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Abstract

Learning from Label Proportions (LLP) is a weakly-supervised paradigm that uses
bag-level label proportions to train instance-level classifiers, offering a practical
alternative to costly instance-level annotation. However, the weak supervision
makes effective training challenging, and existing methods often rely on pseudo-
labeling, which introduces noise. To address this, we propose RLPL, a two-
stage framework. In the first stage, we use unsupervised contrastive learning to
pretrain the encoder and train an auxiliary classifier with bag-level supervision. In
the second stage, we introduce an LLP-OTD mechanism to refine pseudo-labels
and split them into high- and low-confidence sets. These sets are then used in
LLPMix to train the final classifier. Extensive experiments and ablation studies on
multiple benchmarks demonstrate that RLPL achieves comparable state-of-the-art
performance and effectively mitigates pseudo-label noise.

1 Introduction

Learning from Label Proportions (LLP), a significant weakly-supervised learning paradigm [1, 3, 36,
16, 12], addresses scenarios where individual instance labels are costly or inaccessible due to privacy
concerns [9, 32]. Instead, LLP leverages more readily available label proportions within bags of
instances. This practical advantage has led to LLP’s application in diverse fields such as medical
analysis [10], e-commerce [24], political science [27], and remote sensing [8]. The core task in
LLP is to train an instance-level classifier using only these bag-level label proportions, a distinct
challenge compared to traditional instance-level supervision.

The weak supervision from bag-level proportions poses significant challenges for learning accurate
instance-level classifiers. As observed by Yu et al. [34], insufficient class separation in bag proportions
can severely degrade performance. Many recent LLP methods therefore turn to pseudo-labeling:
Ma et al. [20] re-weight high-confidence labels for an auxiliary instance loss; PLOT [19] alternates
between bag-level and pseudo-label training; Liu et al. [18] employ self-ensembling. However, noisy
pseudo-labels remain a major bottleneck.

We propose Robust Label Proportions Learning (RLPL), a two-stage framework. In Stage 1, we
pre-train an encoder via contrastive learning and train a classifier head using only bag proportions. In
Stage 2, we refine the resulting pseudo-labels with LLP-OTD (LLP-penalized Optimal Transport-
based Label Dividing), splitting data into a high-confidence labeled set and an unlabeled set. Finally,
LLPMix, inspired by MixMatch, integrates LLP constraints into a semi-supervised pipeline to train
the main classifier. Experiments on standard benchmarks show that RLPL possesses comparable
performance to prior methods, and ablations confirm the effectiveness of LLP-OTD in filtering noise.
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• We propose RLPL, a novel two-stage LLP framework that effectively leverages both bag-level
proportions and instance-level pseudo-labels, demonstrating robust performance, particularly in
challenging large-bag scenarios.

• We introduce LLP-OTD, an LLP-constrained optimal transport-based mechanism to refine noisy
pseudo-labels by extracting high-confidence labels. Experiments confirm its superior performance
in pseudo-label refinement.

• We develop LLPMix, a training mechanism that optimally utilizes the LLP-OTD refined dataset and
label proportion information within a semi-supervised framework, achieving excellent experimental
results.

• Comprehensive experiments validate RLPL’s comparable state-of-the-art performance against
current leading LLP models, supported by thorough ablation studies. Meanwhile, our model
exhibits bag-insensitive robustness.

2 Related Work

2.1 Learning from Label Proportions(LLP)

Learning from Label Proportions (LLP) is a weakly supervised paradigm in which only aggregated
label proportions for predefined bags are available, and instance-level labels are inaccessible [24, 34,
11, 15, 23]. Early approaches matched predicted bag proportions to ground truth [22], but this coarse
supervision admits multiple instance-label configurations, degrading classification performance. To
recover finer supervision, recent methods generate pseudo-labels—for example, L2P-AHIL [20]
re-weights high-confidence labels via entropy measures, and LLPFC [36] treats LLP as a label-noise
problem.

Our RLPL framework advances LLP by introducing LLP-OTD, an Optimal Transport–based de-
noising mechanism with a post-optimization consistency heuristic to filter reliable pseudo-labels, and
LLPMix, which treats low-confidence labels as unlabeled and enforces an explicit LLP consistency
loss within a MixMatch–style semi-supervised pipeline. Together, these components yield superior
instance-level classifiers from bag-level proportions.

2.2 Optimal Transport in LLP

Traditional LLP methods that minimize KL divergence between predicted and bag-level proportions
often yield high-entropy, flat distributions lacking discriminative power [19]. To enforce more
structured alignment, Optimal Transport (OT) has been introduced into LLP. Liu et al. [17] proposed
OT-LLP, using an entropically regularized Sinkhorn solver to match proportions exactly, thereby
boosting accuracy. Tsai and Lin [29] combined OT with prototypical contrastive learning to align
embeddings with class prototypes. Liu et al. [19] also proposed PLOT (Pseudo-Label Optimization
via OT), which alternates OT-based label assignment with model updates to suppress noise.

While these OT-based methods improve proportion matching, they often struggle with pseudo-label
noise and reliable confidence assessment. Our LLP-OTD mechanism offers distinct advantages
by iteratively correcting pseudo-labels via an OT process incorporating an LLP-specific penalty
in its cost function, directly enforcing bag constraints during refinement. Crucially, LLP-OTD
employs a novel "post-optimization consistency" metric to robustly distinguish high-confidence
pseudo-labels from unreliable ones, surpassing common heuristic criteria. This focus on advanced
pseudo-label correction and confidence assessment allows LLP-OTD to significantly enhance the
quality of instance-level supervision for more accurate LLP classifiers.

2.3 Semi-Supervised Learning

Semi-Supervised Learning (SSL) aims to leverage both labeled and unlabeled data during training
[37, 30, 4]. Common SSL approaches include consistency regularization, pseudo-labeling, and
entropy minimization, often combined with strong data augmentations [33]. MixMatch [2] is a
prominent SSL method that unifies data augmentation, label guessing with sharpening, and MixUp
[35] to effectively utilize all available data. Given that the dataset refined by our LLP-OTD is partially
labeled, resembling an SSL setting, we adapt SSL principles for LLP. However, standard SSL methods
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Figure 1: Overview of Methodology

like MixMatch do not inherently account for bag-level label proportion constraints crucial in LLP.
Therefore, our LLPMix mechanism enhances a MixMatch-like framework by integrating an explicit
LLP consistency loss. This ensures that the model’s predictions adhere to the known bag label
proportions while benefiting from the robust semi-supervised training strategy, effectively bridging
SSL with the specific demands of LLP.

3 Preliminary: Problem Setting

In the Learning from Label Proportions (LLP) setting, we seek to train an instance-level classifier
without access to individual labels. Instead, the training data D = {xi}Ni=1 ⊂ X is partitioned into
M disjoint bags Bj , each containing nj instances. For each bag Bj = {xj,1, . . . , xj,nj

} we observe
only the class proportions

pj =
[
pj,1, . . . , pj,K

]⊤
, pj,k =

1

nj

nj∑
l=1

I(yj,l = ck),

where Y = {c1, . . . , cK} and
∑

k pj,k = 1. Each instance xi has an unknown true label yi ∈ Y and
a feature embedding f(xi) ∈ Rd, produced by an encoder f .

