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Abstract

Sign Language Translation has advanced with001
deep learning, yet evaluations remain signer-002
dependent, with overlapping signers in training,003
development, and test sets. This raises con-004
cerns about whether models truly generalise or005
rely on signer-specific features. To address this,006
signer-fold cross-validation is conducted on007
GFSLT-VLP, GASLT, and SignCL—three lead-008
ing, publicly available, non-proprietary gloss-009
free sign language translation models, with010
SignCL being among the most prominent. Ex-011
periments are performed on two benchmark-012
ing datasets, CSL-Daily and PHOENIX14T.013
The results reveal a significant performance014
drop under signer-independent settings. On015
PHOENIX14T, GFSLT-VLP sees BLEU-4 fall016
from 21.44 to as low as 3.59 and ROUGE-017
L from 42.49 to 11.89; GASLT drops from018
a reported 15.74 to 8.26; and SignCL from019
22.74 to 3.66. These findings highlight the020
substantial overestimation of SLT model per-021
formance when evaluations are conducted un-022
der signer-dependent assumptions. This work023
proposes two key recommendations: (1) adopt-024
ing signer-independent evaluation protocols,025
and (2) restructuring datasets to include signer-026
independent splits.027

1 Introduction028

Sign Language Translation (SLT) is the task of au-029

tomatically converting sign language videos into030

spoken or written language, enabling communi-031

cation between the hearing-impaired and hearing032

communities. A major limitation in SLT is signer033

dependence in evaluation. Most SLT models are034

trained, validated and tested on dataset splits that035

do not enforce signer independence - indicating036

that the same signers appear across the training,037

development and test sets. This can lead to in-038

flated performance metrics, as models may learn039

signer-specific patterns rather than generalising to040

unseen individuals. Signer independence refers to041

a model’s ability to generalise to unseen signers, 042

ensuring that performance is not biased toward indi- 043

viduals present in the training data (Liu et al., 2024; 044

Mukushev et al., 2022; İnci Meliha Baytaş and İpek 045

Erdoğan, 2024). Without explicitly accounting for 046

signer variability, reported improvements in SLT 047

models may reflect overfitting to signer-specific 048

features. 049

The most widely used benchmark in SLT 050

research, RWTH-PHOENIX-Weather-2014T 051

(Phoenix14T) (Camgöz et al., 2018), represents 052

this issue. Phoenix14T’s default dataset split 053

does not separate signers between training, 054

development and test sets - making it inherently 055

signer-dependent. Phoenix14T consists of weather 056

forecast videos from German television channel 057

PHOENIX, featuring nine professional sign 058

language interpreters. It includes approximately 059

8,000 video sequences, spanning 11 hours of 060

signing, along with their corresponding German 061

translations and gloss annotations (Zhu et al., 062

2024). The dataset’s gloss-level and sentence-level 063

annotations make it valuable for evaluating both 064

gloss-based and gloss-free SLT models. 065

Gloss-based models, which use manual gloss 066

annotations as an intermediate representation, of- 067

ten achieve strong performance—but require costly 068

manual annotations, as seen in the work of Yao et al. 069

(2023), limiting their scalability. In response, re- 070

cent research has increasingly explored gloss-free 071

models (Zhou et al., 2023; Ye et al., 2024; Chen 072

et al., 2024; Wong et al., 2024; Gong et al., 2024), 073

which aim to map videos directly to spoken lan- 074

guage, bypassing the need for gloss annotations—a 075

resource that is often unavailable, particularly in 076

low-resource settings. While these gloss-free ap- 077

proaches offer promising directions for broader ap- 078

plicability, their effectiveness remains constrained 079

by signer-specific biases, as they are frequently 080

evaluated on signer-dependent splits. 081

In addition to Phoenix14T, CSL-Daily (Zhou 082
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et al., 2021) has emerged as a prominent bench-083

