
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST ROPE ATTENTION: COMBINING THE POLYNO-
MIAL METHOD AND FAST FOURIER TRANSFORM

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer architecture has been widely applied to many machine learning
tasks. A main bottleneck in the time to perform transformer computations is a task
called attention computation. [Alman and Song, NeurIPS 2023] have shown that in
the bounded entry regime, there is an almost linear time algorithm to approximate
the attention computation. They also proved that the bounded entry assumption
is necessary for a fast algorithm assuming the popular Strong Exponential Time
Hypothesis.
A new version of transformer which uses position embeddings has recently been
very successful. At a high level, position embedding enables the model to capture
the correlations between tokens while taking into account their position in the
sequence. Perhaps the most popular and effective version is Rotary Position
Embedding (RoPE), which was proposed by [Su, Lu, Pan, Murtadha, Wen, and
Liu, Neurocomputing 2024].
A main downside of RoPE is that it complicates the attention computation problem,
so that previous techniques for designing almost linear time algorithms no longer
seem to work. In this paper, we show how to overcome this issue, and give a new
algorithm to compute the RoPE attention in almost linear time in the bounded entry
regime. (Again, known lower bounds imply that bounded entries are necessary.)
Our new algorithm combines two techniques in a novel way: the polynomial
method, which was used in prior fast attention algorithms, and the Fast Fourier
Transform.

1 INTRODUCTION

Large language models (LLMs) are among the most impactful tools in modern machine learning.
LLMs such as Transformer (Vaswani et al., 2017a), BERT (Devlin et al., 2018), GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022), GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), Gemini 1.5 (Reid et al., 2024), Claude3 (Anthropic, 2024), GPT-4o
(OpenAI, 2024a), o1 (OpenAI, 2024b), can process natural language more effectively than smaller
models or traditional algorithms. This means that they can understand and generate more complex and
nuanced language, which can be useful for a variety of tasks such as language translation, question
answering, and sentiment analysis. LLMs can also be adapted to multiple purposes without needing
to be retained from scratch.

Attention Computation. LLMs currently require massive time and computing resources to perform at
scale. The major bottleneck to speeding up LLM operations is the time to perform a certain operation
called an attention matrix computation (Vaswani et al., 2017a; Radford et al., 2018; Devlin et al., 2018;
Radford et al., 2019; Brown et al., 2020; Wang et al., 2020; Kitaev et al., 2020). These computations
ask us to multiply the attention matrix A with another value token matrix V ∈ Rn×d. More precisely,
given three matrices Q,K, V ∈ Rn×d (the query, key, and value token matrices), the goal is to output
(an approximation of) the n× d matrix Att(Q,K, V) defined by Att(Q,K, V) := D−1AV where
the attention matrix A ∈ Rn×n and diagonal matrix D ∈ Rn×n are defined as A := exp(QK⊤/d)
(with exp applied entry-wise), and D := diag(A1n). Here, n is the input sequence length, and d is
the embedding dimension of the model, and one typically considers d ≪ n like d = Θ(log n) in the
time-intensive case of modeling long sequences.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The straightforward algorithm for this problem runs in roughly quadratic time. Moreover, there are
known complexity-theoretic lower bounds (Keles et al., 2023; Alman & Song, 2023) proving that the
problem cannot be solved in truly subquadratic time in the case when the input matrices Q,K, V
have large entries, assuming a popular conjecture from fine-grained complexity theory called the
Strong Exponential Time Hypothesis (SETH Impagliazzo & Paturi (2001)) which we discuss more
shortly.

In order to circumvent this lower bound, and inspired by the fact that the entries of the input
matrices are typically bounded in realistic inputs (Zafrir et al., 2019; Katharopoulos et al., 2020b),
a recent faster, almost linear-time algorithm (Alman & Song, 2023) was given, assuming that
∥Q∥∞, ∥K∥∞, ∥V ∥∞ are all bounded. Here the ℓ∞-norm denotes that ∥Q∥∞ := maxi,j |Qi,j |.
Rather than explicitly compute all the entries of the attention matrix A, Alman & Song (2023) only
implicitly uses it, by using an algorithmic tool called the polynomial method.

More precisely, they present two results, showing that when d = O(log n), there is a sharp transition
in the difficulty of attention computation at B = Θ(

√
log n). First, if B = o(

√
log n), then there

is an n1+o(1) time algorithm to approximate Att(Q,K, V) up to 1/poly(n) additive error. Second,
if B = Θ(

√
log n), then assuming SETH, it is impossible to approximate Att(Q,K, V) up to

1/poly(n) additive error in truly subquadratic time n2−Ω(1). In other words, if B = o(
√
log n),

then the polynomial method gives an almost linear-time algorithm, and if B is any bigger, then it is
impossible to design an algorithm that substantially improves on the trivial quadratic time algorithm,
no matter what algorithmic techniques one uses.

Bounded entries in practice. The theoretical results of Alman & Song (2023) offer an explanation
for a phenomenon commonly observed in practice: attention computation becomes significantly
more efficient when the input matrices have smaller entries. Previous work on LLM implementations
has noted similar observations; algorithmic techniques like quantization (Zafrir et al., 2019) and
low-degree polynomial approximation (Katharopoulos et al., 2020b), which result in bounded or
low-precision entries, can dramatically accelerate LLM operations. See, for example, the discussions
in (Zafrir et al., 2019, Section 2) and (Katharopoulos et al., 2020b, Section 3.2.1).

