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ABSTRACT

Today’s text-to-image generation technologies have revolutionized the creation of
realistic and high-quality images, but they often struggle with the ambiguities in
user prompts. To address this, we introduce TDRI: Two-Phase Dialogue Refine-
ment and Co-Adaptation for Interactive Image Generation, a framework designed
to enhance iterative image generation through multi-turn dialogues. The system
operates in two phases: an initial generation phase that processes user prompts to
create base images, and an interactive refinement phase that adapts and optimizes
images based on user feedback. Our framework ensures generated outputs con-
tinuously adapt to user preferences through iterative dialogue and optimization.
Experiments validate that TDRI improves user experience and efficiency, gen-
erating high-quality images with fewer iterations, thus streamlining the creative
process in various design applications.

1 INTRODUCTION

Generative artificial intelligence has shown tremendous potential in driving economic growth by
optimizing both creative and non-creative tasks. Advanced models such as DALL-E 3 Betker et al.
(2023), Imagen [Saharia et al.|(2022)), Stable Diffusion [Esser et al. (2024), and Cogview 3 |Zheng
et al.| (2024) have made significant strides in generating unique, realistic, and high-quality images
from textual descriptions Gozalo-Brizuela & Garrido-Merchan|(2023). Despite these achievements,
there is still considerable room for improvement, especially in producing higher-resolution images
that more accurately capture the nuances of the input text and in developing more intuitive and user-
friendly interfaces Frolov et al.[(2021). A persistent challenge is the difficulty these models face in
understanding the subtle intentions behind user instructions, often resulting in a disconnect between
user expectations and the generated outputs.

Manipulating input variables is inherently complex and challenging for non-expert users who lack
formal prompt engineering training. The complexity of these variables can make it difficult to
achieve the desired outcomes. Additionally, identical prompts often lead to varied image outputs
in terms of content, layout, background, color, and perspective. This variability typically requires
multiple attempts to generate an image that meets the user’s expectations, making the process time-
consuming.

To address this, we introduce the TDRI framework, designed to enhance the user experience by
refining image outputs through iterative feedback. Unlike traditional models that rely heavily on
prompt engineering, TDRI uses multi-turn interactions to better capture user objectives. By main-
taining a continuous feedback loop, TDRI reduces the need for multiple trial-and-error attempts,
simplifying the process and improving the quality and relevance of generated images. the quality
and relevance of the resulting images. Our main contributions are:

* We investigate specialized human-machine interaction techniques tailored for interactive
image generation, guiding users through a refined process that effectively captures and
translates their intentions into visual outputs.
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Figure 1: A multi-round dialogue interaction where the user refines the parrot’s appearance using
the Dialogue-to-Prompt (D2P) module (see Section [3.2.T). The system updates the image based on
user feedback and pose constraints.

* We introduce the TDRI framework, a two-phase dialogue-based methodology for interac-
tive image generation, which combines external user interactions with internal optimization
processes to accurately render concepts into tangible images.

* We demonstrate the applicability of TDRI across various image generation tasks, high-
lighting its versatility and potential to revolutionize creative workflows by enabling rapid
visualization and iteration of diverse concepts.

2 RELATED WORK

2.1 TEXT-DRIVEN IMAGE EDITING FRAMEWORK

Recent advancements in text-to-image generation have focused on aligning models with human
preferences, using feedback to refine image generation. Studies range from Hertz et al. Hertz
et al.|(2022)’s framework, which leverages diffusion models’ cross-attention layers for high-quality,
prompt-driven image modifications, to innovative methods like ImageReward Xu et al| (2024),
which develops a reward model based on human preferences. These approaches collect rich human
feedback|Wu et al.|(2023); Liang et al.[(2023)), from detailed actionable insights to preference-driven
data, training models for better image-text alignment and adaptability Lee et al.| (2023) to diverse
preferences, marking significant progress in personalized image creation.

