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Abstract

Learning scientific document representations001
can be substantially improved through con-002
trastive learning objectives, where the chal-003
lenge lies in creating positive and negative004
training samples that encode the desired sim-005
ilarity semantics. Prior work relies on discrete006
citation relations to generate contrast samples.007
However, discrete citations enforce a hard cut-008
off to similarity. This is counter-intuitive to009
similarity-based learning and ignores that sci-010
entific papers can be very similar despite lack-011
ing a direct citation – a core problem of finding012
related research. Instead, we use controlled013
nearest neighbor sampling over citation graph014
embeddings for contrastive learning. This con-015
trol allows us to learn continuous similarity, to016
sample hard-to-learn negatives and positives,017
and also to avoid collisions between negative018
and positive samples by controlling the sam-019
pling margin between them. The resulting020
method SciNCL outperforms the state-of-the-021
art on the SciDocs benchmark. Furthermore,022
we demonstrate that it can train (or tune) lan-023
guage models sample-efficiently and that it024
can be combined with recent training-efficient025
methods. Perhaps surprisingly, even training a026
general-domain language model this way out-027
performs baselines pretrained in-domain.028

1 Introduction029

Large pretrained language models (LLMs) achieve030

state-of-the-art results through fine-tuning on many031

NLP tasks (Rogers et al., 2020). However, the sen-032

tence or document embeddings derived from LLMs033

are of lesser quality compared to simple baselines034

like GloVe (Reimers and Gurevych, 2019), as their035

embedding space suffers from being anisotropic,036

i.e. poorly defined in some areas (Li et al., 2020).037

One approach that has recently gained attention038

is the combination of LLMs with contrastive fine-039

tuning to improve the semantic textual similarity040

between document representations (Wu et al., 2020;041

Gao et al., 2021). These contrastive methods learn042

sample 
induced
margin

easy negatives

Figure 1: Starting from a query paper in a citation
graph embedding space. Hard positives are cita-
tion graph embeddings that are sampled from a similar
(close) context of , but are not so close that their gra-
dients collapse easily. Hard (to classify) negatives
(red band) are close to positives (green band) up to a
sampling induced margin. Easy negatives are very
dissimilar (distant) from the query paper .

to distinguish between pairs of similar and dissimi- 043

lar texts (positive and negative samples). As recent 044

works show (Tian et al., 2020b; Rethmeier and 045

Augenstein, 2021a,b; Shorten et al., 2021), the se- 046

lection of these positive and negative samples is 047

crucial for efficient contrastive learning. 048

This paper focusses on learning scientific doc- 049

ument representations (SDRs). The core distin- 050

guishing feature of this domain is the presence of 051

citation information that complement the textual in- 052

formation. The current state-of-the-art SPECTER 053

by Cohan et al. (2020) uses citation information 054

to generate positive and negative samples for con- 055

trastive fine-tuning of a SciBERT language model 056

(Beltagy et al., 2019). SPECTER relies on ‘cita- 057

tions by the query paper’ as a discrete signal for 058

similarity, i.e., positive samples are cited by the 059

query while negative ones are not cited. 060

However, SPECTER’s use of citations has its 061
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pitfalls. Considering only one citation direction062

may cause positive and negative samples to collide063

since a paper pair could be treated as a positive and064

negative instance simultaneously. Also, relying065

on a single citation as a discrete similarity signal066

is subject to noise, e.g., citations may reflect po-067

liteness and policy rather than semantic similarity068

(Pasternack, 1969) or related papers lack a direct069

citation (Gipp and Beel, 2009). This discrete cut-070

off to similarity is counter-intuitive to (continuous)071

similarity-based learning.072

Instead, the generation of non-colliding con-073

trastive samples should be based on a continuous074

similarity function that allows us to find semanti-075

cally similar papers, even without direct citations.076

With SciNCL, we address these issues by generat-077

ing contrastive samples based on citation embed-078

dings. The citation embeddings, which incorporate079

the full citation graph, provide a continuous, undi-080

rected, and less noisy similarity signal that allows081

the generations of arbitrary difficult-to-learn posi-082

tive and negative samples.083

Contributions:084

• We propose neighborhood contrastive learn-085

ing for scientific document representations086

with citation graph embeddings (SciNCL)087

based on contrastive learning theory insights.088

• We sample positive (similar) and negative (dis-089

similar) papers from the k nearest neighbors090

in the citation graph embedding space, such091

that positives and negatives do not collide but092

are also hard to learn.093

• We compare against the state-of-the-art ap-094

proach SPECTER (Cohan et al., 2020) and095

other strong methods on the SCIDOCS bench-096

mark and find that SciNCL outperforms097

SPECTER on average and on 9 of 12 metrics.098

• Finally, we demonstrate that with SciNCL,099

using only 1% of the triplets for training, start-100

ing with a general-domain language model, or101

training only the bias terms of the model is102

sufficient to outperform the baselines.103

• Our code and models are publicly available.1104

2 Related Work105

Contrastive Learning pulls representations of106

similar data points (positives) closer together, while107

representations of dissimilar documents (negatives)108

1 https://anonymous.4open.science/r/
scincl-1553/

are pushed apart. A common contrastive objective 109

is the triplet loss (Schroff et al., 2015) that Cohan 110

et al. (2020) used for scientific document represen- 111

tation learning, as we describe below. However, 112

as Musgrave et al. (2020) point out, contrastive 113

objectives work best when specific requirements 114

are respected. (Req. 1) Views of the same data 115

should introduce new information, i.e. the mutual 116

information between views should be minimized 117

(Tian et al., 2020b). We use citation graph embed- 118

dings to generate contrast label information that 119

supplements text-based similarity. (Req. 2) For 120

training time and sample efficiency, negative sam- 121

ples should be hard to classify, but should also 122

not collide with positives (Saunshi et al., 2019). 123

(Req. 3) Recent works like Musgrave et al. (2020); 124

Khosla et al. (2020) use multiple positives. How- 125

ever, positives need to be consistently close to each 126

other (Wang and Isola, 2020), since positives and 127

negatives may otherwise collide, e.g., Cohan et al. 128

(2020) consider only ‘citations by the query’ as sim- 129

ilarity signal and not ‘citations to the query’. Such 130

unidirectional similarity does not guarantee that a 131

negative paper (not cited by the query) may cite 132

the query paper and thus could cause collisions, the 133

more we sample (Appendix A.7.10). Our method 134

treats both citing and being cited as positives (Req. 135

2), while it also generates hard negatives and hard 136

positives (Req. 2+3). Hard negatives are close to 137

but do not overlap positives (red band in Fig. 1). 138

Hard positives are close, but not trivially close to 139

the query document (green band in Fig. 1). Ap- 140

pendix A.1 presents related work on triplet mining. 141

Scientific Document Representations based on 142

Transformers (Vaswani et al., 2017) and pretrained 143

on domain-specific text dominate today’s scientific 144

document processing. There are SciBERT (Belt- 145

agy et al., 2019), BioBERT (Lee et al., 2019) and 146

SciGPT2 (Luu et al., 2021), to name a few. Re- 147

cent works modify these domain LLMs to support 148

cite-worthiness detection (Wright and Augenstein, 149

2021) or fact checking (Wadden et al., 2020). 150

Aside from text, citations are a valuable signal 151

for the similarity of research papers. Paper (node) 152

representations can be learned using the citation 153

graph (Wu et al., 2019; Perozzi et al., 2014; Grover 154

and Leskovec, 2016). Especially for recommenda- 155

tions of papers or citations, hybrid combinations 156

of text and citation features are often employed 157

(Han et al., 2018; Jeong et al., 2020; Brochier et al., 158

2019; Yang et al., 2015; Holm et al., 2022). 159
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Closest to SciNCL are Citeomatic (Bhagavatula160

