
A Neural Decompiler for Java Classes

Anonymous ACL submission

Abstract
We propose a novel approach using neural ma-001
chine translation to automatically decompile002
entire Java classes. Our method relies only on003
{source code, bytecode} pairs of Java meth-004
ods and does not require any additional domain005
knowledge of the target language. To overcome006
the token length limitations of current Trans-007
former models, we partition class bytecode into008
methods, generate Java code for each method,009
and then reassemble all outputs into a final010
class. Our neural decompiler is able to gener-011
ate more human-readable output (measured by012
CodeBLEU) than existing software-based de-013
compilers while achieving slightly lower pass014
rates on fuzz tests. We will release our source015
code, dataset collection code, and pretrained016
Java class decompiler model to aid in develop-017
ment of more robust neural machine translators.018

1 Introduction019

Decompilation is the process of converting a binary020

machine language into a corresponding high-level021

language source code. This technique has numer-022

ous applications in fields such as rewriting legacy023

code, malware analysis, and software vulnerabil-024

ity repair. Unfortunately, existing software-based025

decompilers are time-consuming to develop and026

can generate source code that is hard for humans027

to understand (Hosseini and Dolan-Gavitt, 2022).028

Neural Machine Translation (NMT) methods029

have been recently proposed as an alternative030

to conventional software solutions to translate031

between programming languages (e.g., C# to032

Java) (Wang et al., 2021; Szafraniec et al., 2022).033

NMT approaches have also been applied to pro-034

gram decompilation, where the source language is035

a compiled assembly/bytecode representation gen-036

erated by a compiler and the target language is the037

original programming language.038

The majority of NMT approaches focus on039

translating a single function with no side ef-040

fects. We speculate this contraint is due in large041

part to the limited source and target lengths for 042

Transformer-based translation models. For in- 043

stance, CodeT5 (Wang et al., 2021) uses source 044

and target sequence lengths of 512 and 256, re- 045

spectively. This problem is exacerbated when the 046

source sequence is an assembly/bytecode represen- 047

tation that can require 2-8x more tokens than their 048

programming language counterpart. 049

In this paper, we focus on the task of translat- 050

ing the Java bytecode of an entire class file to the 051

original Java source code. This problem is signif- 052

icantly more challenging than translating a single 053

function for multiple reasons. First, a class can 054

contain tens of methods that, when tokenized, may 055

exceed a default 512 token limit by 10-20x. Often 056

fields/methods defined earlier in a class are used in 057

the implementation of other methods, making cor- 058

rect decompilation challenging if they are no longer 059

in the context window. Similarly, imported pack- 060

ages, generally defined at the top of the class, are 061

also used throughout the file. Second, a Java class 062

often contains mutable member variables (fields) 063

that can be used in any method. Finally, there are 064

many language-specific features that generate more 065

rarely occurring patterns of bytecode (e.g., excep- 066

tions, static/final variables, multiple constructors). 067

To address these challenges, we have developed 068

a bytecode partitioning strategy, used during both 069

training and inference, that contains all necessary 070

information for correct decompilation while fitting 071

within a relatively constrained sequence length. 072

Specifically, we construct custom header format 073

that contains type information on all methods/- 074

fields in the class as well as all imported pack- 075

age names. Next, we break the class bytecode on 076

method boundaries (including constructors) and 077

prepend the header to each method. After generat- 078

ing the corresponding Java code for each method, 079

we assemble the Java class by simple concatenating 080

each method. For large classes with many methods, 081

we perform the method-level generation in batches 082

1

to speed up the decompilation process. Surpris-083

ingly, due to the parallelized nature of Transform-084

ers, our approach achieves similar decompilation085

runtimes (using an A100 GPU) as conventional086

software-based decompilers running on CPUs. Fi-087

nally, using a fuzz-testing framework, we can test088

the quality of the decompiled code. Generally, we089

find our NMT-based approach achieves a slightly090

lower test pass rate but leads to higher quality code091

using CodeBLEU (Ren et al., 2020) compared to092

state-of-the-art software-based decompilers.093

2 Related Work094

2.1 Software-based Decompilers095

Decompilation is the process of converting bi-096

nary/assembly/bytecode generated by a compiler097

back to the original high-level language. Decompi-098

lation is often more difficult than compilation be-099

cause much of the information in source file, such100

as variable names and original control flow, has101

been removed. Many techniques/heuristics have102

been developed over time to estimate the origi-103