2.2  AMBIGUITY RESOLUTION IN TEXT-TO-IMAGE GENERATION

From visual annotations [Endo| (2023) and model evaluation benchmarks [Lee et al. (2024) to auto-
regressive models [Yu et al.| (2022) for rich visuals, along with frameworks for abstract [Liao et al.
(2023) and inclusive imagery|Zhang et al.| (2023)), the text-to-image field is advancing through strate-
gies like masked transformers |Chang et al.| (2023), layout guidance [Qu et al.| (2023) without human
input, and feedback mechanisms |Liang et al| (2023) for quality. The TIED framework and TAB
dataset Mehrabi et al.| (2023)) notably enhance prompt clarity through user interaction, improving
image alignment with user intentions, thereby boosting precision and creativity.
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2.3 HUMAN PREFERENCE-DRIVEN OPTIMIZATION FOR TEXT-TO-IMAGE GENERATION
MODELS

Zhong et al.|Zhong et al.|(2024)) significantly advance the adaptability of LLMs to human preferences
with their innovative contributions. Zhong et al.’s method stands out by leveraging advanced mathe-
matical techniques for a nuanced, preference-sensitive model adjustment, eliminating the exhaustive
need for model retraining. Xu et al. [ Xu et al.| (2024)) take a unique approach by harnessing vast
amounts of expert insights to sculpt their ImageReward system, setting a new benchmark in the cre-
ation of images that resonate more deeply with human desires. Together, these advancements mark
a pivotal shift towards more intuitive, user-centric LLMs technologies, heralding a future where Al
seamlessly aligns with the complex mosaic of individual human expectations.
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Figure 2: An overview of the two-phase framework TDRI. (a) In the Initial Generation Phase, the
system processes user prompts via a U-Net-based diffusion model, generating base images with pose
constraints. (b) In the Interactive Refinement Phase, user feedback is integrated to iteratively refine
the image through dialogue-to-prompt generation, ambiguity scoring, and adaptive optimization.

3 PROPOSED METHOD

We propose a two-phase framework for image generation in multi-turn dialogues: the Initial
Generation Phase, where the system processes the user’s initial prompt (w;) to generate an im-
age (I1) and extract pose (pose;) as a constraint, and the Interactive Refinement Phase, where
three modules—Dialogue-to-Prompt (D2P), Feedback-Reflection (F'r), and Adaptive Optimiza-
tion (Ap)—iteratively refine the image based on user feedback to ensure comprehensive prompt
representation.

3.1 INITIAL GENERATION PHASE

The Initial Generation Phase initializes the image generation by processing the user input prompt
wy. The system generates a base image I; using a prompt-conditioned generative model G(-):
I; = G(wy), where I is the initial image generated based on prompt w;. Subsequently, a pose
estimator P(+) extracts the pose pose; from Iy, represented by keypoint coordinates {(z;,y;)} <,
for K keypoints: pose, = P(I1). The extracted pose pose, acts as a structural constraint for
subsequent iterations. A Gaussian smoothing function S(+) is applied to refine pose,, expanding its
influence: pose] = S(pose, ). This refined pose pose] is used as a guiding feature in future image
generation rounds, maintaining core structural integrity while allowing flexibility in user-directed
updates.



Under review as a conference paper at ICLR 2025

3.2 INTERACTIVE REFINEMENT PHASE

3.2.1 DIALOGUE-TO-PROMPT MODULE (D2P)

The Dialogue-to-Prompt Module (D2 P) formulates the prompt P; at each timestep ¢ by integrating
the dialogue history h; and the latest user input w;. The dialogue history is defined as:

ht :{(w17r1)7(w27r2)7"'7(wt71771t71)}7 (1)

where w; and r; represent the user input and system response at step ¢, respectively. The Summarizer
Mg synthesizes h; and w; to generate P;:

P = Ms(htawt)

t—1

i=1

where \;, u; are weighting coefficients, ¢(-), ¢(-) are embedding functions mapping inputs to high-
dimensional feature spaces, and gy, denotes the summarization operation. This aggregation ensures
that P, encapsulates both historical context and current user intent, optimizing it for image genera-
tion. Subsequently, the Generation Model M utilizes P; to produce the image I, conditioned on
the initial pose pose) and accumulated context C;_1:

I, = Mo (P, | pose}, Ci1), ©)

where C;_, aggregates contextual information from prior iterations.

3.2.2 FEEDBACK-REFLECTION MODULE (F'g)

The Feedback-Reflection Module (Fr) evaluates the generated image I; by extracting a set of de-
scriptive features or captions, Cy = {C},C? ... CN}, where each C! represents a distinct char-
acteristic of the image. In our implementation, the extraction function fg is handled by a vision-
language model (VLM), specifically Qwen-VL (Bai et al,[2023)). We incorporate specific prompt
templates to guide the VLM in assessing the completeness of the generated image:

C,=fe(l)={C/|i=1,2,...,N}, (4)
where fr maps the image I; to a structured description C}.

