.
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