RoPE: Rotary Position Embedding. In this paper, we study a variant on attention called RoPE
attention. At a high level, RoPE gives more expressive power to the model in exchange for making the
computational problem more complicated. In particular, many prior algorithms, such as the algorithm
of Alman & Song (2023), no longer apply to RoPE, for fundamental reasons we will discuss.

RoPE was proposed by Su et al. (2024) and has been used extensively in large-scale industrial models.
Examples which are known to use RoPE include the open-source models released by Meta such as
Llama (Touvron et al. (2023a), see page 3), Llama 2 (Touvron et al. (2023b), see page 5), Llama 3 (AI
(2024) and page 7 of Llama Team (2024)), and the close-source LLM Claude 3 (Anthropic (2024))
released by Anthropic. Apple also incorporates RoPE into their LLM architecture (see McKinzie
et al. (2024) and page 3 of Gunter et al. (2024)).

The idea behind RoPE is to rotate the query and key vectors in the self-attention mechanism. The
rotation is position-dependent and designed such that the inner product between any two position-
encoded vectors reflects their relative positions. Intuitively, the Rj−i matrices we define below
will rotate embedding vectors according to their position in the input, so that in the RoPE attention
mechanism, pairs of tokens with a longer relative distance will have smaller correlation.

We now briefly describe the mathematical definition of the RoPE method. We will make use of 2× 2
rotation matrices, which for an angle of rotation θ, can be written as

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

As above, we let n be the input sequence length, and d the embedding dimension. We assume here
that d is even.

For i, j ∈ [n], we now define the overall relative rotation matrix for tokens at positions j and i, which
we denote by Rj−i ∈ Rd×d. As indicated by the notation, it depends only on the difference j − i.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Rj−i is defined as a diagonal block matrix with d/2 blocks of size 2× 2 along the diagonal, given by

Rj−i =

R((j − i)θ1) 0 · · · 0

0 R((j − i)θ2) · · · 0
...

...
. . .

...
0 0 · · · R((j − i)θd/2)

 .

The angle frequencies are given by θk = α−2(k−1)/d for k ∈ [d/2]. Here one thinks of the angle α
as a fixed constant for all i and j; in the original RoPE it is about 104 (see details in Equation (15) in
page 5 of Su et al. (2024)).

These Rj−i matrices are incorporated into attention as follows. Let WQ,WK ,WV ∈ Rd×d denote
the model weights. Let X ∈ Rn×d denote the representation of length-n sentence. Then, we define
the new attention matrix A ∈ Rn×n by, for i, j ∈ [n],

Ai,j := exp(Xi,∗︸︷︷︸
1×d

WQ︸︷︷︸
d×d

Rj−i︸ ︷︷ ︸
d×d

W⊤
K︸︷︷︸

d×d

X⊤
j,∗︸︷︷︸

d×1

). (1)

As in the usual attention mechanism, the final goal is to output an n × d size matrix D−1AXWV

where D := diag(A1n) ∈ Rn×n.

Formulation of RoPE Attention. In this paper, we give a new algorithm for RoPE attention. We
now formally define the problem we will solve. Notably, our algorithm actually solves the following
generalization of RoPE attention, which captures RoPE (as we described it above) as well as many
natural variants on RoPE that future work may want to consider. We emphasize that changing the
many parameters which go into the RoPE definition would still be captured by our generalization
below.
Definition 1.1 (A General Approximate RoPE Attention Computation, ARAttC). Let B > 0 and
ϵ > 0 denote two parameters. Given a set of matrices W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1 ∈
Rd×d where supp(Wi) ⊂ S for all i ∈ {−(n − 1), · · · ,−1, 0, 1, · · · , n − 1}. Here S ⊆ [d] ×
[d] and |S| = O(d). Given Q ∈ Rn×d, K ∈ Rn×d, and V ∈ Rn×d with the guarantee that
∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B and ∥W∥∞ ≤ 1. We define matrix A ∈ Rn×n as, for i, j ∈ [n],

Ai,j := exp(Qi,∗︸︷︷︸
1×d

Wi−j︸ ︷︷ ︸
d×d

K⊤
j,∗/d︸ ︷︷ ︸
d×1

),∀i ∈ [n], j ∈ [n]

We define D := diag(A1n). The goal of Rotated attention computation is to output a matrix
T ∈ Rn×d such that ∥T − ARAttC∥∞ ≤ ϵ is small, where ARAttC := D−1AV . For matrix M ,
we use ∥M∥∞ := maxi,j |Mi,j |. Note that the 1/d factor inside exp in the definition of A is a
normalization factor.
Remark 1.2. RoPE attention as defined above (Eq. (1)) corresponds to this problem where we restrict
each of the matrices Wi ∈ Rd×d for all i ∈ {−(n− 1), , · · · ,−1, 0, 1, · · · , n− 1} in Definition 1.1
to be diagonal block matrices, where each matrix has d/2 blocks and each block has size 2× 2.

Our Results.