et al., 2018) and SPECTER (Cohan et al., 2020).161

While Citeomatic relies on bag-of-words for its162

textual features, SPECTER is based on SciBERT.163

Both leverage citations to learn a triplet-based docu-164

ment embedding model, whereby positive samples165

are papers cited in the query. Easy negatives are166

random papers not cited by the query. Hard nega-167

tives are citations of citations – papers referenced168

in positive citations of the query, but are not cited169

directly by it. Citeomatic also uses a second type170

of hard negatives, which are the nearest neighbors171

of a query that are not cited by it.172

Unlike our approach, Citeomatic does not use the173

neighborhood of citation embeddings, but instead174

relies on the actual document embeddings from the175

previous epoch. Despite being related to SciNCL,176

the sampling approaches employed in Citeomatic177

and SPECTER do not account for the pitfalls of us-178

ing discrete citations as signal for paper similarity.179

Our work addresses this issue.180

Cross-Modal Transfer. SciNCL transfers181

knowledge across modalities, i.e., from citations182

into a language model. According to Cohan183

et al. (2020), SciNCL can be considered as a184

“citation-informed Transformer”. This cross-modal185

transfer learning is applied for various modalities186

(see Kaur et al. (2021) for an overview): text-to-187

image (Socher et al., 2013), RGB-to-depth image188

(Tian et al., 2020a), or graph-to-image (Wang189

et al., 2018). While the aforementioned methods190

incorporate cross-modal knowledge through joint191

loss functions or latent representations, SciNCL192

transfers knowledge through the contrastive sample193

selection, which we found superior to the direct194

transfer approach (Appendix A.7.9).195

3 Methodology196

Our goal is to learn citation-informed represen-197

tations for scientific documents. To do so we198

sample three document representation vectors and199

learn their similarity. For a given query paper200

vector dQ, we sample a positive (similar) paper201

vector d+ and a negative (dissimilar) paper vec-202

tor d−. This produces a ‘query, positive, negative’203

triplet (dQ,d+,d−) – represented by ( , , )204

in Fig. 1. To learn paper similarity, we need to205

define three components: (§3.1) how to calculate206

document vectors d for the loss over triplets L;207

(§3.2) how citations provide similarity between pa-208

pers; and (§3.3) how negative and positive papers209

(d−,d+) are sampled as (dis-)similar documents 210

from the neighborhood of a query paper dQ. 211

3.1 Contrastive Learning Objective 212

Given the textual content of a document d (paper), 213

the goal is to derive a dense vector representation 214

d that best encodes the document information and 215

can be used in downstream tasks. A Transformer 216

language model f (SciBERT; Beltagy et al. (2019)) 217

encodes documents d into vector representations 218

f(d) = d. The input to the language model is the 219

title and abstract separated by the [SEP] token.2 220

The final layer hidden state of the [CLS] token is 221

then used as a document representation f(d) = d. 222

Training with a masked language modeling ob- 223

jectives alone has been shown to produce sub- 224

optimal document representations (Li et al., 2020; 225

Gao et al., 2021). Thus, similar to the SDR state- 226

of-the-art method SPECTER (Cohan et al., 2020), 227

we continue training the SciBERT model (Beltagy 228

et al., 2019) using a self-supervised triplet margin 229

loss (Schroff et al., 2015): 230

L = max
{
‖dQ−d+‖2−‖dQ−d−‖2+ξ, 0

}
231

Here, ξ is a slack term (ξ = 1 as in SPECTER) 232

and ‖∆d‖2 is the L2 norm, used as a distance func- 233

tion. However, the SPECTER sampling method 234

has significant drawbacks. We will describe these 235

issues and our contrastive learning theory guided 236

improvements in detail below in §3.2. 237

3.2 Citation Neighborhood Sampling 238

Compared to the textual content of a paper, cita- 239

tions provide an outside view on a paper and its 240

relation to the scientific literature (Elkiss et al., 241

2008), which is why citations are traditionally used 242

as a similarity measure in library science (Kessler, 243

1963; Small, 1973). However, using citations as a 244

discrete similarity signal, as done in Cohan et al. 245

(2020), has its pitfalls. Their method defines pa- 246

pers cited by the query as positives, while paper 247

citing the query could be treated as negatives. This 248

means that positive and negative learning infor- 249

mation collides between citation directions, which 250

Saunshi et al. (2019) have shown to deteriorate per- 251

formance. Furthermore, a cited paper can have a 252

low similarity with the citing paper given the many 253

motivations a citation can have (Teufel et al., 2006). 254

Likewise, a similar paper might not be cited. 255

2Cohan et al. (2019) evaluated other inputs (venue or
author) but found the title and abstract to perform best.
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To overcome these limitations, we learn citation256

