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Abstract

The calculation of electron density distribution in materials and molecules is central
to the study of their quantum and macro-scale properties, yet accurate and efficient
calculation remains a long-standing challenge in the field of material science. This
work introduces ChargE3Net, an E(3)-equivariant graph neural network for pre-
dicting electron density in atomic systems. Unlike existing methods, ChargE3Net
achieves equivariance through the use of higher-order tensor representations, and
directly predicts the charge density at a set of desired locations. We demonstrate
the effectiveness of ChargE3Net on large and diverse sets of molecules and ma-
terials, where it achieves state-of-the-art performance over existing methods, and
scales to larger systems than what is feasible to compute with density functional
theory. Through additional experimentation, we demonstrate the effect of intro-
ducing higher-order equivariant representations, and why they yield performance
improvements in the charge density prediction setting.

1 Introduction

Electronic charge density is one of the most fundamental quantities in quantum chemistry and physics
and it is key to accurately modeling molecules and materials at the atomic scale. Hohenburg-Kohn
theorem [1] states that the ground-state charge density contains the information necessary to obtain all
ground-state properties of interest. Density functional theory (DFT) that solves the Kohn-Sham (KS)
equations is the most widely used ab initio method for performing electronic structure calculation of
molecules or materials. However, KS DFT is computationally expensive with O(N3) complexity,
making it infeasible for large-scale quantum calculations.

More recently, machine learning models have been developed to overcome the computational chal-
lenge of ab initio calculations. Early approaches using machine learning for the prediction of electron
density were based on the use of symmetry-adapted Gaussian process regression to predict coeffi-
cients for atom-centered basis functions [2, 3]. Coefficients are predicted from a kernel function that
expresses the structural similarity and geometric relationship among a target atomic environment
and a training set of atomic environments. More recent work has leveraged invariant and equivariant
neural networks to predict these coefficients from atomic features. Qiao et al. [4] uses mean-field
electronic structure, computed from the GFN-xTB [5] quantum mechanical model, as inputs for
a higher-order equivariant neural network to predict basis set coefficients. Rackers et al. [6] use a
higher-order equivariant neural network to predict basis set coefficients directly from atomic graphs.
While these approaches are able to achieve high accuracy in some settings, they are limited by the
expressivity of density fitting basis sets. These atom-centered basis sets must be hand selected, and
are often not sufficient for periodic systems where plane wave basis functions are more appropriate.

Alternatively, several methods were proposed to learn electron density directly from a discretized
grid of density points. By inserting each grid or "probe" point into the atomic graph, charge density
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prediction can be modeled as a node regression task [7–9]. Gong et al. [7] achieve this through
the use of an invariant graph convolutional network [10] on a small dataset of crystalline polymers,
demonstrating transferability to unseen structures. Jørgensen and Bhowmik [8] similarly use an
invariant graph convolutional network called SchNet [11], demonstrating fast and high accuracy
charge density prediction in molecules, liquids and inorganic solids. They later demonstrate an
improvement in accuracy through the use of an equivariant graph convolutional network called
PaiNN [9], through R3 vector representations and rotationally equivariant operations [12]. While
these models have been shown to achieve high accuracy when trained and evaluated on small,
specialized molecular or material datasets, their expressive power on larger, diverse datasets such
as the Materials Project [13] is not yet understood. Furthermore, these models use scalar and/or
vector representations to construct rotationally equivariant networks, which could be further improved
by incorporating higher-order equivariant features, as has been shown in other tasks, such as the
prediction of atomic forces [14].