mark dataset in recent SLT research. It provides084

over 20,000 high-resolution sign videos, annotated085

at both the gloss and sentence levels, and covers086

a wide range of daily-life topics such as travel,087

shopping, and medical care. The dataset features088

10 native Chinese signers and supports both gloss-089

based and gloss-free SLT methods. Notably, CSL-090

Daily has been adopted by many recent SLT mod-091

els (Zhou et al., 2023; Chen et al., 2024; Wong092

et al., 2024), establishing it as a standard evalua-093

tion benchmark alongside Phoenix14T. However,094

like Phoenix14T, its default dataset split does not095

enforce signer independence.096

Despite the widespread use of Phoenix14T and097

CSL-Daily, to the authors’ knowledge, no prior098

work has systematically tested the extent to which099

signer dependence affects the performance of a100

state-of-the-art SLT model. Furthermore, it is un-101

derstood that no study to date has conducted signer-102

fold cross-validation across all signers present in103

the dataset. To mitigate against this issue, this104

research performs signer-fold cross-validation - en-105

suring that no signer appears in both the train-106

ing, development and test sets. For this research,107

this study utilised the GFSLT-VLP (Zhou et al.,108

2023), GASLT (Yin et al., 2023), and SignCL (Ye109

et al., 2024) - the strongest publicly available gloss-110

free SLT model, to assess the impact of signer-111

independent training. The results reveal a signif-112

icant drop in performance when evaluated under113

signer-independent conditions. The results of our114

experiments 3.2 demonstrates that signer overlap115

artificially inflates performance metrics, suggesting116

that reported improvements in SLT models may not117

accurately reflect real-world generalisation. Given118

that recent SLT models have been evaluated using119

the same dataset distribution, similar performance120

degradation is likely across the field.121

This study highlights a critical gap in current122

SLT evaluation methodologies and calls for a shift123

towards signer-independent evaluation protocols.124

The following sections discuss related work, de-125

scribes the experimental setup, presents key find-126

ings and proposes strategies to incorporate signer127

dependence in future SLT research.128

2 Related Works129

Signer independence is a critical challenge in Sign130

Language Recognition (SLR) and SLT, referring to131

a model’s ability to generalise across different sign-132

ers rather than overfitting to signer-specific char- 133

acteristics such as hand shape, motion style and 134

articulation speed. As a result, commonly used 135

evaluation metrics may overestimate the true per- 136

formance of the model. 137

The problem of signer independence has been ac- 138

tively studied in SLR, with early work dating back 139

to 2013 (Ni et al., 2013). However, this issue has 140

received little attention in SLT, where evaluations 141

remain largely signer-dependent. 142

Several gloss-based approaches, including Gloss- 143

to-Text (G2T), Sign-to-Gloss → Gloss-to-Text 144

(S2G→G2T), Sign2Gloss2Text (S2G2T), and Sign- 145

to(Gloss-to-Text) (S2(G2T)) (Camgoz et al., 2018), 146

and other models such as STMC-Transformer (Yin 147

and Read, 2020), SimulSLT (Yin et al., 2021), and 148

Hierarchical Spatio-Temporal Graph Neural Net- 149

work (HST-GNN) (Kan et al., 2022), have been 150

evaluated in this signer-dependent setup. While 151

they show incremental improvements, their eval- 152

uations do not measure how well they generalise 153

to unseen signers. Recent models, such as SLT 154

with Iterative Prototype (IP-SLT) (Yao et al., 2023) 155

and Conditional Variational Autoencoder for SLT 156

(CV-SLT) (Rui Zhao, 2024), continue to follow the 157

same evaluation approach. 158

Similarly, gloss-free approaches, including S2T 159

(Camgoz et al., 2020), NSLT (Orbay and Akarun, 160

2020), Temporal Semantic Pyramid for SLT (TSP- 161

Net) (LI et al., 2020), and Gloss Attention for 162

Gloss-free Sign Language Translation (GASLT) 163

(Yin et al., 2023), have also been evaluated on 164

signer-overlapping dataset splits. More recent 165

gloss-free models, such as GFSLT-VLP (Zhou 166

et al., 2023), Sign2GPT (Wong et al., 2024), and 167

SignLLM (Gong et al., 2024), leverage vision- 168

language pretraining and LLMs to improve trans- 169

lation performance — yet their evaluations remain 170

signer-dependent. Newer approaches, such as con- 171

trastive learning and factorised learning in Fac- 172

torised Learning Assisted with Large Language 173

Model for Gloss-free Sign Language Translation 174

(FLa-LLM) (Chen et al., 2024) and SignCL (Ye 175

et al., 2024), also lack signer-independent testing, 176

making it unclear whether their improvements stem 177

from advances in SLT or overfitting to specific sign- 178

ers. 179

Prior research in SLR has demonstrated that 180

signer-dependent training inflates performance met- 181

rics (Podder et al., 2023). However, SLT research 182

has yet to focus on this issue, as Phoenix14T 183

and CSL-Daily’s default split remains the stan- 184
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dard evaluation protocol. To investigate this issue,185