embeddings first and then use the citation neighbor-257

hood around a given query paper dQ to construct258

similar (positive) and dissimilar (negative) sam-259

ples for contrast by using the k nearest neighbors.260

This builds on the intuition that nodes connected261

by edges should be close to each other in the em-262

bedding space (Perozzi et al., 2014). Using citation263

embeddings allows us to: (1) sample paper similar-264

ity on a continuous scale, which makes it possible265

to: (2) define hard to learn positives, as well as (3)266

hard or easy to learn negatives. Points (2-3) are267

important in making contrastive learning efficient268

as will describe below in §3.3.269

3.3 Positives and Negatives Sampling270

Positive samples: d+ should be semantically271

similar to the query paper dQ, i.e. sampled close to272

the query embedding dQ. Additionally, as Wang273

and Isola (2020) find, positives should be sam-274

pled from comparable locations (distances from275

the query) in embedding space and be dissimilar276

enough from the query embedding, to avoid gradi-277

ent collapse (zero gradients). Therefore, we sample278

c+ positive (similar) papers from a close neighbor-279

hood around query embedding dQ (k+ − c+, k+],280

i.e. the green band in Fig. 1. When sampling with281

KNN search, we use a small k+ to find positives282

and later analyze the impact of k+ in Fig. 2.283

Negative samples: can be divided into easy284

and hard negative samples (light and dark red in285

Fig. 1). Sampling more hard negatives is known to286

improve contrastive learning (Bucher et al., 2016;287

Wu et al., 2017). However, we make sure to sam-288

ple hard negatives (red band in Fig. 1) such that289

they are close to potential positives but do not col-290

lide with positives (green band), by using a tun-291

able ‘sampling induced margin’. We do so, since292

Saunshi et al. (2019) showed that sampling a larger293

number of hard negatives only improves perfor-294

mance if the negatives do not collide with positive295

samples, since collisions make the learning sig-296

nal noisy. That is, in the margin between hard297

negatives and positives we expect positives and298

negatives to collide, thus we avoid sampling from299

this region. To generate a diverse self-supervised300

citation similarity signal for contrastive SDR learn-301

ing, we also sample easy negatives that are farther302

from the query than hard negatives. For negatives,303

the k− should be large when sampling via KNN to304

ensure samples are dissimilar from the query paper.305

3.4 Sampling Strategies 306

As described in §3.2 and §3.3, our approach im- 307

proves upon the method by Cohan et al. (2020). 308

Therefore, we reuse their sampling parameters 309

(5 triplets per query paper) and then further op- 310

timize our methods’ hyperparameters. For exam- 311

ple, to train the triplet loss, we generate the same 312

amount of (dQ,d+,d−) triplets per query paper as 313

SPECTER (Cohan et al., 2020). To be precise, this 314

means we generate c+=5 positives (as explained 315

in §3.3). We also generate 5 negatives, three easy 316

negatives c−easy=3 and two hard negatives c−hard=2, 317

as described in §3.3. 318

Below, we describe three strategies (I-III) for 319

sampling triplets. These either sample neighboring 320

papers from citation embeddings (I), by random 321

sampling (II), or using both strategies (III). For 322

each strategy, let c′ be the number of samples for 323

either positives c+, easy negatives c−easy, or hard 324

negatives c−hard. 325

Citation Graph Embeddings: We train a graph 326

embedding model fc on citations extracted from the 327

Semantic Scholar Open Research Corpus (S2ORC; 328

Lo et al., 2020) to get citation embeddings C. 329

We utilize PyTorch BigGraph (Lerer et al., 2019), 330

which allows for training on large graphs with mod- 331

est hardware requirements. The resulting graph 332

embeddings perform well using the default training 333

settings from Lerer et al. (2019), but given more 334

computational resources, careful tuning may pro- 335

duce even better-performing embeddings. Nonethe- 336

less, we conducted a narrow parameter search 337

based on link prediction – see Appendix A.5. 338

(I) K-nearest neighbors (KNN): Assuming a 339

given citation embedding model fc and a search in- 340

dex (e.g., FAISS §4.3), we run KNN(fc(d
Q), C) 341

and take c′ samples from a range of the (k − c′, k] 342

nearest neighbors around the query paper dQ with 343

its neighborsN={n1, n2, n3, . . . }, whereby neigh- 344

bor ni is the i-th nearest neighbor in the cita- 345

tion embedding space. For instance, for c′=3 346

and k=10 the corresponding samples would be 347

the three neighbors descending from the tenth 348

neighbor: n8, n9, and n10. To reduce comput- 349

ing effort, we sample the neighbors N only once 350

via [0; max(k+, k−hard)], and then generate triplets 351

by range-selection in N ; i.e. positives = (k+ − 352

c+; k+], and hard negatives = (k−hard − c−hard; k−hard]. 353

(II) Random sampling: Sample any c′ papers 354

without replacement from the corpus. 355
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(III) Filtered random: Like (II) but excluding356

the papers that are retrieved by KNN, i.e., all neigh-357

bors within the largest k are excluded.358

The KNN sampling introduces the hyperparame-359

ter k that allows for the controlled sampling of pos-360

itives or negatives with different difficulty (from361

easy to hard depending on k). Specifically, in Fig. 1362

the hyperparameter k defines the tunable sample363

induced margin between positives and negatives, as364

well as the width and position of the positive sam-365

ple band (green) and negative sample band (red)366

around the query sample. Besides the strategies367

above, we experiment with similarity threshold,368

k-means clustering and sorted random sampling,369

neither of which performs well (Appendix A.7).370

4 Experiments371

4.1 Evaluation Dataset372

We evaluate on the SCIDOCS benchmark (Cohan373

et al., 2020). A key difference to other benchmarks374

is that embeddings are the input to the individual375

tasks without explicit fine-tuning. The SCIDOCS376

benchmark consists of the following four tasks:377

Document classification (CLS) with Medical378

Subject Headings (MeSH) (Lipscomb, 2000) and379

Microsoft Academic Graph labels (MAG) (Sinha380

et al., 2015). Co-views and co-reads (USR) pre-381

diction based on the L2 distance between embed-382

dings. Direct and co-citation (CITE) prediction383

based on the L2 distance between the embeddings.384

Recommendations (REC) generation based on385

embeddings and paper metadata.386

4.2 Training Datasets387

The experiments mainly compare SciNCL against388

SPECTER on the SCIDOCS benchmark. However,389

we found 40.5% of SCIDOCS’s papers leaking into390

SPECTER’s training data (the leakage affects only391

the unsupervised paper data but not the gold labels392

– see Appendix A.3). To be transparent about this393

leakage, we train SciNCL on two datasets:394

SPECTER replication (w/ leakage): We repli-395

cate SPECTER’s training data including its leakage.396

Unfortunately, SPECTER provides neither citation397

data nor a mapping to S2ORC, which our citation398

embeddings are based on. We successfully map399

96.2% of SPECTER’s query papers and 83.3% of400

the corpus from which positives and negatives are401

sampled to S2ORC. To account for the missing402

papers, we randomly sample papers from S2ORC403

(without the SCIDOCS papers) such that the abso- 404

lute number of papers is identical with SPECTER. 405

S2ORC subset (w/o leakage): We select a ran- 406

dom subset from S2ORC that does not contain 407

any of the mapped SCIDOCS papers. This avoids 408

SPECTER’s leakage, but also makes the scores re- 409

ported in Cohan et al. (2020) less comparable. We 410

successfully map 98.6% of the SCIDOCS papers 411

to S2ORC. Thus, only the remaining 1.4% of the 412

SCIDOCS papers could leak into this training set. 413

The details of the dataset creation are described 414

in Appendix A.2 and A.4. Both training sets yield 415

684K triplets (same count as SPECTER). Also, the 416

ratio of training triplets per query remains the same 417

(§3.4). Our citation embedding model is trained 418

on the S2ORC citation graph. In w/ leakage, we 419

include all SPECTER papers even if they are part 420

of SCIDOCS, the remaining SCIDOCS papers are 421

excluded (52.5 nodes and 463M edges). In w/o 422

leakage, all mapped SCIDOCS papers are excluded 423

(52.4M nodes and 447M edges) such that we avoid 424

leakage also for the citation embedding model. 425

4.3 Model Training and Implementation 426

We replicate the training setup from SPECTER as 427

closely as possible. We implement SciNCL using 428

Huggingface Transformers (Wolf et al., 2020), ini- 429

tialize the model with SciBERT’s weights (Beltagy 430

et al., 2019), and train via the triplet loss (Equa- 431

tion 3.1). The optimizer is Adam with weight de- 432

cay (Kingma and Ba, 2015; Loshchilov and Hutter, 433

2019) and learning rate λ=2−5. To explore the ef- 434

fect of computing efficient fine-tuning we also train 435

a BitFit model (Zaken et al., 2021) with λ=1−4 436

(§7.2). We train SciNCL on two NVIDIA GeForce 437

RTX 6000 (24G) for 2 epochs (approx. 24 hours of 438

training time) with batch size 8 and gradient accu- 439

mulation for an effective batch size of 32 (same as 440

SPECTER). The graph embedding training is per- 441

formed on an Intel Xeon Gold 6230 CPU with 60 442

cores and takes approx. 6 hours. The KNN strategy 443

is implemented with FAISS (Johnson et al., 2021) 444

using a flat index (exhaustive search) and takes less 445

than 30min for indexing and retrieval of the triplets. 446

4.4 Baseline Methods 447

We compare against the following baselines (details 448

in Appendix A.6): USE (Cer et al., 2018), BERT 449

(Devlin et al., 2019), BioBERT (Lee et al., 2019), 450

SciBERT (Beltagy et al., 2019), CiteBERT (Wright 451

and Augenstein, 2021), DeCLUTR (Giorgi et al., 452
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Task→ Classification User activity prediction Citation prediction
Recomm.

