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ABSTRACT

Training machines for synthesizing diverse handwritings is an intriguing task. Re-
cently, some RNN-based methods are proposed to generate stylized online Chi-
nese characters. But these methods mainly focus on learning a person’s overall
writing style and hence neglect the detailed style inconsistencies between charac-
ters from the same writer. For example, one person’s handwritings always appear
an overall uniformity (e.g., character slant and aspect ratios) but there are still
small style differences between local regions (e.g., stroke length and curvature) of
characters. Motivated by this, in this paper, we propose to disentangle the style
representations at both writer and character levels from individual handwritings.
Specifically, we propose the style-disentangled transformer (SDT), equipped with
two complementary contrastive objectives, to extract the overall writer-wise and
detailed character-wise style representations, respectively, which boosts the gener-
ation quality of online handwritings. Extensive experiments on various language
scripts verify the superiority of SDT. Particularly, we empirically find that the two
learned style representations provide information with different frequency magni-
tudes, which demonstrates the necessity of separate style extraction.

1 INTRODUCTION

As the world’s oldest writing system, Chinese characters are widely used in many Asian countries.
Compared to Latin scripts, Chinese characters comprise an extremely large vocabulary (87,887 char-
acters in GB18030-2022 charset) and have complex structures consisting of multiple strokes. Nowa-
days, the challenging and interesting Chinese character generation (Tian, 2017; Gao et al., 2019; Liu
et al., 2022) has attracted intensive attention. For plausible handwriting synthesis, a promising strat-
egy (Zhang et al., 2017) is to progressively generate online characters (i.e., the handwriting trajectory
in a sequential format). As shown in Fig. 1, online characters carry richer information (e.g., the order
of writing) and thus have wide application scenarios (e.g., writing robot (Yin et al., 2016)).

Our goal is to automatically generate online Chinese handwritings that both match a certain textual
content and imitate the calligraphic style (character slant, shape, stroke length, curvature, etc.) of
an exemplar writer. This task thus has many applications, such as font design and calligraphy edu-
cation. A popular solution (Kang et al., 2020) for this task is to extract style information from the
given stylized samples and combine it with the content reference. DeepImitator (Zhao et al., 2020)
concatenates the style vector from a CNN encoder with a character embedding, which is then fed
into the RNN to generate stylized online characters. Further, WriteLikeYou (Tang & Lian, 2021)
modifies the large-margin softmax loss (Wang et al., 2018) to encourage discriminative learning of
style features. However, these methods mainly focus on the overall writing style and neglect the
detailed style inconsistencies (local regions in Fig. 2) between characters from the same writer.

The above observations motivate us to disentangle style representations at the writer and character
levels from the stylized handwritings. However, capturing the two styles accurately is a non-trivial
problem. To handle this, we propose a style-disentangled transformer (SDT) with a dual-head style
encoder. We further adopt the contrastive learning framework (Hadsell et al., 2006) to guide the two
heads to focus on the writer-wise and character-wise style, respectively. Specifically, considering
the overall writer-wise style, we treat characters from a writer as positive instances, while characters
from other writers are considered as negatives. Hence, the encoder learns the style commonali-
ties between characters written by the same person. For the detailed character-wise style, we then
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Figure 1: Illustration of two example online
handwritten Chinese characters. Each color rep-
resents one stroke, and the increasing numbers
on each stroke indicate the writing order from
the starting to the end.
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Figure 2: Each row shows handwritings from
the same person. Although they have similar
overall styles (e.g., character slant), there are
still small style differences (e.g., stroke length,
location and curvature) between them.

propose a novel patch-wise augmentation scheme, i.e., positive patches are independently sampled
within a character while negatives are sampled from other characters. Aggregating the sampling re-
sults that represent distinct views of a character forces the encoder to focus on the detailed character
style.

Furthermore, we introduce a content encoder to learn a textual feature with the global context. The
above two style representations and the textual feature are then fed into a decoder that progressively
generates online characters. Since the output characters are in a sequence form, we use Trans-
former (Vaswani et al., 2017), a powerful sequence modeling architecture, as our backbone. More-
over, our method can be extended to generate offline handwritten Chinese characters (i.e., character
images with stroke-width, as shown in Fig. 10). Thus, we outline an offline-to-offline generation
framework to improve the generation quality of offline characters. Specifically, we first generate
online characters with large shape changes and then decorate them with stroke width, ink-blot etc.,
thus achieving authentic offline handwritings (see Fig. 10 and more details are put in Appendix A.3).