signer-fold cross-validation was applied on GFSLT-186

VLP (Zhou et al., 2023), on SignCL (Ye et al.,187

2024), and on GASLT (Yin et al., 2023). While188

these are not the absolute best-performing SLT189

models on Phoenix14T, they serve as the highest-190

performing accessible benchmarks for assessing191

signer-independent training.192

3 Experiments and Results193

3.1 Methodology194

The default distribution of Phoenix14T consists of195

7,022 videos in the training set, 269 videos in the196

development set and 966 videos in the test set - with197

nine signers overlapping across these splits. While198

this setup facilitates training, it allows models to199

exploit signer-specific features such as hand shape,200

and signing style, rather than learning generalisable201

representations for unseen signers.202

To address this issue, signer-fold cross-203

validation was applied to the Phoenix14T dataset.204

Unlike the default split, signer-fold cross-validation205

ensures that no signers are shared across training,206

development, or test sets. The dataset was divided207

into nine folds, with each fold containing videos208

from one signer exclusively used for testing, an-209

other for development, and the remaining signers210

for training. The size of the training set varied211

across folds, ranging from 5,100 to 7,893 videos,212

as shown in Table 1. This setup provides a robust213

framework for evaluating how well models gener-214

alise to unseen signers.215

Similarly, the CSL-Daily dataset was reorgan-216

ised to support signer-independent evaluation. Due217

to its large size — over 20,000 video samples—a218

20% subset of videos was sampled per signer to219

make training and evaluation computationally fea-220

sible. Ten signer folds were created, with training221

set sizes ranging from 2,313 to 3,665 videos, devel-222

opment sets from 154 to 1,478 videos, and test sets223

from 154 to 395 videos, as shown in Table 4.224

To assess model performance, BLEU-4 and225

ROUGE-L was employed. These metrics have226

been commonly used in SLT studies to evaluate227

translation quality, making them the standard for228

benchmarking SLT models. Therefore, this study229

adopted them to ensure comparability with existing230

research.231

BLEU-4 (Bilingual Evaluation Understudy) mea-232

sures the precision of n-grams between the gener-233

ated and reference translations while applying a234

brevity penalty to prevent overly short outputs (Pa- 235

pineni et al., 2002). The BLEU score is computed 236

as: 237

BLEU = BP · exp
(

4∑
n=1

wn log pn

)
(1) 238

where pn represents the precision of n-grams 239

up to length 4, wn is the weight assigned to each 240

n-gram, and BP is the brevity penalty defined as: 241

BP =

{
1, ifc > r

e(1−r/c), ifc ≤ r

}
(2) 242

where c is the length of the generated translation 243

and r is the length of the reference translation. 244

ROUGE-L (Recall-Oriented Understudy for 245

Gisting Evaluation) evaluates translation quality 246

based on the longest common subsequence (LCS) 247

between the generated and reference sentences 248

(Lin, 2004). The ROUGE-L score is computed 249

as: 250

ROUGE − L =
LCS(X,Y )

