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Abstract

‘We propose a novel approach using neural ma-
chine translation to automatically decompile
entire Java classes. Our method relies only on
{source code, bytecode} pairs of Java meth-
ods and does not require any additional domain
knowledge of the target language. To overcome
the token length limitations of current Trans-
former models, we partition class bytecode into
methods, generate Java code for each method,
and then reassemble all outputs into a final
class. Our neural decompiler is able to gener-
ate more human-readable output (measured by
CodeBLEU) than existing software-based de-
compilers while achieving slightly lower pass
rates on fuzz tests. We will release our source
code, dataset collection code, and pretrained
Java class decompiler model to aid in develop-
ment of more robust neural machine translators.

1 Introduction

Decompilation is the process of converting a binary
machine language into a corresponding high-level
language source code. This technique has numer-
ous applications in fields such as rewriting legacy
code, malware analysis, and software vulnerabil-
ity repair. Unfortunately, existing software-based
decompilers are time-consuming to develop and
can generate source code that is hard for humans
to understand (Hosseini and Dolan-Gavitt, 2022).

Neural Machine Translation (NMT) methods
have been recently proposed as an alternative
to conventional software solutions to translate
between programming languages (e.g., C# to
Java) (Wang et al., 2021; Szafraniec et al., 2022).
NMT approaches have also been applied to pro-
gram decompilation, where the source language is
a compiled assembly/bytecode representation gen-
erated by a compiler and the target language is the
original programming language.

The majority of NMT approaches focus on
translating a single function with no side ef-
fects. We speculate this contraint is due in large

part to the limited source and target lengths for
Transformer-based translation models. For in-
stance, CodeT5 (Wang et al., 2021) uses source
and target sequence lengths of 512 and 256, re-
spectively. This problem is exacerbated when the
source sequence is an assembly/bytecode represen-
tation that can require 2-8x more tokens than their
programming language counterpart.

In this paper, we focus on the task of translat-
ing the Java bytecode of an entire class file to the
original Java source code. This problem is signif-
icantly more challenging than translating a single
function for multiple reasons. First, a class can
contain tens of methods that, when tokenized, may
exceed a default 512 token limit by 10-20x. Often
fields/methods defined earlier in a class are used in
the implementation of other methods, making cor-
rect decompilation challenging if they are no longer
in the context window. Similarly, imported pack-
ages, generally defined at the top of the class, are
also used throughout the file. Second, a Java class
often contains mutable member variables (fields)
that can be used in any method. Finally, there are
many language-specific features that generate more
rarely occurring patterns of bytecode (e.g., excep-
tions, static/final variables, multiple constructors).

To address these challenges, we have developed
a bytecode partitioning strategy, used during both
training and inference, that contains all necessary
information for correct decompilation while fitting
within a relatively constrained sequence length.
Specifically, we construct custom header format
that contains type information on all methods/-
fields in the class as well as all imported pack-
age names. Next, we break the class bytecode on
method boundaries (including constructors) and
prepend the header to each method. After generat-
ing the corresponding Java code for each method,
we assemble the Java class by simple concatenating
each method. For large classes with many methods,
we perform the method-level generation in batches



to speed up the decompilation process. Surpris-
ingly, due to the parallelized nature of Transform-
ers, our approach achieves similar decompilation
runtimes (using an A100 GPU) as conventional
software-based decompilers running on CPUs. Fi-
nally, using a fuzz-testing framework, we can test
the quality of the decompiled code. Generally, we
find our NMT-based approach achieves a slightly
lower test pass rate but leads to higher quality code
using CodeBLEU (Ren et al., 2020) compared to
state-of-the-art software-based decompilers.

2 Related Work

2.1 Software-based Decompilers

Decompilation is the process of converting bi-
nary/assembly/bytecode generated by a compiler
back to the original high-level language. Decompi-
lation is often more difficult than compilation be-
cause much of the information in source file, such
as variable names and original control flow, has
been removed. Many techniques/heuristics have
been developed over time to estimate the origi-
nal source file with absence of complete informa-
tion (Cifuentes and Gough, 1995).

We compare our approach against several open-
source Java decompilers that have been in develop-
ment over a long period of time (Benfield, 2022;
skylot, 2022; mstrobel, 2022; Storyyeller, 2022;
feshOr, 2022). Harrand et al. provide a detailed
analysis the quality of the source code generated by
these decompilers (Harrand et al., 2019). For sim-
ple classes, all decompilers are able to provide ac-
curate and readable Java. However, for more com-
plicated class methods (e.g., deeply nested code
with complex control flow), they can generate code
that fails to compile. More often, they will gen-
erated semantically correct code but written in a
non-intuitive way.