Our main result is a new algorithm which computes General Approximate RoPE Attention Computa-
tion in almost linear time:
Theorem 1.3 (main result, upper bound). Suppose d = O(log n) and B = o(

√
log n). There is an

n1+o(1) time algorithm to approximate ARAttC up to ϵ = 1/ poly(n) additive error.

In other words, although RoPE attention is more complicated than the usual attention, we are able
to achieve the same running time for this more expressive version. This is, to our knowledge, the
first fast algorithm for RoPE attention with provable guarantees. As we will discuss more shortly,
there is a substantial barrier to using prior algorithmic techniques for attention in the setting of RoPE
attention, and we overcome this barrier using a novel approach combining the polynomial method
with Fast Fourier transforms.

Furthermore, we prove that the bound of B = o(
√
log n) used by our algorithm is necessary, since

when B is any bigger, it is impossible to design a truly subquadratic time algorithm:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Theorem 1.4 (main result, lower bound). Assuming SETH, for every q > 0, there are constants
C,Ca, Cb > 0 such that: there is no O(n2−q) time algorithm for the problem ARAttC(n, d =
C log n,B = Cb

√
log n, ϵ = n−Ca).

To emphasize, our Theorem 1.4 doesn’t just prove that our algorithmic approach cannot give a
nontrivial algorithm when B = Ω(

√
log n), but more generally that it is impossible to design a

nontrivial algorithm, no matter what algorithmic techniques one uses.

Technique Overview: Limitation of Prior Techniques

Prior fast algorithms with provable guarantees for attention are critically based on an algorithmic
technique called the polynomial method (Alman & Song, 2023; 2024a;b). This is a technique for
finding low-rank approximations of certain structured matrices. More precisely, suppose M ∈ Rn×n

is a low-rank matrix, and f : R → R is any function. Let f(M) denote the matrix where f is
applied entry-wise to M . In general, although M is low-rank, the matrix f(M) may be a full-rank
matrix. However, the polynomial method says that if f can be approximated well by a low-degree
polynomial, then f(M) can be approximated well by a low-rank matrix. Since the usual attention
matrix is defined by applying exp entry-wise to a low-rank matrix, prior algorithms approximate
exp with a polynomial, then uses the polynomial method to approximate the attention matrix with a
low-rank matrix which can be used to quickly perform the necessary linear-algebraic operations.

Although this approach has been successful in prior work on designing faster algorithms for many
problems related to attention, it fundamentally cannot apply to RoPE attention. The key issue is
that in RoPE attention, the underlying matrix which exp is applied to no longer needs to have low
rank. Indeed, let A denote the RoPE attention matrix (defined in Equation (1) above) and let M
denote A before it was entry-wise exponentiated. Even in the simplest case d = 1, one can see that
by picking the Rj−i entries appropriately, one can choose M to be any circulant matrix (i.e., matrix
whose (i, j) entry depends only in j − i). The polynomial method then cannot be used to argue that
A is approximately low-rank, since M itself is not low-rank.

Technique Overview: Combining the Polynomial Method and Fast Fourier Transform

Although circulant matrices are typically not low-rank matrices, there is a vast literature on algorithms
for manipulating them using the Fast Fourier transform. Notably, it is not hard to notice that applying
any function entry-wise to a circulant matrix results in another circulant matrix, so if M were indeed
a circulant matrix as described in the previous paragraph, one could use the Fast Fourier transform to
perform operations with the resulting matrix A.

However, even in the case of d = 1, the matrix M can actually be a more general type of matrix
which we call a rescaled circulant matrix. This is a matrix of the form D1CD2 for diagonal matrices
D1, D2 and circulant matrix C. Unfortunately, applying a function entry-wise to a rescaled circulant
matrix need not result in another rescaled circulant matrix.

Our main algorithmic idea is a new version of the polynomial method: we prove that if M is a
rescaled circulant matrix, or even a sum of a small number of rescaled circulant matrices, and one
applies a function f entry-wise to M such that f has a low-degree polynomial approximation, then
the resulting matrix can be approximated by a sum of a relatively small number of rescaled circulant
matrices. In our case, we use this to write the RoPE attention matrix as a sum of rescaled circulant
matrices, each of which is then manipulated using the Fast Fourier transform to yield our final
algorithm.

We believe our new approach, of applying polynomial approximations entry-wise to structured
matrices other than low-rank matrices, may be broadly applied in other settings as well. Although the
polynomial method has been applied in many algorithmic contexts, to our knowledge, a version of
the polynomial method like this has not been used before.

Algorithmic techniques in practice. We emphasize that our two core techniques, the polynomial
method and Fast Fourier transform, are both prevalent in practice. The polynomial method is
particularly used in numerous practical algorithms for attention (Banerjee et al., 2020; Keles et al.,
2023; Zhang et al., 2024). For example, see detailed discussions in (Zhang et al., 2024, Section 4.1).
Our new algorithm improves on these approaches in part by using theoretically optimal polynomials
for exponentials, and combining them with the Fast Fourier transform, to give provable guarantees

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

about their correctness and near linear running time. To our knowledge, the Fast Fourier transform
has not been used in this way in prior attention algorithms.

Roadmap. In Section 2, we present our related work. In Section 3, we define certain basic notations
for linear algebra. In Section 4, we start with solving the linear case. In Section 5, we explain how to
handle the exp units. In Section 6, we provide the hardness result. Finally, we provide a conclusion
in Section 7.