nal source file with absence of complete informa-104

tion (Cifuentes and Gough, 1995).105

We compare our approach against several open-106

source Java decompilers that have been in develop-107

ment over a long period of time (Benfield, 2022;108

skylot, 2022; mstrobel, 2022; Storyyeller, 2022;109

fesh0r, 2022). Harrand et al. provide a detailed110

analysis the quality of the source code generated by111

these decompilers (Harrand et al., 2019). For sim-112

ple classes, all decompilers are able to provide ac-113

curate and readable Java. However, for more com-114

plicated class methods (e.g., deeply nested code115

with complex control flow), they can generate code116

that fails to compile. More often, they will gen-117

erated semantically correct code but written in a118

non-intuitive way.119

2.2 NMT-based Decompilers120

Katz et al. framed LLVM-IR (intermediate rep-121

resentation) to C decompilation as a translation122

problem using a recurrent neural network (Katz123

et al., 2018). This work constrained the problem124

to short code snippets (max of 112 binary tokens125

and 88 source code tokens). DIRE focused on the126

sub-problem of generating good names for iden-127

tifiers for x86-64 binary to C decompilation (La-128

comis et al., 2019). Coda developed an instruction-129

aware AST (for C programs) to restrict invalid to-130

ken generation of an LSTM model (Fu et al., 2019).131

0 1000 2000 3000 4000 5000 6000 7000 8000
Sequence Length

0

200

400

Fr
eq

ue
nc

y

Sequence Length (CodeT5 Tokenizer)
Java Class
Java Bytecode

Figure 1: Token sequence length (using the CodeT5
Tokenizer) for 5000 Java classes (in red) and their corre-
sponding bytecode representation (in blue). Sequences
longer than 8000 were truncated in the figure.

BTC developed a language agnostic decompiler to 132

generate functions from assembly to many source 133

languages (C/Go/Fortran/OCaml) using a single 134

model (Hosseini and Dolan-Gavitt, 2022). 135

Compared to this prior work, we believe we 136

are the first to tackle full Java class decompilation 137

where both source and bytecode token lengths can 138

be significantly longer than a 512 token limit (up 139

to 10k tokens per class). 140

3 Constructing a Java Bytecode Dataset 141

We extract Java classes from Github repositories 142

indexed by Google BigQuery1. In order to generate 143

bytecode, we must be able to compile these files 144

with minimal configuration overhead. Therefore, 145

we discard files with 3rd party imports (anything 146

not starting with import java.*). Addition- 147

ally, we discard files containing multiple classes. 148

After these preprocessing steps, we split the java 149

classes into a training and testing set with 150k 150

classes and 20k classes, respectively. For each 151

class, we used the Java 8 compiler to generate byte- 152

code for each class. This bytecode was then dis- 153

assembled using Krakatau (Storyyeller, 2022) to 154

achieve a human-readable bytecode representation. 155

We use this disassembled bytecode representation 156

as input to our NMT model. Figure 1 shows the 157

sequence length of Java classes and disassembled 158

bytecode representations after being tokenized with 159

the CodeT5 tokenizer (Wang et al., 2021). For any 160

given Java class, the bytecode is often 3-4x longer. 161

Following the same approach as (Roziere et al., 162

2021), we generate unit tests for each Java class 163

via fuzz testing using EvoSuite (Fraser and Arcuri, 164

2011) and keep test with a mutation score larger 165

than 90%. For any decompiler (either software- 166

based or NMT-based), use these tests to validate 167

that the decompiled Java class performs logically 168

1https://console.cloud.google.com/
marketplace/details/github/github-repos

2

https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos

Method-level Generation

CodeT5Header
Method 1

Header

Header
Method 2

.class Person

.super Object

.field name String;

<init>:(String)V
 .code ...

getName:()String;
 .code ...

class Person {
 private String name;

 Person(String name){
 this.name = name;
 }

 String getName{
 return name;
 }

Bytecode Header Java Header

Bytecode Method 1

Bytecode Method 2

Java Method 1

Java Method 2

Method 1

Header

Method 2

Figure 2: (top left) Disassembled byte-
code for a Java class with one con-
structor and one method. (top right)
The target Java class used to generate
the bytecode. (bottom) Each bytecode
method is decompiled separately by
our finetuned CodeT5 model.

Java
Class File

Bytecode
(source sequences)

Unit
Test

Test
Score

compile method split

Unit Test
Generation

Disassembler

method
split Run Unit

Tests

Java
Class

Method 1Header

Header
Method 1

Header

Java code
(target sequences)

target

CodeT5
Finetunesource

CodeT5
Inference

Method 1
Method 2
Method 3

Header

Decompiler
Prediction

Gen Java
Class Fileafter

training
compile

Training Stage
Inference Stage

Java
Bytecode

Figure 3: An overview of our training and inference methodology. During
training (red arrows), pairs of Java code methods and compiled bytecode
methods used to finetune a CodeT5 model. During inference (blue
arrows), the trained CodeT5 model is used to generate a decompiler
prediction on bytecode methods. The functionality of the generated class
is evaluated using unit tests obtained from the ground-truth Java class.