Avg.
Subtask→ MAG MeSH Co-View Co-Read Cite Co-Cite
Model ↓ / Metric→ F1 F1 MAP nDCG MAP nDCG MAP nDCG MAP nDCG nDCG P@1

Oracle SciDocs † 87.1 94.8 87.2 93.5 88.7 94.6 92.3 96.8 91.4 96.4 53.8 19.4 83.0
USE (2018) 80.0 83.9 77.2 88.1 76.5 88.1 76.6 89.0 78.3 89.8 53.7 19.6 75.1
Citeomatic* (2018) 67.1 75.7 81.1 90.2 80.5 90.2 86.3 94.1 84.4 92.8 52.5 17.3 76.0
SGC* (2019) 76.8 82.7 77.2 88.0 75.7 87.5 91.6 96.2 84.1 92.5 52.7 18.2 76.9
BERT (2019) 79.9 74.3 59.9 78.3 57.1 76.4 54.3 75.1 57.9 77.3 52.1 18.1 63.4
SciBERT* (2019) 79.7 80.7 50.7 73.1 47.7 71.1 48.3 71.7 49.7 72.6 52.1 17.9 59.6
BioBERT (2019) 77.2 73.0 53.3 74.0 50.6 72.2 45.5 69.0 49.4 71.8 52.0 17.9 58.8
CiteBERT (2021) 78.8 74.8 53.2 73.6 49.9 71.3 45.0 67.9 50.3 72.1 51.6 17.0 58.8
DeCLUTR (2021) 81.2 88.0 63.4 80.6 60.0 78.6 57.2 77.4 62.9 80.9 52.0 17.4 66.6
SPECTER* (2020) 82.0 86.4 83.6 91.5 84.5 92.4 88.3 94.9 88.1 94.8 53.9 20.0 80.0
Replicated SPECTER training data (w/ leakage):
SciNCL (ours) 81.4 88.7 85.3 92.3 87.5 93.9 93.6 97.3 91.6 96.4 53.9 19.3 81.8
± σ w/ ten seeds .449 .422 .128 .08 .162 .118 .104 .054 .099 .066 .203 .356 .064
Random S2ORC training data (w/o leakage):
SPECTER 81.3 88.4 83.1 91.3 84.0 92.1 86.2 93.9 87.8 94.7 52.2 17.5 79.4
SciNCL (ours) 81.3 89.4 84.3 91.8 85.6 92.8 91.4 96.3 90.1 95.7 54.3 19.9 81.1

Table 1: Results on the SCIDOCS test set. With replicated SPECTER training data, SciNCL surpasses the previous
best avg. score by 1.8 points and also outperforms the baselines in 9 of 12 task metrics. Our scores are reported
as mean and standard deviation σ over ten random seeds. With training data randomly sampled from S2ORC,
SciNCL outperforms SPECTER in terms of avg. score with 1.7 points. The scores with * are from Cohan et al.
(2020). Oracle SciDocs † is the upper bound of the performance with triplets from SCIDOCS’s data.

2021), the graph-convolution approach SGC (Wu453

et al., 2019), Citeomatic (Bhagavatula et al., 2018),454

and SPECTER (Cohan et al., 2020).455

Also, we compare against Oracle SciDocs which456

is identical to SciNCL except that its triplets are457

generated based on SCIDOCS’s validation and test458

set using their gold labels. For example, papers459

with the same MAG labels are positives and papers460

with different labels are negatives. In total, this461

procedure creates 106K training triplets for Oracle462

SciDocs. Accordingly, Oracle SciDocs represents463

an estimate for the performance upper bound that464

can be achieved with the current setting (triplet465

margin loss and SciBERT encoder).466

5 Overall Results467

Tab. 1 shows the results, comparing SciNCL with468

the best validation performance against the base-469

lines. With replicated SPECTER training data (w/470

leakage), SciNCL achieves an average performance471

of 81.8 across all metrics, which is a 1.8 point ab-472

solute improvement over SPECTER (the next-best473

baseline). When trained without leakage, the im-474

provement of SciNCL over SPECTER is consis-475

tent with 1.7 points but generally lower (79.4 avg.476

score). In the following, we refer to the results ob- 477

tained through training on the replicated SPECTER 478

data (w/ leakage) if not otherwise mentioned. 479

We find the best validation performance based 480

on SPECTER’s data when positives and hard nega- 481

tive are sampled with KNN, whereby positives are 482

k+=25, and hard negatives are k−hard=4000 (§6). 483

Easy negatives are generated through filtered ran- 484

dom sampling. SciNCL’s scores are reported as 485

mean over ten random seeds (seed ∈ [0, 9]). 486

For MAG classification, SPECTER achieves the 487

best result with 82.0 F1 followed by SciNCL with 488

81.4 F1 (-0.6 points). For MeSH classification, 489

SciNCL yields the highest score with 88.7 F1 (+2.3 490

compared to SPECTER). Both classification tasks 491

have in common that the chosen training settings 492

lead to over-fitting. Changing the training by us- 493

ing only 1% training data, SciNCL yields 82.2 494

F1@MAG (Tab. 2). In all user activity and ci- 495

tation tasks, SciNCL yields higher scores than all 496

baselines. Moreover, SciNCL outperforms SGC on 497

direct citation prediction, where SGC outperforms 498

SPECTER in terms of nDCG. On the recommender 499

task, SPECTER yields the best P@1 with 20.0, 500

whereas SciNCL achieves 19.3 P@1 (in terms of 501
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nDCG SciNCL and SPECTER are on par).502

When training SPECTER and SciNCL without503

leakage, SciNCL outperforms SPECTER even in504

11 of 12 metrics and is on par in the other met-505

ric. This suggests that SciNCL’s hyperparameters506

have a low corpus dependency since they were only507

optimized on the corpus with leakage.508

Regarding the LLM baselines, we observe that509

the general-domain BERT, with a score of 63.4,510

outperforms the domain-specific BERT variants,511

namely SciBERT (59.6) and BioBERT (58.8).512

LLMs without citations or contrastive objectives513

yield generally poor results. This emphasizes the514

anisotropy problem of embeddings directly ex-515

tracted from current LLMs and highlights the ad-516

vantage of combining text and citation information.517

In summary, we show that SciNCL’s triplet se-518

lection leads on average to a performance improve-519

ment on SCIDOCS, with most gains being observed520

for user activity and citation tasks. The gain from521

80.0 to 81.8 is particularly notable given that even522

Oracle SciDocs yields with 83.0 an only marginally523

higher avg. score despite using test and validation524

data from SCIDOCS for the triplet selection.525

6 Impact of Sample Difficulty526

In this section, we present the optimization of527

SciNCL’s sampling strategy (§3.3). We optimize528

the sampling for positives and hard or easy nega-529

tives with partial grid search on a random sample of530

10% of the replicated SPECTER training data (sam-531

pling based on queries). Our experiments show that532

optimizations on this subset correlate with the en-533

tire dataset. The validation scores in Fig. 2 and 3534

are reported as the mean over three random seeds.535

6.1 Positive Samples536
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Figure 2: Results on the validation set w.r.t. positive
sampling with KNN when using 10% training data.