2 RELATED WORK

Polynomial Method for Attention.

Alman & Song (2023; 2024b) utilize polynomial kernel approximation techniques proposed by
Aggarwal & Alman (2022) to speed up both training and inference of a single attention layer, achieving
almost linear time complexity. This method is further applied to multi-layer transformer (Liang
et al., 2024c), tensor attention (Alman & Song, 2024a; Liang et al., 2024e), LoRA (Hu et al., 2024b),
Hopfield model (Hu et al., 2024a), differentially private cross attention (Liang et al., 2024d), and
Diffusion Transformer (Hu et al., 2024c). We will also use the polynomials of (Aggarwal & Alman,
2022) here.

Other Algorithms for Computing Attention.

Due to its quadratic time complexity with respect to context length (Vaswani et al., 2017b), the
attention mechanism has faced criticism. To address this issue, various approaches have been
employed to reduce computational overhead and improve scalability, including sparse attention (Child
et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Hubara et al., 2021; Kurtic et al., 2023; Frantar
& Alistarh, 2023; Shi et al., 2023a; Li et al., 2024b; Han et al., 2024; Liang et al., 2024a), low-rank
approximations (Razenshteyn et al., 2016; Li et al., 2016; Hu et al., 2022; Zeng & Lee, 2024; Hu
et al., 2024b), and kernel-based methods (Charikar et al., 2020; Liu & Zenke, 2020; Deng et al.,
2023a; Zandieh et al., 2023; Liang et al., 2024b). Additionally, linear attention has emerged as a
significant fast alternative to softmax attention, prompting substantial research in this area (Tsai et al.,
2019; Katharopoulos et al., 2020a; Schlag et al., 2021; Zhang et al., 2023; Sun et al., 2023; Ahn et al.,
2024; Shi et al., 2023b; Zhang et al., 2024; Deng et al., 2023b; Li et al., 2024a).

Fast Fourier transform.

The Fast Fourier transform algorithm (Cooley & Tukey, 1965) can multiply the n by n Discrete
Fourier transform matrix times an input vector in O(n log n) time. This algorithm is impactful in
many areas, including image processing, audio processing, telecommunications, seismology, and
polynomial multiplication. There has been much modern reseaqrch focused on further speeding up the
Fast Fourier transform, including by decreasing the number of needed arithmetic operations (Sergeev,
2017; Alman & Rao, 2023), reducing the sample complexity in the sparse setting (Candes & Tao,
2006; Rudelson & Vershynin, 2008; Blumensath & Davies, 2010; Needell & Vershynin, 2010;
Bourgain, 2014; Haviv & Regev, 2017; Nakos et al., 2019), and reducing the running time in the
sparse setting (Gilbert et al., 2012; Hassanieh et al., 2012a;b; Indyk & Kapralov, 2014; Indyk et al.,
2014; Price & Song, 2015; Moitra, 2015; Kapralov, 2016; 2017; Chen & Price, 2019b;a; Kapralov
et al., 2019; Jin et al., 2023; Song et al., 2023). These algorithmic advances can be directly applied to
compute the Fourier transforms which arise in our algorithm below.

3 PRELIMINARIES

In Section 3.1, we define several notations. We discuss some backgrounds for fast circulant transform.
In Section 3.2, we provide a tool from previous work about how to control error by using low-degree
polynomial to approximate exponential function. In Section 3.3, we discuss some backgrounds about
fast circulant transform. In Section 3.4, we define rescaled circulant matrix and provide some basic
tools for it.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1 NOTATION

For nonnegative integer n, we use [n] to denote set {1, 2, · · · , n}. For a vector a, we use diag(a)
to denote the diagonal matrix where the (i, i)-th entry is ai. For a matrix, we use supp to denote
the support of the matrix, i.e., the set of entries where the matrix is nonzero. For a matrix A, we
use A⊤ to denote transpose of A. Given two vectors a, b of the same length, we use a ◦ b to denote
their entry-wise product, i.e., the vector where the i-th entry is aibi. Given two matrices A,B of
the same dimensions, we similarly use A ◦B to denote their entry-wise Hadamard product, i.e., the
matrix where the (i, j)-th entry is Ai,jBi,j . For a matrix A and a non-negative integer t, we use
A◦t := A ◦A ◦ · · · ◦A︸ ︷︷ ︸

t terms

, i.e., (A◦t)i,j = At
i,j .

3.2 POLYNOMIAL APPROXIMATION OF EXPONENTIAL

Here, we will explain a technical tool for controlling the error dependence of our approximate
algorithm. In particular, will use the following optimal-degree polynomial approximation of the
exponential function.

Lemma 3.1 (Aggarwal & Alman (2022)). Let B > 1 and let ϵ ∈ (0, 0.1). There is a polynomial

P : R → R of degree g := Θ
(
max

{
log(1/ϵ)

log(log(1/ϵ)/B) , B
})

such that for all x ∈ [0, B], we have

|P (x)− exp(x)| < ϵ.

Furthermore, P can be computed efficiently: its coefficients are rational numbers with poly(g)-bit
integer numerators and denominators which can be computed in poly(g) time.