To evaluate the consistency between P; and C}, a similarity measure o(P;, C}) is used to compute
the discrepancy between the prompt and generated image. This results in an ambiguity score r;:
ry =1 — o(P,Ct), where r; € [0, 1] indicates the level of mismatch. The function o (P, C;) is
defined as:

Sl vin(P ) )

N )
Dim Vi

where (P}, C}) represents a similarity function between the i-th component of the prompt and the
corresponding feature in the generated image, and v; denotes a weight assigned to each feature’s
importance in the evaluation.

O'(Pt7ct) =

When the ambiguity score r; exceeds a threshold 7, the system seeks further user input to refine the
prompt. This process generates a clarification query g;1, which is formulated as:

Qi1 = Sfetarity(Pr, Cr, 1t), (6)

where fearify 1S a function that analyzes the prompt F;, image captions C;, and the ambiguity score
r¢ to determine the most relevant aspect of the ambiguity.

3.2.3 ADAPTIVE OPTIMIZATION MODULE (Ap)

The Adaptive Optimization Module (Ao) integrates Direct Preference Optimization (DPQO) and
Attend-and-Excite (A& F) to ensure alignment between generated images and user preferences while
maintaining prompt fidelity.
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Direct Preference Optimization (DPO) leverages user preference pairs P = {(z,,2;)}, where
T, is the preferred image and z; is the less preferred one. The goal is to maximize the likelihood of
generating x,, over x;:

)

mo(Ty | 8
Lppo(0) =Ey z)~p [bg G(H} .

We(xl | S)

Attend-and-Excite (A& F) ensures that all key elements from the input prompt P; are adequately
represented in the image ;. The misalignment loss is defined as:

L=1- Slm([t, Pt)a (8)

where the similarity score Sim(7;, P;) measures the alignment between the image and the prompt.
The gradient AP, = V p, L is computed to identify under-represented elements.

During training, ControlNet is tuned using the combined loss function:

,CAO(Q) :£Dpo(6)+AEA&E(9), ©)]

where A controls the balance between preference alignment and prompt fidelity.

4 EXPERIMENT

We evaluated the performance of the TDRI framework in two scenarios: fashion product creation
and general image generation. Each scenario presents unique requirements. We first focused on
fashion product creation due to the availability of a larger dataset, allowing us to capture fine-grained
intent and user preferences. After demonstrating the model’s success in this domain, we extended the
framework to the general image generation task, where the focus shifted towards satisfying broader
user intent.

4.1 TASK 1: FASHION PRODUCT CREATION
4.1.1 SETTING

Fashion product creation poses greater challenges than general image generation due to higher de-
mands for quality and diversity. Our Agent system requires advanced reasoning and multimodal
understanding, supported by ChatGPT-4 for reasoning tasks. For image generation, we used the
SD-XL 1.0 model, fine-tuned with the DeepFashion dataset (Liu et al.l 2016)) for clothing types and
attributes. The LoRA (Hu et al.l [2021)) method was applied for fine-tuning on four Nvidia A6000
GPUs, resulting in more consistent outputs.

To provide a personalized experience, we trained multiple models with different ethnic data, al-
lowing users to choose according to preferences. Using Direct Preference Optimization (DPO),
model parameters were updated after every 40 user feedback instances, repeated three times, with
the DDIM sampler for image generation.

4.1.2 RESULT ANALYSIS

Figure [3shows the outputs of six models optimized based on user selections and interaction history.
All models generated fashion products from the same prompt using identical seeds, resulting in sub-
tle variations. We collected feedback from six users and optimized the models with DPO, revealing
distinct latent space characteristics under the same random seed. User evaluations showed significant
performance improvements, with most testers preferring the DPO-optimized outputs (Figure [).