Our goal is to learn a classifier h : Rd → ∆K that, given f(xi) and the bag-level proportions {pj},
recovers accurate estimates of the hidden labels. In other words, h ◦ f should predict yi for each xi

by leveraging only the aggregated supervision provided by the pj .

4 Method

In this section, we detail our proposed framework. Beginning with overview of the whole methodology
and formal definition of problems, we give a detailed illustration of each component in our method.

4.1 Overview

To solve the LLP problem, we propose our RLPL framework as illustrated in Fig. 1. Our framework
possesses two training stages. For the first stage, we utilize unsupervised contrastive representation
learning strategy to train encoder and leverage bag label proportions to guide classifier head training.
After first-stage training, we obtain the initial naive classifier as an auxiliary classifier to generate
pseudo-labels for next-stage training. Since the initial classifier is trained under bag-level supervi-
sion, the pseudo-labels generated by this classifier imply the label proportions knowledge. These
meaningful labels are sent to the second stage. However, these labels are usually noisy since the
initial classifier cannot give full-correct pseudo-labeling. To cope with these noises and exploit the
information brought by pseudo-labels, we propose our LLP-OTD mechanism to distinguish high-
confident pseudo-labels out of the pseudo-label set and discard low-confident label set. This robust
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distinguishing mechanism provides a strong support for the following training. After LLP-OTD
divides the pseudo-label dataset into high-confident pseudo-label set and unlabeled set, we establish
LLPMix to train on the LLP-OTD-divided dataset. Given the similarity between LLP-OTD-divided
dataset and semi-supervised dataset, we organically integrate LLP constraints and MixMatch[2]
learning into LLPMix, which not only make a full use of bag-level information but also leverage
instance-level high-confident labels and samples themselves, providing a instance-bag dual-level
supervision for main classifier training.

4.2 First Stage: Bag-level Supervised Naive Classifier

The primary goal of the first stage is to obtain an initial, albeit potentially naive, instance-level
classifier by leveraging the available weak supervision signal, i.e., the bag-level label proportions.
This stage consists of two steps: representation learning and initial classifier training.

Firstly, to effectively capture the underlying structure and semantics of the instance data, we employ
an unsupervised contrastive representation learning strategy, such as SimCLR [6], to pre-train the
feature encoder f : X → Rd. This step learns instance representations f(xi) for all xi ∈ D without
using any label or proportion information, providing a foundation for subsequent tasks.

Secondly, we train an initial classifier head, denoted as hinit : Rd → ∆K , where ∆K is the K-
dimensional probability simplex. This classifier takes the learned feature representation f(xi) as
input and outputs a probability distribution over the K classes, q̂i = hinit(f(xi)), where q̂i =
[q̂i,1, . . . , q̂i,K ]⊤ and q̂i,k represents the predicted probability that instance xi belongs to class ck.

The training of hinit is guided solely by the bag-level label proportions {pj}Mj=1. Specifically, for
each bag Bj , we can estimate the predicted label proportions p̂j = [p̂j,1, . . . , p̂j,K ]⊤ by averaging
the predicted instance probabilities within the bag:

p̂j,k =
1

nj

∑
xi∈Bj

q̂i,k (1)

The classifier head hinit is then trained by minimizing the discrepancy between the predicted bag
proportions p̂j and the true bag proportions pj across all bags. A common choice for the loss function
is the Kullback-Leibler (KL) divergence:

Lstage1 =
1

M

M∑
j=1

DKL(pj∥p̂j) (2)

Minimizing this loss encourages the classifier’s average predictions within each bag to align with the
known ground-truth proportions.

After training, this initial classifier hinit can be used to generate initial pseudo-labels ŷi for each
instance xi, typically by selecting the class with the highest predicted probability:

ŷi = arg max
ck∈Y

q̂i,k (3)

This initial stage provides pseudo-labels {ŷi}Ni=1 that incorporate LLP prior knowledge by respecting
bag proportions. However, due to the inherently ambiguous nature of bag-level supervision, the
classifier hinit is trained with weak signals, potentially leading to unreliable predictions and noisy
pseudo-labels. Consequently, these initial pseudo-labels require further refinement and robust
handling in a subsequent stage to effectively train an accurate instance-level classifier, motivating the
introduction of our second stage (detailed in Section 4.3).

4.3 Second stage: Instance-Bag Dual-level Guided Robust Main Classifier

The initial classifier uses only bag-level supervision, but as shown by Yu et al. [34], even perfect
alignment with bag proportions does not ensure correct instance-level predictions. Consequently,
its pseudo-labels—though informed by LLP priors—remain noisy. To address this, we propose
LLP-Optimal Transport Denoising (LLP-OTD), which separates initial pseudo-labels into high-
confidence and low-confidence subsets, retaining only the former for training. This yields a refined,
semi-labeled dataset of reliable pseudo-labels. Building on this, we introduce LLPMix—a MixMatch-
inspired[2] semi-supervised framework that enforces bag-level consistency while leveraging the clean
pseudo-labels to train the final instance-level classifier.
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4.3.1 LLP-OTD: LLP-guided Optimal Transport Dividing

The LLP-OTD mechanism aims to refine the initial pseudo-labels {ŷi}Ni=1 by employing an iterative
optimal transport process. This process is guided by both the instance feature geometry, derived
from the main classifier’s encoder fmain(xi), and the known bag-level label proportions pj . LLP-
OTD consists of two main steps: iterative pseudo-label refinement via OT, and confident sample
partitioning.

Iterative Pseudo-Label Refinement This refinement is performed in two OT passes. Let fmain(xi)
be the feature representation of instance xi from the current main encoder. The initial pseudo-labels
ŷi are obtained from Eq. 3.

The first OT pass commences with the calculation of initial class barycenters. For each class ck ∈ Y ,
its barycenter µ(0)

k ∈ Rd is computed as the mean of features fmain(xi) for instances xi initially
assigned the pseudo-label ŷi = ck:

µ
(0)
k =

∑
i:ŷi=ck

fmain(xi)

|{i|ŷi = ck}|
(4)

Should any class lack assigned instances, its barycenter can be initialized using random values or
alternative heuristics. Subsequently, an LLP-aware cost matrix C(0) is constructed. The cost C(0)

k,i

of associating instance xi (from bag Bj(i) with true proportions pj(i)) with class ck (represented by
µ

(0)
k ) is defined as:

C
(0)
k,i = ∥fmain(xi)− µ

(0)
k ∥22 + λOTD(1− pj(i),k) (5)

Here, pj(i),k denotes the true proportion of class ck in bag Bj(i), and λOTD ≥ 0 is a hyperparameter
that balances the Euclidean feature distance against the LLP proportion penalty. This penalty term
serves to discourage the assignment of an instance to a class that is known to be rare or absent
within its originating bag. Embedding the LLP prior directly into the cost matrix C

(0)
k,i in this manner

fundamentally reshapes the matching landscape, enforcing bag-level consistency at the individual
instance-prototype level rather than only at the final aggregated proportion level. With the cost matrix
established, an entropy-regularized optimal transport problem is solved to find an optimal transport
plan T(1)∗ ∈ RK×N

