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Abstract
Contrastive learning (CL) continuously achieves
significant breakthroughs across multiple do-
mains. However, the most common InfoNCE-
based methods suffer from some dilemmas, such
as uniformity-tolerance dilemma (UTD) and gra-
dient reduction, both of which are related to a Pij

term. It has been identified that UTD can lead to
unexpected performance degradation. We argue
that the fixity of temperature is to blame for UTD.
To tackle this challenge, we enrich the CL loss
family by presenting a Model-Aware Contrastive
Learning (MACL) strategy, whose temperature is
adaptive to the magnitude of alignment that re-
flects the basic confidence of the instance discrim-
ination task, then enables CL loss to adjust the
penalty strength for hard negatives adaptively. Re-
garding another dilemma, the gradient reduction
issue, we derive the limits of an involved gradient
scaling factor, which allows us to explain from a
unified perspective why some recent approaches
are effective with fewer negative samples, and
summarily present a gradient reweighting to es-
cape this dilemma. Extensive remarkable empiri-
cal results in vision, sentence, and graph modality
validate our approach’s general improvement for
representation learning and downstream tasks.

1. Introduction
Modern representation learning has been greatly facilitated
by deep neural networks (Bengio et al., 2013; Dosovit-
skiy et al., 2020; He et al., 2016; Vaswani et al., 2017).
Self-supervised learning (SSL) is one of the most popular
paradigms in the unsupervised scenario, which can learn
transferable representations without depending on manual
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Figure 1. Illustration of model-aware temperature strategy.
Points in red, green, yellow, and blue on the hypersphere denote
anchor, the real positive sample (RP), real negative samples (RN),
and false negatives (FNs), respectively. Since alignment magni-
tude can indicate discrimination confidence of the CL model, then
the alignment-adaptive temperature dynamically controls penalty
strength (arrow length) to negative samples to balance uniformity
and tolerance for samples.

labeling (Gidaris et al., 2018; He et al., 2022; Grill et al.,
2020). Especially, SSL methods based on contrastive loss
have highly boosted CV, NLP, graph, and multi-modal tasks
(Chen et al., 2020b; He et al., 2020; You et al., 2021; Gao
et al., 2021; Radford et al., 2021). These contrastive learning
(CL) frameworks generally map raw data onto a hypersphere
embedding space, whose embedding similarity can reflect
the semantic relationship (Wu et al., 2018b; He et al., 2020).
Among diverse contrastive losses, InfoNCE (Van den Oord
et al., 2018; Tian et al., 2020a) is widely adopted in var-
ious CL algorithms (Chen et al., 2020a; 2021b; Dwibedi
et al., 2021), which attempts to attract positive samples to
the anchor while pushing all the negative samples away.

InfoNCE loss is essential to the success of CL (Tian, 2022;
Wang & Isola, 2020) but still troubled by several dilemmas.
An interesting hardness-aware property has been pointed
out, which enables CL automatically concentrate on hard
negative samples (HNs, those having high similarities with
the anchor) (Wang & Liu, 2021; Tian, 2022). Particularly,
the temperature parameter τ determines the weight distri-
bution on negatives. But this also causes a Uniformity-
Tolerance Dilemma (UTD) that plagues CL performance
(Wang & Liu, 2021). Specifically, as for the common in-
stance discrimination task in CL, models are trained by
maximizing the similarities of the anchor with its augmenta-
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tions and minimizing that of all the other different instances
(Wu et al., 2018b; Tian et al., 2020b). Such a strategy ne-
glects the underlying semantic relationships, which can be
explicitly subscribed by labels when in the supervised sce-
nario. Those HNs might contain false negative samples
(FNs) in this context. Owing to the hardness-aware property,
a smaller τ is conducive to the uniformity of the embed-
ding space (Wang & Isola, 2020), but goes against FNs
due to excessive penalties on HNs. On the contrary, larger
temperature parameters are beneficial for exploring under-
lying semantic correlations, while detrimental for learning
separable informative features.

This work mainly focuses on two dilemmas in CL, both of
which are related to a Pij term. (1) The uniformity-tolerance
dilemma, which is still an open problem in contrastive learn-
ing. We argue that a training-adaptive temperature is key to
alleviating UTD. In the learning phase, alignment of positive
paris (Wang & Isola, 2020) exactly can reflect the prior ex-
pectation of the instance discrimination task but also needs
no extra computations in InfoNCE. Specifically, its align-
ment is underperforming for a poorly trained CL model. In
this case, a smaller temperature parameter does help to im-
prove the uniformity of the hypersphere embedding space
(Wang & Isola, 2020). In contrast, the well-trained one
is much better in terms of alignment, for which a larger
temperature contributes to the tolerance for latent semantic
relationships. Thus, we propose a model-aware temperature
strategy based on alignment to solve the UTD problem. This
strategy is illustrated in Figure 1. (2) The gradient reduction
dilemma of InfoNCE. We identify the importance of negative
sample size K and temperature τ for this gradient reduc-
tion problem. From a unified perspective, two propositions
explain why some previous work (Yeh et al., 2022; Zhang
et al., 2022; Chen et al., 2021a) are experimentally valid.
As a result, we also provide a reweighting method for learn-
ing with small negative sizes. Owing to these explorations
and Model-Aware Contrastive Learning (MACL) strategy,
we reconstruct the contrastive loss to enable CL models
to generate high-quality representations. Experiments and
analysis on some benchmarks in different modalities demon-
strate that the proposed MACL strategy does help improve
the learned embeddings and escape dilemmas.

2. Related Work
Self-supervised learning has achieved significant success,
which can provide semantically meaningful representations
for downstream tasks (Bardes et al., 2022; Radford et al.,
2021; Zbontar et al., 2021; He et al., 2017; Karpukhin et al.,
2020). More recently, the instance discrimination task has
achieved state-of-the-art, and even exhibited to be competi-
tive performance to supervised methods (Chen et al., 2020a;
2021b; Gao et al., 2021; Dwibedi et al., 2021).

2.1. Contrastive Self-Supervised Learning

Contrastive instance discrimination originates from (Doso-
vitskiy et al., 2014; Wu et al., 2018b), whose core idea is to
learn instance-invariant representations, i.e. each instance
is viewed as a single class. The rational assumption be-
hind is that maximizing similarities of the positive pairs
and minimizing negative similarities can equip models with
discrimination (Van den Oord et al., 2018). To construct the
negative sampling appropriately, Wu et al. (2018b); Tian
et al. (2020a) and Moco family (He et al., 2020; Chen et al.,
2020c) adopt extra structures to store negative vectors of
instances. Instead, without additional parts for storing neg-
ative samples, other methods explore negative sampling
within a large mini-batch, e.g., SimCLR (Chen et al., 2020a),
CLIP (Radford et al., 2021), and SimCSE (Gao et al., 2021).
Some approaches successfully incorporate clusters or pro-
totypes into CL (Caron et al., 2020; Huang et al., 2019;
Dwibedi et al., 2021; Li et al., 2020). It is also possible to
learn only relying on positive samples (Grill et al., 2020;
Chen & He, 2021), but InfoNCE-based contrastive methods
are still the mainstream for various modalities and tasks
(Afham et al., 2022; Gao et al., 2021; Radford et al., 2021;
Wang et al., 2021; Li et al., 2022).