Fig. 2 shows the avg. scores on the SCIDOCS 537

validation set depending on the selection of posi- 538

tives with the KNN strategy. We only change k+, 539

while negative sampling remains fixed to its best 540

setting (§6.2). The performance is relatively sta- 541

ble for k+<100 with peak at k+=25, for k+>100 542

the performance declines as k+ increases. Wang 543

and Isola (2020) state that positive samples should 544

be semantically similar to each other, but not too 545

similar to the query. For example, at k+=5, pos- 546

itives may be a bit “too easy” to learn, such that 547

they produce less informative gradients than the 548

optimal setting k+=25. Similarly, making k+ too 549

large leads to the sampling induced margin being 550

too small, such that positives collide with negative 551

samples, which creates contrastive label noise that 552

degrades performance (Saunshi et al., 2019). 553

6.2 Hard Negative Samples 554
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Figure 3: Results on the validation set w.r.t. hard nega-
tive sampling with KNN using 10% training data.

Fig. 3 presents the validation results for dif- 555

ferent k−hard given the best setting for positives 556

(k+=25). The performance increases with increas- 557

ing k−hard until a plateau between 2000<k−hard<4000 558

with a peak at k−hard=4000. This plateau can also 559

be observed in the test set, where k−hard=3000 560

yields a marginally lower score of 81.7 (Tab. 2). 561

For k−hard>4000, the performance starts to decline 562

again. This suggests that for large k−hard the samples 563

are not “hard enough” which confirms the findings 564

of Cohan et al. (2020). 565

6.3 Easy Negative Samples 566

Filtered random sampling of easy negatives yields 567

the best validation performance compared pure ran- 568

dom sampling (Tab. 2). However, the performance 569

difference is marginal. When rounded to one dec- 570

imal, their average test scores are identical. The 571
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CLS USR CITE REC Avg. ∆

SciNCL 85.0 88.8 94.7 36.6 81.8 –
SPECTER 84.2 88.4 91.5 36.9 80.0 -1.8
k−hard=2000 84.9 88.8 94.7 36.1 81.6 -0.2
k−hard=3000 84.5 88.7 94.6 36.9 81.7 -0.1
easy neg. w/ random 85.1 88.8 94.7 36.6 81.8 0.0
Init. w/ BERT-Base 83.4 88.4 93.8 37.5 81.2 -0.6
Init. w/ BERT-Large 84.6 88.7 94.1 36.4 81.4 -0.4
Init. w/ BioBERT 83.7 88.6 93.8 37.7 81.4 -0.4
1% training data 85.2 88.3 92.7 36.1 80.8 -1.0
10% training data 85.1 88.7 93.5 36.2 81.1 -0.6
BitFit training 85.8 88.6 93.7 35.3 81.2 -0.5

Table 2: Ablations. Numbers are averages over tasks
of the SCIDOCS test set, average score over all metrics,
and rounded absolute difference to SciNCL.

marginal difference is caused by the large corpus572

size and the resulting small probability of randomly573

sampling one paper from the KNN results. But574

without filtering, the effect of random seeds in-575

creases, since we find a higher standard deviation576

compared to the one with filtering.577

7 Ablation Analysis578

Next, we evaluate the impact of language model579

initialization and number of parameters and triples.580

7.1 Initial Language Models581

Tab. 2 shows the effect of initializing the model582

weights not with SciBERT but with general-domain583

LLMs (BERT-Base and BERT-Large) or with584

BioBERT. The initialization with other LLMs de-585

creases the performance. However, the decline586

is marginal (BERT-Base -0.6, BERT-Large -0.4,587

BioBERT -0.4) and all LLMs outperform the588

SPECTER baseline. For the recommendation589

task, in which SPECTER is superior over SciNCL,590

BioBERT outperforms SPECTER. This indicates591

that the improved triplet mining of SciNCL has a592

greater domain adaption effect than pretraining on593

domain-specific literature. Given that pretraining594

of LLMs requires a magnitude more resources than595

the fine-tuning with SciNCL, our approach can be596

a solution for resource-limited use cases.597

7.2 Data and Computing Efficiency598

The last three rows of Tab. 2 show the results regard-599

ing data and computing efficiency. When keeping600

the citation graph unchanged but training the lan-601

guage model with only 10% of the original triplets,602

SciNCL still yields a score of 81.1 (-0.6). Even603

with only 1% (6840 triplets), SciNCL achieves a 604

score of 80.8 that is 1.0 points less than with 100% 605

but still 0.8 points more than the SPECTER base- 606

line. With this textual sample efficiency, one could 607

manually create triplets or use existing supervised 608

datasets as in Gao et al. (2021). 609

Lastly, we evaluate BitFit training (Zaken et al., 610

2021), which only trains the bias terms of the model 611

while freezing all other parameters. This corre- 612

sponds to training only 0.1% of the original param- 613

eters. With BitFit, SciNCL yields a considerable 614

score of 81.2 (-0.5 points). As a result, SciNCL 615

could be trained on the same hardware with even 616

larger (general-domain) language models (§7.1). 617

8 Conclusion 618

We present a novel approach for contrastive learn- 619

ing of scientific document embeddings that ad- 620

dresses the challenge of selecting informative posi- 621

tive and negative samples. By leveraging citation 622

graph embeddings for sample generation, SciNCL 623

achieves a score of 81.8 on the SCIDOCS bench- 624

mark, a 1.8 point improvement over the previous 625

best method SPECTER. This is purely achieved 626

by introducing tunable sample difficulty and avoid- 627

ing collisions between positive and negative sam- 628

ples, while existing LLM and data setups can be 629

reused. This improvement over SPECTER can be 630

also observed when excluding the SCIDOCS pa- 631

pers during training (see w/o leakage in Tab. 1). 632

Furthermore, SciNCL’s improvement from 80.0 633

to 81.8 is particularly notable given that even ora- 634

cle triplets, which are generated with SCIDOCS’s 635

test and validation data, yield with 83.0 only a 636

marginally higher score. 637

Our work highlights the importance of sam- 638

ple generation in a contrastive learning setting. 639

We show that language model training with 1% 640

of triplets is sufficient to outperform SPECTER, 641

whereas the remaining 99% provide only 1.0 addi- 642

tional points (80.8 to 81.8). This sample efficiency 643

is achieved by adding reasonable effort for sam- 644

ple generation, i.e., graph embedding training and 645

KNN search. We also demonstrate that in-domain 646

LLM pretraining (like SciBERT) is beneficial, 647

while general-domain LLMs can achieve compara- 648

ble performance and even outperform SPECTER. 649

This indicates that controlling sample difficulty 650

and avoiding collisions is more effective than in- 651

domain pretraining, especially in scenarios where 652

training an LLM from scratch is infeasible. 653
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A Appendix981