The key contributions are threefold. 1) We are the first to explore two style representations (i.e.,
writer-wise and character-wise) that exist in Chinese handwritten characters. Through our experi-
mental analysis, the former contains more low frequencies and the latter mostly concentrates on high
frequencies. (2) The proposed offline-to-offline framework narrows the gap towards plausible of-
fline Chinese handwriting synthesis. (3) Extensive experiments on handwriting datasets in Chinese,
English, Japanese, and Indic scripts demonstrate the effectiveness and superiority of our SDT.

2 RELATED WORK

Handwriting Generation. Most of the early works are designed to generate Latin characters. Two-
step methods (Wang et al., 2002; Lin & Wan, 2007) generate isolated letters, and then concatenate
them to produce a whole word. These methods rely on handcrafted rules and only generate hand-
writings with limited variations. With the rapid development of deep learning, Recurrent Neural
Networks (RNNs) and GANs are introduced to generate handwritings in a variety of styles (Graves,
2013; Fogel et al., 2020). After that, some methods (Kang et al., 2020; Kotani et al., 2020; Gan
& Wang, 2021) that extract calligraphic styles from stylized samples with controllable styles are
proposed. For instance, Kotani et al. (2020) segments the online handwritten word into the isolated
letters, and encodes the whole word and each letter into global and letter-specific style vector, re-
spectively, which are then combined with character embeddings for synthesizing stylized handwrit-
ten word images. Compared with it, our character-wise styles can explicitly pay attention to more
fine-grained local details (e.g., stroke length, location and curvature) of each character. HWT (Bhu-
nia et al., 2021) adopts a vanilla transformer encoder to extract rich style patterns from given style
samples. Moreover, these methods rely on complex content references, such as recurrent embed-
dings and letter-wise filter maps. To address this issue, SLOGAN (Luo et al., 2022) proposes to
extract textual content from easily obtainable printed images, but it’s impractical to generalize to
unseen handwriting styles due to the fixed writer ID. In contrast, our SDT obtains content and style
information both from handwriting images and synthesizes characters with arbitrary styles.
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Figure 3: Overview of the proposed method. Our SDT consists of a dual-head style encoder, a
content encoder and a transformer decoder. The writer-wise and character-wise style representations
extracted by style encoder and the learned content features are fed into the transformer decoder to
progressively generate online handwritings.

As for handwritten Chinese characters, some previous methods (Zong & Zhu, 2014; Lin et al., 2015;
Lian et al., 2016) extract components (i.e., strokes and radicals) of characters via expert knowledge
and then assemble them properly to generate the character. However, these methods rely on hundreds
of references, which is labor-intensive. After that, several attempts (Kong & Xu, 2017; Chang et al.,
2018) have been made to use GANs to directly generate Chinese handwriting images, but always
result in characteristic artifacts. Zhang et al. (2017); Tang et al. (2019) adopt RNNs to generate
online Chinese handwritings, but can only transfer to a fixed target style. Recently, Zhao et al.
(2020); Tang & Lian (2021) propose to generate online Chinese handwritings with arbitrary styles
from a few references. Unlike these methods that only extract an overall writer style, our SDT
achieves style representations at both the writer and character levels, which significantly boosts the
performance of handwriting imitation.

Contrastive Learning. Contrastive learning (Hadsell et al., 2006) aims to learn a discriminative
representation by maximizing the mutual information between the input and output samples, which
has been widely used in many fields (Tian et al., 2020; Gao et al., 2021; Ren et al., 2022). Specif-
ically, some image translation works (Park et al., 2020; Han et al., 2021) employ InfoNCE (Oord
et al., 2018) to bring together corresponding patches in the input and output, which contributes to
retaining the semantic structure during the transfer. However, as mentioned in Zhang et al. (2022),
the semantic similarity assumption does not hold for arbitrary style transfer tasks (e.g., stylized
handwriting generation), which leads to unsatisfactory style representations.

3 METHOD

Problem statement. We aim to synthesize stylized online handwritings with conditional contents
and styles. Let Xs = {xi

s}Ki=1 denote a subset of K randomly sampled Chinese handwriting images
from a given writer ws. Given a content image I and a set of style images Xs, our goal is to yield
an online handwritten Chinese character Ŷs presenting the calligraphic style of ws and maintaining
the same textual content with I . The key challenge of this task is to obtain discriminative style
representations from limited stylized samples.