2.2. Contrastive InfoNCE Loss

To understand the success of CL methods and enhance them,
recent work has attempted to explore important properties of
contrastive loss (Jing et al., 2022). InfoNCE is constructed
by CPC (Van den Oord et al., 2018) and CMC (Tian et al.,
2020a) to maximize the mutual information of features from
same the instance. Besides, some work focuses on the
positive and negative pairwise similarity in InfoNCE. For
example, Wang & Isola (2020) attribute the effectiveness
of InfoNCE to the asymptotical alignment and uniformity
properties of features on hypersphere. Following this, Wang
& Liu (2021) have proven that the temperature parameter
plays an essential role in controlling the penalty strength
on negative samples, which is related to the hardness-aware
property and a uniformity-tolerance dilemma. This temper-
ature effect is also mentioned in (Chen et al., 2021a). α-CL
(Tian, 2022) formulates InfoNCE as a coordinate-wise op-
timization, in which the pairwise importance α determines
the importance weights of samples.

Motivated by reducing the training batch size, DCL (Yeh
et al., 2022) removes the positive similarity in the denomi-
nator of InfoNCE to eliminate a negative-positive-coupling
effect. Furthermore, Zhang et al. (2022) extend the hardness-
aware property anchor-wise and introduce an extra larger
temperature for InfoNCE. There are also some efforts in
explicitly modeling false/hard negative samples in training
to improve CL (Shah et al., 2022; Kalantidis et al., 2020),
e.g., HCL (Robinson et al., 2021) develops an importance
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sampling strategy to recognize true and false negatives. Our
work mainly focuses on alleviating uniformity-tolerance
dilemma and exploring the gradient reduction problem.

3. Problem Definition
3.1. Contrastive Loss Function

Let X = {xi}Ni=1 denote the unlabeled training dataset.
Also given encoders f and g, instance xi is mapped to
a query featuref i = f (xi) and a corresponding key fea-
ture gi = g (xi) on hypersphere with augmentations, re-
spectively. g maybe a weight-shared network of f or a
momentum-updated encoder. Assume that the generated
query (anchor) set and key set are denoted by F = {f i}

N
i=1

and G = {gi}
K+1
i=1 , respectively, where N is batch size and

K denotes the negative size. Then, the InfoNCE loss of the
instance xi can be formulated as:

Lxi = − log
exp

(
fT
i gi/τ

)
exp

(
fT
i gi/τ

)
+
∑K

j=1 exp
(
fT
i gj/τ

) ,
(1)

where {f i, gi} is the positive pair of the i-th instance, and
gj denotes the negative sample from a distinct instance.
Temperature parameter is τ and τ > 0. Negative pairs can
also be incremental from the same-side encoder like NT-
Xent (Chen et al., 2020a). The final total loss of an iteration
is the mean value on the mini-batch: L =

∑N
i=1 Lxi

/N .

3.2. Hardness-aware Property

Previous work identifies the important hardness-aware prop-
erty via gradient analysis. For convenience, let Pij indicate
the similarity between xi and xj after scaled by temperature
τ and Softmax operation:

Pij =
exp

(
fT
i gj/τ

)
exp

(
fT
i gi/τ

)
+
∑K

r=1 exp
(
fT
i gr/τ

) , (2)

Then the gradient w.r.t the anchor f i can be formulated as
follows (more details are show in Appendix A.1):

∂Lxi

∂f i

= −Wi

τ

gi −
K∑
j=1

P̂ij · gj

 , (3)

where Wi =
∑K

j=1 Pij can be seen as a gradient sacling

factor, and there exists P̂ij = Pij/
∑K

r=1 Pij . It is worth
noting

∑K
j=1 P̂ij = 1, in which P̂ij indicates an hardness-

aware property. It implies that InfoNCE automatically puts
larger penalty weights on the hard negatives (Wang & Liu,
2021), which are higher similar to the anchor sample.

3.3. Uniformity-Tolerance Dilemma

The weight on the negative sample xj is formulated as:

P̂ij =
exp

(
fT
i gj/τ

)
∑K

r=1 exp
(
fT
i gr/τ

) , i ̸= j, (4)

which is controlled by the temperature parameter (Wang &
Liu, 2021). (1) As τ decreases, the shape of P̂ij becomes
sharper. Thus, a smaller temperature causes larger penalties
on the high similarity region, which encourages the sepa-
ration of embeddings but has less tolerance for FNs. (2) A
larger temperature makes the shape of P̂ij flatter, then tends
to give all negative samples equal magnitude of penalties. In
this case, the optimization process is more tolerant to FNs
while concentrating less on uniformity.

4. Model-Aware Temperature Strategy
The existence of the uniformity-tolerance dilemma leads to
suboptimal embedding space and performance degradation
of downstream tasks (Wang & Liu, 2021). Selecting an ideal
temperature may be helpful, but it is not easy to get that
balance. Instead, considering that the fixity of temperature
prevents InfoNCE from focusing both on uniformity and
potentially semantic relationships, we design an adaptive
strategy for contrastive learning to mitigate the challenge.

4.1. Adaptive to Alignment

The uniformity-tolerance dilemma is rooted in the unsuper-
vised instance discrimination task. Intuitively, the discrim-
ination of a model will be gradually improved along with
the training process, then the high similarity region is more
likely to contain FNs. A dynamic temperature that changes
according to iterations might deal with UTD better. How-
ever, since the training iteration does not reflect the level
of semantic confidence for a CL model, such temperature
strategies are still rough and heuristic by now. The more
reasonable temperature adjustment strategy is needed to be
investigated. What motivates us is the alignment property
of the embedding space.

Alignment property is one of the most critical prior assump-
tions for instance discrimination (Wang & Isola, 2020; Wu
et al., 2018b; Ye et al., 2019). It means that the repre-
sentations from a positive pair should have high similar-
ity. Since there are no labels available, it is impossible
for SSL to explicitly construct semantic guidance. Instead,
different views of the same instance are exploited for self-
supervised learning. Alignment represents the awareness
of view-invariance of a CL model, which is the base for
exploring semantically consistent samples. Wang & Isola
(2020) formulate the alignment loss as the expected distance
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of positive pairs:

Lalign = E
xi∼X

[
∥f(xi)− g(xi)∥22

]
. (5)

Another significant thing is that estimating the magnitude
of alignment is not a computationally expensive operation.
As shown in Eqn.(1), the calculation of sample similarities
is a required step for CL loss, in which the part of positive
pairs can be directly exploited for alignment. In this paper,
we define the alignment magnitude A as the expected simi-
larity of positive pairs. Hence, no additional structures and
computations are needed. Here exists:

A = E
xi∼X

[
f(xi)

Tg(xi)
]

= 1− 1

2
E

xi∼X

[
∥f(xi)− g(xi)∥22

]
.