≥0 :

T(1)∗ = arg min
T∈U(a,b)

K∑
k=1

N∑
i=1

Tk,iC
(0)
k,i − γH(T) (6)

where H(T) = −
∑

k,i Tk,i(log Tk,i − 1) is the entropy regularization, γ > 0 its strength, and
U(a,b) represents the set of valid transport plans satisfying marginal constraints a ∈ RK and
b ∈ RN (typically uniform vectors, e.g., a = 1

K1K and b = 1
N 1N ). The entropy-regularized OT

problem in Eq. 6 is a strictly convex optimization over a compact convex set, which guarantees a
unique optimal solution T∗ that can be efficiently found using the Sinkhorn-Knopp algorithm. A
formal proof of the solution’s existence, uniqueness, and algorithmic convergence, along with an
analysis of the LLP-Proportion Penalty’s role, is provided in Appendix. The pseudo-label for each
instance xi is then updated to ŷ

(1)
i by selecting the class ck that receives the maximum "mass" from

T(1)∗:
ŷ
(1)
i = arg max

ck∈Y
T

(1)∗
k,i (7)

The second OT pass aims to further refine these pseudo-labels. It begins by recalculating class
barycenters, µ(1)

k , using the updated pseudo-labels ŷ(1)i and the same instance features fmain(xi):

µ
(1)
k =

∑
i:ŷ

(1)
i =ck

fmain(xi)∣∣∣{i|ŷ(1)i = ck}
∣∣∣ (8)

A new cost matrix C(1) is then constructed using these refined barycenters µ(1)
k , following the same

formulation as Eq. 5:

C
(1)
k,i = ∥fmain(xi)− µ

(1)
k ∥22 + λOTD(1− pj(i),k) (9)
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Another entropy-regularized OT problem (analogous to Eq. 6) is solved with C
(1)
k,i to yield a new

transport plan T(2)∗. The final OT-refined pseudo-labels, ŷOT
i , are then determined from T(2)∗:

ŷOT
i = arg max

ck∈Y
T

(2)∗
k,i (10)

This two-pass iterative process allows the barycenter representations and pseudo-label assignments to
mutually refine each other, guided by both feature similarity and LLP constraints, thereby enhancing
the quality of the pseudo-labels.

Confident Sample Partitioning After obtaining the final OT-refined pseudo-labels ŷOT
i , we partition

the dataset D into a high-confidence labeled set DL and a low-confidence unlabeled set DU . The
partitioning is based on the agreement between the initial pseudo-labels ŷi (from Eq. 3) and the
OT-refined pseudo-labels ŷOT

i :

• High-Confidence Labeled Set DL: Instances where the initial pseudo-label and the OT-refined
pseudo-label agree are considered high-confidence. Their labels are taken as ŷOT

i .

DL = {(xi, ŷ
OT
i )|xi ∈ D, ŷOT

i = ŷi} (11)

• Low-Confidence Unlabeled Set DU : Instances where the pseudo-labels disagree are considered
low-confidence. These instances are treated as unlabeled in the subsequent LLPMix training stage.

DU = {xi|xi ∈ D, ŷOT
i ̸= ŷi} (12)

This partitioning strategy aims to select more reliable pseudo-labels for supervised training while
leveraging the remaining instances in an unsupervised or semi-supervised manner, thus mitigating the
impact of noise from the initial pseudo-labeling. The sets DL and DU are then used in the LLPMix
framework.

4.3.2 LLPMix: Semi-Supervised Learning with LLP Consistency

Building on the high-confidence labeled set DL and the unlabeled set DU produced by LLP-OTD,
LLPMix integrates standard semi-supervised learning with an explicit bag-level consistency con-
straint. First, for each example in DU , we generate several weak augmentations, collect the model’s
predictions, and sharpen their average to obtain soft pseudo-labels. Next, we mix labeled and
unlabeled examples—including both their inputs and labels—using the MixUp approach, thereby
creating a unified training batch that blends reliable OT-refined labels with guessed labels. Finally,
we optimize a combined objective comprising a supervised classification loss on the mixed labeled
data, an unsupervised consistency loss on the mixed unlabeled data, and a KL divergence–based
term that ensures the model’s aggregated predictions over each original bag adhere to the known
bag proportions. This streamlined LLPMix procedure effectively harnesses both high-confidence
pseudo-labels and bag-level supervision to drive robust instance-level learning under the LLP setting.

The core of LLPMix lies in its loss function, which combines a standard supervised cross-entropy
loss LS for labeled data (from Dmix originating from DL), an unsupervised consistency loss LU for
unlabeled data (from Dmix originating from DU ), and our novel LLP consistency term LLLP-Cons:

LLLPMix = LS + wULU + wLLPLLLP-Cons (13)

where wU , wLLP are weighting coefficients.

The crucial LLP consistency term, LLLP-Cons, ensures that the model’s predictions adhere to the
original bag-level proportions. This term is calculated *before* the MixUp operation. Specifically, let
Borig be the set of original instances (from DL∪DU ) that form the basis of the current mini-batch. For
each original bag Bj represented in Borig, we calculate the predicted proportion p̂batch

j by averaging
the predictions hmain(fmain(Aug(xi)))k for all instances xi ∈ Borig that originated from Bj . For
xi ∈ DL, Aug(xi) is xi itself; for xi ∈ DU , Aug(xi) is one of its augmented versions used for label
guessing:

p̂batch
j,k =

1

|{xi ∈ Borig|xi ∈ Bj}|
∑

xi∈Borig,xi∈Bj

hmain(fmain(Aug(xi)))k (14)
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The LLP consistency loss is then the KL divergence between these batch-wise predicted proportions
and the true bag proportions pj :

LLLP-Cons =
1

|Bbags|
∑

Bj∈Bbags

DKL(pj∥p̂batch
j ) (15)

where Bbags is the set of unique original bags represented in Borig. This term guides the main classifier
to produce instance-level predictions that, when aggregated at the bag-level from pre-MixUp samples,
align with the known ground-truth proportions. This injects the LLP prior directly into the semi-
supervised learning phase, complementing the instance-level signals.

4.4 Overall Training Algorithm

The proposed RLPL framework integrates two-stage training to leverage instance-bag dual-level
information to form a robust label proportions learning model. The algorithm is summarized in the
appendix and outlines the complete procedure.

5 Experiment

5.1 Experimental Setup

Dataset We utilized five standard benchmark datasets commonly employed in Learning from
Label Proportions (LLP) research. These datasets are CIFAR-10, CIFAR-100 [13], SVHN [21],
and Mini-ImageNet [31]. Both the CIFAR-10 and CIFAR-100 datasets [13] contain 50,000 training
images and 10,000 test images. Each image is a 32 × 32 color natural scene, categorized into 10
and 100 classes, respectively. The SVHN dataset consists of 32 × 32 RGB images of digits, with
73,257 images for training and 26,032 for testing; additional training samples were not used in our
experiments. Mini-ImageNet, a subset of the ImageNet dataset, includes 100 classes, each with 80
images for training and 20 for testing, all resized to 64× 64 pixels.