2.2 NMT-based Decompilers

Katz et al. framed LLVM-IR (intermediate rep-
resentation) to C decompilation as a translation
problem using a recurrent neural network (Katz
et al., 2018). This work constrained the problem
to short code snippets (max of 112 binary tokens
and 88 source code tokens). DIRE focused on the
sub-problem of generating good names for iden-
tifiers for x86-64 binary to C decompilation (La-
comis et al., 2019). Coda developed an instruction-
aware AST (for C programs) to restrict invalid to-
ken generation of an LSTM model (Fu et al., 2019).
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Figure 1: Token sequence length (using the CodeT5
Tokenizer) for 5000 Java classes (in red) and their corre-
sponding bytecode representation (in blue). Sequences
longer than 8000 were truncated in the figure.

BTC developed a language agnostic decompiler to
generate functions from assembly to many source
languages (C/Go/Fortran/OCaml) using a single
model (Hosseini and Dolan-Gavitt, 2022).

Compared to this prior work, we believe we
are the first to tackle full Java class decompilation
where both source and bytecode token lengths can
be significantly longer than a 512 token limit (up
to 10k tokens per class).

3 Constructing a Java Bytecode Dataset

We extract Java classes from Github repositories
indexed by Google BigQuery'. In order to generate
bytecode, we must be able to compile these files
with minimal configuration overhead. Therefore,
we discard files with 3rd party imports (anything
not starting with import Jjava.*). Addition-
ally, we discard files containing multiple classes.
After these preprocessing steps, we split the java
classes into a training and testing set with 150k
classes and 20k classes, respectively. For each
class, we used the Java 8 compiler to generate byte-
code for each class. This bytecode was then dis-
assembled using Krakatau (Storyyeller, 2022) to
achieve a human-readable bytecode representation.
We use this disassembled bytecode representation
as input to our NMT model. Figure 1 shows the
sequence length of Java classes and disassembled
bytecode representations after being tokenized with
the CodeT5 tokenizer (Wang et al., 2021). For any
given Java class, the bytecode is often 3-4x longer.
Following the same approach as (Roziere et al.,
2021), we generate unit tests for each Java class
via fuzz testing using EvoSuite (Fraser and Arcuri,
2011) and keep test with a mutation score larger
than 90%. For any decompiler (either software-
based or NMT-based), use these tests to validate
that the decompiled Java class performs logically
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Figure 2: (top left) Disassembled byte-
code for a Java class with one con-
structor and one method. (top right)
The target Java class used to generate
the bytecode. (bottom) Each bytecode
method is decompiled separately by
our finetuned CodeT5 model.

the same as the original ground-truth class. We will
discuss this evaluation process in more details in
the next section.

4 Java Class Neural Decompiler

4.1 Method-level Generation

Based on the sequences lengths shown in Figure 1,
simply finetuning an existing code language model,
such as CodeT5, will fail to achieve reasonable
performance as many Java classes are significant
longer than the sequence lengths typically used.
Even when using much longer sequence lengths
then CodeT5 (i.e., a maximum source sequence
length of 2048 and a maximum target sequence of
512), 29.1% of samples fail to fit.

We propose a method-level generation approach
to address this sequence length issue in Java class
decompilation. This approach breaks down the
problem into multiple sub-problems by decompil-
ing a class header (imports and fields) and decom-
piling each class method independently. Figure 2
provides an overview of the approach. The byte-
code header is prepended to each method so that it
has access to necessary context such as the imports,
type signatures for other methods in the class, and
types of fields. Additionally, the bytecode header is
treated as a sample by itself, in order to generate the
corresponding header portion of the Java program
(i.e., imports and field declarations). Once decom-
pilation has been performed for each method, we
simply concatenate them together, starting with the

Figure 3: An overview of our training and inference methodology. During
training (red arrows), pairs of Java code methods and compiled bytecode
methods used to finetune a CodeT5 model. During inference (blue
arrows), the trained CodeT5 model is used to generate a decompiler
prediction on bytecode methods. The functionality of the generated class
is evaluated using unit tests obtained from the ground-truth Java class.

header, in order to generate our final decompiled
Java class. See Appendix C for more information
the structure of these headers.