In this work we introduce ChargE3Net, a higher-order equivariant graph neural network for predicting
the electron density of atomistic systems. Our method is purely data driven, and achieves equivariance
through higher order tensor representations and SO(3) equivariant operations. Despite using only
atomic graphs as input, our proposed method achieves state-of-the-art accuracy in the prediction of
charge density in both materials and organic molecules, outperforming methods relying on features
obtained through quantum mechanical simulation. We study the effect of introducing higher rotation
order representations to our model, validating that the addition of higher order representations results
in improvements in accuracy. We exemplify this further by quantifying the angular dependence of
the charge density with respect to atom positions, experimentally demonstrating the need for higher
rotation order representations to model high angularly dependent systems. Lastly, we demonstrate the
linear time complexity of our model with respect to system size, showing the capability of predicting
density on systems with > 104 atoms, surpassing what is feasible with ab initio calculations.

2 Methodology

2.1 Equivariance

Our model seeks to predict charge density ρ(~r) : R3 → R for a given atomic system. The charge
density, along with other properties such as forces, is equivariant under rotation and translation of the
atomic system. In other words, a rotation or translation of the atomic system in Euclidean space will
result in an equivalent rotation or translation to the charge density or forces. Formally this is known
as equivariance with respect to E(3), which includes rotations, translations, and reflections in 3D
space. This can be achieved in part by using only invariant scalar features [11], such as inter-atomic
distances; however, this prevents the model from using angular information, limiting the accuracy that
can be attained [15]. More recent work [12] has introduced equivariance methods using vector R3

features, such as relative atomic positions, to incorporate angular information, and has been shown to
improve the performance of charge density prediction [9].

Our work achieves higher-order equivariance through means outlined by tensor field networks [16].
Translation equivariance is achieved by using relative atomic positions, and rotation equivariance is
achieved by restricting features to be irreducible representations, irreps, of SO(3). These features take
the form V

(`,p)
cm , a dictionary of tensors with keys representing rotation order ` ∈ {0, 1, 2, ...} and

parity p ∈ {−1, 1}. Each tensor has a channel index c ∈ [0, Nchannels) and an indexm ∈ [−`, `]. In this
way, the representation at a given ` and p will have a size of RNchannels×(2`+1). These representations
are combined with the tensor product operation ⊗, using Clebsch–Gordan coefficients C as described
in [16] and implemented in e3nn [17]:

(
U (`1,p1) ⊗ V (`2,p2)

)(`o,po)
cmo

=

`1∑
m1=−`1

`2∑
m2=−`2

C
(`o,mo)
(`1,m1)(`2,m2)

U (`1,p1)
cm1

V (`1,p2)
cm2

(1)

where `o and po are given by |`1 − `2| ≤ `o ≤ |`1 + `2| and po = p1p2. We maintain only those
representations with `o ≤ L where L is a maximum allowed rotation order. For ease of notation, we
will omit the keys `, p and indices c, m for these tensor representations for the rest of the paper.
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Figure 1: Illustration of single charge density probe point. shown in black, in a periodic atomic
system. A graph is formed through neighboring atoms, and messages composed of scalars (` = 0),
vectors (` = 1) and higher-order tensors (` ≥ 2) are aggregated at probe point vertices.

2.2 Architecture

We represent predicted charge density ρ̂(~g) as a neural network with inputs of atomic numbers
{z1, ..., zN} ∈ N with respective locations of the atoms {~r1, ..., ~rN} ∈ R3, as well as probe locations
{~g1, ..., ~gM} ∈ R3 where charge densities are to be predicted, and an optional periodic boundary cell
B ∈ R3×3 for periodic systems.

As illustrated in Figure 1, a graph is constructed with atoms and probe points as vertices, with
edges formed via proximity with a cutoff of 4 Å. Our graph neural network is formulated such that
message passing between atom and probes is unidirectional, with probe point only receiving messages.
Through each layer n of the network, atoms and probe points will maintain tensor representations
An and Pn respectively (section 2.1). An is initialized as a one-hot encoded z, represented as a
` = 0, p = 1 tensor with Nchannels equal to the number of atomic species. Pn is initialized as single
scalar zero, with ` = 0, p = 1, and Nchannels = 1. Each representation is updated through a series of
alternating convolution Conv(·) and non-linearity Gate(·) layers. Atom representations are updated
with An+1

i = Gate(Convnatom(~ri, A
n
i )). Convatom is defined as:

Convnatom(~ri, A
n
i ) =Wn

1

 ∑
j∈N(i)

Wn
2 A

n
j ⊗R(rij)Y (r̂ij)

+Wn
3 A

n
i (2)

where W1,W2,W3 are learned weights applied as a linear mix or self-interaction [16]. The set N(i)
includes all atoms within the cutoff distance, including those outside potential periodic boundaries.
rij is the distance from ~ri and ~rj , with unit vector r̂ij . Y (r̂ij) are spherical harmonics, and R(rij) ∈
RNbasis is a learned radial basis function defined as:

R(rij) = MLP([φ1(rij), ..., φNbasis(rij)]) (3)

where MLP(·) is a two layer multilayer perceptron with SiLU non-linearity [18], φ(·) is a gaussian
basis function φ(rij)k ∝ exp(−(rij −µk)2) with µk uniformly sampled between zero and the cutoff,
then normalized to have a zero mean and unit variance.

The convolution updates the representation of each atom to be the sum of tensor products between
neighboring atom representations and the corresponding spherical harmonics describing their relative
angles, weighted by a learned radial representation. This sum is followed by an additional self-
connection, then a residual self-connection. The output of the convolution is then passed though an
equivariant non-linearity Gate(·) operation as described in [19]. We use SiLU and tanh activation
functions for even and odd parity scalars respectively, as is done in [14].

Probe representations are updated similarly as the atoms for each layer, except their representations
depend solely on the representations of neighboring atoms, with no probe-probe interaction. Each

3



probe representation is updated with Pn+1
k = Gate(Convnprobe(~gk, P

n
k )), where Convprobe is defined

as:

Convnprobe(~gk, P
n
k ) =Wn

1

 ∑
i∈N(k)

Wn
2 A

n
i ⊗R(rik)Y (r̂ik)

+Wn
3 P

n
k . (4)

Note that weights W are not shared with those for Convnatom(·). Since atom representations are
computed independently of probe positions, they can be computed once per atomic configuration, even
if multiple batches are required to obtain predictions for all probe points. Finally, predicted charge
density ρ̂(~gk) is computed as a linear combination of the scalar elements of the final representation
P
n=Nlayers

k .

One-Hot
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Figure 2: a: Overall ChargE3Net architecture. Predicted charge density ρ̂(~gk) at probe point ~gk is
computed from atomic species zi, interatomic displacement vectors rij , and probe-atom displacement
vectors rik. b: Atom graph convolution. c: Atom-probe graph convolution.

3 Experiments

We train and evaluate our models on VASP [20] computations of the organic molecules within the
QM9 dataset [21–23], mixed transition metal layered oxide lithium ion battery cathode materials
(NMC) [24], and inorganic materials collected from Materials Project (MP) [13, 25]. The QM9 and
NMC datasets are provided by Jørgensen and Bhowmik [9]. For the MP data, we collected 122,689
structures and associated charge densities from api.materialsproject.org1. Structures in the
dataset that shared composition and space group were identified as duplicates and only the highest
material_id structure was included, leaving 108,683 materials. The data was split into training,
validation, and test splits with sizes 106,171, 512, and 2000 respectively. 26 materials in the test
set were later found to have unrealistic volume per atom, in excess of 100 Å3/atom, and these were
removed from the test set and excluded from results.

Table 1 outlines the experimental setup for training ChargE3Net on each of the datasets. For each
gradient step, a random batch of materials is selected, from which a subset of the charge density
probe points are used. We use the Adam optimizer [26], and decay the learning rate by 0.96βs at
step s. We find that optimizing for L1 error improves performance and training stability over mean
squared error.