Baseline We compare RLPL against seven representative LLP approaches. LLPFC formulates
learning from label proportions by minimizing the KL divergence between predicted and true bag
proportions within a fuzzy-clustering framework [24]. DLLP employs an end-to-end convolutional
network that integrates labeled samples and bag-level proportions via a reshaped cross-entropy
loss [25]. LLP-VAT augments virtual adversarial training with consistency regularization to enforce
smoothness in instance predictions under local perturbations [28]. OT-LLP leverages entropically
regularized optimal transport to impose exact proportion constraints on the classifier [17]. SoftMatch
overcomes the quantity–quality trade-off by weighting pseudo-labels using a truncated Gaussian
function combined with uniform alignment [14]. FLMm derives a mean-operator–based sufficient
statistic for proper scoring losses, enabling learning from bag proportions without instance labels [22].
Finally, L2P-AHIL introduces dual entropy-based weights to form auxiliary high-confidence instance-
level losses, jointly optimized with bag-level supervision [20].

5.2 Implementation Details

Bag Partition For each dataset, bags of a specified size M were formed by randomly selecting
M samples from the training set, ensuring that samples in distinct bags do not overlap. The class
proportion information within each bag guided the training process, without the use of true instance
labels. Following established practices [20], we selected M from the set 16, 32, 64, 128, 256. Since
each dataset contains a balanced number of samples per class, this bag generation method yields
relatively balanced class proportions.

Results and Analysis Table 1 presents classification accuracies of RLPL and state-of-the-art
baselines on CIFAR-10, CIFAR-100, SVHN, and MiniImageNet under five different bag sizes (based
on [20]). Across all datasets, RLPL demonstrates competitive or superior performance compared to
prior methods. On MiniImageNet, RLPL achieves the best average accuracy (54.52%) and maintains
a low coefficient of variation (CV=0.171), outperforming methods such as DLLP, LLP-VAT, and
L2P-AHIL, which exhibit significant drops as bag size increases. For CIFAR-10, RLPL achieves
an average accuracy of 93.71%, slightly behind L2P-AHIL (94.21%), while maintaining a very low
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Table 1: Performance comparison of various methods on MiniImageNet, CIFAR-10, CIFAR-100,
and SVHN datasets for different bag sizes. For each dataset, results across bag sizes [16, 32, 64, 128,
256] are reported, along with their average performance (↑) and coefficient of variation (CV, ↓). The
best performing method in each column is highlighted in bold, and the second best is underlined.
Baseline methods, excluding RLPL(Ours), are reproduced experimental results from Ma et al. [20].
The dash ’-’ signifies missing or inapplicable results.

Dataset Model
Bag Size

Average (↑) Coeff. of Var. (↓)
16 32 64 128 256

MiniImageNet

LLPFC - - - - - - -
DLLP 64.53 55.37 27.57 9.06 3.40 31.99 0.762
LLP-VAT 64.17 54.36 30.96 9.69 4.90 32.82 0.717
ROT 67.02 27.49 6.01 3.50 1.75 21.15 1.170
SoftMatch 2.02 1.86 1.95 1.72 1.87 1.88 0.053
FLMm - - - - - - -
L2P-AHIL 70.26 59.81 37.51 16.91 7.46 38.39 0.627
RLPL (Ours) 62.63 61.11 58.42 53.46 36.98 54.52 0.171

CIFAR-10

LLPFC 84.10 71.70 52.71 20.78 18.79 49.62 0.531
DLLP 91.59 88.61 79.76 64.95 44.87 73.96 0.233
LLP-VAT 91.80 89.11 78.75 63.89 46.93 74.10 0.226
ROT 94.86 94.34 93.97 92.23 63.10 87.70 0.141
SoftMatch 95.24 95.25 94.23 93.87 48.20 85.36 0.218
FLMm 92.34 92.00 91.74 91.54 91.29 91.78 0.004
L2P-AHIL 94.96 95.00 94.58 93.64 92.88 94.21 0.009
RLPL (Ours) 92.54 94.02 93.50 94.53 93.95 93.71 0.007

CIFAR-100

LLPFC - - - - - - -
DLLP 71.28 69.92 53.58 25.86 8.82 45.89 0.539
LLP-VAT 73.85 71.62 65.31 37.36 2.79 50.19 0.539
ROT 72.74 69.31 17.48 11.02 2.86 34.68 0.867
SoftMatch 80.14 2.40 2.04 2.12 1.98 17.74 1.759
FLMm 66.16 65.59 64.07 61.25 57.10 62.83 0.053
L2P-AHIL 78.65 77.30 76.52 72.21 23.56 65.65 0.322
RLPL (Ours) 68.96 68.88 68.39 66.73 65.41 67.67 0.021

SVHN

LLPFC 93.04 23.26 21.28 20.54 19.58 35.54 0.810
DLLP 96.90 96.93 96.64 95.51 94.34 96.06 0.010
LLP-VAT 96.88 96.68 96.38 95.29 92.18 95.48 0.018
ROT 95.54 94.78 96.75 26.00 12.15 65.04 0.581
SoftMatch 22.39 19.68 19.60 19.64 19.57 20.18 0.055
FLMm - - - - - - -
L2P-AHIL 97.91 97.88 97.74 97.67 96.98 97.64 0.003
RLPL (Ours) 94.64 94.83 95.02 94.92 95.18 94.92 0.002

CV of 0.007, indicating strong robustness. On the more challenging CIFAR-100 dataset, RLPL
outperforms all baselines with the highest average accuracy (67.67%) and the lowest variability
(CV=0.021), showcasing its resistance to label dilution. Similarly, on SVHN, RLPL achieves stable
and high performance (Avg=94.92%, CV=0.002), comparable to L2P-AHIL and significantly better
than conventional baselines such as LLPFC and ROT. Overall, RLPL consistently ranks among the
top performers across all datasets and bag sizes, demonstrating that it is less sensitive to the bag size
setting. The consistently low coefficients of variation further verify RLPL’s robustness, highlighting
its capacity to maintain stable and reliable performance across varying weak supervision levels.

We also observe from Table 1 that RLPL’s performance advantage is particularly pronounced in
large-bag scenarios (e.g., bag sizes 128 and 256). We hypothesize this stems from the degree of label
ambiguity. With smaller bags, the label proportions provide a relatively strong and unambiguous
supervisory signal, allowing simpler methods to perform reasonably well. Conversely, as bag size
increases, the label ambiguity escalates significantly; a single proportion vector can correspond to a
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Table 2: Ablation Study

Method RLPL w/o LLP-Proportion Penalty w/o LLP-OTD w/o LLPMix

Accuracy (%) 94.55 93.36 84.98 92.33

Table 3: Performance comparison on the UCI Adult tabular dataset.

Method RLPL ROT L2P-AHIL

Accuracy (%) 77.57 72.82 75.99

Table 4: Performance (%) on CIFAR-10 (bag size 256) with noisy label proportions.

Noise Type Gaussian (Mod.) Gaussian (Heavy) Uniform (Mod.) Uniform (Heavy)

Accuracy (%) 94.05 93.84 93.95 93.94

Table 5: Performance (%) on long-tailed CIFAR-10 (bag size 256) with varying imbalance ratios.