3.3 FAST CIRCULANT TRANSFORM

Definition 3.2 (Circulant matrix). Let a ∈ Rn denote a length-n vector. We define Circ : Rn → Rn×n

as,

Circ(a) :=

a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

Fact 3.3 (Folklore). Let a ∈ Rn denote a length-n vector. Let Circ be defined in Definition 3.2. Let
F ∈ Cn×n denote the discrete Fourier transform matrix. Using the property of discrete Fourier
transform, we have

Circ(a) = F−1diag(Fa)F.

We can thus multiply Circ(a) with an input vector of length n in O(n log n) time using the Fast
Fourier transform algorithm.

3.4 RESCALED CIRCULANT MATRIX

Our algorithm will critically involve manipulating a certain kind of structured matrix we call a
rescaled circulant matrix. In this section we define these matrices and prove basic properties which
we will use.

Definition 3.4 (Rescaled Circulant Matrix). We say a square matrix M ∈ Rn×n is rescaled circulant
if there are diagonal matrices D1, D2 ∈ Rn×n and a circulant matrix C ∈ Rn×n such that
M = D1CD2.

Fact 3.5. If M ∈ Rn×n is a rescaled circulant matrix (see Definition 3.4), then given as input a
vector v ∈ R, one can compute the matrix-vector product Mv in O(n log n) time.

Proof. Suppose M = D1CD2, we first compute D2v straightforwardly in O(n) time. Then we
compute C · (D2v) in O(n log n) time. Finallyt, we compute D1 · (CD2v) in O(n) time.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 3.6. If A and B are rescaled circulant matrices, then A ◦ B is also a rescaled circulant
matrix.

Proof. Suppose A = diag(a1)A2 diag(a3) where A2 is a circulant matrix.

Suppose B = diag(b1)B2 diag(b3) where B2 is a circulant matrix.

We can show

A ◦B = (diag(a1)A2 diag(a3)) ◦ (diag(b1)B2 diag(b3))

= diag(a1) diag(b1)((A2 diag(a3)) ◦ (B2 diag(b3)))

= diag(a1) diag(b1)(A2 ◦B2) diag(a3) diag(b3).

Therefore, we know A ◦B is also a rescaled circulant matrix.

Lemma 3.7. If A1, · · · , At are rescaled circulant matrices, then for any vector v, we have (A1 ◦
A2 ◦ · · · ◦At)v can be computed in O(tn log n) time.

Proof. The proof directly follows from applying Lemma 3.6 and Fact 3.5, t times.

4 HOW TO COMPUTE THE LINEAR ATTENTION UNDER ROPE

Before getting to RoPE softmax attention, in this section we address the simpler problem of computing
RoPE linear attention, which does not have entry-wise exp.
Definition 4.1 (Linear Attention). Let S ⊆ [d] × [d] denote a support and |S| = O(d). Given
W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1 ∈ Rd×d and for all i ∈ {−(n−1), · · · ,−1, 0, 1, · · · , n−1}.
Given Q ∈ Rn×d and K ∈ Rn×d, V ∈ Rn×d.

We define matrix A ∈ Rn×n such as follows

Ai,j := (Qi,∗︸︷︷︸
1×d

Wi−j︸ ︷︷ ︸
d×d

K⊤
j,∗︸︷︷︸

d×1

),∀i ∈ [n], j ∈ [n]

We define D := diag(A1n). The attention computation is going to output an n× d matrix

D−1︸︷︷︸
n×n

A︸︷︷︸
n×n

V︸︷︷︸
n×d

For this linear version, we now show how to reduce it to O(|S|) Fast Fourier transforms (FFTs), each
of which can be performed in O(n log n) time. Intuitively, our algorithm is going to write A ∈ Rn×n

in the form A =
∑

(l1,l2)∈S Bl1,l2 where Bl1,l2 ∈ Rn×n is a rescaled circulant matrix.

Recall the support S:
Definition 4.2. Given a collection of weight matrices W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1, we use
S to denote their support such that ∀i ∈ {−(n− 1), · · · , n− 1}, supp(Wi) = S.
Definition 4.3 (one-sparse matrix). For each pair (ℓ1, ℓ2) ∈ S, and i, j ∈ [n], define the matrix
W ℓ1,ℓ2

i−j ∈ Rd×d to be all 0s except that entry (ℓ1, ℓ2) is equal to (Wi−j)ℓ1,ℓ2 .

Claim 4.4. Let one sparse matrix W ℓ1,ℓ2
i−j ∈ Rd×d be defined as Definition 4.3. Then,

Wi−j =
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j

Proof. We can show that

Wi−j =
∑

(ℓ1,ℓ2)∈S

eℓ1︸︷︷︸
d×1

(Wi−j)ℓ1,ℓ2︸ ︷︷ ︸
scalar

e⊤ℓ2︸︷︷︸
1×d

=
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j

where the second step follows from Definition 4.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Definition 4.5. For each pair (ℓ1, ℓ2) ∈ S, we define matrix Aℓ1,ℓ2 ∈ Rn×n as follows:

Aℓ1,ℓ2
i,j := Qi,∗︸︷︷︸

1×d

W ℓ1,ℓ2
f(i−j)︸ ︷︷ ︸
d×d

K⊤
j,∗︸︷︷︸

d×1

,∀i ∈ [n], j ∈ [n]

Claim 4.6. Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. Then, we can show

A =
∑

(ℓ1,ℓ2)∈S

Aℓ1,ℓ2 .