the same as the original ground-truth class. We will169

discuss this evaluation process in more details in170

the next section.171

4 Java Class Neural Decompiler172

4.1 Method-level Generation173

Based on the sequences lengths shown in Figure 1,174

simply finetuning an existing code language model,175

such as CodeT5, will fail to achieve reasonable176

performance as many Java classes are significant177

longer than the sequence lengths typically used.178

Even when using much longer sequence lengths179

then CodeT5 (i.e., a maximum source sequence180

length of 2048 and a maximum target sequence of181

512), 29.1% of samples fail to fit.182

We propose a method-level generation approach183

to address this sequence length issue in Java class184

decompilation. This approach breaks down the185

problem into multiple sub-problems by decompil-186

ing a class header (imports and fields) and decom-187

piling each class method independently. Figure 2188

provides an overview of the approach. The byte-189

code header is prepended to each method so that it190

has access to necessary context such as the imports,191

type signatures for other methods in the class, and192

types of fields. Additionally, the bytecode header is193

treated as a sample by itself, in order to generate the194

corresponding header portion of the Java program195

(i.e., imports and field declarations). Once decom-196

pilation has been performed for each method, we197

simply concatenate them together, starting with the198

header, in order to generate our final decompiled 199

Java class. See Appendix C for more information 200

the structure of these headers. 201

Decompilation via method splitting has two 202

advantages compared to decompiling the entire 203

class bytecode. As mentioned earlier, the main 204

benefit is reducing both the source and target se- 205

quence lengths, as generation is now performed per 206

method. The bytecode header that is prepended to 207

each method before generation is typically around 208

50-100 tokens and provides all type information 209

for methods/fields in the class without giving any 210

additional (likely unnecessary) implementation de- 211

tails. The second benefit is that each method can be 212

generated (i.e., decompiled) in parallel via batching 213

which significantly reduces the generation time for 214

classes with many methods. 215

4.2 Training and Evaluation Methodology 216

Figure 3 presents the training and evaluation 217

methodology for our method-level Java decompiler. 218

First, {bytecode, source code} pairs of Java meth- 219

ods are collected to serve as the training set for 220

a CodeT5 model. For each bytecode method, the 221

bytecode header is prepended as shown in Figure 2. 222

After training, Java class files from a test set are 223

similarly disassembled and converted into a set of 224

source sequence before being passed to the CodeT5 225

model. The model generates a decompiled method 226

for each of the source sequences, which we then 227

concatenate to get our compiler prediction. The 228

3

ground-truth Java class is passed through Unit Test229

Generator (Evosuite) to generate tests for all meth-230

ods in the class. A test score for the decompiled231

class is then computed by running it against the232

unit tests.233

5 Training and Evaluation Results234

5.1 Training235

We use the same finetuning methodology as in236

CodeT5. We start a pre-trained CodeT5-base237

model (220M parameters) that was fine-tuned on238

C# to Java code translation task. We trained on239

150k Java classes for 3 epochs. We used source240

and target sequence lengths of 2048 and 512, re-241

spectively, to handle longer methods. Training was242

performed on 4 A100 GPUs and took 20 hours to243

complete. See Appendix A for more details.244

5.2 Evaluation Metrics245

We use unit tests, generated by Evosuite, to judge246

whether the decompiled class is functionally the247

same as the ground-truth Java class. The number248

of generated tests is determined by the complexity249

of behavior in a given method. Our decompiled250

class is finally run against these ground-truth unit251

tests to see if it matches the functionality of the252

ground-truth Java class. We consider a decompiled253

class to pass only if all of the unit tests pass.254

Additionally, we use CodeBLEU (Ren et al.,255

2020) to measure the code similarity of decom-256

piled class to that of the ground-truth Java class.257

Compared to BLEU (Papineni et al., 2002) which258

matches n-grams between two sequences, Code-259

BLEU add three additional components: weighted260

n-gram matching the emphasizes keywords and261

variable names, syntactic AST match that compares262

the syntax trees, and dataflow match that compares263

variable dataflow of the sequences.264

5.3 Results265

We compare our CodeT5 decompiler against 5266

software-based decompilers on 2k Java classes,267

which follow a sequence length distribution simi-268

lar to Figure 1. Of the software-based decompiler,269

CFR performs the best with a pass rate of 98.5%, a270

CodeBLEU score of 0.49, and an average decom-271

pile time 0.29 seconds. All but one decompiler272

(Krakatau) achieve a pass rate above 97%. By com-273

parison, our CodeT5 decompiler achieves a pass274

rate of 93.4% (matching Krakatau) with an aver-275

age decompile time of 1.27 seconds (using a single276

Table 1: Decompiler evaluation. Pass rate is % of de-
compiled classes that pass all tests. CodeBLEU (total)
equally weights ng (n-gram), wng (weighted n-gram),
sm (syntax match), and dm (dataflow match). Time is
the average decompilation time across all test samples.