Imbalance Ratio (IR) 5 10 15 50 100

Accuracy (%) 93.55 91.00 89.72 81.61 70.28

vast number of potential instance-level label configurations. In these high-ambiguity settings, the
robustness of our LLP-OTD refinement process becomes critical. Its ability to effectively denoise
pseudo-labels from a highly ambiguous signal allows RLPL to excel and significantly outperform
baselines, whereas other methods may struggle with the diluted supervision.

All experiments were conducted using a single NVIDIA RTX 4090 GPU with 24GB memory. For
each setting, we repeated the experiment five times with different random seeds and report the mean
and standard deviation of results. More detailed hyperparameter configurations are provided in the
Appendix.

5.3 Ablation Study

As illustrated in Table 2, we conducted a series of ablation studies to validate the effectiveness of
key components within our proposed RLPL model on CIFAR-10 Dataset setting bag size as 256.
Removing the entire LLP-guided Optimal Transport Denoising (LLP-OTD) module (RLPL w/o
LLP-OTD) results in the most significant performance drop, with accuracy decreasing from 93.95%
to 84.98%. This underscores the critical role of the LLP-OTD module in refining pseudo-labels and
substantially boosting model performance. When the LLP proportion penalty term is excluded from
the OT cost function within the LLP-OTD module (RLPL w/o LLP-Proportion Penalty), the accuracy
falls to 93.36%, demonstrating the importance of integrating true bag-level proportion information to
guide the pseudo-label correction process effectively. Furthermore, omitting the subsequent LLPMix
(MixMatch-based semi-supervised learning) stage (RLPL w/o LLPMix) leads to an accuracy of
92.33%, indicating that the semi-supervised learning component successfully leverages the data
refined by LLP-OTD (both the reliable labeled set and the distinguished unlabeled set) to further
enhance the model’s generalization capabilities. Collectively, these results clearly demonstrate that
the LLP proportion penalty, the core LLP-OTD refinement module, and the LLPMix strategy all
contribute positively to the final performance of RLPL, with the LLP-OTD module exhibiting a
particularly pronounced impact.

5.4 Robustness and Generalization Analysis

We conducted further experiments to evaluate RLPL’s generalization beyond vision tasks and its
robustness under challenging data conditions, including noisy proportions and class imbalance.

Generalization to Tabular Data To assess the applicability of RLPL beyond image modalities, we
performed experiments on the widely-used UCI Adult tabular dataset. As shown in Table 3, RLPL
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achieves an accuracy of 77.57%, outperforming strong LLP baselines. This result demonstrates that
our framework is effective in the tabular data domain and generalizes well to non-vision data.

Robustness to Noisy Proportions We evaluated RLPL’s resilience to imperfect supervision by
injecting noise into the bag proportions on CIFAR-10 (bag size 256). We applied two types of noise:
Gaussian (p′ = clip(p+N (0, σ2))) and Uniform (p′ = clip(p+ U(−r, r))) at moderate and heavy
levels. Table 4 shows that RLPL’s performance remains remarkably stable, with only a minimal
accuracy drop even under heavy noise (e.g., 93.84% with heavy Gaussian noise). This highlights the
robustness of the LLP-OTD mechanism in handling ambiguous and noisy supervisory signals.

Robustness to Class Imbalance To test performance in non-uniform data distributions, we con-
structed a long-tailed version of CIFAR-10, parameterized by the imbalance ratio (IR)—the ratio
of sample sizes between the most and least frequent classes. As detailed in Table 5, while accuracy
naturally degrades as the imbalance becomes more extreme, RLPL maintains strong performance,
achieving 70.28% even at a severe IR of 100. This demonstrates its robustness in handling highly
imbalanced class distributions.

6 Conclusion

This paper addresses the issue of noisy pseudo-labels in Learning from Label Proportions (LLP) by
proposing the Robust Label Proportions Learning (RLPL) framework. This two-stage framework
first pretrains an encoder via contrastive learning and trains an initial classifier using bag proportion
information. It then introduces the core LLP-OTD (LLP-penalized Optimal Transport-based Label
Dividing) mechanism to refine pseudo-labels, dividing data into a high-confidence labeled set and an
unlabeled set. Finally, the LLPMix strategy, inspired by MixMatch, integrates the refined pseudo-
labels and bag proportion constraints within a semi-supervised pipeline to train the main classifier.
Extensive experiments on standard LLP benchmark datasets demonstrate that RLPL’s performance
is comparable to current state-of-the-art methods, exhibiting stronger robustness, particularly in
challenging large-bag scenarios. Ablation studies also validate the effectiveness of each component,
especially LLP-OTD in filtering noise. Future research directions include extending RLPL to
more complex data modalities, exploring adaptive mechanisms for LLP-OTD, and theoretically
investigating its noise-filtering capabilities. We will discuss the limitations of our current work in the
appendix.
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A Experiment

A.1 Detailed Experiment Results

This section provides a more comprehensive presentation of our experimental findings. In comparison
to the performance summary presented in the main paper, Table 6 in this appendix additionally
incorporates the standard deviation (std) for each reported metric. The inclusion of these standard
deviations is intended to enhance the statistical rigor of our results and to more thoroughly demonstrate
the stability of the RLPL model’s performance across various datasets and bag size configurations.
The average performance (Avg) and coefficient of variation (CV) values reported herein, along
with the newly included standard deviations, are derived from five independent experimental runs
conducted. This repetition of experiments serves to validate the consistency and reliability of our
model’s reported performance.

Table 6: Performance comparison of various methods on MiniImageNet, CIFAR-10, CIFAR-100, and
SVHN datasets for different bag sizes (mean ± std). For each dataset, results across bag sizes [16,
32, 64, 128, 256] are reported, along with their average performance (↑) and coefficient of variation
(CV, ↓). The best performing method in each column is highlighted in bold, and the second best is
underlined. The dash ’-’ signifies missing or inapplicable results.

Dataset Model
Bag Size

Average (↑) Coeff. of Var. (↓)
16 32 64 128 256

MiniImageNet

LLPFC - - - - - - -
DLLP 64.53±0.41 55.37±0.38 27.57±0.20 9.06±0.14 3.40±0.14 31.99 0.762
LLP-VAT 64.17±0.34 54.36±0.29 30.96±0.24 9.69±0.17 4.90±0.09 32.82 0.717
ROT 67.02±0.34 27.49±0.38 6.01±0.30 3.50±0.10 1.75±0.13 21.15 1.170
SoftMatch 2.02±0.23 1.86±0.24 1.95±0.20 1.72±0.33 1.87±0.25 1.88 0.053
FLMm - - - - - - -
L2P-AHIL 70.26±0.26 59.81±0.21 37.51±0.16 16.91±0.15 7.46±0.08 38.39 0.627
RLPL(Ours) 62.63±0.15 61.11±0.22 58.42±0.17 53.46±0.26 36.98±0.21 54.52 0.171