3.1 OVERALL SCHEME

According to our observations (see Fig. 2) where both the overall uniformity (i.e., writer-wise style)
and inconsistent details (i.e., character-wise style) exist in individual calligraphy handwritings, we
propose two contrastive objectives, namely, InstanceNCE and PatchNCE (Dou et al., 2019). Specif-
ically, the InstanceNCE maximizes the mutual information between character instances belonging
to the same writer, while the PatchNCE associates positive patches generated by independently sam-
pling from the same character. Therefore, our style-decoupled transformer (SDT) can disentangle
the above two styles from individual handwritings, which boosts the imitation performance.
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Figure 4: The proposed patch-sampling strat-
egy for constructing the local view of a charac-
ter. Specifically, we randomly select a small
subset (e.g., 25%) of tokens from the patch
head, following a uniform distribution.
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Figure 5: At each time step, the content feature
and previous points are encoded to the query
vector, which then successively attends to the
writer-wise and character-wise style features
for predicting the current-step point.

As shown in Fig. 3, the SDT consists of a content encoder, a dual-head style encoder and a trans-
former decoder. The content encoder uses a standard Resnet18 (He et al., 2016) as the CNN back-
bone to learn the compact feature map qmap ∈ Rh×w×c from a content reference I , and feeds the
flattened feature patches into the transformer encoder to extract the textual content representation
q ∈ Rd×c, where d = h × w and c is the channel dimension. Benefiting from the strong capability
of transformer to capture long-range dependencies between feature patches, the content encoder ex-
pects an informative q with a global context. Similarly, the style encoder extracts rich calligraphic
style patterns from reference style examples Xs via a sequential combination of a CNN and a trans-
former. Then, the instance and patch heads acquire discriminative writer-wise and character-wise
style representations from the extracted style patterns, respectively. After the two encoders, a multi-
layer transformer decoder is used to synthesize Ŷs in an auto-regressive fashion, conditioned on the
two style representations and q. We detail the style encoder and transformer decoder as follows.

3.2 DUAL-HEAD STYLE ENCODER

As illustrated in Fig. 2, two distinguishing styles (i.e., writer-wise and character-wise) exist in hand-
writings written by a person. Inspired by this observation, we propose a dual-head style encoder to
obtain the two style representations. Firstly, the given X = {xi}Ki=1 are encoded by the Resnet18 to
obtain a sequence of feature maps Fm = {f i

m}Ki=1 ∈ RK×h×w×c, where we omit the style s of X
for the sake of simplicity. Next, we flatten the spatial dimension of each feature map to obtain fea-
ture sequences F = {f i}Ki=1 ∈ RK×d×c. Then, F are fed into a transformer encoder to extract the
informative feature sequences Z = {zi}Ki=1 ∈ RK×d×c. As opposed to HWT (Bhunia et al., 2021),
where F is concatenated before fed into the transformer encoder, we handle each feature sequence
f ∈ F separately to avoid mutual interference within the set F and reduce the total computational
complexity per F . Finally, the instance and patch heads, each of which comprises a standard self-
attention layer (Vaswani et al., 2017), are employed to further separate the writer-wise style repre-
sentations E = {ei}Ki=1 ∈ RK×d×c and the character-wise counterparts H = {hi}Ki=1 ∈ RK×d×c

from Z, respectively. We provide the learning objectives of the instance head and patch head below.

3.2.1 WRITER-WISE CONTRASTIVE LEARNING

To explicitly encourage the instance head to learn the writer-wise style, we aim to map the style rep-
resentations from the same writer to a similar point in the feature space. The intuition is that one per-
son’s handwritings always appear a similar style information, which can be used as an important clue
for distinguishing writers. We propose the InstanceNCE to achieve this motivation, following the
supervised contrastive framework (Khosla et al., 2020) that extends InfoNCE for multiple positives
per anchor. Briefly, in mini-batch data, we take characters written by the same person as positive
instances and those from different writers as negative instances. Formally, let j ∈ M = {1, ..., N}
be the index of an arbitrary element within a mini-batch and A (j) = M\{j} be other indices dis-
tinct from j, where N is the batch size. Given a writer-wise style feature ej belonging to writer wj

as the anchor, we denote its in-batch positives as P (j) = {p ∈ A (j) : wp = wj} and negatives as
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A (j) \P (j). We further formulate the InstanceNCE loss as follows:

Lins= − 1

N

∑
j∈M

1

|P (j)|
∑

p∈P (j)

log
exp

(
f (ej)

⊤ f(ep)/τ
)

∑
a∈A(j) exp

(
f (ej)

⊤ f (ea)/τ
) , (1)

where τ is a temperature parameter and f (·) is a multi-layer perceptron (MLP) that projects repre-
sentations to the space that applies InstanceNCE. We assume the output of f (·) is ℓ2-normalized.