Decompiler
Pass
Rate

CodeBLEU
Time

total ng wng sm dm
Procyon 98.1% 0.48 0.24 0.32 0.63 0.74 0.44s
CFR 98.5% 0.49 0.23 0.30 0.76 0.65 0.29s
JADX 97.1% 0.47 0.23 0.30 0.75 0.60 1.16s
Fernflower 97.7% 0.47 0.20 0.29 0.76 0.63 0.30s
Krakatau 93.4% 0.38 0.16 0.22 0.64 0.49 0.22s
Ours 93.4% 0.53 0.23 0.37 0.86 0.66 1.27s

A100 GPU). Note that generations were performed 277

in half precision (fp16) to reduce runtime as there 278

was no observable difference in performance com- 279

pared to full precision (full generation settings in 280

Appendix B). Common failure modes of our de- 281

compiler are discussed in Appendix E. Many of 282

these failure modes are tied to missing information 283

in the bytecode header, making it difficult for the 284

model to generate valid Java code. 285

Interestingly, our decompiler achieves the high- 286

est CodeBLEU score by a significant margin (0.53 287

compared to 0.49 for best software decompiler). 288

Looking at the component breakdown, we see that 289

our decompiler outperforms the other decoders in 290

terms of weighted n-gram match and syntax match. 291

We believe that generating more human-readable 292

results is the biggest advantage of our approach. 293

For instance, the model is able to deduce likely 294

variable names for local variables based on other 295

names in the class and the structure of the program. 296

Similarly, it is able to deduce program structure 297

that was optimized away during compilation. Con- 298

ventional decompilers require heuristics to make 299

reasonable guesses about these types of issues. 300

6 Conclusions 301

In this work, we describe a simple methodology 302

for training a encoder-decoder model (CodeT5) to 303

decompile entire Java classes. Using a common 304

header, we show that method-level generation is a 305

reasonable way to overcome the sequence length 306

limitations of current Transformer architectures, 307

leading to an approach that can support long classes 308

(e.g., 8k tokens) with many methods. Compared to 309

existing software-based decompilers, our approach 310

achieves a slightly lower pass rate, but generates 311

code with a higher CodeBLEU score. We hope our 312

method-splitting approach will lead to additional 313

work on full-program translation/decompilation. 314

4

7 Ethical Considerations315

The field of decompilation, and specifically the use316

of neural machine translation (NMT) models for317

decompilation, raises a number of ethical consider-318

ations. In this section, we will discuss some of the319

key concerns that arise in this context.320

7.1 Generation of Nefarious or Invalid Code321

One unique concern with NMT-based decompila-322

tion is that it may generate code that is invalid or323

malicious in ways that differ from conventional324

software-based decompilers. For example, a de-325

compiler might produce code that appears syntacti-326

cally correct, but that has unintended or malicious327

side effects when executed. This could be a result328

of the model failing to accurately understand the329

original code, or it could be due to the model being330

intentionally fed specific bytecode samples for the331

purpose of generating malicious code.332

To mitigate this risk, it is important to make these333

types of issues known and to carefully evaluate the334

code generated by NMT-based decompilers and to335

use appropriate testing/validation techniques.336

7.2 Software Reverse Engineering337

Another ethical concern with NMT-based decompi-338

lation is the potential for it to be used for software339

reverse engineering. Reverse engineering is the340

process of taking apart a piece of software in order341

to understand how it works, or to identify vulnera-342

bilities or other weaknesses. In some cases, reverse343

engineering may be done for legitimate purposes,344

such as to identify and fix security vulnerabilities345

or to develop compatibility or interoperability so-346

lutions. However, in other cases, it may be used347

for nefarious purposes, such as to steal intellectual348

property or to create competing software products.349

While reverse engineering is possible using350

conventional software-based decompilers, the im-351

proved syntactic structure and clearer variables352

names of NMT-based decompilers like our ap-353

proach may lower the barrier of entry for many354

programmers. This could lead to an increase in the355

number of individuals and organizations engaging356

in software reverse engineering, which could pose357

a threat to the intellectual property and competitive358

advantage of software companies.359

To address these ethical concerns, it may be nec-360

essary to put measures in place to restrict the use361

of NMT-based decompilers to only those with le-362

gitimate purposes. This could include the imple-363

mentation of licensing or access controls, as well 364

as educational campaigns to raise awareness about 365

the potential consequences of software reverse en- 366

gineering. It may also be necessary to address any 367

legal or regulatory issues surrounding the use of 368

these tools, such as clarifying the boundaries of fair 369