CIFAR-10

LLPFC 84.10±0.19 71.70±0.78 52.71±0.36 20.78±0.70 18.79±0.21 49.62 0.531
DLLP 91.59±0.52 88.61±0.90 79.76±1.45 64.95±0.01 44.87±0.13 73.96 0.233
LLP-VAT 91.80±0.08 89.11±0.22 78.75±0.46 63.89±0.19 46.93±0.71 74.10 0.226
ROT 94.86±0.68 94.34±0.65 93.97±0.96 92.23±0.81 63.10±0.84 87.70 0.141
SoftMatch 95.24±0.12 95.25±0.14 94.23±0.18 93.87±0.22 48.20±0.36 85.36 0.218
FLMm 92.34 92.00 91.74 91.54 91.29 91.78 0.004
L2P-AHIL 94.96±0.13 95.00±0.11 94.58±0.21 93.64±0.20 92.88±0.53 94.21 0.009
RLPL(Ours) 92.54±0.06 94.02±0.07 93.50±0.05 94.53±0.12 93.95±0.15 93.71 0.007

CIFAR-100

LLPFC - - - - - - -
DLLP 71.28±1.56 69.92±2.86 53.58±1.60 25.86±2.15 8.82±0.94 45.89 0.539
LLP-VAT 73.85±0.22 71.62±0.07 65.31±0.33 37.36±0.63 2.79±0.67 50.19 0.539
ROT 72.74±0.08 69.31±0.22 17.48±0.86 11.02±0.79 2.86±0.11 34.68 0.867
SoftMatch 80.14±0.12 2.40±0.15 2.04±0.10 2.12±0.13 1.98±0.20 17.74 1.759
FLMm 66.16 65.59 64.07 61.25 57.10 62.83 0.053
L2P-AHIL 78.65±0.28 77.30±0.50 76.52±0.23 72.21±0.37 23.56±2.13 65.65 0.322
RLPL(Ours) 68.96±0.09 68.88±0.09 68.39±0.18 66.73±0.11 65.41±0.15 67.67 0.021

SVHN

LLPFC 93.04±0.21 23.26±0.63 21.28±0.23 20.54±0.37 19.58±0.09 35.54 0.810
DLLP 96.90±0.50 96.93±0.23 96.64±0.32 95.51±0.04 94.34±0.12 96.06 0.010
LLP-VAT 96.88±0.03 96.68±0.01 96.38±0.10 95.29±0.17 92.18±0.29 95.48 0.018
ROT 95.54±0.10 94.78±0.13 96.75±0.11 26.00±0.43 12.15±0.57 65.04 0.581
SoftMatch 22.39±0.11 19.68±0.13 19.60±0.12 19.64±0.14 19.57±0.16 20.18 0.055
FLMm - - - - - - -
L2P-AHIL 97.91±0.02 97.88±0.01 97.74±0.06 97.67±0.17 96.98±0.31 97.64 0.003
RLPL(Ours) 94.64±0.08 94.83±0.13 95.02±0.05 94.92±0.17 95.18±0.20 94.92 0.002

A.2 Hyperparameter Configurations

To ensure the reproducibility of our experimental results, we detail the key hyperparameter configura-
tions for our Robust Label Proportions Learning (RLPL) framework below.

First Stage Training (Auxiliary Classifier) In the first stage, for training the encoder via unsuper-
vised contrastive representation learning, we employ SimCLR strategy. The encoder backbone is
ResNet-18. The projection head in SimCLR consists of a single linear layer. For SimCLR training,
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we utilize the Adam optimizer, setting the learning rate to 1×10−3 and the weight decay to 1×10−6.
Subsequently, the auxiliary classifier head, also a single MLP layer, is trained using the Adam
optimizer with a learning rate of 1 × 10−4 and a weight decay of 1 × 10−7. This stage utilizes
only bag-level supervision from the bag dataset, minimizing the Kullback-Leibler (KL) divergence
between the true bag proportions pj and the predicted bag proportions p̂j .

Second Stage Training (Main Classifier) During the second stage for training the main classifier,
the LLP-Proportion Penalty coefficient, denoted as λOTD, in the LLP-OTD module’s cost function
is set to 0.1. This coefficient balances the Euclidean feature distance against the LLP proportion
penalty. For the LLPMix training, the weight for the LLP-Consistency loss, denoted as wLLP in the
combined objective function LLLPMix, is set to 1× 10−4. The main classifier is trained using the
SGD optimizer. The initial learning rate is set to 0.02, with a momentum of 0.9 and a weight decay
of 5× 10−4.

Backbone Architectures for Main Classifier To facilitate fair comparison with baseline methods,
we adopt specific backbone architectures for the main classifier across different datasets. For the
CIFAR-10 and SVHN datasets, both our model and the baselines utilize WRN-28-2 as the backbone.
For the CIFAR-100 dataset, WRN-28-8 is employed. On the Mini-ImageNet dataset, ResNet-18
serves as the backbone.

Hyperparameter Sensitivity Analysis. To validate the robustness of our model to hyperparameter
choices, we performed a sensitivity analysis for the two key coefficients: the LLP-Proportion
Penalty λOTD (Eq. 5) and the LLP-Consistency loss weight wLLP (Eq. 13). We evaluated various
combinations on the CIFAR-10 dataset (bag size = 256), recording the accuracy at 100 epochs. The
results, presented in Table 7, demonstrate that RLPL achieves high and stable accuracy (ranging
from 90.82% to 91.44%) across a wide range of values for both parameters. This indicates that our
framework is not overly sensitive to their specific settings, confirming its robustness.

Table 7: Hyperparameter sensitivity analysis on CIFAR-10 (bag size 256). We report accuracy (%) at
100 epochs for different combinations of λOTD and wLLP .

λOTD

wLLP 0.05 0.1 0.2 0.5 1.0

0.05 91.06% 90.83% 91.44% 90.92% 90.82%
0.1 90.94% 90.95% 91.33% 91.17% 91.32%
0.2 90.97% 91.28% 90.92% 90.94% 91.20%
0.5 91.15% 90.98% 91.06% 91.12% 91.02%

A.3 Additional Baseline Comparisons

To further contextualize the performance of RLPL, we conducted additional experiments on CIFAR-
10 comparing our method against other notable weakly-supervised frameworks, including Count
Loss[26] and GLWS[5]. As shown in Table 8, RLPL consistently outperforms these baselines across
various bag sizes, particularly demonstrating a significant advantage as the bag size increases.

Table 8: Performance comparison (%) against Count Loss and GLWS on CIFAR-10.

Bag Size Count Loss GLWS RLPL (Ours)
16 87.5% 85.46% 92.54%
32 83.61% 81.11% 94.02%
64 68.35% 64.64% 93.50%

A.4 Computational Cost and Scalability Analysis

We provide a detailed analysis of the computational requirements of our framework.
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Theoretical Complexity. The computational cost of our LLP-OTD module is dominated by two
steps: 1) Constructing the K ×N cost matrix, which takes O(KNd) time, where K is classes, N
is instances, and d is the feature dimension; 2) Solving the entropy-regularized OT problem using
the Sinkhorn-Knopp algorithm for L iterations, which takes O(LKN) time. The total complexity
is therefore O(KN(d+ L)). As this complexity is linear with respect to the number of instances
N , our method is highly scalable and efficient for large-scale LLP problems, distinguishing it from
classical OT solvers that can have O(N3) complexity.