max(|X|, |Y |)
(3) 251

where LCS(X,Y ) represents the longest com- 252

mon subsequence between the candidate transla- 253

tion X and the reference Y , and |X| and |Y | denote 254

their respective lengths. 255

3.2 Results and Analysis 256

3.2.1 Results on Phoenix14T 257

The results in Table 1 show a consistent per- 258

formance drop in GFSLT-VLP’s performance on 259

Phoenix14T under signer-independent conditions. 260

While the default split achieves BLEU-4 of 21.44 261

and ROUGE-L of 42.49, performance drops sig- 262

nificantly in the signer-independent setting, with 263

BLEU-4 ranging from 3.59 to 17.30 and ROUGE-L 264

from 11.80 to 34.02. This indicates that the model 265

relies heavily on signer-specific cues, as its perfor- 266

mance declines when tested on unseen signers. 267

Performance varies across different signer folds. 268

The lowest scores appear in Fold 8 (BLEU-4: 3.59, 269

ROUGE-L: 11.80), while Fold 6 records the high- 270

est (BLEU-4: 17.30, ROUGE-L: 34.02), suggest- 271

ing that some signers introduce more significant 272

challenges for the model, likely due to differences 273

in signing style, articulation, or dataset imbalance. 274

Additionally, folds with smaller test sets tend to 275

exhibit more extreme score variations. Fold 6, with 276
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only 47 test samples, achieves the highest BLEU-4277