use and protecting the rights of software develop- 370

ers. Ultimately, the responsible use of NMT-based 371

decompilers will require a balance between the 372

benefits they offer and the potential risks they pose. 373

7.3 Security and Privacy 374

Finally, there are also potential security and pri- 375

vacy concerns related to NMT-based decompila- 376

tion. Decompiling software may reveal sensitive 377

information, such as hardcoded passwords or keys, 378

which could be exploited by malicious actors. In 379

addition, decompiling software may reveal vulner- 380

abilities or weaknesses in the code, which could be 381

exploited to gain unauthorized access or to disrupt 382

the software’s functionality. Again, while this is 383

already possible with conventional decompilers, as 384

NMT-based decompilers improve the readability of 385

code, it could become a larger risk. 386

7.4 Summary 387

In summary, the development and use of NMT- 388

based decompilers raises a number of ethical con- 389

cerns that should be carefully considered. These 390

include the potential for the generation of nefarious 391

or invalid code, the use of decompilers for software 392

reverse engineering, intellectual property concerns, 393

and issues related to security and privacy. While 394

these concerns are not unique to NMT-based de- 395

compilers, the improved capabilities of these tools 396

may make them more appealing to those with ma- 397

licious intent. Therefore, it is important for re- 398

searchers and practitioners in this field to carefully 399

consider these ethical implications and to take steps 400

to minimize potential negative consequences. This 401

may include carefully controlling access to these 402

tools, implementing safeguards to prevent the gen- 403

eration of invalid or malicious code, and working 404

with legal and policy experts to ensure that these 405

tools are used responsibly and in compliance with 406

relevant laws and regulations. 407

5

References408

L. Benfield. 2022. Cfr - yet another java decompiler.409
Last accessed 25 November 2022.410

Cristina Cifuentes and K John Gough. 1995. Decom-411
pilation of binary programs. Software: Practice and412
Experience, 25(7):811–829.413

fesh0r. 2022. Fernflower. Last accessed 25 November414
2022.415

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: au-416
tomatic test suite generation for object-oriented soft-417
ware. In Proceedings of the 19th ACM SIGSOFT418
symposium and the 13th European conference on419
Foundations of software engineering, pages 416–419.420

Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-421
dong Tian, Farinaz Koushanfar, and Jishen Zhao.422
2019. Coda: An end-to-end neural program decom-423
piler. Advances in Neural Information Processing424
Systems, 32.425

Nicolas Harrand, César Soto-Valero, Martin Monperrus,426
and Benoit Baudry. 2019. The strengths and behav-427
ioral quirks of java bytecode decompilers. In 2019428
19th International Working Conference on Source429
Code Analysis and Manipulation (SCAM), pages 92–430
102. IEEE.431

Iman Hosseini and Brendan Dolan-Gavitt. 2022. Be-432
yond the c: Retargetable decompilation using neural433
machine translation.434

Deborah S. Katz, Jason Ruchti, and Eric Schulte. 2018.435
Using recurrent neural networks for decompilation.436
In 2018 IEEE 25th International Conference on437
Software Analysis, Evolution and Reengineering438
(SANER), pages 346–356.439

Jeremy Lacomis, Pengcheng Yin, Edward Schwartz,440
Miltiadis Allamanis, Claire Le Goues, Graham Neu-441
big, and Bogdan Vasilescu. 2019. Dire: A neural442
approach to decompiled identifier naming. In 2019443
34th IEEE/ACM International Conference on Auto-444
mated Software Engineering (ASE), pages 628–639.445
IEEE.446

mstrobel. 2022. procyon. Last accessed 25 November447
2022.448

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-449
Jing Zhu. 2002. Bleu: a method for automatic evalu-450
ation of machine translation. In Proceedings of the451
40th annual meeting of the Association for Computa-452
tional Linguistics, pages 311–318.453

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,454
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio455
Blanco, and Shuai Ma. 2020. Codebleu: a method456
for automatic evaluation of code synthesis. arXiv457
preprint arXiv:2009.10297.458

Baptiste Roziere, Jie M Zhang, Francois Charton, 459
Mark Harman, Gabriel Synnaeve, and Guillaume 460
Lample. 2021. Leveraging automated unit tests 461
for unsupervised code translation. arXiv preprint 462
arXiv:2110.06773. 463

skylot. 2022. Jadx. Last accessed 25 November 2022. 464

Storyyeller. 2022. Krakatau. Last accessed 25 Novem- 465
ber 2022. 466

Marc Szafraniec, Baptiste Roziere, Hugh Leather Fran- 467
cois Charton, Patrick Labatut, and Gabriel Synnaeve. 468
2022. Code translation with compiler representations. 469
arXiv preprint arXiv:2207.03578. 470

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH 471
Hoi. 2021. Codet5: Identifier-aware unified pre- 472
trained encoder-decoder models for code understand- 473
ing and generation. In Proceedings of the 2021 Con- 474
ference on Empirical Methods in Natural Language 475
Processing, pages 8696–8708. 476