(6)

Thus, we have A = 1− Lalign/2 for alignment (detailed in
Appendix A.2). A = 1 implies perfect alignment.

4.2. Implementation Details

Then the proposed alignment-adaptive temperature strategy
is formulated as:

τa = τ0 + α

(
E

xi∼X

[
f(xi)

Tg(xi)
]
−A0

)
τ0

= [1 + α(A−A0)] τ0,

(7)

where α is a scaling factor and α ∈ [0, 1]. A0

is a initial threshold for alignment magnitude. On
the unit hypersphere, fT

i gi ∈ [−1, 1], then τa ∈
[(1− α− αA0)τ0, (1 + α− αA0)τ0]. In particular, iff
α = 0, the temperature degenerates to the ordinary fixed
case. τa will be detached by stop gradient operation. The
above form ensures the temperature changes in a proper
range. In fact, lots of variants can be explored, but being
alignment-adaptive is the most important point.

Eqn.(7) shows that the τa is an increasing function of A,
enabling the temperature to be adaptive to the alignment
magnitude of the CL model during training. Specifically, a
smaller temperature works when the model is lacking train-
ing by heavily penalizing those HNs. For the better-trained
stage, the improved alignment indicates the CL model is
more discriminative for samples. Naturally, larger tempera-
ture parameters can relax the penalty strength on the high
similarity region, where is more possible to exist FNs now.

The proposed strategy is a fine-grained adjusting approach.
As CL models are trained by sampling mini-batches, A can
be estimated within a batch to promptly adjust the temper-
ature. Thus, τa automatically adapts to the model of t-th
optimization iteration. Compared with the one that simply
increases by epochs, our adaptive strategy is more online.
Thus, the proposed method is a Model-Aware Contrastive
Learning (MACL) strategy.

5. Gradient Reduction Dilemma
With the above temperature strategy, the improved CL loss
helps to escape UTD. However, the Pij term also impedes
efficient contrastive learning in another aspect. The problem
is that CL models are typically trained with a large number
K of negative samples to achieve better performance, which
is computationally demanding, especially for large batch
sizes. Some recent work tries to address this problem by
modifying InfoNCE loss but they each have their own opin-
ions (Yeh et al., 2022; Zhang et al., 2022; Chen et al., 2021a),
whereas we prove they fall into a similar solution targeting
the gradient reduction dilemma, but also summarily propose
a simple reweighting method.
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Figure 2. Effect of the τ and K on the gradient scaling factor Wi.

5.1. Gradient Reduction Caused by the Sum Item

The gradient scaling factor Wi is a sum item of Pij in
Eqn.(3) and can also be described as:

Wi = 1−
exp

(
fT
i gi/τ

)
exp

(
fT
i gi/τ

)
+

∑K
j=1 exp

(
fT
i gj/τ

) . (8)

This item has small values for those easy positive pairs,
which will reduce the gradient in Eqn.(2) and has been
mentioned in (Yeh et al., 2022). Therefore, the gradient re-
duction problem will hinder the model learning, especially
for those deeper units in low-precision floating-point train-
ing with the chain rule. In addition, a smaller K leads to
a significant gradient reduction as there is an insufficient
accumulation of negative similarities. This is the intuitive
rationale that state-of-the-art CL models are often trained
with a large number of negative samples.

From another aspect, Wi is a monotonic function of τ . In
particular, the shape of the sum item tends to become flat
as temperature increases. We present an extreme example
in Fig. 2, in which the similarities of the positive pair and
negative pairs are set to 1 and -1, respectively. For these
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analyses, we have the following propositions (please check
Appendix A.3 for proof details):

Proposition 1 (Bound of gradient scaling factor w.r.t K).
Given the anchor feature f i and temperature τ , if K →
+∞, then Wi approaches its upper bound 1. The limit is
formulated as:

lim
K→+∞

Wi = 1. (9)

Proposition 2 (Bound of gradient scaling factor w.r.t τ ).
Given f i and key set G, Wi monotonically changes with re-
spect to τ . The monotonicity is determined by the similarity
distribution of samples. If τ → +∞, then Wi approaches
its bound K/(K + 1), formulated as:

lim
τ→+∞

Wi =
K

1 +K
. (10)

5.2. Discussion about Previous Studies

These explorations show that the gradient reduction
dilemma can be addressed by increasing the number of
negative keys or adopting an extra large temperature for
Wi. More specifically, sampling more negative keys helps
to promote the accumulation of the exponential similarities
and then inhibit Wi too small. This is one of the reasons
that most InfoNCE-based CL methods benefit from a large
K, whether a big batch (Chen et al., 2020a; Dwibedi et al.,
2021) or a large dictionary size (He et al., 2020; Tian et al.,
2020a). In another case, adopting a larger separate tem-
perature makes Wi approach its bound then also improves
this issue, which is the key of (Zhang et al., 2022). Addi-
tionally, DCL (Yeh et al., 2022) removes the positive term
from the denominator, then the corresponding gradient does
not include Wi anymore. FlatNCE (Chen et al., 2021a) has
exactly the same gradient expression with DCL, thus it is
also feasible. We will recall their relations and provide some
experimental evidence in Sec. 7.2.

5.3. Reweighting InfoNCE with Upper Bound

The above analysis essentially explains why some previous
work is experimentally effective. We also design an ap-
proach for the gradient reduction issue when learning with
small negative sizes, which is formulated as follows:

LM
xi

= −Vi · log
exp(fT

i gi/τa)∑K+1
j=1 exp(fT

i gj/τa)
, (11)

where Vi = sg [1/Wi] and sg [·] is the stop gradient opera-
tion to maintain the basic assumptions of InfoNCE, which
is commonly used and finished by detach in code. In this
case, the Wi item is rearranged with 1 for the small K cases
Eqn.(3), assigned to its upper bound directly. A simple
example pseudocode of Eqn.(11) is shown as Algorithm 1.

Algorithm 1 Pseudocode of MACL in a PyTorch-like style.

# pos: positive similarities, Nx1
# neg: negative similarities, NxK
# t_0: basic temperature
# a: scaling factor
# A_0: initial alignment threshold

def MACL(pos, neg, t_0, a, A_0):

# model-aware temperature
A = torch.mean(pos.detach())
t = t_0 * (1 + a * (A - A_0))

logits = torch.cat([pos, neg], dim=1)
P = torch.softmax(logits/t, dim=1)[:, 0]

# reweighting the loss
V = 1 / (1 - P)
loss = -V.detach() * torch.log(P)

return loss.mean()

6. Empirical Study
In this section, we empirically evaluate the proposed strategy
for enhancing CL performance in different cases. To demon-
strate the general improvement, experiments are mainly
implemented on the learning of images, but also include
sentences and graph representations.