Proof. For each i ∈ [n], j ∈ [n], we compute each (i, j)-th entry of matrix A ∈ Rn×n as

Ai,j = Qi,∗Wi−jK
⊤
j,∗

= Qi,∗
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j K⊤

j,∗

=
∑

(ℓ1,ℓ2)∈S

Qi,∗W
ℓ1,ℓ2
i−j K⊤

j,∗

=
∑

(ℓ1,ℓ2)∈S

Aℓ1,ℓ2
i,j

where the second step follows from Claim 4.4, the third step follows from rearranging the summation,
and the last step follows from the definition of Aℓ1,ℓ2

i,j .

Thus, we complete the proof.

Definition 4.7. Let S be defined as in Definition 4.2. For each (ℓ1, ℓ2) ∈ S, we define matrix
Cℓ1,ℓ2 ∈ Rn×n as Cℓ1,ℓ2

i,j := (Wi−j)ℓ1,ℓ2 .

Claim 4.8. Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. We can show Aℓ1,ℓ2 =
diag(Q∗,ℓ1)C

ℓ1,ℓ2 diag(K∗,ℓ2).

Proof. We can rewrite Aℓ1,ℓ2
i,j as follows

Aℓ1,ℓ2
i,j = Qi,∗W

ℓ1,ℓ2
f(i−j)K

⊤
j,∗ = Qi,∗eℓ1(Wf(i−j))ℓ1,ℓ2e

⊤
ℓ2K

⊤
j,∗ = Qi,ℓ1(Wf(i−j))ℓ1,ℓ2Kj,ℓ2

We define Cℓ1,ℓ2
i,j = (Wf(i−j))ℓ1,ℓ2 , then the above equation becomes

Aℓ1,ℓ2
i,j = Qi,ℓ1C

ℓ1,ℓ2
i,j Kj,ℓ2

Thus we can have
Aℓ1,ℓ2 = diag(Q∗,ℓ1)C

ℓ1,ℓ2 diag(K∗,ℓ2)

Therefore, we complete the proof.

Claim 4.9 (Running Time). Let matrix Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. For any vector
x ∈ Rn, we can compute Aℓ1,ℓ2x in O(n log n) time using FFT.

Proof. Using Claim 4.8, we can show that Aℓ1,ℓ2 is rescaled circulant matrix.

Since Aℓ1,ℓ2 is a rescaled circulant, thus, for any vector v, we can compute Aℓ1,ℓ2v in O(n log n)
time.

5 HOW TO HANDLE THE EXP TERMS

We now give our full algorithm for general RoPE attention. In Section 5.1, we study matrices
which are the entry-wise products of a number of rescaled circulant matrix, and how to use that
decomposition to quickly multiply such matrices with a vector. In Section 5.2, we show how to
decompose the RoPE attention matrix into summation of a number of such structured matrices using
the polynomial method. In Section 5.3, we show how to put everything together to get our main
result.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 THE RUNNING TIME OF HAMADARD PRODUCT OF RESCALED CIRCULANT MATRIX
MULTIPLYING A VECTOR

Lemma 5.1. Let m : [d]× [d] → N be any function1. Define the matrix A(m) ∈ Rn×n by

A
(m)
i,j :=

∏
(ℓ1,ℓ2)∈S

(Aℓ1,ℓ2
i,j)m(ℓ1,ℓ2),∀i ∈ [n], j ∈ [n].

Then A(m) is also of the form rescaled circulant matrix (see Definition 3.4). Furthermore, for any
vector v ∈ Rn, A(m)v can be computed in O((

∑
(ℓ1,ℓ2)∈S m(ℓ1, ℓ2)) · n log n) time.2

Proof. We define set S to be
{(ℓ1,1, ℓ2,1), (ℓ1,2, ℓ2,2), · · · , (ℓ1,|S|, ℓ2,|S|)} ⊂ [d]× [d]

We define ti ∈ N for each i ∈ [|S|] as follows
ti := m(ℓ1,i, ℓ2,i).

From the definition of A(m)
i,j ∈ R, we know that A(m) ∈ Rn×n can be written as the entry-wise

product of a collection of matrices (where each matrix is a rescaled circulant matrix), i.e.,

A(m) = (Aℓ1,1,ℓ2,1)◦t1 ◦ (Aℓ1,2,ℓ2,2)◦t2 ◦ · · · ◦ (Aℓ1,|S|,ℓ2,|S|)◦t|S|

Using Lemma 3.6, we know the entry-wise product between any two rescaled circulant matrix is still
a rescaled circulant matrix. Thus, applying Lemma 3.6 to the above equations for

∑|S|
i=1 ti times, we

can show that A(m) is still a rescaled circulant matrix.

Using Lemma 3.7, we know that for any vector v, A(m)v can be computed in O((
∑|S|

i=1 ti) · n log n)
time.

5.2 EXPANDING POLYNOMIALS INTO SUMMATION OF SEVERAL RESCALED CIRCULANT
MATRICES

Lemma 5.2. Let M1, . . . ,Mk ∈ Rn×n be rescaled circulant matrices. Let p : R → R be a
polynomial of degree d̃. Let m ∈ M be the set of functions m : [k] → N such that

∑k
ℓ=1 m(ℓ) ≤ d̃.