A.1 Extended Related Work982

Triplet Mining remains a challenge in NLP due983

to the discrete nature of language which makes data984

augmentation less trivial as compared to computer985

vision (Gao et al., 2021). Examples for augmenta-986

tion strategies are: translation (Fang et al., 2020),987

or word deletion and reordering (Wu et al., 2020).988

Positives and negatives can be sampled based on989

the sentence position within a document (Giorgi990

et al., 2021). Gao et al. (2021) utilize supervised991

entailment datasets for the triplet generation.992

Language- and text-independent approaches are993

also applied: Kim et al. (2021) use intermediate994

BERT hidden state for positive sampling and Wu995

et al. (2021) add noise to representations to obtain996

negative samples. Xiong et al. (2020) present an997

approach similar to SciNCL where they sample998

hard negatives from the k nearest neighbors in the999

embedding space derived from the previous model1000

checkpoint. While Xiong et al. rely only on textual1001

data, SciNCL integrates also citation information1002

which are especially valuable in the scientific con-1003

text as Cohan et al. (2020) have shown.1004

A.2 Mapping to S2ORC1005

Table 3: Mapping to S2ORC citation graph

S2ORC mapping Success rate

SciDocs papers
- with S2ORC IDs 220,815 / 223,932 (98.6%)
- in S2ORC graph 197,811 / 223,932 (88.3%)

SPECTER papers
- with S2ORC IDs 311,094 / 311,860 (99.7%)
- in S2ORC graph 260,014 / 311,860 (83.3%)

Neither the SPECTER training data nor the Sci-1006

Docs test data comes with a mapping to the S2ORC1007

dataset, which we use for the training of the ci-1008

tation embedding model. However, to replicate1009

SPECTER’s training data and to avoid leakage of1010

SciDocs test data such a mapping is needed. There-1011

fore, we try to map the papers to S2ORC based on1012

PDF hashes and exact title matches. The remaining1013

paper metadata is collected through the Semantic1014

Scholar API. Tab. 3 summarizes the outcome of1015

mapping procedure. Failed mappings can be at-1016

tributed to papers being unavailable through the1017

Semantic Scholar API (e.g., retracted papers) or1018

papers not being part of S2ORC citation graph.1019

A.3 SPECTER-SciDocs Leakage 1020

When replicating SPECTER (Cohan et al., 2020), 1021

we found a substantial overlap between the pa- 1022

pers3 used during the model training and the papers 1023

from their SCIDOCS benchmark4. In both datasets, 1024

papers are associated with Semantic Scholar IDs. 1025

Thus, no custom ID mapping as in App. A.2 is re- 1026

quired to identify papers that leak from training to 1027

test data. From the 311,860 unique papers used in 1028

SPECTER’s training data, we find 79,201 papers 1029

(25.4%) in the test set of SCIDOCS and 79,609 1030

papers (25.5%) in its validation set. When combin- 1031

ing test and validation set, there is a total overlap 1032

of 126,176 papers (40.5%). However, this over- 1033

lap affects only the ‘unsupervised’ paper metadata 1034

(title, abstract, citations, etc.) and not the gold la- 1035

bels used in SCIDOCS (e.g., MAG labels or clicked 1036

recommendations). 1037

A.4 Dataset Creation 1038

As describe in §4.2, we conduct our experiments 1039

on two datasets. Both datasets rely on the cita- 1040

tion graph of S2ORC (Lo et al., 2020). More 1041

specifically, S2ORC with the version identifier 1042

20200705v1 is used. The full citation graph con- 1043

sists of 52.6M nodes (papers) and 467M edges 1044

(citations). Tab. 4 presents statistics on the datasets 1045

and their overlap with SPECTER and SCIDOCS. 1046

The steps to reproduce both datasets are: 1047

Replicated SPECTER (w/ leakage) In order to 1048

replicate SPECTER’s training data and do not in- 1049

crease the leakage, we exclude all SCIDOCS pa- 1050

pers which are not used by SPECTER from the 1051

S2ORC citation graph. This means that apart from 1052

the 110,538 SPECTER papers not a single other 1053

SCIDOCS paper is included. The resulting citation 1054

graph has 52.5M nodes and 463M edges and is 1055

used for training the citation graph embeddings. 1056

For the SciNCL triplet selection, we also repli- 1057

cate SPECTER’s query papers and its corpus from 1058

which positive and negatives are sampled. Our map- 1059

ping and the underlying citation graph allows us 1060

to use 227,869 of 248,007 SPECTER’s papers for 1061

training. Regarding query papers, we use 131,644 1062

of 136,820 SPECTER’s query papers. To align 1063

the number training triplets with the one from 1064

SPECTER, additional papers are randomly sam- 1065

pled from the filtered citation graph. 1066

3https://github.com/allenai/specter/
issues/2

4https://github.com/allenai/scidocs
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Random S2ORC subset (w/o leakage) To1067

avoid leakage, we exclude all successfully mapped1068

SCIDOCS papers from the S2ORC citation graph.1069

After filtering the graph has 52.3 nodes and 447M1070

edges. The citation graph embedding model is1071

trained on this graph.1072

Next, we reproduce triplet selection from1073

SPECTER. Any random 136,820 query papers are1074

selected from the filtered graph. For each query,1075

we generate five positives (cited by the query), two1076

hard negatives (citation of citation), and three ran-1077

dom nodes from the filtered S2ORC citation graphs.1078

This sampling produces 684,100 training triplets1079

with 680,967 unique papers IDs (more compared1080

to the replicated SPECTER dataset). Based on1081

these triplets the SPECTER model for this dataset1082

is trained with the same model settings and hyper-1083

parameters as SciNCL (second last row in Tab. 1).1084

Lastly, the SciNCL triplets are generated based1085

on the citation graph embeddings of the same1086

680,967 unique papers IDs, i.e, the FAISS index1087

contains only these papers and not the remaining1088

S2ORC papers. Also, the same 136,820 query pa-1089

pers are used.1090

Table 4: Statistics for our two datasets and their overlap
with SPECTER and SciDocs respectively.