A Training Settings 477

We used the HuggingFace Transformers summa- 478

rize script2 with the following settings. We made 479

minimal modifications to the script to account for 480

different key names for the source and target fields. 481

We used a pretrained CodeT5-base model that was 482

pretrained on C#-to-Java translation as its objective. 483

Otherwise, we simply used the default learning 484

rate, learning rate schedule, optimizer, weight de- 485

cay, etc... We did not perform any hyperparameter 486

search. 487

python run_summarization.py \ 488

--model_name_or_path 489

<cs_java_codet5_base> \ 490

--tokenizer_name codet5-base \ 491

--do_train \ 492

--do_eval \ 493

--train_file <train.json> \ 494

--validation_file <test.json> \ 495

--output_dir <output_dir> \ 496

--overwrite_output_dir \ 497

--max_source_length 2048 \ 498

--max_target_length 512 \ 499

--per_device_train_batch_size=1 \ 500

--per_device_eval_batch_size=1 \ 501

--save_total_limit 1 \ 502

--predict_with_generate 503

2https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
summarization

6

https://www.benf.org/other/cfr/
https://github.com/fesh0r/fernflower
https://doi.org/10.1109/SANER.2018.8330222
https://github.com/mstrobel/procyon
https://github.com/skylot/jadx
https://github.com/Storyyeller/Krakatau
https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization
https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization
https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization

B Generation Settings504

Similar to training, for generation we used the Hug-505

gingFace Transformers library. Specifically, we506

used the generate function with a batch size507

of 4, a max_length of 512. We did not use508

beam search, modify temperature/top-k/top-p, or509

use sampling. We performed a single generation510

per method and always used it. We did experiment511

with these settings, but found it had little impact on512

the generated output and never changed a failing513

test to a passing one.514

For classes with more than 4 methods, we chun-515

ked the methods into many batches of 4, performed516

generation for each batch, and then combined all517

output to generate a complete Java class.518

C Class Header Format519

We add method signatures and imports to the byte-520

code header so that the CodeT5 decompiler model521

has access to all important context. Figure 4 pro-522

vides an example of this header format for a class523

with one constructor and four methods. As a pre-524

processing step, we search through the entire byte-525

code file and record all defined methods and used526

third-party library functions. Then, we modify the527

header generated by Krakatau to include method528

signatures and imports.529

D Code Generation Comparison530

In this section, we show some qualitative compar-531

isons for code generated by our model compared532

to the other decompiler. These samples are picked533

to point out interesting differences between NMT-534

based decompilers and software-based ones. In535

many cases, both types of decompilers may pro-536

vide identical output.537

Figure 5 shows an example test class decom-538

piled using Procyon (left) and our CodeT5 model539

(right). Our model provides a perfect syntax match540

to the ground-truth model and also has a higher541

weighted n-gram match. Figure 6 provides another542

example for a CoinChangingMinimumCoin543

class. Our decompiler provides significantly more544

clear variable names (e.g., coins instead of array2).545

Additionally, Procyon adds the final keyword to546

most variable declarations. These do not appear in547

the original source code.548

E Decompiler Failure Modes 549

In this section, we illustrate some common fail- 550

ure modes of our CodeT5 decompiler. Figure 7 551

compares the ground-truth Java class (the target) 552

with our CodeT5 output for the IntChPair class. 553

When using % modifiers like %s, our model will 554

sometimes inject additional characters that do not 555

belong. In this case, it add a unicode character. 556

We are unsure what causes this, but suspect it may 557

be related to the tokenizer and something in the 558

bytecode represetation. 559

A second failure mode is related to the use 560

of large constant values. Figure 8 compares the 561

ground-truth to our output a Hash class. Here, 562

our model uses an (incorrect) hexadecimal value 563

instead of a decimal value. This type of failure 564

has been frequently observed by others. LLMs 565

are generally poor at reliably handling large num- 566

bers (especially doing conversions between bases 567

or arithmetic). 568

Finally, a third (quite common) failure mode 569

is shown in Figure 9. Here, our model does not 570

initialize the LinkedHashMap during declaration. 571

This will lead to an error later when the hashmap 572

is used as it has not been initialized. This type of 573

error accounts for around 30% of all failures in our 574

test dataset. Likely, we are missing some important 575

context related to fields initalized in this manner, 576

so the model has no chance to learn how to perform 577

this generation. We hope fixing this will lead to 578

a significant improvement in our decompiler pass 579

rate. 580

7

.version 52 0

.class public super CoinChangingMinimumCoin

.super java/lang/Object

.method_signature public <init> : ()V

.method_signature public minimumCoinTopDown : (I[ILjava/util/Map;)I

.method_signature public minimumCoinBottomUp : (I[I)I

.method_signature private printCoinCombination : ([I[I)V

.method_signature public static main : ([Ljava/lang/String;)V

<|import|>io/PrintStream,lang/Integer,lang/Object,lang/String,lang/Stri
ngBuilder,lang/System,util/HashMap,util/Map