6.1. Experiments on Image Representation

We mainly experiment on the ImageNet ILSVRC-2012
(i.e., ImageNet-1K) (Deng et al., 2009) and use standard
ResNet-50 (He et al., 2016) as image encoders. CIFAR-
10 (Krizhevsky et al., 2009) and the subset ImageNet-100
(Tian et al., 2020a) are also considered. We choose Sim-
CLR (Chen et al., 2020a) as the baseline but also perform
some MoCo v2 (Chen et al., 2020c) evaluations. They use
InfoNCE (or NT-Xent) as the basic schedule and are rep-
resentative of mainstream frameworks, sampling negatives
within mini-batches, from a momentum queue, respectively.
We strictly follow their settings, augmentations, and linear
evaluation protocol or reproduce under the same standard.
As such, comparisons are solely on loss function impact.
Details are laid out in Appendix B.1.

Effect of Negative Sizes First, we compare MACL against
vanilla CL loss for negative sizes. Figure 3 recapitulates the
results of SimCLR and MACL with batch sizes from 256
to 2048. From these linear evaluation scores, we can see
that encoders trained with MACL significantly outperform
the vanilla versions (NT-Xent) under all the negative sizes,
and the accuracy under 256-batch size is higher than the
512 one of the counterpart. In fact, our accuracy 66.5%
under 1024-batch size is on par with the original 8192 one
(66.5% vs 66.6%), which indicates the effectiveness for
MACL strategy to escape the dilemmas.

Affected by the gradient reduction problem discussed in Sec.
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Figure 3. Effect of batch sizes (top-1 linear evaluation accuracies
on ImageNet-1K with 200-epoch pre-training). Numbers on the
top of bars are absolute gains of MACL under same settings.

5, SimCLR has a 4.2% drop from batch size of 2048 to 256.
With MACL, the trained encoders are less sensitive to batch
size as have a smaller corresponding 2.6% drop, and have
higher improvement under smaller batch sizes. Besides,
comparisons and discussion of queue size with MACL and
InfoNCE on ImageNet-100 with MoCo v2 are reported in
Appendix B.2.1. These results suggest the rationality of
the gradient reduction dilemma analysis and reweighting
approach for alleviating it.

Robustness to Training Length We conduct longer train-
ing with MACL, and the linear classification accuracies
are shown in Table 1. There are some observations. First,
MACL benefits from longer training length, which is consis-
tent with vanilla contrastive loss. Moreover, MACL-based
results are significantly better than ordinary ones. Our 200
and 400 epochs accuracies based on SimCLR are even com-
parable to the original ones with twice epochs (400 and
800), which demonstrates the learning efficiency brought
by MACL. This also validates the advantage of MACL for
dealing with the underlying dilemmas in InfoNCE.

Table 1. Effect of training lengths (top-1 linear evaluation accu-
racies on ImageNet1K with 256-batch size pre-training).

Epoch 200 400 800

SimCLR 61.9 64.7 66.6
w/ MACL 64.3(+2.4) 66.3(+1.6) 68.1(+1.5)

Transfer to Object Detection We evaluate representa-
tions learned by MACL on downstream detection task.
We use VOC07+12 (Everingham et al., 2010) to finetune
the encoders of SimCLR and MACL, then test models on
VOC2007 test benchmark. Scores in Table 2 indicate that
MACL strategy can provide better performance in terms of
mean average precision metrics, demonstrating its effective-
ness for learning transferable representations to detection.

Table 2. Transfer to object detection on VOC07+12 using Faster
R-CNN with C4-backbone and 1× schedule. Encoders are trained
with batch size of 256.

Pre-train APall AP50 AP75

SimCLR 49.7 79.4 53.6
w/ MACL 50.1(+0.4) 79.7(+0.3) 53.7(+0.1)

6.2. Experiments on Sentence Embedding

We adopt SimCSE (Gao et al., 2021) as the baseline in this
part, which successfully facilities sentence embedding learn-
ing with contrastive learning framework using InfoNCE.
The datasets and setups of training and evaluation follow the
original literature and are detailed in Appendix B.4. Results
under RoBERTa (Liu et al., 2019) backbone are reported in
Table 3, and BERT (Kenton & Toutanova, 2019) scores are
listed in Appendix Table B.4.

Performance on STS Tasks We conduct seven seman-
tic textual similarity (STS) tasks to evaluate the capability
of sentence embedding following (Gao et al., 2021). The
results are measured by Spearman’s correlation. For both
models with RoBERT and BERT backbones, those trained
with the MACL strategy achieve better performance on 6 of
7 STS tasks. Additionally, there are also noticeable gains
w.r.t the average score. With the help of MACL, the learned
embeddings are able to boost the clustering of semantically
similar sentences.

Table 3. STS and transfer tasks comparisons of sentence embed-
dings with RoBERTa encoder.

STS task STS12 STS13 STS14 STS15 STS16 STSB SICKR

SimCSE 70.16 81.77 73.24 81.36 80.65 80.22 68.56

w/ MACL 70.76 81.43 74.29 82.92 81.86 81.17 70.70
(+0.60) (-0.34) (+1.05) (+1.56) (+1.21) (+0.95) (+2.14)

Transfer task MR CR SUBJ MPQA SST2 TREC MRPC

SimCSE 81.04 87.74 93.28 86.94 86.60 84.60 73.68

w/ MACL 82.32 88.03 93.51 87.92 87.81 85.80 75.54
(+1.28) (+0.29) (+0.23) (+0.98) (+1.21) (+1.20) (+1.86)

Performance on Transfer Tasks We further investigate
transfer tasks following (Gao et al., 2021) to verify the
superiority of transferring to downstream settings. A lo-
gistic regression classifier is trained on top of the frozen
pre-trained models. From the exhibited evaluation scores, it
can be observed that the model trained with MACL achieves
superior results on all the tasks and obtain 1.01% gain w.r.t
the average score. In the BERT context, our MACL strategy
outperforms on 5/7 tasks over the original SimCSE and also
shows superiority in the average score. More experimental
details are described in Appendix B.4. Results both on STS
and transfer tasks fully suggest that the proposed MACL
strategy provides higher quality representations, then gives
considerable improvement for sentence embedding learning.
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Table 4. Downstream classification accuracies in graph repre-
sentation learning on different datasets.

Dataset NCI1 PROTEINS MUTAG

GraphCL 77.87±0.41 74.39±0.45 86.80±1.34
w/ MACL 78.41±0.47 74.47±0.85 89.04±0.98

Dataset RDT-B DD IMDB-B

GraphCL 89.53±0.84 78.62±0.40 71.14±0.44
w/ MACL 90.59±0.36 78.80±0.66 71.42±1.05

6.3. Experiments on Graph Representation

To evaluate on graph representation learning, we choose
GraphCL (You et al., 2020) as the baseline and compare
MACL against ordinary CL loss on various benchmarks.
The pre-training and evaluation settings are the default of
GraphCL detailed in Appendix B.5.