Replicated
SPECTER

(w/ leakage)

Random
S2ORC subset
(w/o leakage)

Training triplets 684,100 684,100

Unique paper IDs 248,007 680,967
- in SPECTER 227,869 9,182
- in SciDocs 110,538 0
- in SciDocs

and in SPECTER 110,538 0

Query paper IDs 136,820 136,820
- in SciDocs 69,306 0
- in SPECTER queries 131,644 463

Citation graph
- Nodes 52,526,134 52,373,977
- Edges 463,697,639 447,697,727

A.5 Graph Embedding Evaluation1091

To evaluate the underlying citation graph embed-1092

dings, we experiment with a few of BigGraph’s1093

hyperparameters. We trained embeddings with dif-1094

ferent dimensions d={128, 512, 768} and different1095

distance measures (cosine similarity and dot prod-1096

uct) on 99% of the data and test the remaining1097

1% on the link prediction task. An evaluation of1098

the graph embeddings with SCIDOCS is not pos- 1099

sible since we could not map the papers used in 1100

SCIDOCS to the S2ORC corpus. All variations 1101

are trained for 20 epochs, margin m=0.15, and 1102

learning rate λ=0.1 (based on the recommended 1103

settings by Lerer et al. (2019)). 1104

Table 5: Link prediction performance of BigGraph em-
beddings trained on S2ORC citation graph with differ-
ent dimensions and distance measures.

Dim. Dist. MRR Hits@1 Hits@10 AUC

128 Cos. 54.09 43.39 75.21 85.75
128 Dot 89.75 85.84 96.13 97.70
512 Dot 94.60 92.47 97.64 98.64
768 Dot 95.12 93.22 97.77 98.74

Tab. 5 shows the link prediction performance 1105

measured in MRR, Hits@1, Hits@10, and AUC. 1106

Dot product is substantially better than cosine simi- 1107

larity as distance measure. Also, there is a positive 1108

correlation between the performance and the size 1109

of the embeddings. The larger the embedding size 1110

the better link prediction performance. Graph em- 1111

beddings with d=768 were the largest possible size 1112

given our compute resources (available disk space 1113

was the limiting factor). 1114

A.6 Baseline Details 1115

If not otherwise mentioned, all BERT variations 1116

are used in their base-uncased versions. 1117

The weights for BERT (bert-base-uncased), 1118

BioBERT (biobert-base-cased-v1.2), CiteBERT 1119

(citebert), DeCLUTR (declutr-sci-base) are taken 1120

from Huggingface Hub5. We use Universal Sen- 1121

tence Encoder (USE) from Tensorflow Hub6. For 1122

Oracle SciDocs, we use the SciNCL implementa- 1123

tion and under-sample the triplets from the classifi- 1124

cation tasks to ensure a balanced triplet distribution 1125

over the tasks. The SPECTER version for the ran- 1126

dom S2ORC training data (w/o leakage) is also 1127

trained with the SciNCL implementation. Please 1128

see Cohan et al. (2020) for additional baseline meth- 1129

ods and their implementation details. 1130

A.7 Negative Results 1131

We investigated additional sampling strategies and 1132

model modification of which none led to a signifi- 1133

cant performance improvement. 1134

5https://huggingface.co/models
6https://tfhub.dev/google/

universal-sentence-encoder-large/5
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A.7.1 Undirected Citations1135

Our graph embedding model considers citations as1136

directed edges by default. We also train a SciNCL1137

model with undirected citations by first converting1138

a single edge (a, b) into the two edges (a, b) and1139

(b, a). This approach yields a slightly worse perfor-1140

mance (81.7 avg. score; -0.1 points) and, therefore,1141

was discarded for the final experiments.1142

A.7.2 KNN with interval large than c1143

Our best results are achieved with KNN where the1144

size of the neighbor interval (k − c′; k] is equal to1145

the number of samples c′ that the strategy should1146

generate. In addition to this, we also experimented1147

with large intervals, e.g., (1000; 2000], from which1148

c′ papers are randomly sampled. This approach1149

yields comparable results but suffers from a larger1150

effect of randomness and is therefore more difficult1151

to optimize.1152

A.7.3 K-Means Cluster for Easy Negatives1153

Easy negatives are supposed to be far away from1154

the query. Random sampling from a large corpus1155

ensures this as our results show. As an alternative1156

approach, we tried k-means clustering whereby we1157

selected easy negatives from the centroid that has1158

a given distance to the query’s centroid. However,1159

this decreased the performance.1160

A.7.4 Sampling with Similarity Threshold1161

As alternative to KNN, we select samples based1162

on cosine similarity in the citation embedding1163

space. Take c′ papers that are within the simi-1164

larity threshold t of a query paper dQ such that1165

s(fc(d
Q), fc(di)) < t, where s is the cosine simi-1166

larity function.1167

For example, given the similarity scores1168

S={0.9, 0.8, 0.7, 0.1} (ascending order, the higher1169

the similarity is the closer the candidate embed-1170

ding to the query embedding is) with c′=2 and1171

t=0.5, the two candidates with the largest simi-1172

larity scores and larger than the threshold would1173

be 0.8 and 0.7. The corresponding papers would1174

be selected as samples. While the positive thresh-1175

old t+ should close to 1, the negative threshold t−1176

should be small to ensure samples are dissimilar1177

from dQ. However, the empirical results suggest1178

that this strategy is inferior compared to KNN.1179

A.7.5 Hard Negatives with Similarity1180

Threshold1181

Selecting hard negatives based on the similarity1182

threshold yields a test score of 81.7 (-0.1 points).1183
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Figure 4: Results on the validation set w.r.t. hard nega-
tive sampling with SIM using 10% training data.