Decompilation via method splitting has two
advantages compared to decompiling the entire
class bytecode. As mentioned earlier, the main
benefit is reducing both the source and target se-
quence lengths, as generation is now performed per
method. The bytecode header that is prepended to
each method before generation is typically around
50-100 tokens and provides all type information
for methods/fields in the class without giving any
additional (likely unnecessary) implementation de-
tails. The second benefit is that each method can be
generated (i.e., decompiled) in parallel via batching
which significantly reduces the generation time for
classes with many methods.

4.2 Training and Evaluation Methodology

Figure 3 presents the training and evaluation
methodology for our method-level Java decompiler.
First, {bytecode, source code} pairs of Java meth-
ods are collected to serve as the training set for
a CodeT5 model. For each bytecode method, the
bytecode header is prepended as shown in Figure 2.
After training, Java class files from a test set are
similarly disassembled and converted into a set of
source sequence before being passed to the CodeT5
model. The model generates a decompiled method
for each of the source sequences, which we then
concatenate to get our compiler prediction. The



ground-truth Java class is passed through Unit Test
Generator (Evosuite) to generate tests for all meth-
ods in the class. A test score for the decompiled
class is then computed by running it against the
unit tests.

5 Training and Evaluation Results

5.1 Training

We use the same finetuning methodology as in
CodeT5. We start a pre-trained CodeT5-base
model (220M parameters) that was fine-tuned on
C# to Java code translation task. We trained on
150k Java classes for 3 epochs. We used source
and target sequence lengths of 2048 and 512, re-
spectively, to handle longer methods. Training was
performed on 4 A100 GPUs and took 20 hours to
complete. See Appendix A for more details.

5.2 Evaluation Metrics

We use unit tests, generated by Evosuite, to judge
whether the decompiled class is functionally the
same as the ground-truth Java class. The number
of generated tests is determined by the complexity
of behavior in a given method. Our decompiled
class is finally run against these ground-truth unit
tests to see if it matches the functionality of the
ground-truth Java class. We consider a decompiled
class to pass only if all of the unit tests pass.

Additionally, we use CodeBLEU (Ren et al.,
2020) to measure the code similarity of decom-
piled class to that of the ground-truth Java class.
Compared to BLEU (Papineni et al., 2002) which
matches n-grams between two sequences, Code-
BLEU add three additional components: weighted
n-gram matching the emphasizes keywords and
variable names, syntactic AST match that compares
the syntax trees, and dataflow match that compares
variable dataflow of the sequences.

5.3 Results

We compare our CodeT5 decompiler against 5
software-based decompilers on 2k Java classes,
which follow a sequence length distribution simi-
lar to Figure 1. Of the software-based decompiler,
CFR performs the best with a pass rate of 98.5%, a
CodeBLEU score of 0.49, and an average decom-
pile time 0.29 seconds. All but one decompiler
(Krakatau) achieve a pass rate above 97%. By com-
parison, our CodeT5 decompiler achieves a pass
rate of 93.4% (matching Krakatau) with an aver-
age decompile time of 1.27 seconds (using a single

Table 1: Decompiler evaluation. Pass rate is % of de-
compiled classes that pass all tests. CodeBLEU (total)
equally weights ng (n-gram), wng (weighted n-gram),
sm (syntax match), and dm (dataflow match). Time is
the average decompilation time across all test samples.

. Pass CodeBLEU )
Decompiler Time
Rate | total | ng | wng | sm | dm
Procyon 98.1% | 0.48 | 0.24 | 0.32 | 0.63 | 0.74 | 0.44s
CFR 98.5% | 0.49 | 0.23 | 0.30 | 0.76 | 0.65 | 0.29s
JADX 97.1% | 0.47 | 0.23 | 0.30 | 0.75 | 0.60 | 1.16s
Fernflower | 97.7% | 0.47 | 0.20 | 0.29 | 0.76 | 0.63 | 0.30s
Krakatau 93.4% | 0.38 | 0.16 | 0.22 | 0.64 | 0.49 | 0.22s
Ours 93.4% | 0.53 | 0.23 | 0.37 | 0.86 | 0.66 | 1.27s

A100 GPU). Note that generations were performed
in half precision (fp16) to reduce runtime as there
was no observable difference in performance com-
pared to full precision (full generation settings in
Appendix B). Common failure modes of our de-
compiler are discussed in Appendix E. Many of
these failure modes are tied to missing information
in the bytecode header, making it difficult for the
model to generate valid Java code.