Table 1: Training setup
Dataset Learning Rate Decay β L Batch Size Training Steps

NMC 0.01 104 4 8 * 200 points 7.5 ∗ 105
QM9 0.01 104 4 8 * 200 points 106

Materials Project 0.005 3 ∗ 103 4 16 * 200 points 106

1Collected 7 May 2023. Associated task identifiers will be included in our provided repository, along with
train, validation, and test splits.
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Following recent work [2–4, 9] we evaluate our models using mean absolute error normalized by the
total number of electrons in the volume, εmae (Eq. 5). This is approximated via numerical integration
on the charge density grid created by VASP.

εmae =

∫
~r∈V |ρ(~r)− ρ̂(~r)|∫

~r∈V |ρ(~r)|
(5)

We compare the performance of ChargE3Net to the models introduced in DeepDFT[9] and OrbNet-
Equi[4]. For QM9 and NMC datasets we use identical training, validation, and test splits as Jørgensen
and Bhowmik [9], and report εmae computed using the authors publicly released models. We have
verified these to match the numbers reported in the original work. For the MP dataset, we train the
DeepDFT models using the same experimental settings from the original work. As shown in Table
2, our model significantly outperforms the prior equivariant DeepDFT models [9] on the Materials
Project and QM9 datasets, while achieving similar performance on the NMC dataset. In addition,
our model achieves a lower εmae on the QM9 dataset than OrbNet-Equi [4] model, which leverages
additional features based on quantum mechanical calculations, despite ChargE3Net only using atomic
species and position information.

Table 2: Error for each dataset, reported in average εmae (%), ± one standard error.
Dataset invDeepDFT equiDeepDFT OrbNet-Equi ChargE3Net (Ours)

NMC 0.089± 0.001 0.061± 0.001 - 0.060± 0.001
QM9 0.357± 0.001 0.284± 0.001 0.206± 0.001 0.196± 0.001
Materials Project 0.859± 0.011 0.799± 0.010 - 0.523± 0.010

3.1 Effects of Higher Order Representations
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2 × 100
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L=3
L=4

Figure 3: Log-log plot of training set size vs performance, measured in average εmae (%) on the
Materials Project test set. We show models train with maximum rotation order L ∈ 0, 1, 2, 3, 4.

To demonstrate the impact of introducing higher order tensor representations in our model, we
examine the effect of training models while varying the maximum rotation orderL, with ` ∈ {0, ..., L}
up to L = 4. While higher order representations are achievable, they can be prohibitive to use in the
network due to the O(L6) computational complexity of tensor products. The number of channels
for each order is determined by Nchannels = b 500/(L+1)

`∗2+1 c. For example, the L = 0 model has
representations consisting of 500 even scalars, and 500 odd scalars, while the L = 1 model has
representations consisting of 250 even scalars, 250 odd scalars, 83 even vectors, and 83 odd vectors.
In this way, each model is constructed such that the total representation size is approximately equal,
as well as the proportion of the total representation used by each order. We train each model on 1,000
and 10,000 material subsets of the MP dataset as well as the full dataset, using the same validation
and test sets. Figure 3 shows a consistent increase in performance on each subset with the addition
of each rotation order and similar scaling behavior with respect to the training set size. This trend
suggests that higher order representations are necessary for accurate charge density modeling, and
can match the performance of lower order models with less data.
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In order to gain intuition behind why and when higher order representations yield higher performance,
we consider two factors contributing to the variance of charge density within a material: radial
dependence, or a dependence on the distance from neighboring atoms, and angular dependence, a
dependence on the angle from a point with respect to the rest of the system. While most materials
exhibit strong radial dependence, some also exhibit strong angular dependence. This would be
difficult to model using an invariant architecture (` = 0) operating solely on interatomic distances,
and likely would require higher order representations to model correctly. In Figure 4, we illustrate
this concept with two materials. H4Cs2O8P2 exhibits high angular dependence, where charge density
is dependent on angle as well as radial distance from the nearest atom. Conversely, Rb2Sn6 does not
exhibit this, as its density appears to be almost entirely a function of the atomic distance, suggesting
that a lower-order equivariant or invariant architecture could model its electron density well. We find
this intuition to be consistent with model performance, as Figure 4 shows similar performance for
L = 0 and L = 4 models for Rb2Sn6, while the L = 4 model exceeds the performance of the L = 0
model for H4Cs2O8P2.
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Figure 4: Comparison of material with high angular variance H4Cs2O8P2 (top) and low angular vari-
ance Rb2Sn6 (bottom), as determined by 95th- and 5th-percentile ζ values in test set. a: visualization
of charge density isosurfaces (gray). b: plot of charge density with respect to radial distance from
nearest atom. c: εmae for ChargE3Net model predictions on these materials.