Consider the matrix M ∈ Rn×n defined by Mi,j := p(
∑k

ℓ=1 M
ℓ
i,j). Then M ∈ Rn×n can be written

as the following sum of rescaled circulant matrices:

M =
∑

m∈M
αm ·N (m)

Here N (m) ∈ Rn×n is defined as N
(m)
i,j = (M ℓ

i,j)
m(ℓ) for all i ∈ [n], j ∈ [n] and αm ∈ R is

coefficient. Furthermore, the number of rescaled circulant matrices is |M| = O(
(
d̃+k
k

)
).

Proof. Recall M is the set of functions m : [k] → N such that
∑k

ℓ=1 m(ℓ) ≤ d̃. Then, for each
m ∈ M there is a coefficient αm ∈ R such that we can rewrite polynomial p as follows:

p(z1 + · · ·+ zk) =
∑

m∈M
αm ·

k∏
ℓ=1

z
m(ℓ)
ℓ . (2)

Thus,

Mi,j = p(

k∑
ℓ=1

M ℓ
i,j) =

∑
m∈M

αm ·
k∏

ℓ=1

(M ℓ
i,j)

m(ℓ) =
∑

m∈M
αm ·N (m)

where the first step follows from definition of M , the second step follows from Eq. (2), and the last
step follows from definition of N (m). Thus, we can see M =

∑
m∈M αm ·M (m).

1Here intuitively, m represents the exponents of variables in a monomial of a polynomial.
2Later, we will show that

∑
(ℓ1,ℓ2)∈S m(ℓ1, ℓ2) = no(1) for the function m we used in this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 MAIN RESULT

Finally, we are ready to put all our techniques together.

Theorem 5.3 (Restatement of Theorem 1.3). Suppose d = O(log n) and B = o(
√
log n). There is

an n1+o(1) time algorithm to approximate ARAttC up to ϵ = 1/ poly(n) additive error.

Proof. We use the polynomial of Lemma 3.1 in Lemma 5.2 with choice of k = |S| = O(d) =

O(log n) and d̃ = o(log n) is the degree of the polynomial from Lemma 3.1 for error 1/ poly(n).
We can thus upper bound

|M| = O(

(
k + d

d

)
) = no(1).

The total running time consists of three parts: first, approximating A1n which gives an approxima-
tion to diagonal matrix D; second, approximating Av for d different columns vectors v, this will
approximate AV ; third, combining approximation of D−1 with approximation of AV , to obtain an
approximation of D−1AV . Combining Lemma 5.1 and 5.2. The dominating running time for above
three parts is

|M| ·
∑

(ℓ1,ℓ2)∈S

m(ℓ1, ℓ2) · n log n = O(n1+o(1))

Due to the choice of |M| = no(1), |S| = O(d), d = O(log n).

The error analysis remains identical to prior attention algorithms using the polynomial method (Alman
& Song, 2023), thus we omit the details here.

6 HARDNESS

Before we state our lower bound, we present The Strong Exponential Time Hypothesis. The Strong
Exponential Time Hypothesis (SETH) was introduced by Impagliazzo and Paturi Impagliazzo &
Paturi (2001) over 20 years ago. It is a strengthening of the P ̸= NP conjecture, which asserts that
our current best SAT algorithms are roughly optimal:

Hypothesis 6.1 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there is a positive
integer k ≥ 3 such that k-SAT on formulas with n variables cannot be solved in O(2(1−ϵ)n) time,
even by a randomized algorithm.

SETH is a popular conjecture which has been used to prove fine-grained lower bounds for a wide
variety algorithmic problems, as discussed in depth in the survey Williams (2018).

Theorem 6.2 (Restatement of Theorem 1.4). Assuming SETH, for every q > 0, there are constants
C,Ca, Cb > 0 such that: there is no O(n2−q) time algorithm for the problem ARAttC(n, d =
C log n,B = Cb

√
log n, ϵ = n−Ca).

Proof. We will pick all of the W−(n−1), · · · ,W(n−1) ∈ Rd×d to be an identity Id matrix. Thus the
RoPE attention becomes classical attention. Thus using Alman & Song (2023), our lower bound
result follows.

7 CONCLUSION

In this work, we provide an almost linear time algorithm for RoPE attention. RoPE attention is used
as a more expressive variant on attention in many applications, but the usual polynomial method
approach inherently cannot work for calculating it quickly. We introduced a new way to combine the
polynomial method with our “rescaled circulant matrices” and the Fast Fourier transform in order to
solve this problem more efficiently. As future work introduces more variants on attention, it will be
exciting to explore whether these and other linear algebraic tools can still be used to perform fast
computations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials
and gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity
Conference, pp. 1–23, 2022.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
attention is (maybe) all you need (to understand transformer optimization). In The Twelfth
International Conference on Learning Representations, 2024.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. https:
//ai.meta.com/blog/meta-llama-3/.