Downstream Classification For the graph classification
task, we conduct experiments on six commonly used bench-
marks (Morris et al., 2020). They are denser or not-so-dense
and cover areas of the social network, bioinformatics data,
molecules data, etc. GNN-based encoders are the same in
(Chen et al., 2019). Methods are trained with contrastive
strategies, and the generated graph embeddings are fed into
a downstream SVM classifier then reporting the mean and
standard deviation values of five times following (You et al.,
2020). As the scores shown in Table 4, our MACL strategy
enables the framework to achieve better or comparable per-
formance on these six different-scale (number of average
nodes) datasets belonging to distinct fields.

Table 5. Transfer learning comparisons of graph representa-
tion learning on different datasets.

Dataset Tox21 BBBP ToxCast SIDER

GraphCL 73.87±0.66 69.68±0.67 62.40±0.57 60.53±0.88
w/ MACL 74.39±0.29 67.98±0.97 62.96±0.28 61.46±0.39

Dataset ClinTox MUV HIV BACE

GraphCL 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44
w/ MACL 78.13±4.29 72.77±1.25 77.56±1.12 76.07±0.90

Transfer to Chemistry Data Transfer learning compar-
isons are also considered. We experiment on molecular
property prediction in chemistry following (You et al., 2020;
Hu et al., 2020). Pre-trains and finetunes are in different
datasets (Wu et al., 2018a). Models trained with MACL
outperform original GraphCL on 6 of 8 datasets in Table 5.
Both the downstream classification task and transfer learn-
ing results illustrate that MACL can boost representations
with better generalizability and transferability, which further
verifies the general improvement for vanilla CL loss.

6.4. Ablations

We present ablations of the proposed approach in this section
to further understand its effectivity. Unless otherwise stated,
settings are the same as those in Sec. 6.1.

Table 6. Explorations of loss function. Numbers are top-1 lin-
ear evaluation accuracies on ImageNet-1K with 200-epoch pre-
training under 512-batch size. LR-s denotes the smaller learning
rate case under the ordinary schedule, and LR-l is the larger case.

case Adaptive Reweighting LR-s LR-l
Baseline ✘ ✘ 64.0 65.6

(a) ✔ ✘ 64.9(+0.9) 67.5(+1.9)
(b) ✘ ✔ 65.0(+1.0) 67.8(+2.2)
(c) ✔ ✔ 65.2(+1.2) 68.1(+2.5)

Loss Function Ablations To test the necessity of major
components, we alter the loss function present in Eqn.(11)
and validate encoders trained by variants. Linear evalua-
tion scores are listed in Table 6 (the column of LR-s case).
First, we can see that removing the adaptive temperature or
reweighting operation leads to an accuracy drop compared
to the full version. On the other hand, the model-aware
adaptive method is designed to alleviate the performance
degradation caused by the uniformity-tolerance dilemma.
Utilizing this strategy in isolation yields a performance spike
over the baseline. Since reweighting is designed to verify
and improve the gradient reduction dilemma, only using
this operation also achieves better performance. These ob-
servations support our motivation and designs. Chen et al.
(2020a) show that SimCLR with a different learning rate
schedule can improve the performance for models trained
with small batch sizes and in smaller number of epochs.
Interestingly, our MACL shows even higher improvement
using a larger learning rate, which is present in the LR-l
case in Table 6. More discussions are in Appendix B.1.1.

Table 7. Ablation comparisons on ImageNet-100 with SimCLR
framework (linear evaluation accuracies with 200-epoch pre-
training and batch size of 256).

Config NT-Xent DCL MACL
w/ adaptive w/o adaptive

Acc. 75.54 / 93.06 77.38 / 94.01 78.28 / 94.25 77.32 / 94.03

For another, we compare MACL with NT-Xent and DCL
in Table 7. When α is set to 0, the temperature reduces to
the fixed case, and only reweighting works. We can see
that the top-1 score has a 1.78 gain over NT-Xent using
reweighting in isolation and is on par with DCL, which
supports the correctness of our judgment about gradient re-
duction dilemma. Besides, when equipped with the adaptive
temperature, MACL obtains a further 0.96 improvement.

More Ablations We have already presented some abla-
tions in the former experimental sections. From Figure 3

7
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(a) NT-Xent (b) MACL

Figure 4. UMAP visualization comparison on ImageNet-100.
ResNet-50 encoders are pre-trained 200 epochs under the batch
size of 256 with NT-Xent and MACL, respectively. There are 100
colors indicating 100 semantic categories.

and Table 1, MACL exhibits significantly better robustness
with respect to negative size and training length. We further
present the UMAP visualization (McInnes et al., 2018) of
features generated by encoders trained with our MACL and
vanilla NT-Xent loss in Figure 4. Figure 4(b) exhibits bet-
ter separability in the central area under the same training
length, which indicates the learning efficiency and higher
embedding quality brought by our approach.

Table 8. Parameter analysis for MACL strategy (linear evalua-
tion accuracies of 200-epoch and 256-batch size pre-training on
ImageNet-100 with SimCLR). The underlined configs are set to
be fixed when the other are selected to be variables.

τ0 0.05 0.1 0.5 1

Acc. 76.68 / 93.46 78.14 / 94.16 69.72 / 91.71 61.72 / 87.28

α 0 0.1 0.5 1

Acc. 77.32 / 94.03 77.18 / 94.06 78.14 / 94.16 77.74 / 94.14

A0 0 0.2 0.6 0.8

Acc. 78.14 / 94.16 78.28 / 94.25 78.1 / 94.14 77.54 / 93.95

Parameter analysis To better understand MACL as well
as its parameters, we conduct experiments on and the scores
are listed in Table 8. Since τ0 is the datum point, it is essen-
tial to the performance of contrastive learning. Though the
model is less sensitive to α and A0, they play an important
role in adjusting the final temperature, yielding performance
improvement with proper settings. The discussions of role
of each parameter as well as the sensitivity analysis and
ablations of NNCLR are present in Appendix B.2.2.

7. Discussion
7.1. Relations to Recent Temperature Schemes

Besides our alignment-adaptive strategy for addressing
uniformity-tolerance dilemma, there are some interesting
CL temperature schemes explored for different motivations.
Zhang et al. (2021) aim to learn temperature as the uncer-

tainty of embeddings for the out-of-distribution task. A
dynamic multi-temperature method is proposed in (Khaert-
dinov et al., 2022) to scale instance-specific similarities in
the Human Activity Recognition. The most recent (Kukl-
eva et al., 2023) designs temperature as a cosine variation
with epoch to improve CL performance on long-tail data.
Additionally, as mentioned in Sec. 4.1, designing the tem-
perature as a function of the iteration may potentially aid in
escaping from UTD, however, such methods are incapable
of providing real-time feedback on the training status.

Table 9. Comparison of reweighting methods (linear evaluation
accuracies on CIFAR10, please check Appendix B.3 for setting
details and corresponding kNN results).