4.2 TASK 2: GENERAL IMAGE GENERATION

4.2.1 SETTING

In this task, the Summarizer generates prompts by aggregating the user’s input, which are then used
to create images. These images are captioned by Qwen-VL (Bai et al.| [2023), a Vision-Language
Model, across seven aspects: ‘Content’, ‘Style’, ‘Background’, ‘Size’, ‘Color’, ‘Perspective’, and
‘Others’. We compare the CLIP similarity scores between the current generated image and each
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Figure 3: This image presents a variety of fashion models and outfits, segmented by user preferences,
showcasing styles from elegant dresses to casual and professional jackets, modeled by individuals
of diverse ethnicities.
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Figure 4: Human Voting for Statement: Direct Preference Optimization can improve generation
results.

caption to identify ambiguous aspects. One of the three lowest-scoring aspects is randomly selected
for questioning, and the user can choose to respond. In human-in-the-loop image generation, a target
reference image is set, and user feedback is provided after each generation, with similarity to the
target image used to assess effectiveness.
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Figure 5: Comparison of cherry blossom tea images generated across four rounds by various models.

Table 1: Evaluations of prompt-intent alignment, image-intent alignment, and human voting across
various methodologies and integrations

Methods Prompt-Intent Alignment Image-Intent Alignment Human Voting
T2I CLIPscore T2I BLIPscore I2I CLIPscore I2I BLIPscore

GPT-3.5 augmentation 0.154 0.146 0.623 0.634 5%
GPT-4 augmentation 0.162 0.151 0.647 0.638 6.2%
LLaMA-2 augmentation 0.116 0.133 0.591 0.570 6.1%
Yi-34B augmentation 0.103 0.124 0.586 0.562 4.3%
TDRI-Reflection 0.281 0.285 0.753 0.767 25.8%
TDRI-Reflection + ImageReward RL[Xu et al.[(2024 0.297 0.284 0.786 0.776 26.5%
TDRI (Ours) 0.338 0.336 0.812 0.833 33.6%

4.2.2 DATA COLLECTION

We curated 496 high-quality image-text pairs from the ImageReward dataset 2024), focus-
ing on samples with strong alignment to prompts. By removing abstract or overly complex prompts,
as very long prompts tend to reduce accuracy and fail to clearly reflect the user’s intent, we included
people, animals, scenes, and artworks. Over 2000 user-generated prompts were used, with some
images containing content not explicitly mentioned in the prompts. Each sample underwent at least
four dialogue rounds for generation.

4.2.3 BASELINE SETUP

To demonstrate the effectiveness of our Reflective Human-Machine Co-adaptation Strategy in un-
covering users’ intentions, we established several baselines. One method to resolve ambiguity in
prompts is using Large Language Models (LLMs) to rewrite them. We employed various LLMs,
including ChatGPT-3.5, ChatGPT-4 (Achiam et al.| [2023), LLaMA-2 (Touvron et al.} [2023), and
Yi-34B 2024). Table ?? shows the alignment between generated prompts, target images,
and output images. A subjective visual evaluation (Human Voting) was used to select the image
closest to the target. All experiments were conducted on four Nvidia A6000 GPUs using the SD-1.4
model with the DDIM sampler.
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Table 2: Ablation study of multi-dialog models across different rounds and metrics
SD-14 SD-1.5 DALL-E 3 MetaGPT PTP CogView 3 Imagen 3

Multi-dialog
CLIP BLIP CLIP BLIP CLIP BLIP CLIP BLIP CLIP BLIP CLIP BLIP CLIP BLIP
Round 1 0.728 0.703 0.723 0.699 0.651 0.674 0.646 0.672 0.661 0.681 0.643 0.664 0.671 0.691
Round 2 0.759 0.738 0.746 0.725 0.675 0.690 0.671 0.691 0.682 0.700 0.667 0.679 0.696 0.712
Round 3 0.776  0.764 0.773 0.784 0.691 0.718 0.689 0.711 0.701 0.716 0.684 0.696 0.727 0.732
Round 4 0.804 0.824 0.790 0.811 0.743 0.736 0.726 0.742 0.712 0.726 0.705 0.717 0.751 0.742
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Figure 6: Human Voting for Statement: Multi-turn dialogues can approximate the user’s potential
intents.