Interestingly, our decompiler achieves the high-
est CodeBLEU score by a significant margin (0.53
compared to 0.49 for best software decompiler).
Looking at the component breakdown, we see that
our decompiler outperforms the other decoders in
terms of weighted n-gram match and syntax match.
We believe that generating more human-readable
results is the biggest advantage of our approach.
For instance, the model is able to deduce likely
variable names for local variables based on other
names in the class and the structure of the program.
Similarly, it is able to deduce program structure
that was optimized away during compilation. Con-
ventional decompilers require heuristics to make
reasonable guesses about these types of issues.

6 Conclusions

In this work, we describe a simple methodology
for training a encoder-decoder model (CodeT5) to
decompile entire Java classes. Using a common
header, we show that method-level generation is a
reasonable way to overcome the sequence length
limitations of current Transformer architectures,
leading to an approach that can support long classes
(e.g., 8k tokens) with many methods. Compared to
existing software-based decompilers, our approach
achieves a slightly lower pass rate, but generates
code with a higher CodeBLEU score. We hope our
method-splitting approach will lead to additional
work on full-program translation/decompilation.



7 Ethical Considerations

The field of decompilation, and specifically the use
of neural machine translation (NMT) models for
decompilation, raises a number of ethical consider-
ations. In this section, we will discuss some of the
key concerns that arise in this context.

7.1 Generation of Nefarious or Invalid Code

One unique concern with NMT-based decompila-
tion is that it may generate code that is invalid or
malicious in ways that differ from conventional
software-based decompilers. For example, a de-
compiler might produce code that appears syntacti-
cally correct, but that has unintended or malicious
side effects when executed. This could be a result
of the model failing to accurately understand the
original code, or it could be due to the model being
intentionally fed specific bytecode samples for the
purpose of generating malicious code.

To mitigate this risk, it is important to make these
types of issues known and to carefully evaluate the
code generated by NMT-based decompilers and to
use appropriate testing/validation techniques.

7.2 Software Reverse Engineering

Another ethical concern with NMT-based decompi-
lation is the potential for it to be used for software
reverse engineering. Reverse engineering is the
process of taking apart a piece of software in order
to understand how it works, or to identify vulnera-
bilities or other weaknesses. In some cases, reverse
engineering may be done for legitimate purposes,
such as to identify and fix security vulnerabilities
or to develop compatibility or interoperability so-
lutions. However, in other cases, it may be used
for nefarious purposes, such as to steal intellectual
property or to create competing software products.

While reverse engineering is possible using
conventional software-based decompilers, the im-
proved syntactic structure and clearer variables
names of NMT-based decompilers like our ap-
proach may lower the barrier of entry for many
programmers. This could lead to an increase in the
number of individuals and organizations engaging
in software reverse engineering, which could pose
a threat to the intellectual property and competitive
advantage of software companies.

To address these ethical concerns, it may be nec-
essary to put measures in place to restrict the use
of NMT-based decompilers to only those with le-
gitimate purposes. This could include the imple-

mentation of licensing or access controls, as well
as educational campaigns to raise awareness about
the potential consequences of software reverse en-
gineering. It may also be necessary to address any
legal or regulatory issues surrounding the use of
these tools, such as clarifying the boundaries of fair
use and protecting the rights of software develop-
ers. Ultimately, the responsible use of NMT-based
decompilers will require a balance between the
benefits they offer and the potential risks they pose.

7.3 Security and Privacy

Finally, there are also potential security and pri-
vacy concerns related to NMT-based decompila-
tion. Decompiling software may reveal sensitive
information, such as hardcoded passwords or keys,
which could be exploited by malicious actors. In
addition, decompiling software may reveal vulner-
abilities or weaknesses in the code, which could be
exploited to gain unauthorized access or to disrupt
the software’s functionality. Again, while this is
already possible with conventional decompilers, as
NMT-based decompilers improve the readability of
code, it could become a larger risk.