and ROUGE-L scores, while Fold 8, with 966 test278

samples, records the lowest, indicating that test set279

size impacts variability.280

GASLT shows a similar trend to GFSLT-VLP,281

though with generally lower scores in both BLEU-282

4 and ROUGE-L. Under the default split, GASLT283

achieves 15.74 BLEU-4 and 26.39 ROUGE-L, but284

its performance in signer-independent folds ranges285

from 2.58 to 10.74 BLEU-4 and from 9.79 to 29.15286

ROUGE-L. These results suggest that GASLT is287

also sensitive to signer variation, though potentially288

less so than GFSLT-VLP in some folds (e.g., Fold289

3). Interestingly, GASLT outperforms GFSLT-VLP290

in Fold 3 (BLEU-4: 10.26 vs. 10.10), suggesting291

model differences in how signer characteristics are292

handled.293

When aggregating results across the 9 signer294

folds, GFSLT-VLP achieves a mean BLEU-4 of295

10.53 with a relatively high standard deviation296

of 4.02, and a mean ROUGE-L of 26.70 with a297

standard deviation of 6.59. This indicates greater298

variability in performance, possibly due to higher299

sensitivity to signer-specific features. In contrast,300

GASLT shows a lower mean BLEU-4 of 10.24 and301

mean ROUGE-L of 26.46, but with smaller stan-302

dard deviations of 1.66 and 2.92 respectively, re-303

flecting more consistent performance across folds.304

To assess the statistical significance of the ob-305

served differences, paired t-tests and Wilcoxon306

signed-rank tests were conducted across the 9307

signer folds. As shown in Table 2, the differences in308

BLEU-4 and ROUGE-L between GFSLT-VLP and309

GASLT are not statistically significant (*p* > 0.05).310

This suggests that, despite GFSLT-VLP achieving311

slightly higher average scores, the two models per-312

form comparably under signer-independent evalua-313

tion.314

In addition to model comparisons, one-sample315

t-tests and Wilcoxon signed-rank tests were used316

to evaluate whether the signer-independent scores317

were significantly lower than the standard signer-318

dependent baseline. Using the default split scores319

as reference values, both models exhibited sta-320

tistically significant reductions in BLEU-4 and321

ROUGE-L under signer-independent conditions322

(*p* < 0.05), as shown in Table 3. These re-323

sults confirm that signer-independent evaluation324

presents a substantially greater challenge for cur-325

rent SLT models.326

3.2.2 Results on CSL-Daily 327

Table 4 presents signer-fold cross-validation results 328

on the CSL-Daily dataset, where a 20% subset 329

was sampled per signer to ensure computational 330

feasibility while preserving the original signer dis- 331

tribution. 332

Overall, GASLT exhibits low BLEU-4 and 333

ROUGE-L scores in this signer-independent set- 334

ting, with BLEU-4 ranging from 0.00 (Folds 1 and 335

10) to 4.33 (Fold 4), and ROUGE-L ranging from 336

11.22 to 22.30. The average performance across 337

all 10 folds is 1.75 BLEU-4 and 18.01 ROUGE-L, 338

which is higher than its performance on the de- 339

fault signer-dependent split for BLEU-4 (0.82), but 340

lower for ROUGE-L (20.28). These results indi- 341

cate a reliance on signer-specific information and 342

a significant generalisation gap when evaluated on 343

unseen signers. 344

The standard deviations across folds are 1.26 345

for BLEU-4 and 3.00 for ROUGE-L, suggest- 346

ing moderate variability in translation perfor- 347

mance depending on the signer pair. The higher 348

variance in ROUGE-L implies more fluctuation 349

in sentence-level content coverage, whereas the 350

lower variance in BLEU-4—despite very low abso- 351

lute scores—suggests relatively consistent n-gram 352

matching performance at this low baseline. 353

4 Conclusion 354

This study highlights the limitations of signer- 355

dependent evaluation in SLT and underscores the 356

necessity of adopting signer-independent bench- 357

marking protocols. The experiments with signer- 358

fold cross-validation on the Phoenix14T and CSl- 359

Daily datasets demonstrate a significant drop in 360

translation performance when models are evaluated 361

under signer-independent conditions. Specifically, 362

the BLEU-4 and ROUGE-L scores of GFSLT-VLP, 363

one of the best performing gloss-free SLT model, 364

were substantially lower in signer-independent 365

splits compared to the default dataset distribution. 366

These results indicate that prior evaluations may 367

have overestimated model performance by inadver- 368

tently allowing models to exploit signer-specific 369

cues such as hand shape, motion patterns, and sign- 370

ing style. 371

Given that many recent SLT models have been 372

assessed using the same signer-dependent dataset 373

splits, it is highly likely that other models would 374

experience similar performance degradation under 375

signer-independent conditions. This raises con- 376
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Table 1: Signer-Fold Cross-Validation Results on PHOENIX14T for GFSLT-VLP and GASLT models. Metrics are
BLEU-4 and ROUGE-L. Final row reports mean ± standard deviation across the 9 folds.

Fold Dev Signer Test Signer Train Size Dev Size Test Size GFSLT-VLP BLEU-4 GFSLT-VLP ROUGE-L GASLT BLEU-4 GASLT ROUGE-L
1 Signer08 Signer01 5,100 966 2,191 6.65 21.80 7.94 24.46
2 Signer01 Signer02 5,971 2,191 95 8.49 20.61 8.89 22.75
3 Signer05 Signer03 5,641 1,933 683 10.02 26.70 10.19 27.10
4 Signer03 Signer04 6,367 683 1,207 13.70 32.30 11.02 29.21
5 Signer07 Signer05 5,458 866 1,933 11.90 29.70 9.79 27.45
6 Signer04 Signer06 7,003 1,207 47 17.30 34.02 12.65 31.33
7 Signer06 Signer07 7,344 47 866 9.19 26.30 8.26 25.40
8 Signer09 Signer08 7,022 269 966 3.59 11.80 10.07 27.55
9 Signer02 Signer09 7,893 95 269 13.95 32.07 13.38 30.87

Mean ± Std (9 folds) 10.53 ± 4.02 26.70 ± 6.59 10.24 ± 1.66 26.46 ± 2.92
Default Split 7,096 519 642 21.44 42.49 15.74 39.86

SignCL results have been excluded from the table due to incomplete coverage across folds. As of now, experiments have been completed on 8 out of 9 folds, and the
remaining are still running on a compute cluster. Results will be included once all folds are complete.

Table 2: Paired statistical tests comparing GFSLT-VLP
and GASLT scores across 9 signer-independent folds.
None of the differences are statistically significant (*p*
> 0.05).

Metric Test Stat. p
BLEU-4 Paired t-test 0.28 0.79

Wilcoxon 17.00 0.57
ROUGE-L Paired t-test -0.62 0.55

Wilcoxon 20.00 0.82

None of the differences between GFSLT-VLP and GASLT are statistically
significant across signer folds, indicating comparable performance under
signer-independent evaluation.

Table 3: One-sample tests comparing signer-
independent scores to default signer-dependent perfor-
mance on PHOENIX14T. All results are significant (*p*
< 0.05).