Table 3: Attend-and-excite usage frequency and T2I similarity at different thresholds
Attend-and-Excite Threshold 0.80 0.75 0.73 0.70 0.68 0.66

Frequency of Usage 0 87% 313% 51.6% 725% 958 %
T2I Similarity Improvement 0 023% 187% 236% 267% 13%

4.2.4 RESULT ANALYSIS

Visual and Quantitative Results The visual results in Figure[5|demonstrate our reflective human-
machine co-adaptation strategy. As user feedback refines through multiple dialogue turns, the gen-
erated images progressively align with the target images, showcasing our model’s superior ability
to adapt to user instructions. Tables ?? and ?? present experiments on our collected dataset. Ta-
ble ?? compares the effectiveness of LLM augmentation for inferring user intent and evaluates the
performance of our multi-dialog approach (TDRI-Reflection) using SD-1.4 and Qwen-VL. We also
compare our TDRI method with a reinforcement learning approach using ImageReward (Xu et al.,
2024])) feedback. ‘Intent’ refers to target images, and similarity scores between prompts and images
are measured using CLIP (Radford et al.| 2021) and BLIP (Li et al., [2022). User votes indicate
which method best matched the target images, with our approach showing optimal performance.
Table ?? highlights the effectiveness of HM-Reflection in resolving ambiguity across models, with
image similarity improving over multiple dialog rounds.

User Feedback Figure [6] collects the approval ratings from five testers. In these dialogues, we
explore whether the users agree that the multi-round dialogue format can approximate the underlying
generative target. In most cases, HM-Reflection produces results closely aligned with user intent.

Attend-and-Excite Performance We also conducted independent experiments on Algorithm ??
(Attend-and-Excite) using the dataset from Task 2, with details of the algorithm provided in Ap-
pendix ??. As shown in Table |3} the usage frequency of Attend-and-Excite varies with different
thresholds k. At k = 0.72 and k£ = 0.7, the usage frequencies were 31.1% and 51.1%, respectively,
with CLIP score increases of 1.8% and 2.3%, demonstrating that these settings improve image-text
alignment.

Embedding Refinement by Round The t-SNE visualization in Figure [/| highlights how embed-
dings evolve across three interaction rounds. With each round of feedback, the embedding distri-
bution becomes increasingly compact. It indicates that the model progressively refines its under-
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Figure 7: t-SNE visualization of embeddings across three interaction rounds.
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Figure 8: Heatmap showing user perception of the model’s ability to capture intent across different
dialogue rounds. The intensity peaks around 3 rounds.

standing of user intent, as seen by the tighter clustering of similar samples and reduced overlap
between rounds. These improvements demonstrate the model’s ability to capture user preferences
more effectively through iterative optimization (refer to Tables[T]and [2).

User Perception of Intent Capture Figure [§] presents a heatmap illustrating user perception of
the model’s ability to capture intent across different dialogue rounds. The intensity peaks around the
third round, indicating that users felt the model most accurately understood their intent at this stage.
This suggests that by the third interaction, the model has significantly improved its comprehension
of user preferences, and subsequent rounds provide only marginal gains in refining user intent.

User Interaction Distribution by Round The distribution of user interactions across dialogue
rounds is shown in Figure The majority of users required around five rounds to refine their
image generation, with the highest proportion (21.1%) achieving their desired results by the fifth
round. This suggests that the TDRI framework effectively captures user preferences within a rela-
tively small number of interactions, with diminishing returns in later rounds as fewer users required
additional feedback beyond round five.

5 CONCLUSION

In this study, we explored advanced image generation techniques combined with human-machine
interaction to enhance personalization and improve visual outcomes in general image generation and
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Figure 9: Proportion of users across dialogue rounds in the TDRI framework peaks at 5 rounds
(21.1%), indicating most users refined their image generation within 5 interactions.

fashion product creation. Our TDRI framework effectively refined user intentions through dialogue-
driven interactions and feedback reflection, progressively aligning outputs with user preferences. Its
adaptability allowed it to handle diverse tasks, showing potential across various domains. Future
work will focus on integrating granular feedback mechanisms and leveraging Al advancements to
further optimize the process, extending the framework’s versatility across creative and industrial
applications.

6 LIMITATIONS

While TDRI offers significant improvements, it has certain limitations. The model may struggle
to accurately translate complex, multi-level prompts into images due to the VL model’s difficulty
in capturing fine-grained details, leading to inaccurate captions. Additionally, cross-modal transfer
errors can obscure user intent, reducing communication efficiency. The method is also computation-
ally intensive and time-consuming, posing challenges for users with less powerful hardware. Future
work should focus on enhancing efficiency and expanding the system’s ability to generalize across
diverse inputs to improve real-world usability.
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A Q&A SOFTWARE ANNOTATION INTERFACE
Image Panel: Two images are displayed side-by-side for comparison or annotation. These images
seem to depict artistic or natural scenes, suggesting the software can handle complex visual content.