To further quantify this angular dependence, we develop a metric ζ to determine to what extent an
atomic system exhibits more angular variation in its charge density with respect to atom locations.
This is achieved by measuring the dot product of the unit vector between a probe point and its nearest
neighboring atom and the gradient of the density at that probe point:

ζ(G) = 1−
∑
~gk∈G |∇ρ(~gk) · r̂ki|∑
~gk∈G ||∇ρ(~gk)||

(6)

where G is a set of probe points and r̂ki is a unit vector from probe point at location ~gk to the closest
atom at location ~ri. Intuitively, a material with charge density gradients pointing directly towards or
away from the nearest atom will have dot products larger in magnitude and ζ → 0, whereas a material
with density that changes angularly with respect to the nearest atom will have dot products smaller in
magnitude, and ζ → 1. Figure 5 demonstrates that the differences in performance between the lower
and higher rotation order networks correlates strongly with ζ. As electron density distributions with
higher angular variance do occur naturally in the data, this further justifies the need for introducing
higher rotation order representations into charge density prediction networks.
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Figure 5: Scatter of εmae improvement from L = 0 to L = 4 vs. ζ, showing greater performance
gains from the higher order model when materials exhibit high angular variance.

3.2 Runtime

To demonstrate the scalability of our model, we analyze the runtime duration of our model on
systems with increasing number of atoms, and compare to the duration of DFT calculations. We run
each method on a single material, BaVS3 (mp-3451 in MP), creating supercells from 1× 1× 1 to
10× 10× 10 and recording the runtime to generate charge density on the system. Figure 6 shows an
approximate linear, O(N), scaling of our model with respect to number of atoms, while DFT exhibits
approximately O(N2.3) before exceeding our computational budget. This is to be expected, as the
graph size increases linearly with cell volume if the resolution remains the same, while DFT has
shown to scale at a cubic rate with respect to system size [9]. Furthermore, like DeepDFT, our method
can be fully parallelized up to each point in the density grid with no communication overhead.
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Figure 6: Runtime comparison of DFT and our ChargE3Net model with respect to number of atoms
in the evaluated system. DFT is using a 48-core Intel Xeon CPU, while ChargE3Net uses a single
NVIDIA V100 GPU.

4 Discussion

This work introduces an architecture for predicting charge density through equivariance with higher
order representations. We demonstrate that introducing higher order tensor representations over
scalars and vectors used in prior work achieves greater predictive accuracy, and show how this
achieved through the improved modelling of systems with high angular variance. While our models
use up to L = 4 representations, they generally use very few channels due to the weighting strategy
mentioned in Section 3.1. As tensor products have a computation complexity of O(L6), there
may be a more optimal model configuration with a uniform distribution of channels at a lesser
L. Furthermore, SO(3) convolutions can be approximated in SO(2) [27] which brings down the
computational complexity to O(L3) and removes the need to compute Clebsch-Gordan coefficients.
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Future work may investigate these optimization and efficiency improvements, as well as the integration
of charge density prediction models to existing DFT frameworks for downstream property prediction
and simulation.
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