7.4 Summary

In summary, the development and use of NMT-
based decompilers raises a number of ethical con-
cerns that should be carefully considered. These
include the potential for the generation of nefarious
or invalid code, the use of decompilers for software
reverse engineering, intellectual property concerns,
and issues related to security and privacy. While
these concerns are not unique to NMT-based de-
compilers, the improved capabilities of these tools
may make them more appealing to those with ma-
licious intent. Therefore, it is important for re-
searchers and practitioners in this field to carefully
consider these ethical implications and to take steps
to minimize potential negative consequences. This
may include carefully controlling access to these
tools, implementing safeguards to prevent the gen-
eration of invalid or malicious code, and working
with legal and policy experts to ensure that these
tools are used responsibly and in compliance with
relevant laws and regulations.
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A Training Settings

We used the HuggingFace Transformers summa-
rize script’> with the following settings. We made
minimal modifications to the script to account for
different key names for the source and target fields.
We used a pretrained CodeT5-base model that was
pretrained on C#-to-Java translation as its objective.
Otherwise, we simply used the default learning
rate, learning rate schedule, optimizer, weight de-
cay, etc... We did not perform any hyperparameter
search.

python run_summarization.py \

——model_name_or_path
<cs_java_codet5_base> \

——tokenizer name codet5-base \
—-—do_train \
—-—do_eval \
——train_file <train.json> \
—--validation_file <test.json> \
——output_dir <output_dir> \
——overwrite_output_dir \
—--max_source_length 2048 \
—--max_target_length 512 \
—--per_device_train_batch_size=1 \
——per_device_eval_batch_size=1 \
——save_total_ limit 1 \
—-—predict_with_generate

https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
summarization
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B Generation Settings

Similar to training, for generation we used the Hug-
gingFace Transformers library. Specifically, we
used the generate function with a batch size
of 4, a max_length of 512. We did not use
beam search, modify temperature/top-k/top-p, or
use sampling. We performed a single generation
per method and always used it. We did experiment
with these settings, but found it had little impact on
the generated output and never changed a failing
test to a passing one.

For classes with more than 4 methods, we chun-
ked the methods into many batches of 4, performed
generation for each batch, and then combined all
output to generate a complete Java class.

C Class Header Format

We add method signatures and imports to the byte-
code header so that the CodeT5 decompiler model
has access to all important context. Figure 4 pro-
vides an example of this header format for a class
with one constructor and four methods. As a pre-
processing step, we search through the entire byte-
code file and record all defined methods and used
third-party library functions. Then, we modify the
header generated by Krakatau to include method
signatures and imports.

D Code Generation Comparison

In this section, we show some qualitative compar-
isons for code generated by our model compared
to the other decompiler. These samples are picked
to point out interesting differences between NMT-
based decompilers and software-based ones. In
many cases, both types of decompilers may pro-
vide identical output.

Figure 5 shows an example test class decom-
piled using Procyon (left) and our CodeT5 model
(right). Our model provides a perfect syntax match
to the ground-truth model and also has a higher
weighted n-gram match. Figure 6 provides another
example for a CoinChangingMinimumCoin
class. Our decompiler provides significantly more
clear variable names (e.g., coins instead of array?2).
Additionally, Procyon adds the final keyword to
most variable declarations. These do not appear in
the original source code.

E Decompiler Failure Modes

In this section, we illustrate some common fail-
ure modes of our CodeT5 decompiler. Figure 7
compares the ground-truth Java class (the target)
with our CodeT5 output for the IntChPair class.
When using % modifiers like %s, our model will
sometimes inject additional characters that do not
belong. In this case, it add a unicode character.
We are unsure what causes this, but suspect it may
be related to the tokenizer and something in the
bytecode represetation.

A second failure mode is related to the use
of large constant values. Figure 8 compares the
ground-truth to our output a Hash class. Here,
our model uses an (incorrect) hexadecimal value
instead of a decimal value. This type of failure
has been frequently observed by others. LLMs
are generally poor at reliably handling large num-
bers (especially doing conversions between bases
or arithmetic).

Finally, a third (quite common) failure mode
is shown in Figure 9. Here, our model does not
initialize the LinkedHashMap during declaration.
This will lead to an error later when the hashmap
is used as it has not been initialized. This type of
error accounts for around 30% of all failures in our
test dataset. Likely, we are missing some important
context related to fields initalized in this manner,
so the model has no chance to learn how to perform
this generation. We hope fixing this will lead to
a significant improvement in our decompiler pass
rate.