HTML Code Snippet: Below the images, there’s an HTML code snippet visible. This could be used
to embed or manage the images within web pages or for similar digital contexts.

Interactive Command Area: On the right, there is an area with various controls and settings:

Current task and image details: Displayed at the top, indicating the task at hand might be related to
outdoor scenes. Navigation buttons: For loading new images and navigating through tasks. Anno-
tation tools: Options to add text, tags, or other markers to the images. Save and manage changes:
Buttons to save the current work and manage the task details.

B GUIDELINES FOR HUMAN ANNOTATION

B.1 OBIJECTIVE

Accurately describe and tag visual content in images to train our machine learning models.

B.2 STEPS

1. Load Image: Use the 'Load Image’ button to begin your task.
2. Analyze and Describe:

» Examine each image for key features.
 Enter descriptions in the text box below each image.
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# Image QA Annotation Tool

ing original prompt seed

cursed evil mountains of malevolence, upward cinematic angle, by rodne
v matthews, michael kaluta and bill sienkiewicz, ghostly darkness, thi
k lush woodland atmosphere, stunning composition, roaring monster fac
es, intricate, elegant, digital art, hyperdetailed, colorful hyperreal
ism, brilliant photorealism, horror masterpiece, 4k

QianWen AI generated description
This is an illustration of a dark mowntain range that appears to be on
fire. The mowntains have many eyes carved into their sides which give
off a fiery glow from torches placed inside each eye socket.

{ “content”: "dark mountain rage”, "image_style”: "fantasy art”, “back
grownd’: “night sky’, "size”; 'large’, 'color’: [“black”, brom’l, "pe
rspective”: 'bird s-eye view’

target: images/train/train 18/c09a7162-T4cB-d|reference: images/train/train_ 18/7501dc06-42a current:1/5 Outdoor Sce

6f9-86df-422657062437. webp 4-43a6-b77c-e54cedffdlab. webp

nes
Could you describe the main subject of the pi
cture you re envisioning?
cursed evil nountains of malevolence, upward cursed evil mountains of malevolence, upward Load Image file
cinematic angle, by rodney matthews, michael |cinematic angle, by rodney matthews, michael 9
Vhat mood or emotions would you like the pict D: /note/sci/text to image/data0421/
ure to evoke? Loop
Enter the answer 2 here Enter the prompt 2 here ——
Can you describe the setting or environment y D: /note/sciftext to image/data0421/
ou envision for the background? Is it indoors LoopDB/ qwen/final/txt_train/train_l

Enter the answer 3 here Enter the prompt 3 here Next One

W¥hat art style are you imagining for this pic

ture — realistic, abstract, cartoonish, impr

fantasy art cursed evil mountains of malevolence, upward LactOne
cinematic angle, by rodney matthews, michael

Could you describe what the main subject is d

oing in the scene?

on fire cursed evil mountains of malevolence, upward USRIl aER]

cinematic angle, by rodney matthews, michael

Do you prefer a certain perspective or angle

for the composition? For example, bird’ s-eye

bird s-eye view cursed evil mountains of malevolence, upward
cinematic angle, by rodney matthews, michael

Are there any specific elements or cbjects yo

u want included in the picture?

a dark mountain range cursed evil mountains of malevolence, upward
cinematic angle, by rodney matthews, michael

Figure 10: Screenshot of the Q&A software annotation interface

3. Tagging:
* Apply relevant tags from the provided list to specific elements within the image.

4. Save Work: Click ’Save Task’ to submit your annotations. Use 'Load Last’ to review past
work.

B.3 USAGE GUIDELINES
* Accuracy: Only describe visible elements.
* Consistency: Use the same terms consistently for the same objects or features.

* Clarity: Keep descriptions clear and to the point.

For help, access the "Help’ section or contact the project manager at [contact information].

Note: Submissions will be checked for quality; maintain high standards to ensure data integrity.