Model Metric Test Stat. p
GFSLT-VLP BLEU-4 t-test -7.85 <0.001

Wilcoxon 0.00 0.004
ROUGE-L t-test -6.91 <0.001

Wilcoxon 0.00 0.004
GASLT BLEU-4 t-test -8.89 <0.001

Wilcoxon 0.00 0.004
ROUGE-L t-test -13.16 <0.001

Wilcoxon 0.00 0.004

One-sample t-tests and Wilcoxon signed-rank tests confirmed that
signer-independent performance is significantly lower than the default
signer-dependent baseline across all metrics and models.

cerns about the generalisability of existing SLT 377

models and calls for a shift in evaluation method- 378

ologies. Without rigorous signer-independent test- 379

ing, improvements in BLEU-4 and ROUGE-L 380

scores may not accurately reflect a model’s ability 381

to generalise across diverse signers and real-world 382

signing variability. 383

Based on the findings of this study, the follow- 384

ing recommendations for future SLT research is 385

proposed: 386

• Adopt signer-independent evaluation pro- 387

tocols: Future studies should enforce strict 388

separation of signers across training, develop- 389

ment, and test sets to ensure a more reliable 390

measure of generalisation. 391

• Expand signer-diverse benchmark datasets: 392

Current datasets, including Phoenix14T and 393

CSL-Daily, should be restructured or supple- 394

mented with signer-independent splits to bet- 395

ter reflect real-world variability. 396

• Explore signer-agnostic methods for signer- 397

independent SLT: Given that RGB video in- 398

put captures signer-specific visual details such 399

as appearance, and hand size, it may introduce 400

biases that hinder generalisation. Skeleton- 401

based representations, which encode only key- 402

points, offer a more signer-agnostic alterna- 403

tive. Future work should investigate whether 404

skeleton-based models can enhance perfor- 405

mance in signer-independent settings. 406

In implementing these measures, the field can 407

move towards more reliable and generalisable mod- 408

els, ultimately improving sign language translation 409

systems for real-world applications. 410
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Table 4: Signer-Fold Cross-Validation Results on CSL-Daily (20% Subset) for the GASLT model. Metrics are
BLEU-4 and ROUGE-L.

Fold Dev Signer Test Signer Train Size Dev Size Test Size GASLT BLEU-4 GASLT ROUGE-L
0 Signer01 Signer02 2,495 154 1,478 1.33 18.85
1 Signer02 Signer03 3,663 310 154 0.00 11.22
2 Signer03 Signer04 3,475 342 310 0.67 17.07
3 Signer04 Signer05 3,456 329 342 1.59 19.09
4 Signer05 Signer06 3,600 198 329 4.33 22.30
5 Signer06 Signer07 3,665 264 198 1.24 18.40
6 Signer07 Signer08 3,542 321 264 2.58 17.36
7 Signer08 Signer09 3,411 395 321 2.93 18.93
8 Signer09 Signer10 3,396 336 395 2.07 21.80
9 Signer10 Signer01 2,313 1,478 336 0.00 15.12

Mean ± Std (10 folds) 1.75 ± 1.26 18.01 ± 3.00
Default Split 18,401 1,077 1,176 0.82 20.28

Results for GFSLT-VLP and SignCL have been excluded due to incomplete fold coverage. GFSLT-VLP results are not yet available for 2 out of 10 folds (folds 7 and
9), and all SignCL results are still pending. Remaining experiments are currently running on a compute cluster and will be included in the final version.

Limitations411

While this study provides a comprehensive evalua-412

tion of signer independence in SLT using several413

gloss-free models, including GFSLT-VLP, SignCL,414

and GASLT, some limitations remain. Specifically,415

the evaluation was constrained to models with416

publicly available implementations. As a result,417

other potentially stronger gloss-free approaches418

could not be included due to the lack of accessible419

code or pretrained models. Future work should en-420

courage open-source availability of top-performing421

models to facilitate fair and reproducible signer-422

independent evaluations.423

Secondly, the study does not incorporate alterna-424

tive input representations, such as skeleton-based425

features, which may be more robust to signer vari-426

ability, though may still retain signer-specific in-427

formation. Future research should explore how dif-428

ferent input modalities impact signer-independent429

performance and whether alternative representa-430

tions can mitigate signer dependence.431

Third, this study did not investigate gloss-to-text432

translation tasks, which may help disentangle the433

contribution of signer identity from linguistic con-434

tent. Exploring signer-independent performance435

for gloss-based models remains a valuable direc-436

tion for future research.437

Despite these limitations, the findings of438

this work highlight the critical need for signer-439

independent evaluation protocols and dataset re-440

structuring in SLT research. Addressing these chal-441

lenges will help ensure that SLT models generalise442

beyond specific individuals and better reflect real-443

world applications.444
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