.version 52 0
.class public super CoinChangingMinimumCoin ByteCOde Header

.super java/lang/Object
.method_signhature public <init> : ()V

.method_signature public minimumCoinTopDown : (I[ILjava/util/Map;)I Added
.method_signature public minimumCoinBottomUp : (I[I)I Method
.method_signature private printCoinCombination : ([I[I)V Signatures

.method_signature public static main : ([Ljava/lang/String;)V

<|import|>io/PrintStream,lang/Integer,lang/Object,lang/String,lang/Stri | Added
ngBuilder,lang/System,util/HashMap,util/Map Imports

.method public minimumCoinTopDown : (I[ILjava/util/Map;)I
.code stack 4 locals 7

LO: iload_1

L1: ifne L6

L4: iconst_0

-end method Bytecode Method 2

Figure 4: A bytecode header (top) is prepend to a bytecode method (bottom) before being passed to the CodeT5
model. If the header is passed into the model by itself, we use a <|header | > token to instruct the model to
generate the corresponding Java header.

import java.util.ArrayList; import java.util.ArrayList;
public class test public class test {
{ public static void main(String[] args) {
public static void main(final String[] array) { int[1[] matrix = {
final int[][] array2 = { { 1, 2, 3, 4, 5}, {6, 7, 8, 9, 10 {1, 2, 3, 4, 5},
}, {11, 12, 13, 14, 15 }, { 16, 17, 18, 19, 20 }, { 21, 22, 23, 24, {6, 7, 8, 9, 10},
25 } }; {11, 12, 13, 14, 15},
final ArrayList list = new ArrayList(); {16, 17, 18, 19, 20},
final int n = 2; {21, 22, 23, 24, 25}
final int n2 = 2; };

final int n3 = 23
for (int i = 03 i < 55 ++i) {
for (int j = 0; j < 55 ++j) {
if ((i == n - n3 & n2 + n3 >= j & j >= n2 - n3) ||

5
ArrayList<Integer> list = new ArrayList<Integer>();
int x = 23
int y = 23
int z = 23

(i==n+n3 & n2 +n3 > j & j > n2-n3) || (j ==n2-n3 &n . S - 0: 4 < 5: 4
+n3>= 98 i>=n-n3) || (j==n2+n3& n+n3>=i8ki>n for (int i =05 1 <8 i) {
- n3)) { for (int j = 05 j < 55 j++) {
4 if (i==x-z&y+z> j&&j<y-1z
) list.add(array2[i1[j1); ] i==x+2z8y+2z> j&&j<y-z
} 1l 3==y-z8&x+z> i8i<x-2) {
3} if (J ==y +2z& x +2z> i8&1i>x-12z){
System.out.println(list); ) list.add(matrix[i]1[j]1);
}
} }

}
}
System.out.println(list);

}
public test() {}
}

Figure 5: (left) Procyon generation and (right) generation from our CodeT5 model.



import java.util.HashMap;
import java.util.Map;

public class CoinChangingMinimumCoin

{
private void printCoinCombination(final 1int[] ,
final 1int[] ) {
if ( [ .length - 1] == -1) {
System.out.print("No solution is possible");
return;
}
int i = .length - 13
System.out.print("Coins used to form total ");
while (i !'=0) {
final int n = [i1;
System.out.print( [n] + " ")

i-= [n1;
}
System.out.print("\n");

}

public static void main(final String[] array) {

final int n = 13;

final 1int[] ={7, 3, 2, 6 };

final CoinChangingMinimumCoin
coinChangingMinimumCoin = new CoinChangingMinimumCoin();

System.out.print(String.format("Bottom up and top
down result %s %s'",
coinChangingMinimumCoin.minimumCoinBottomUp(n, array2),
coinChangingMinimumCoin.minimumCoinTopDown(n, array2, new
HashMap<Integer, Integer>())));

}

import java.util.HashMap;
import java.util.Map;

public class CoinChangingMinimumCoin {

private void printCoinCombination(int[] , int[]
) {
if (coins[coins.length - 1] == -1) {
System.out.print("No solution is possible");
return;
}

int start = coins.length - 1;
System.out.print("Coins used to form total ");
while (start!= 0) {
int cur = [start];
System.out.print( [cur] + " )3
start = start - [cur];
}
System.out.print("\n");
}

public static void main(String[] args) {

int n = 133
int[] = {7, 3, 2, 6};
CoinChangingMinimumCoin ¢ = new

CoinChangingMinimumCoin();
Map<Integer, Integer> map = new HashMap<>();
int result = c.minimumCoinTopDown(n, coins, map);
int bottomUp = c.minimumCoinBottomUp(n, coins);