.method public minimumCoinTopDown : (I[ILjava/util/Map;)I
 .code stack 4 locals 7
L0: iload_1
L1: ifne L6
L4: iconst_0
...
.end method

Bytecode Header

Bytecode Method 2

Added
Method
Signatures

Added
Imports

Figure 4: A bytecode header (top) is prepend to a bytecode method (bottom) before being passed to the CodeT5
model. If the header is passed into the model by itself, we use a <|header|> token to instruct the model to
generate the corresponding Java header.

import java.util.ArrayList;
public class test

{
 public static void main(final String[] array) {
 final int[][] array2 = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 10
}, { 11, 12, 13, 14, 15 }, { 16, 17, 18, 19, 20 }, { 21, 22, 23, 24,
25 } };
 final ArrayList list = new ArrayList();
 final int n = 2;
 final int n2 = 2;
 final int n3 = 2;
 for (int i = 0; i < 5; ++i) {
 for (int j = 0; j < 5; ++j) {
 if ((i == n - n3 && n2 + n3 >= j && j >= n2 - n3) ||
(i == n + n3 && n2 + n3 >= j && j >= n2 - n3) || (j == n2 - n3 && n
+ n3 >= i && i >= n - n3) || (j == n2 + n3 && n + n3 >= i && i >= n
- n3)) {
 list.add(array2[i][j]);
 }
 }
 }
 System.out.println(list);
 }
}

import java.util.ArrayList;
public class test {

 public static void main(String[] args) {
 int[][] matrix = {
 {1, 2, 3, 4, 5},
 {6, 7, 8, 9, 10},
 {11, 12, 13, 14, 15},
 {16, 17, 18, 19, 20},
 {21, 22, 23, 24, 25}
 };
 ArrayList<Integer> list = new ArrayList<Integer>();
 int x = 2;
 int y = 2;
 int z = 2;
 for (int i = 0; i < 5; i++) {
 for (int j = 0; j < 5; j++) {
 if (i == x - z && y + z >= j && j < y - z
 || i == x + z && y + z >= j && j < y - z
 || j == y - z && x + z >= i && i < x - z) {
 if (j == y + z && x + z >= i && i >= x - z) {
 list.add(matrix[i][j]);
 }
 }
 }
 }
 System.out.println(list);
 }
 public test() {}
}

Figure 5: (left) Procyon generation and (right) generation from our CodeT5 model.

8

import java.util.HashMap;
import java.util.Map;

public class CoinChangingMinimumCoin
{
 private void printCoinCombination(final int[] array,
final int[] array2) {
 if (array[array.length - 1] == -1) {
 System.out.print("No solution is possible");
 return;
 }
 int i = array.length - 1;
 System.out.print("Coins used to form total ");
 while (i != 0) {
 final int n = array[i];
 System.out.print(array2[n] + " ");
 i -= array2[n];
 }
 System.out.print("\n");
 }

 public static void main(final String[] array) {
 final int n = 13;
 final int[] array2 = { 7, 3, 2, 6 };
 final CoinChangingMinimumCoin
coinChangingMinimumCoin = new CoinChangingMinimumCoin();
 System.out.print(String.format("Bottom up and top
down result %s %s",
coinChangingMinimumCoin.minimumCoinBottomUp(n, array2),
coinChangingMinimumCoin.minimumCoinTopDown(n, array2, new
HashMap<Integer, Integer>())));

}
}

import java.util.HashMap;
import java.util.Map;

public class CoinChangingMinimumCoin {
 private void printCoinCombination(int[] coins, int[]
cost) {
 if (coins[coins.length - 1] == -1) {
 System.out.print("No solution is possible");
 return;
 }

 int start = coins.length - 1;
 System.out.print("Coins used to form total ");
 while (start!= 0) {
 int cur = coins[start];
 System.out.print(cost[cur] + " ");
 start = start - cost[cur];
 }
 System.out.print("\n");
 }

 public static void main(String[] args) {
 int n = 13;
 int[] coins = {7, 3, 2, 6};
 CoinChangingMinimumCoin c = new
CoinChangingMinimumCoin();
 Map<Integer, Integer> map = new HashMap<>();

 int result = c.minimumCoinTopDown(n, coins, map);
 int bottomUp = c.minimumCoinBottomUp(n, coins);

 System.out.print(String.format("Bottom up and top
down result %s %s", bottomUp, result));
 }
}

Figure 6: (left) Procyon generation and (right) generation from our CodeT5 model.