Josh Alman and Kevin Rao. Faster walsh-hadamard and discrete fourier transforms from matrix
non-rigidity. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp.
455–462, 2023.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS, 2023.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. In ICLR, 2024a.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In NeurIPS, 2024b.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Kunal Banerjee, Rishi Raj Gupta, Karthik Vyas, and Biswajit Mishra. Exploring alternatives to
softmax function. arXiv preprint arXiv:2011.11538, 2020.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Thomas Blumensath and Mike E Davies. Normalized iterative hard thresholding: Guaranteed stability
and performance. IEEE Journal of selected topics in signal processing, 4(2):298–309, 2010.

Jean Bourgain. An improved estimate in the restricted isometry problem. In Geometric aspects of
functional analysis, pp. 65–70. Springer, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPS), 33:1877–1901,
2020.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425, 2006.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172–183. IEEE, 2020.

Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference on
Learning Theory (COLT), pp. 663–695. PMLR, 2019a.

Xue Chen and Eric Price. Estimating the frequency of a clustered signal. In ICALP, 2019b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Yichuan Deng, Zhao Song, Zifan Wang, and Han Zhang. Streaming kernel pca algorithm with small
space. arXiv preprint arXiv:2303.04555, 2023a.

Yichuan Deng, Zhao Song, and Tianyi Zhou. Superiority of softmax: Unveiling the performance
edge over linear attention. arXiv preprint arXiv:2310.11685, 2023b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Anna C Gilbert, Yi Li, Ely Porat, and Martin J Strauss. Approximate sparse recovery: optimizing
time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012.

Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang, Andy Narayanan, Aonan Zhang, Bowen
Zhang, Chen Chen, Chung-Cheng Chiu, David Qiu, et al. Apple intelligence foundation language
models. arXiv preprint arXiv:2407.21075, 2024.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Conference
on Learning Representations, 2024.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier transform.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing (STOC), pp.
563–578, 2012a.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for
sparse fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pp. 1183–1194. SIAM, 2012b.

Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices. In
Geometric aspects of functional analysis, pp. 163–179. Springer, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136, 2024b.

Jerry Yao-Chieh Hu, Weimin Wu, Zhao Song, and Han Liu. On statistical rates and provably efficient
criteria of latent diffusion transformers (dits). arXiv preprint arXiv:2407.01079, 2024c.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: m transposable masks. Advances
in neural information processing systems, 34:21099–21111, 2021.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Piotr Indyk and Michael Kapralov. Sample-optimal fourier sampling in any constant dimension. In
2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 514–523. IEEE,
2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-optimal sparse fourier transform. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 480–499.
SIAM, 2014.

Yaonan Jin, Daogao Liu, and Zhao Song. A robust multi-dimensional sparse fourier transform in the
continuous setting. In SODA, 2023.

Michael Kapralov. Sparse fourier transform in any constant dimension with nearly-optimal sample
complexity in sublinear time. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 264–277, 2016.

Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via isolation on average.
In Chris Umans (ed.), 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pp. 651–662. IEEE Computer Society, 2017.

Michael Kapralov, Ameya Velingker, and Amir Zandieh. Dimension-independent sparse fourier
transform. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 2709–2728. SIAM, 2019.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020a.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020b.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse finetuning
for inference acceleration of large language models. arXiv preprint arXiv:2310.06927, 2023.

Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of softmax: Prov-
able optimization, applications in diffusion model, and beyond. arXiv preprint arXiv:2405.03251,
2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024b.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank approx-
imation via alternating minimization. In International Conference on Machine Learning, pp.
2358–2367. PMLR, 2016.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv preprint
arXiv:2405.05219, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in neural
tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably efficient
learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024e.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent transfer.
In International Conference on Machine Learning, pp. 6336–6347. PMLR, 2020.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal llm pre-training. arXiv preprint arXiv:2403.09611, 2024.

Ankur Moitra. The threshold for super-resolution via extremal functions. In STOC. arXiv preprint
arXiv:1408.1681, 2015.

Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly) sample-optimal sparse fourier transform
in any dimension; ripless and filterless. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1568–1577. IEEE, 2019.

Deanna Needell and Roman Vershynin. Signal recovery from incomplete and inaccurate measure-
ments via regularized orthogonal matching pursuit. IEEE Journal of selected topics in signal
processing, 4(2):310–316, 2010.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024a. Accessed:
May 14.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024b. Accessed: September 12.

Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pp. 583–600. IEEE, 2015.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian mea-
surements. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, 61(8):1025–1045, 2008.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning. PMLR, 2021.

Igor Sergeevich Sergeev. On the real complexity of a complex dft. Problems of Information
Transmission, 53(3):284–293, 2017.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh Jha.
The trade-off between universality and label efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning Representations, 2023a.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in Large
Foundation Models, 2023b.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Quartic samples suffice for fourier
interpolation. In FOCS, pp. 1414–1425. IEEE, 2023.

14

https://openai.com/index/hello-gpt-4o/
 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems (NeurIPS), 30, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–3487.
World Scientific, 2018.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pp. 36–39. IEEE, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. In ICLR, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

15

	Introduction
	Related Work
	Preliminaries
	Notation
	Polynomial Approximation of Exponential
	Fast Circulant Transform
	Rescaled Circulant Matrix

	How to Compute the Linear Attention under RoPE
	How to Handle the Exp Terms
	The running time of hamadard product of rescaled circulant matrix multiplying a vector
	Expanding polynomials into summation of several rescaled circulant matrices
	Main Result

	Hardness
	Conclusion