System.out.print(String.format("Bottom up and top
down result %s %s'", bottomUp, result));
}
}

Figure 6: (left) Procyon generation and (right) generation from our CodeT5 model.

public class IntChPair {
int aj
char b;

public IntChPair(int a, char b) {
this.a = aj

this.b = b;

}

public int getA() {
return aj;

}

public void setA(int a) {
this.a = a;

}
public char getB() {

return b;

}

public void setB(char b) {
this.b = b

}

@Override

public boolean equals(Object obj) {
if (!(obj instanceof IntChPair)) return false;
IntChPair o = (IntChPair) obj;
return this.a == o.getA() && this.b == o.getB();
}
@Override
public int hashCode() {
return a A b;
}
@Override
public String toString() {
return String.format("(%s %s)", a, b);

}

public class IntChPair {
int aj
char bj

public IntChPair(int a,
this.a = aj

char b) {

this.b = b;

}

public int getA() {
return aj;

}

public void setA(int a) {
this.a = aj

public char getB() {

return b;

}

public void setB(char b) {
this.b = bj

}

@Override

public boolean equals(Object o) {
if (!(o instanceof IntChPair)) return false;
IntChPair p = (IntChPair) o;
return a == p.getA() && b == p.getB();
}
@Override
public int hashCode() {
return a * b;
}
@Override
public String toString() {
return String.format (" (%s\u0OA7%s)", a, b);
}

Figure 7: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model injects a Unicode

character in the string format between each "%s".



public class Hash {

public static int computeHash(byte[] data) {

final int p = 16777619;
int hash = (int) 166136261;

for (int i = 0; i < data.length; ++i)
hash = (hash * data[i]) * p;

hash += hash << 13;
hash A= hash >> 7;
hash += hash << 13;
hash A= hash >> 7;
hash += hash << 33
hash 2= hash >> 17;
hash += hash << 53
return hash;

public class Hash {

public static int computeHash(byte[] data) {
final int HASH_SIZE = 166136261}
int hash = 0x5bd1e995;
for (int i = 03 i < data.length; i++) {
hash = (hash A data[i]) * HASH_SIZE;
}
hash += hash << 13;
hash A= hash >> 7;
hash += hash << 3;
hash A= hash >> 17;
hash += hash << 5;
return hash;

}

public Hash() {}

Figure 8: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model uses a
hexadecimal value of 0x5bd1e995 (1540483477 in decimal) instead of 166136261.

import java.util.Collection;

import java.util.LinkedHashMap;

public class ResultTable {
long[] t;

LinkedHashMap<Object, String[]> metric_values = new
LinkedHashMap<Object, String[]>();
int length;

public ResultTable(int length, final Collection<Object>
obj) {
this.length = length;
t = new long[length];
for (Object o : obj) {
metric_values.put(o, new String[length]);

}

}
public Collection<Object> getObjects() {
return metric_values.keySet();

}

public void setTimeAt(int pos, long time) {
t[pos] = time;
}

public long getTimeAt(int pos) {
return t[pos];
}
public void setValueForAt(Object o, int pos, String
value) {
if (metric_values.get(o) == null) {
throw new IllegalArgumentException(o + " 1is not
available 1in the table");
}
metric_values.get(o)[pos] = value;

}

public String getValueForAt(Object o, int pos) {
return metric_values.get(o)[pos];

}

import java.util.Collection;

import java.util.LinkedHashMap;

public class ResultTable {
long[] t;
LinkedHashMap<Object, String[]> metric_values;
int length;

public ResultTable(int length, Collection<Object>
objects) {
this.length = length;
t = new long[length];
for (Object o : objects) {
metric_values.put(o, new String[length]);
}
}

public Collection<Object> getObjects() {
return metric_values.keySet();

}

public void setTimeAt(int pos, long time) {
t[pos] = time;
}

public long getTimeAt(int pos) {
return t[pos];

}

public void setValueForAt(Object o, int pos, String
value) {
if (metric_values.get(o) == null)
throw new IllegalArgumentException(o + " is not
available 1in the table");
metric_values.get(o)[pos] = value;

}

public String getValueForAt(Object o, 1int pos) {
return metric_values.get(o)[pos];

}

Figure 9: (left) Ground-truth Java class and (right) generation from our CodeT5 model. Our model does not initialize

the LinkedHashMap as it is declared.
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