Impact of Sinkhorn Iterations. The complexity depends on the number of Sinkhorn iterations, L.
We evaluated its impact on accuracy on CIFAR-10 (bag size=256) at epoch 50. As shown in Table 9,
performance saturates quickly; a small number of iterations (e.g., L = 5) is sufficient to achieve
strong results. This confirms that L can be treated as a small constant, keeping the practical cost low.

Table 9: Accuracy (%) vs. Number of Sinkhorn Iterations (L) on CIFAR-10 (bag size=256).

Iterations (L) 1 2 3 5 10 20 50

Accuracy (%) 89.24 89.48 89.96 90.00 89.61 89.85 89.68

Empirical Training Time. We profiled the single-epoch training time of RLPL against baselines
on CIFAR-10 (bag size=256) on an NVIDIA RTX 4090. As shown in Table 10, RLPL’s runtime is
comparable to other methods like LLP-VAT, and the performance gains justify the modest increase
over methods like L2P-AHIL. We also analyzed the prohibitive cost of replacing our Lstage1 KL
divergence with a Count Loss, which involves a dynamic programming step with O(n2

j ) complexity
per bag. As shown in Table 11, the training time for Count Loss scales quadratically with bag size,
becoming intractable, whereas our KL divergence loss remains highly efficient.

Table 10: Single-epoch training time (seconds) on CIFAR-10 (bag size=256).

Model L2P-AHIL ROT LLP-VAT RLPL (Ours)
Time (s) 10.61 10.89 16.09 16.11

Table 11: Training time (s/epoch) of Stage 1 loss: KL Divergence vs. Count Loss.

Bag Size 16 32 64 128

Count Loss (s/epoch) 2245 5012 9215 19964
KL Divergence (s/epoch) 17 9 6 6

A.5 Adherence to Bag Proportions

To quantitatively verify that our final classifier respects the original bag-level constraints, we measured
the Mean Absolute Error (MAE) between the classifier’s aggregated instance-level predictions and
the ground-truth bag proportions. A lower MAE indicates better adherence. We compared RLPL
against the strong L2P-AHIL baseline on CIFAR-10 across all bag sizes. As shown in Table 12, RLPL
consistently achieves a lower MAE, demonstrating superior adherence to the bag-level supervision.
This effect is particularly notable in more challenging small-bag scenarios (e.g., 30.6% lower MAE
than L2P-AHIL at bag size 16), confirming that the LLLP-Cons term in our LLPMix stage (Eq. 15)
effectively preserves the proportion constraints throughout the semi-supervised training phase.

B Theoretical Guarantees for LLP-OTD

In the main paper, we stated that the entropy-regularized optimal transport (OT) problem at the core of
LLP-OTD is well-posed and efficiently solvable. Here, we provide the formal theoretical guarantees,
addressing the existence and uniqueness of the solution, the convergence of the algorithm, and the
role of our LLP-Proportion Penalty.
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Table 12: Mean Absolute Error (MAE) (lower is better) of predicted bag proportions on CIFAR-10.

Method Bag Size 16 Bag Size 32 Bag Size 64 Bag Size 128 Bag Size 256
L2P-AHIL 0.015280 0.013498 0.010868 0.008544 0.006758
RLPL 0.010600 0.009505 0.008061 0.006725 0.005273

B.1 Existence and Uniqueness of the Optimal Solution

We first establish that the core optimization problem in our LLP-OTD mechanism has a unique global
minimizer. The problem is defined as:

min
T∈U(a,b)

⟨C,T⟩ − γH(T), (16)

where ⟨C,T⟩ =
∑

k,i Ck,iTk,i is the transport cost, H(T) = −
∑

k,i Tk,i(log Tk,i−1) is the entropy
term, γ > 0 is the regularization strength, and U(a,b) is the transport polytope defined by marginal
constraints (as defined in the main text).

Proof: Let F (T) = ⟨C,T⟩ − γH(T). We prove the strict convexity of the objective function.

1. The term ⟨C,T⟩ is linear in T, and hence convex.
2. For the negative entropy term −H(T) =

∑
k,i Tk,i(log Tk,i − 1), its Hessian matrix is

diagonal with entries ∂2(−H)
∂T 2

k,i
= 1

Tk,i
. Since Tk,i > 0 within the domain, the Hessian is

positive definite, implying −H(T) is strictly convex.
3. Therefore, F (T) = ⟨C,T⟩+ γ(−H(T)) (with γ > 0) is the sum of a convex function and

a strictly convex function, and is thus convex.

Furthermore, the feasible set U(a,b) =
{
T ∈ RK×N

≥0

∣∣∣∑i Tk,i = ak,
∑

k Tk,i = bi

}
is defined by

linear equalities and non-negativity constraints, making it a convex polytope. Since all constraints are
closed (equalities or non-strict inequalities) and the marginals sum to 1 (i.e., 0 ≤ Tk,i ≤ 1), U(a,b)
is a non-empty, compact, and convex set.

By standard results in convex optimization, a convex function F (T) optimized over a non-empty,
compact, and convex set U(a,b) has a unique global minimizer T∗.

B.2 Convergence of the Sinkhorn-Knopp Algorithm

Next, we demonstrate that the Sinkhorn-Knopp algorithm, used to solve the OT problem, converges to
the unique optimal solution T∗. The optimal transport plan T∗ is known to have a specific structure:

T ∗
k,i = uk ·Kk,i · vi, where Kk,i = exp

(
−Ck,i

γ

)
(17)

The Sinkhorn-Knopp algorithm is an iterative procedure to find the scaling vectors u ∈ RK and
v ∈ RN that satisfy the marginal constraints.

Proof: The convergence can be shown by interpreting the algorithm as an alternating projection
procedure using the Kullback-Leibler (KL) divergence (a specific type of Bregman divergence). Let
the sets of matrices satisfying the row and column constraints be:

• C1 = {T ∈ RK×N
≥0 |

∑
i Tk,i = ak} (Row constraints)

• C2 = {T ∈ RK×N
≥0 |

∑
k Tk,i = bi} (Column constraints)

Each iteration of the Sinkhorn-Knopp algorithm (which corresponds to alternating updates of u and
v) can be viewed as performing the following alternating KL projections:

T(l+ 1
2 ) = arg min

T∈C1

KL(T ∥ T(l)), (18)

T(l+1) = arg min
T∈C2

KL(T ∥ T(l+ 1
2 )), (19)
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Since C1 and C2 are convex sets, and their intersection C1 ∩ C2 = U(a,b) is non-empty (containing
the unique optimal solution T∗), the theory of alternating Bregman projections guarantees that this
iterative process converges [7]. Therefore, the sequence of iterates T(l) produced by the Sinkhorn-
Knopp algorithm is guaranteed to converge to the unique optimal solution T∗.