Fig. 4 show the validation results for different simi- 1184

larity thresholds. A similar pattern as in Fig. 3 can 1185

be seen. When the negatives are closer to the query 1186

paper (larger similarity threshold t), the validation 1187

score decreases. 1188

A.7.6 Positives with Similarity Threshold 1189

Positive sampling with SIM performs poorly since 1190

even for small t+ < 0.5 many query papers do not 1191

have any neighbors within this similarity threshold 1192

(more than 40%). Solving this issue would require 1193

changing the set of query papers which we omit for 1194

comparability to SPECTER. 1195

A.7.7 Sorted Random 1196

Simple random sampling does not ensure if a sam- 1197

ple is far or close to the query. To integrate a dis- 1198

tance measure in the random sampling, we first 1199

sample n candidates, then order the candidates ac- 1200

cording to their distance to the query, and lastly 1201

select the c′ candidates that are the closest or fur- 1202

thest to the query as samples. 1203

A.7.8 Mask Language Modeling 1204

Giorgi et al. (2021) show that combining a con- 1205

trastive loss with a mask language modeling loss 1206

can improve text representation learning. However, 1207

in our experiments a combined function decreases 1208

the performance on SCIDOCS, probably due to the 1209

effects found by (Li et al., 2020). 1210

A.7.9 Student-Teacher Learning 1211

Student-teacher learning is effective in related work 1212

on cross-modal knowledge transfer (Kaur et al., 1213

2021; Tian et al., 2020a). We also try to adopt 1214

this approach for our experiments, whereby the 1215

Transformer language model is the student, and the 1216

citation graph embedding model is the teacher. By 1217

14



directly learning from the citation embeddings, we1218

could circumvent the positive and negative sam-1219

pling needed for triplet loss learning, which in-1220

troduces unwanted issues like collisions. Given a1221

batch of document representations derived from1222

text DText (through the language model) and the1223

citation graph representations for the same docu-1224

ments DGraph, we compute the pairwise cosine1225

similarity for both sets SText and SGraph. To trans-1226

fer the knowledge from the citation embeddings1227

into the language model, we devise the student-1228

teacher loss LST based on a mean-squared-error1229

loss (MSE) such that the difference between the1230

cosine similarities is minimized:1231

LST = MSE(SText, SGraph) (1)1232

Despite the promising results from Tian et al.1233

(2020a), the student-teacher approach performs1234

poorly in our experiments. We attribute this the1235

overfitting to the citation data (the training loss1236

approaches zero after a few steps while the val-1237

idation loss remains high). The model trained1238

with LST yields only a SCIDOCS average score1239

of 64.7, slightly better than SciBERT but substan-1240

tially worse than SciNCL with triplet loss.1241

Additionally, we experiment with a joint loss1242

that is the sum of triplet margin loss LTriplet (see1243

§3.1) and the student-teacher loss LST :1244

LJoint = LTriplet + LST (2)1245

Training with the joint loss LJoint achieves an1246

average score of 80.5. Even though the joint loss1247

is not subject to overfitting, its SCIDOCS perfor-1248

mance is slightly worse than the triplet lossLTriplet1249

alone. Given this outcome and that the computation1250

of the cosine similarities adds additional complex-1251

ity, we discard the student-teacher approach for the1252

final experiments.1253

A.7.10 SPECTER & Bidirectional Citations1254

SPECTER (Cohan et al., 2020) relies on unidirec-1255

tional citations for their sampling strategy. While1256

papers cited by the query paper are considered as1257

positives samples, those citing the query paper (op-1258

posite citation direction) could be negative samples.1259

We see this use of citations as a conceptional flaw1260

in their sampling strategy.1261

To test the actual effect on the resulting docu-1262

ment representation, we first replicate the original1263

unidirectional sampling strategy from SPECTER1264

with our training data (see w/ leakage in §4.2). The1265

resulting SPECTER model achieves an average 1266

score of 79.0 on SCIDOCS.7 When changing the 1267

sampling strategy from unidirectional to bidirec- 1268

tional (‘citations to the query’ are also treated as a 1269

signal for similarity), we observe an improvement 1270

of +0.4 points to 79.4. Consequently, the use of 1271

unidirectional citations is not only a conceptional 1272

issue but also degrades learning performance. 1273

A.8 Collisions 1274

Similar to SPECTER, SciNCL’s sampling based on 1275

graph embeddings could cause collisions when se- 1276

lecting positives and negatives from regions close 1277

to each other. To avoid this, we rely on a sample 1278

induced margin that is defined by the hyperparam- 1279

eter k+ and k−hard (distance between red and green 1280

band in Fig. 1). When the margin gets too small, 1281

positives and negatives are more likely to collide. 1282

A collision occurs when the paper pair (dq, ds) is 1283

contained in the training data as positive and as 1284

negative sample at the same time. 1285
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Figure 5: Number of collisions w.r.t. size of the sample
induced margin as defined through k+ and k−hard.

Fig. 5 demonstrates the relation between the 1286

number of collisions and the size of the sample in- 1287

duced margin. The number of collisions increases 1288

when the sample induced margin gets smaller. The 1289

opposite is the case when the margin is large 1290

enough (k−hard > 1000), i.e., then the number of 1291

collisions goes to zero. This relation also affects 1292

the evaluation performance as Fig. 2 and Fig. 3 1293

show. Namely, for large k+ or small k−hard SciNCL’s 1294

performance declines and approaches SPECTER’s 1295

performance. 1296

A.9 Task-specific Results 1297

Fig. 6 and 7 present the validation performance like 1298

in §6 but on a task-level and not as an average over 1299

7The difference to the scores reported in Cohan et al.
(2020) is due to the difference in the underlying training data.
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Figure 6: Task-level validation performance w.r.t. k+ with KNN strategy using 10% training data.
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Figure 7: Task-level validation performance w.r.t. k−hard with KNN strategy using 10% training data.
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all tasks. The plots show that the optimal k+ and1300

k−hard values are partially task dependent.1301

A.10 Examples1302

Tab. 6 lists three examples of query papers with1303

their corresponding positive and negative samples.1304

The complete set of triplets that we use during1305

training is available in our code repository1.1306
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Table 6: Example query papers with their positive and negative samples.

Query: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Positives:

• A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
• Looking for ELMo’s Friends: Sentence-Level Pretraining Beyond Language Modeling
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding
• Dissecting Contextual Word Embeddings: Architecture and Representation
• Universal Transformers

Negatives:

• Planning for decentralized control of multiple robots under uncertainty
• Graph-Based Relational Data Visualization
• Linked Stream Data Processing
• Topic Modeling Using Distributed Word Embeddings
• Adversarially-Trained Normalized Noisy-Feature Auto-Encoder for Text Generation

Query: BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Positives:

• Exploring Word Embedding for Drug Name Recognition
• A neural joint model for entity and relation extraction from biomedical text
• Event Detection with Hybrid Neural Architecture
• Improving chemical disease relation extraction with rich features and weakly labeled data
• GLUE : A MultiTask Benchmark and Analysis Platform for Natural Language Understanding

Negatives:

• Weakly Supervised Facial Attribute Manipulation via Deep Adversarial Network
• Applying the Clique Percolation Method to analyzing cross-market branch banking ...
• Perpetual environmentally powered sensor networks
• Labelling strategies for hierarchical multi-label classification techniques
• Domain Aware Neural Dialog System

Query: A Context-Aware Citation Recommendation Model with BERT and Graph Convolutional Networks

Positives:

• Content-based citation analysis: The next generation of citation analysis
• ScisummNet: A Large Annotated Dataset and Content-Impact Models for Scientific Paper ...
• Citation Block Determination Using Textual Coherence
• Discourse Segmentation Of Multi-Party Conversation
• Argumentative Zoning for Improved Citation Indexing

Negatives:

• Adaptive Quantization for Hashing: An Information-Based Approach to Learning ...
• Trap Design for Vibratory Bowl Feeders
• Software system for the Mars 2020 mission sampling and caching testbeds
• Applications of Rhetorical Structure Theory
• Text summarization for Malayalam documents — An experience

18


	Introduction
	Related Work
	Methodology
	Contrastive Learning Objective
	Citation Neighborhood Sampling
	Positives and Negatives Sampling
	Sampling Strategies

	Experiments
	Evaluation Dataset
	Training Datasets
	Model Training and Implementation
	Baseline Methods

	Overall Results
	Impact of Sample Difficulty
	Positive Samples
	Hard Negative Samples
	Easy Negative Samples

	Ablation Analysis
	Initial Language Models
	Data and Computing Efficiency

	Conclusion
	Appendix
	Extended Related Work
	Mapping to S2ORC
	SPECTER-SciDocs Leakage
	Dataset Creation
	Graph Embedding Evaluation
	Baseline Details
	Negative Results
	Undirected Citations
	kNN with interval large than c
	K-Means Cluster for Easy Negatives
	Sampling with Similarity Threshold
	Hard Negatives with Similarity Threshold
	Positives with Similarity Threshold
	Sorted Random
	Mask Language Modeling
	Student-Teacher Learning
	SPECTER & Bidirectional Citations

	Collisions
	Task-specific Results
	Examples