C ATTEND-AND-EXCITE

The Attend-and-Excite (A&E) algorithm is designed to iteratively refine an image generation pro-
cess based on a given prompt. The process works by calculating the similarity between the current
image I; and the user prompt P; using a CLIP-based similarity score. If the similarity exceeds a
predefined threshold k, the process terminates. Otherwise, the algorithm calculates an objective to
guide improvements and identifies the most significant tokens responsible for discrepancies between
the image and the prompt. These tokens are appended to a list, and the image is regenerated with
updated parameters, ensuring that the generated content aligns more closely with the user’s intent
through each iteration. This method allows for precise adjustments based on user feedback.
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Algorithm 1 Attend-and-Excite

Require: Image I;, Prompt P,
1: Initialize token_list < (), Iteration Number N, Threshold &
2: forn =1to N do
3: Computing the Similarity of I; and P;: Sim < CLIP(I;, P;)
4 if Image is OK: Sim > k then
5: break
6: end if
7: Computing the Objective: [ < 1 — Sim
8: Computing P; gradient by I: AP,
9: Locate peak value of AP, to get token_id
10: Append token _id to token_list
11: Regenerate I; by A&E(P;, token_list)
12: end for
13: return Image I;

Table 4: Comparison of image editing and from scratch generation

Method Consistency Score User Satisfaction (%) Time Taken (minutes)
From Scratch 0.75 78% 12
Image Editing 0.88 90% 9

Table 5: Comparison of simple vs. complex prompts

Prompt Type Generation Success Rate (%) Average CLIP Score Human Voting (%)
Simple Prompts 92% 0.85 87%
Complex Prompts 65% 0.60 62%

Table 6: Generalized model vs. sample-specific D3PO

D3PO Training Method User Satisfaction (%) Time to Convergence (iterations) CLIP Score

Generalized Model 83% 5 0.77
Sample-Specific Model 90% 8 0.85

D EXPERIMENTAL ANALYSIS

D.1 IMAGE EDITING VS. FROM SCRATCH GENERATION

As shown in Table [d] Image Editing significantly outperforms the From Scratch method in terms
of consistency (0.88 vs. 0.75) and user satisfaction (90% vs. 78%). Additionally, Image Editing
requires less time (9 minutes vs. 12 minutes). This indicates that editing an existing image rather
than generating from scratch leads to a more refined and efficient process, aligning closely with user
expectations.

D.2 CoOMPLEX PROMPT EXCLUSION JUSTIFICATION

In Table 5] the generation success rate is much higher for simple prompts (92%) compared to com-
plex prompts (65%). The average CLIP score and human voting results also demonstrate that simple
prompts are more effective in generating images that align with user intent. The drop in performance
with complex prompts (CLIP score of 0.60 vs. 0.85 for simple prompts) supports the decision to
focus on excluding overly complex prompts for more consistent results.
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Table 7: Effect of interaction turns on image quality, satisfaction, and time
Turns Satisfaction (%) CLIP Score Time (min)

2 70% 0.72 6
4 85% 0.78 9
6 87% 0.80 11
8 88% 0.81 12

Table 8: Performance comparison of lightweight models
Model Size  User Satisfaction (%) CLIP Score Computation Time (minutes)

7B 90% 0.85 15
5B 85% 0.82 10
3B 78% 0.77 6

D.3 GENERALIZED VS. SAMPLE-SPECIFIC D3PO

Table [6] highlights that while the sample-specific model achieves higher user satisfaction (90%)
and a better CLIP score (0.85), it requires more iterations to converge (8 vs. 5 for the generalized
model). This suggests that sample-specific tuning can yield higher-quality results, though at the cost
of additional computation time and iterations.

D.4 ABLATION STUDY ON INTERACTION TURNS

From the results in Table [/| we observe that increasing the number of interaction turns improves
both user satisfaction and image quality. Specifically, satisfaction rises from 70% at 2 turns to 88%
at 8 turns, while the CLIP score increases from 0.72 to 0.81. However, the marginal improvement
between 6 and 8 turns is small, suggesting diminishing returns beyond 6 turns, and with a noticeable
increase in time taken (from 11 to 12 minutes).

D.5 LIGHTWEIGHT MODELS COMPARISON

Table 8| shows that the 7B model achieves the highest user satisfaction (90%) and CLIP score (0.85)
but also takes the longest computation time (15 minutes). Meanwhile, the 3B model is the fastest
(6 minutes), but at the expense of lower user satisfaction (78%) and CLIP score (0.77). This in-
dicates that while smaller models offer faster results, they compromise on image quality and user
satisfaction, and a balance between performance and speed must be considered depending on the
task.
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