Batch size 64 128 256 512 1024

NT-Xent 82.31 83.56 84.65 85.13 85.30

FlatNCE 86.30 86.28 86.11 86.02 85.84
DCL 86.28 86.04 86.29 86.33 85.61
Dual 86.32 86.40 85.86 86.23 86.05

MACL 87.11 87.41 87.27 87.24 86.75

7.2. Relations with Previous Reweighting Methods

As aforementioned, FlatNCE, DCL, and (Zhang et al., 2022)
(Dual) essentially work against gradient reduction dilemma
by approaching the bounds of the gradient scaling factor.
Then we propose another feasible solution, reweighting the
sum item with its upper bound directly. Furthermore, our
MACL has an extra implicit alignment-adaptive reweight-
ing for gradient of each step. For an under-optimization
batch, the multiplier 1/τa is bigger for Eqn.(3) as the lower
alignment causes smaller τa, and vice versa. We test the
performance of these methods. Results in Table 9 show that
all the related methods outperform vanilla NT-Xent, espe-
cially under smaller batch sizes. FlatNCE, DCL, and Dual
perform on par. Since MACL has an adaptive temperature
which can alleviate UTD, it shows further superiority.

7.3. Contributions to α-CL

α-CL (Tian, 2022) formulates InfoNCE loss as coordinate-
wise optimization, in which each element αij of the min
player α is the pairwise importance of (i, j)-pair that is
equal to Pij . Our adaptive temperature actually provides an
iteration-dynamic feasible set for α, i.e., the landscape of
constraint for α is different according to alignment magni-
tude. The entropy of α is a regularization for its min player,
and will increase when the positive pairs are aligned better,
since this entropy is a increasing function w.r.t τ (Wang &
Liu, 2021). Furthermore, the constraint will reduce to a
sample-agnostic case if the reweighting is applied.
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7.4. Relations to Hard Negative Sampling

Hard negative sampling methods (Chuang et al., 2020)
attempt to alleviate the drawback of instance discrimina-
tion via explicitly modeling false or hard negative sam-
ples. Such approaches have achieved promising results
and are formulated by probability (Robinson et al., 2021),
mixing(Kalantidis et al., 2020), aggregation (Huynh et al.,
2022), or using SVM for the decision hyperplane of neg-
atives (Shah et al., 2022). Instead, our MACL also pays
attention to negatives but has adaptive penalty strengths on
them, which is model-aware for FNs.

8. Conclusion
In this work, we analyze InfoNCE and provide strategies to
escape the underlying dilemmas. To alleviate the uniformity-
tolerance dilemma, an alignment-adaptive temperature is
designed. Besides, we offer some insights into the impor-
tance of the negative sample size and the temperature by
analyzing gradient reduction. A new contrastive loss is ex-
ploited based on these strategies. Experiment results in three
modalities verify the superiority of our MACL strategy for
improving contrastive learning.
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Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent-a
new approach to self-supervised learning. In NeurIPS,
pp. 21271–21284, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770–778,
2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
r-cnn. In ICCV, pp. 2961–2969, 2017.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, pp. 9729–9738, 2020.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
CVPR, pp. 16000–16009, 2022.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. In ICLR, 2020.

Huang, J., Dong, Q., Gong, S., and Zhu, X. Unsupervised
deep learning by neighbourhood discovery. In ICML, pp.
2849–2858, 2019.

Huynh, T., Kornblith, S., Walter, M. R., Maire, M., and
Khademi, M. Boosting contrastive self-supervised learn-
ing with false negative cancellation. In WACV, pp. 2785–
2795, 2022.

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. Understand-
ing dimensional collapse in contrastive self-supervised
learning. ICLR, 2022.

Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel,
P., and Larlus, D. Hard negative mixing for contrastive
learning. NeurIPS, pp. 21798–21809, 2020.
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A. Proofs and Additional Analysis
A.1. Gradient of InfoNCE

Given sampled mini-batch of instances with K negative samples, the InfoNCE loss of instance xi is expressed as:

Lxi
= − log

exp
(
fT
i gi/τ

)
exp

(
fT
i gi/τ

)
+
∑K

j=1 exp
(
fT
i gj/τ

) .
For simplicity, let Ek = exp

(
fT
i gk/τ

)
, and Lxi is reformulated as:

Lxi = − log
Ei

Ei +
∑K

j=1 Ej

.

Then the gradient with respect to f i is:

∂Lxi

∂f i

=
−1

τ

∑K
r=1 Er

Ei +
∑K

r=1 Er

·

gi −
K∑
j=1

Ej∑K
k=1 Ek

· gj

 .

Let Pij denote

Pij =
Ei

Ei +
∑K

r=1 Er

,

Wi =
∑K

j=1 Pij , and P̂ij = Pij/
∑K

r=1 Pij , where
∑K

j=1 P̂ij = 1. Therefore, the above gradient can be reformulated as:

∂Lxi

∂f i

= −Wi

τ

gi −
K∑
j=1

P̂ij · gj

 . (12)

Since the MoCo type algorithms detach the features in key set via a stop gradient operation, thus we discuss the loss function
according to Eqn.(12). For SimCLR type methods, we can also derive the corresponding gradient with respect to gi:

∂Lxi

∂gi

= −Wi

τ
· f i, (13)

and the gradient with respect to gj :
∂Lxi

∂gj

=
Wi

τ
P̂ij · f i. (14)

A.2. Proof of Equation (6)

Proof of A. Since representations f i = f (xi) and gi = g (xi) lie on a unit hypersphere (ℓ2 normalized after the last layer
of encoders), i.e., f, g : Rd → Sm−1, where d and m denote the dimension of data space and hypersphere feature space.
For f(xi), g(xi) ∈ Sm−1, there exists: f(xi)

Tf(xi) = g(xi)
Tg(xi) = 1, thus

∥f(xi)− g(xi)∥22 = 2− 2f(xi)
Tg(xi),

then, the relation of alignment A and alignment loss Lalign is derived as:

A = E
xi∼X

[
f(xi)

Tg(xi)
]

= E
xi∼X

[
1− 2− 2f(xi)

Tg(xi)

2

]
= 1− 1

2
E

xi∼X

[
∥f(xi)− g(xi)∥22

]
= 1− 1

2
Lalign.
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A.3. Proof of Propositions

We now recall Proposition 1 and 2.

Proposition 1 (Bound of gradient scaling factor w.r.t. K). Given the anchor feature f i, and temperature τ , if K → +∞,
then Wi approaches its upper bound 1. The limit is formulated as:

lim
K→+∞

Wi = 1.

Proposition 2 (Bound of gradient scaling factor w.r.t. τ ). Given f i and key set G, Wi monotonically changes with respect
to τ . The monotonicity is determined by the similarity distribution of samples. If τ → +∞, then Wi approaches its bound
K/(K + 1), formulated as:

lim
τ→+∞

Wi =
K

1 +K
.

For simplicity, let Ek = exp
(
fT
i gk/τ

)
, sk = fT

i gk, Emax = max(E1, · · · , Ek, · · · , EK), k ̸= i, and Emin =

min(E1, · · · , Ek, · · · , EK), k ̸= i.