public class IntChPair {
 int a;
 char b;

 public IntChPair(int a, char b) {
 this.a = a;
 this.b = b;
 }
 public int getA() {
 return a;
 }
 public void setA(int a) {
 this.a = a;
 }
 public char getB() {
 return b;
 }
 public void setB(char b) {
 this.b = b;
 }
 @Override
 public boolean equals(Object obj) {
 if (!(obj instanceof IntChPair)) return false;
 IntChPair o = (IntChPair) obj;
 return this.a == o.getA() && this.b == o.getB();
 }
 @Override
 public int hashCode() {
 return a ^ b;
 }
 @Override
 public String toString() {
 return String.format("(%s %s)", a, b);
 }
}

public class IntChPair {
 int a;
 char b;

 public IntChPair(int a, char b) {
 this.a = a;
 this.b = b;
 }
 public int getA() {
 return a;
 }
 public void setA(int a) {
 this.a = a;
 }
 public char getB() {
 return b;
 }
 public void setB(char b) {
 this.b = b;
 }
 @Override
 public boolean equals(Object o) {
 if (!(o instanceof IntChPair)) return false;
 IntChPair p = (IntChPair) o;
 return a == p.getA() && b == p.getB();
 }
 @Override
 public int hashCode() {
 return a ^ b;
 }
 @Override
 public String toString() {
 return String.format("(%s\u00A7%s)", a, b);
 }
}

Figure 7: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model injects a Unicode
character in the string format between each "%s".

9

public class Hash {
 public static int computeHash(byte[] data) {
 final int p = 16777619;
 int hash = (int) 166136261;

 for (int i = 0; i < data.length; ++i)
hash = (hash ^ data[i]) * p;

 hash += hash << 13;
 hash ^= hash >> 7;
 hash += hash << 13;

 hash ^= hash >> 7;
 hash += hash << 3;
 hash ^= hash >> 17;
 hash += hash << 5;
 return hash;
 }
}

public class Hash {

 public static int computeHash(byte[] data) {
 final int HASH_SIZE = 166136261;
 int hash = 0x5bd1e995;
 for (int i = 0; i < data.length; i++) {
 hash = (hash ^ data[i]) * HASH_SIZE;
 }
 hash += hash << 13;
 hash ^= hash >> 7;
 hash += hash << 3;
 hash ^= hash >> 17;
 hash += hash << 5;
 return hash;
 }

 public Hash() {}
}

Figure 8: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model uses a
hexadecimal value of 0x5bd1e995 (1540483477 in decimal) instead of 166136261.

import java.util.Collection;
import java.util.LinkedHashMap;
public class ResultTable {
 long[] t;

 LinkedHashMap<Object, String[]> metric_values = new
LinkedHashMap<Object, String[]>();
 int length;

 public ResultTable(int length, final Collection<Object>
obj) {
 this.length = length;
 t = new long[length];
 for (Object o : obj) {
 metric_values.put(o, new String[length]);
 }
 }
 public Collection<Object> getObjects() {
 return metric_values.keySet();
 }

 public void setTimeAt(int pos, long time) {
 t[pos] = time;
 }

 public long getTimeAt(int pos) {
 return t[pos];
 }
 public void setValueForAt(Object o, int pos, String
value) {
 if (metric_values.get(o) == null) {
 throw new IllegalArgumentException(o + " is not
available in the table");
 }
 metric_values.get(o)[pos] = value;
 }

 public String getValueForAt(Object o, int pos) {
 return metric_values.get(o)[pos];
 }
}

import java.util.Collection;
import java.util.LinkedHashMap;
public class ResultTable {
 long[] t;
 LinkedHashMap<Object, String[]> metric_values;
 int length;

 public ResultTable(int length, Collection<Object>
objects) {
 this.length = length;
 t = new long[length];
 for (Object o : objects) {
 metric_values.put(o, new String[length]);
 }
 }

 public Collection<Object> getObjects() {
 return metric_values.keySet();
 }

 public void setTimeAt(int pos, long time) {
 t[pos] = time;
 }

 public long getTimeAt(int pos) {
 return t[pos];
 }

 public void setValueForAt(Object o, int pos, String
value) {
 if (metric_values.get(o) == null)
 throw new IllegalArgumentException(o + " is not
available in the table");
 metric_values.get(o)[pos] = value;
 }

 public String getValueForAt(Object o, int pos) {
 return metric_values.get(o)[pos];
 }
}

Figure 9: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model does not initialize
the LinkedHashMap as it is declared.

10

	Introduction
	Related Work
	Software-based Decompilers
	NMT-based Decompilers

	Constructing a Java Bytecode Dataset
	Java Class Neural Decompiler
	Method-level Generation
	Training and Evaluation Methodology

	Training and Evaluation Results
	Training
	Evaluation Metrics
	Results

	Conclusions
	Ethical Considerations
	Generation of Nefarious or Invalid Code
	Software Reverse Engineering
	Security and Privacy
	Summary

	Training Settings
	Generation Settings
	Class Header Format
	Code Generation Comparison
	Decompiler Failure Modes