B.3 Role of the LLP-Proportion Penalty

Finally, we provide the intuition for why our innovative LLP-Proportion Penalty helps align the
pseudo-label distribution with the true LLP prior. Our effective cost function (Eq. 5 in the main
paper) is:

Ck,i = ∥fmain(xi)− µk∥22 + λOTD(1− pj(i),k) (20)

The key component is the penalty term λOTD(1− pj(i),k). To understand its effect, we analyze the
part of the objective function corresponding to this penalty, which we denote LLLP-Penalty(T):

LLLP-Penalty(T) :=

K∑
k=1

N∑
i=1

Tk,i

[
λOTD(1− pj(i),k)

]
(21)

Grouping by bags Bj , this is equivalent to:

LLLP-Penalty(T) = λOTD

M∑
j=1

∑
i∈Bj

K∑
k=1

Tk,i(1− pj,k) (22)

Minimizing this term is equivalent to maximizing the alignment between the transport plan’s implied
label proportions and the true bag proportions. Let PT (k | Bj) =

∑
i∈Bj

Tk,i be the total mass
assigned to class k from bag Bj by the transport plan T. (Note: this is not a normalized distribution
yet, but proportional to it). Minimizing LLLP-Penalty(T) is equivalent to:

min
T

M∑
j=1

K∑
k=1

∑
i∈Bj

Tk,i

 (1− pj,k) = min
T

M∑
j=1

K∑
k=1

(PT (k | Bj)− PT (k | Bj) · pj,k) (23)

= min
T

M∑
j=1

(
K∑

k=1

PT (k | Bj)−
K∑

k=1

PT (k | Bj) · pj,k

)
(24)

Since
∑K

k=1 PT (k | Bj) =
∑

i∈Bj

∑K
k=1 Tk,i =

∑
i∈Bj

bi (where bi is the marginal for instance

i, typically 1/N ), the first term
∑K

k=1 PT (k | Bj) is constant with respect to the distribution of
assignments within the bag. Therefore, minimizing the penalty term becomes equivalent to:

max
T

M∑
j=1

K∑
k=1

PT (k | Bj) · pj,k ∝ max
T

∑
j

⟨PT (· | Bj),p(· | Bj)⟩ (25)

where PT (· | Bj) represents the vector of implied proportions from bag Bj derived from T.
Maximizing this dot product encourages the transport plan’s implied distribution PT to align with
the true prior p, which is analogous to minimizing statistical divergences like the KL divergence.

Therefore, by introducing the LLP-Proportion Penalty into the cost matrix, we directly enforce that
the optimal transport plan T∗—the unique solution to the optimization problem—favors assignments
that are consistent with the known bag-level supervision.

C Algorithm

Our overall algorithm is summarized in Algorithm 1, where the notations and definitions used are
consistent with those introduced in the main paper.
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Algorithm 1 RLPL: Robust Label Proportions Learning
1: Input: Dataset D = {(xi, Bj(i))}Ni=1, Bag proportions {pj}Mj=1, Number of classes K.
2: Output: Trained main classifier hmain(fmain(·)).
3: procedure STAGE 1: INITIAL NAIVE CLASSIFIER
4: Pre-train feature encoder f : X → Rd using SimCLR on D.
5: Initialize classifier head hinit : Rd → ∆K .
6: while not converged do
7: For each instance xi, compute predicted probability distribution q̂i = hinit(f(xi)).
8: For each bag Bj , compute predicted proportions p̂j,k = 1

nj

∑
xl∈Bj

q̂l,k.

9: Update hinit by minimizing Lstage1 = 1
M

∑M
j=1 DKL(pj ||p̂j).

10: end while
11: Generate initial pseudo-labels {ŷi}Ni=1 using ŷi = arg maxck∈Y q̂i,k.
12: end procedure

13: procedure STAGE 2: MAIN CLASSIFIER TRAINING
14: Initialize main encoder fmain (e.g., with weights from f ) and main classifier head hmain.
15: LLP-OTD: Pseudo-Label Denoising and Partitioning
16: for each training epoch e = 1, . . . , Emain do
17: For each instance xi, extract features fmain(xi).

18: Compute initial class barycenters µ(0)
k =

∑
i:ŷi=ck

fmain(xi)

|{i|ŷi=ck}| .

19: Construct cost matrix C
(0)
k,i = ||fmain(xi)− µ

(0)
k ||22 + λOTD(1− pj(i),k).

20: Solve OT problem T (1)∗ = arg minT∈U(a,b)

∑
k,i Tk,iC

(0)
k,i − γH(T ) to get T(1)∗.

21: Update pseudo-labels to ŷ
(1)
i = arg maxck∈YT

(1)∗
k,i .

22: Compute refined class barycenters µ(1)
k =

∑
i:ŷ

(1)
i

=ck
fmain(xi)

|{i|ŷ(1)
i =ck}|

.

23: Construct cost matrix C
(1)
k,i = ||fmain(xi)− µ

(1)
k ||22 + λOTD(1− pj(i),k).

24: Solve OT using C(1) to get T(2)∗, then final OT-refined pseudo-labels ŷOT
i =

arg maxck∈YT
(2)∗
k,i .

25: Partition data into DL = {(xi, ŷ
OT
i )|xi ∈ D, ŷOT

i = ŷi} and DU = {xi|xi ∈ D, ŷOT
i ̸=

ŷi}.

26: LLPMix: LLP-Consistent Semi-Supervised Learning
27: for each mini-batch B from DL,DU do
28: For xu ∈ DU , generate soft pseudo-label ỹu by averaging sharpened predictions from

multiple weak augmentations of xu.
29: Apply MixUp to inputs and labels (both ŷOT

i for DL and guessed ỹu for DU ) to form
Dmix.

30: Compute supervised classification loss LS on mixed labeled samples.
31: Compute unsupervised consistency loss LU on mixed unlabeled samples.
32: Compute predicted bag proportions for the mini-batch (pre-MixUp) as p̂batch

j,k =
1

|{xi∈Borig|xi∈Bj}|
∑

xi∈Borig,xi∈Bj
hmain(fmain(Aug(xi)))k.

33: Compute LLP consistency loss LLLP-Cons =
1

|Bbags|
∑

Bj∈Bbags
DKL(pj ||p̂batch

j ).
34: Compute total loss LLLPMix = LS + wULU + wLLPLLLP-Cons.
35: Update fmain and hmain by minimizing LLLPMix.
36: end for
37: end for
38: end procedure
39: return hmain(fmain(·)).
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D Limitations and Future Work

While RLPL demonstrates strong performance, its multi-stage framework is inherently more struc-
tured than single-stage end-to-end methods. Although our computational analysis (Section A.4)
confirms that the runtime is comparable to baselines and scalable, future work could explore simpli-
fying this refinement pipeline.

Furthermore, although RLPL is competitive in terms of average performance and robustness, other
highly specialized methods might exhibit a slight advantage on specific datasets or bag sizes. Future
research could also focus on extending the framework to other data modalities, such as text, or
adapting it for the multi-label LLP setting.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper provides a comprehensive description of our methodology,
including the model architecture and experimental setup, enabling replication of the main
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Answer: [No]

Justification: To protect privacy of our work, we will not open access the data and code until
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]

Justification: Yes, comprehensive details of the experimental setup are included.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual
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didn’t make it into the paper).
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Answer: [Yes]

Justification: We have confirmed that the research is conducted with the NeurIPS Code of
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We respect the license of the datasets used and so on.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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