Proof of Proposition 1. Here

Wi = 1− Ei

Ei +
∑K

j=1 Ej

, (15)

and the following inequality

1− Ei

Ei +K · Emin
≤ Wi ≤ 1− Ei

Ei +K · Emax
. (16)

Since we have the limit of the left part

lim
K→+∞

(1− Ei

Ei +K · Emin
)

= lim
K→+∞

(1− Ei/K

Ei/K + Emin
)

=1,

as well as the one of the right part

lim
K→+∞

(1− Ei

Ei +K · Emax
) = 1,

thus the limit of Wi is
lim

K→+∞
Wi = 1.

Notice that Ek > 0 strictly, then for a given K, Wi < 1. Thus, Wi has its upper bound of 1 w.r.t. K.

Proof of Proposition 2. For the temperature τ , we have

lim
τ→+∞

Wi =
limτ→+∞

∑K
r=1 Er

limτ→+∞ Ei + limτ→+∞
∑K

j=1 Ej

=

∑K
r=1 limτ→+∞ Er

limτ→+∞ Ei +
∑K

j=1 limτ→+∞ Ej

.

(17)

Since the similarity value on hypersphere is bounded, i.e., sk = f i · gk ∈ [−1, 1], so

lim
τ→+∞

Ek = 1. (18)

Hence, from Eqn. (17) and (18)

lim
τ→+∞

Wi =
K

1 +K
.

13
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The gradient of Wi with respect to τ is derived as:

∂Wi

∂τ
=

1

τ2
· Ei

(Ei +
∑K

r=1 Ej)2
·

K∑
j=1

(si − sr) · Er. (19)

As Ek > 0, then we have
∂Wi

∂τ
∝

K∑
j=1

(si − sr) · Er. (20)

For a batch of very poor embeddings, ∂Wi/∂τ ≤ 0, then Wi is a monotonic decreasing function with respect to τ . In
contrast, for a batch of good embeddings, Wi monotonically increases as τ increases. So the similarity distribution of
samples determine the monotonicity.

Naturally, Proposition 2 is a direct consequence of above conclusions.

B. Implementation Details and Further Discussions
B.1. Experiments on ImageNet-1K

For MACL implementation on SimCLR framework, we follow the original augmentations (random crop, resize, random flip,
color distortions, and Gaussian blur). The projection head is a 2-layer MLP projecting the representation to a 128-dimensional
latent space. Models optimizations are completed by LARS with a base learning rate of 0.3 (0.3×BatchSize/256) and weight
decay of 1e-6. We also use the cosine decay learning rate schedule with 10 epochs warmup. Parameters {τ0, α,A0} are set
to {0.1, 0.5, 0}. For MACL implementation on MoCo V2 framework, we experiment on ImageNet-100, and the settings are
listed in Appendix B.2.1. Codes of models are implemented on mmselfsup (Contributors, 2021) with several Tesla A100
80G GPUs.

B.1.1. LOSS FUNCTION ABLATION

Chen et al. (2020a) find the square root learning rate scaling is more desirable with LARS optimizer, i.e., LearningRate =
0.075×

√
BatchSize . Actually, for smaller batch sizes, such a scaling schedule provides a larger learning rate over the

linear one, i.e., LearningRate = 0.3 × BatchSize/256. For instance, the learning rate of 256-batch size is 1.2 under the
square schedule while 0.3 under the linear schedule. Regarding ablations for MACL, we experiment with 512-batch size
using SimCLR framework and linear learning rate scaling. We also present the much larger learning rate ablation results in
Table 6, in which we set it to 2.4. There are some observations. First, similar to the baseline, variants of our MACL achieve
significantly better performance under a larger learning rate. LR-l provides an even higher gain than that on the baseline.
Besides, the ablations under LR-l also suggest the contributions made by different parts of the proposed loss function.
Furthermore, trained for 200 epochs with 512-batch size, only using adaptive temperature or reweighting, our strategy can
obtain better accuracies compared to the 512-batch size, 800-epoch or 1024-batch size, 400-epoch of the baseline.

B.2. Experiments on ImageNet-100

ImageNet-100 is a subset of ImageNet-1K, in which the images belong to 100 classes. The adopted encoders are ResNet-50
(He et al., 2016).

B.2.1. QUEUE SIZE EXPERIMENT

For MoCo v2 (Chen et al., 2020c), we follow their settings (including augmentations and architecture) on ImageNet-1K
except for the learning rate of pre-training is 0.3 and a 10 epochs warmup is added. In linear evaluation, we use the batch
size of 256 and an SGD optimizer with a learning rate of 10, and momentum of 0.9 without weight decay regularization.
Epochs for pre-training and evaluation is 200 and 100, respectively. We set {τ0, α, A0} to {0.15, 0.5, 0.2} for MACL
experiments and the temperature is 0.2 for original MoCo v2 following their ImageNet-1K setup. The queue size experiment
mentioned in Sec. 6.1 is reported in Table B.1. Instead of sampling negative samples within a mini-batch, MoCo family
exploits a queue structure to store instance representations. From these results, we can see that MoCov2 has better stability
in terms of negative size compared to SimCLR. Actually, MoCo is less likely to be troubled with easy positive pairs since
the utilized momentum encoder is updated slowly (momentum value is 0.999). And the synchronous update framework with
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weight-shared networks such as SimCLR is more likely to encode the same instance similarly, then is more sensitive to the
gradient reduction dilemma. Even so, models have better performance with MACL strategy.

Table B.1. Effect of queue sizes (top-1/top-5 linear evaluation accuracies on ImageNet-100 with 200-epoch pre-training).

Queue size 256 512 4096 65536

MoCo v2 76.80 / 94.34 76.89 / 94.24 77.02 / 94.31 76.36 / 93.92

w/ MACL 77.10 / 94.36 77.24 / 94.39 77.62 / 94.45 77.46 / 94.16
(+0.30) / (+0.02) (+0.35) / (+0.15) (+0.60) / (+0.14) (+1.10) / (+0.24)

B.2.2. PARAMETER AND ABLATION ANALYSIS

Regarding the scores listed in Table 8, their settings are the same as that on ImageNet-1K. Similar to the trend of the vanilla
NT-Xent loss in (Chen et al., 2020a), too large or small temperatures will lead to improper scaling for positive and negative
similarities in Softmax, then plagues the CL. Thus, searching a proper τ0 is necessary for the dynamic adaptation and we
refer to the value of the fixed ones of original methods for our settings, e.g., 0.1 for SimCLR (Chen et al., 2020a). α can
determine the change range of temperature, and we find that 0.5 provides a higher gain within this group of alternatives.
A0 is the initial alignment threshold related to the change direction of τa. Too large A0 will lead to extremely small
temperature in the early training period as alignment magnitude A is low. Overall, the final temperature in MACL is adaptive
to alignment magnitude and scaled by these three factors. Since τ0 is the datum point, models are more sensitive to its
setting. Choosing appropriate parameters enable CL models to deal with uniformity-tolerance dilemma better.

We further conduct comparisons with NNCLR (Dwibedi et al., 2021) on ImageNet-100 and present them in Table B.2. It
is worth noting that the InfoNCE objective construction in NNCLR is different from that in SimCLR and MoCo family.
NNCLR obtains the positive key from a support set using nearest-neighbours to increase the richness of latent representation
and go beyond single instance positives. As such, the positive pair of representations might belong to distinct instances. We
set τ0 and τ to 0.1 and use LARS optimizer following NNCLR literature, learning rate is 0.8, and cosine decay schedule
with 10 epochs warmup. We find that under different parameters our MACL can generally outperform the original version
and has the biggest 2.22 / 1.28 percent gain of top-1/top-5 accuracy. The performance demonstrates that our MACL is also
applicable for such a support set framework to facilitate contrastive learning.

Table B.2. Ablation comparisons on ImageNet-100 with NNCLR framework (top-1/top-5 linear evaluation accuracies with 100-epoch
pre-training, temperature 0.1, and 512-batch size).

α 0.5 1
NNCLR

A0 0 0.2 0.6 0 0.6
Acc. 67.12 / 89.92 67.72 / 90.02 66.76 / 89.45 65.90 / 88.99 66.56 / 89.16 65.50 / 88.74

B.3. Experiments on CIFAR10

Encoders are CIFAR version ResNet-18 (He et al., 2016), in which the kernel size of the first 7×7 convolution is replaced
with a 3×3 one, and the first max pooling module is removed. Unless otherwise stated, the temperature is 0.1 for all the
losses and α=0.5, A0=0 for MACL. We make the loss symmetric in implementation and use four types of augmentations for
pretraining: random cropping and resizing, random color jittering, random horizontal flip, and random grayscale conversion.
The LARS optimizer in SimCLR (Chen et al., 2020a) is replaced by Adam with a base learning rate of 1e-3 and weight
decay is 1e-6. For batch sizes that are larger than 256, the learning is scaled by 1e-3×Batchsize/256. We train the encoders
for 200 epochs. For linear evaluation, the trained CL models are evaluated by fine-tuning a linear classifier for 100 epochs
with 128-batch size on top of frozen backbones. We utilize an SGD optimizer by setting the learning rate to 0.02, momentum
to 0.9, and weight decay to 0.

B.4. Sentence Embedding Experiments

Pre-training is completed on the 1-million randomly sampled sentences from English Wikipedia, which is the same as
SimCSE. Following (Gao et al., 2021), learning starts from pre-trained checkpoints of the base version RoBERTa(cased)
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Table B.3. Comparison of reweighting methods (top-1 linear evaluation / kNN accuracies on CIFAR10, k = 200).

Batch size 64 128 256 512 1024

NT-Xent 82.31 / 78.80 83.56 / 79.78 84.65 / 81.46 85.13 / 81.91 85.30 / 82.27

FlatNCE 86.30 / 84.50 86.28 / 84.47 86.11 / 84.08 86.02 / 83.99 85.84 / 83.54
DCL 86.28 / 84.59 86.04 / 84.64 86.29 / 83.86 86.33 / 84.02 85.61 / 83.07
Dual 86.32 / 84.40 86.40 / 84.69 85.86 / 83.87 86.23 / 83.75 86.05 / 83.64

MACL 87.11 / 84.96 87.41 / 84.85 87.27 / 85.32 87.24 / 85.18 86.75 / 84.71

(Liu et al., 2019) and BERT(uncased) (Kenton & Toutanova, 2019). We set {τ0, α,A0} to {0.05, 2, 0.8}. Following (Gao
et al., 2021), algorithms are performed based on Huggingface’s transformers package1 and evaluated with SentEval toolkit2.
The exploited Wikipedia sentence dataset is the one released by SimCSE authors. Models are trained for 1 epoch. For
SimCSE, only dropout is exploited as augmentation, models have a good initial alignment for positive pairs (Gao et al.,
2021). The batch size is set as 64, and learning rate for BERT version is 3e-5 and 1e-5 for the RoBERTa one. We try a
stronger dropout in the experiment and found that the rate of 0.2 can generate better scores when cooperating with MACL,
but is not suitable for vanilla InfoNCE. Note that as the original literature shows that the results are not sensitive to batch
size, so we did not apply reweighting in this part.

Table B.4. STS tasks comparisons of sentence embeddings (the adopted metric is Spearman’s correlation with “all” setting).

STS task STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.

SimCSE-BERT 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

w/ MACL 67.16 82.78 74.41 82.52 79.07 77.69 73.00 76.66
(-1.24) (+0.36) (+0.03) (+1.61) (+0.51) (+0.84) (+0.77) (+0.41)

Transfer task MR CR SUBJ MPQA SST2 TREC MRPC Avg.

SimCSE-BERT 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81

w/ MACL 81.80 86.12 94.66 89.12 86.38 88.60 76.46 86.16
(+0.62) (-0.34) (+0.22) (+0.24) (+0.88) (-1.20) (+2.03) (+0.34)

Same as the authors reminded, we also notice that the results are slightly different when implemented on different machines
and CUDA versions (all package versions are the same as the author provided). But our MACL indeed can boost the
performance on different machines. We try to experiment on Nvidia RTX 3090 with CUDA11.6, RTX 1080ti with
CUDA11.4, and Tesla T4 with CUDA11.2 on Google colab3 and finally report the results on Tesla T4. In fact, if compared
against the reproduced results, our approach has an even more significant improvement. For example, the comparison on
Tesla T4 is shown in Table B.5. We can see that the average score on STS tasks has a 1.57 and 0.89 improvement when
using MACL strategy with RoBERTa and BERT, respectively.

Table B.5. Reproduction of sentence embedding performance on STS tasks.

STS task STS12 STS13 STS14 STS15 STS16 STSB SICKR Avg.

SimCSE-RoBERTa 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
SimCSE-RoBERTa (repro) 67.88 81.55 72.44 81.31 80.73 80.38 67.83 76.02

w/ MACL 70.76 81.43 74.29 82.92 81.86 81.17 70.70 77.59

SimCSE-BERT 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-BERT (repro) 68.26 81.60 72.98 81.47 77.91 76.90 71.30 75.77

w/ MACL 67.16 82.78 74.41 82.52 79.07 77.69 73.00 76.66

1https://github.com/huggingface/transformers,version 4.2.1.
2https://github.com/facebookresearch/SentEval
3https://colab.research.google.com
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B.5. Graph Representation Experiments

All of the augmentations and hyper-parameters except for those about loss function are taken from the baseline directly (You
et al., 2020). τ0 is set to 0.2 in unsupervised classification and 0.1 in transfer learning. {α,A0} are set to {0.5, 0}. The
contrastive loss utilized in GraphCL (You et al., 2020) actually is DCL (Yeh et al., 2022), in which the positive similarity is
removed from the denomination of InfoNCE. The transfer learning section is molecular property prediction in chemistry
following (You et al., 2020). The adopted GNN-based encoders are from (Hu et al., 2020). Experiments are performed ten
times and finally report the mean and standard deviation of ROC-AUC scores (%). From Table 5, we can see that MACL
has the largest 2.97 percent improvement on MUV dataset and outperforms GraphCL on 6/8 dataset.
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