3.2.2 CHARACTER-WISE CONTRASTIVE LEARNING

Compared with the overall writer-wise style, the character-wise style differences often exist in the
stroke details of distinct characters. Inspired by this finding, we aim to maximize the mutual in-
formation between diverse local views of a character, which enforces the patch head to learn the
detailed character-wise style. Instead of input images, we construct local representations of charac-
ters directly over sequential patch tokens from the patch head, as shown in Figure 4. Specifically,
since strokes are distributed at arbitrary spatial locations in character images, we propose a sampling
strategy to capture the stroke details by randomly selecting a small subset (i.e., 25%) of patches.
This strategy samples local regions of a character following a uniform distribution, avoiding poten-
tial sampling biases (i.e., certain areas are oversampled). Formally, given the character-wise style
representations {hj}Bj=1 extracted from B characters, we apply the proposed strategy to individu-
ally sample two positive local representations o ∈ Rn×c and o+ ∈ Rn×c from the same randomly
selected h and B−1 negatives {o−j }

B−1
j=1 from the remaining B−1 style features, where n=0.25d

denotes the number of sampled patch tokens. Finally, the PatchNCE loss can be formulated as:

Lpat= − log
exp

(
g (o)⊤ g(o+)/τ

)
exp

(
g (o)⊤ g(o+)/τ

)
+
∑B−1

j=1 exp
(
g (o)⊤ f

(
o−j

)
/τ

) , (2)

where g(·) is an MLP with the same structure as f(·), but does not share weights with each other.

3.3 TRANSFORMER DECODER FOR HANDWRITINGS

The goal of the proposed transformer decoder is to progressively generate the realistic online char-
acter Ŷ using a few obtained style representations, i.e., E = {ei}Ki=1, H = {hi}Ki=1, and a global
textual feature q. Generally, the ground-truth (GT) of Ŷ is composed of a sequence of points and can
be mathematically represented as Y= [y1, ..., yL], where L is the length of Y . Following Zhang et al.
(2017), each point is a vector with 5 elements yt=

(
∆ut,∆vt,m

1
t ,m

2
t ,m

3
t

)
, where (∆ut,∆vt) are

the relative offsets from the current point to the previous point and (m1
t -down, m2

t -up, m3
t -end) are

three types of pen states, which are mutually exclusive.

At decoding step t, instead of simply following previous RNN-based methods (Ha & Eck, 2018;
Tang & Lian, 2021) concatenating q with each point yj ∈ {yj}t−1

j=1, we take q as the initial point
and apply a self-attention layer over a new point sequence [q, y1, ..., yt−1] to obtain the query vector
Qt ∈ Rc with past content context, as shown in Fig. 5. Next, Qt successively attends to E and
H over subsequent decoding layers for aggregating style information, which is then mapped to the
final output Ot ∈ R6m+3 via an MLP. As suggested in Tang et al. (2019), Ot includes 6m param-
eters of Gaussian mixture model (GMM) for predicting (∆ût,∆v̂t) and 3 logits used to generate(
m̂1

t , m̂
2
t , m̂

3
t

)
. Correspondingly, the training loss comprises two parts, i.e., pen moving prediction

loss Lpre (∆u,∆v|O) and pen state classification loss Lcls

(
m1,m2,m3;O

)
, following Zhao et al.

(2020). During training, our decoder performs parallel prediction for all points, as shown in Fig. 5,
superior to previous RNN-based methods (Tang & Lian, 2021) that are executed in a step-by-step
manner. For testing, we take as input the generated points {ŷj}t−1

j=1, then combine them with q, E,
and H to predict the next point ŷt. This process repeats until a pen-end state (m̂3

t−1=1) is accepted.

3.4 LEARNING SDT WITH OVERALL LOSS

In total, our method contains four loss functions, namely, InstanceNCE, PatchNCE, pen moving
prediction and pen state classification loss, which can be formulated as:

L = Lins + Lpat + Lpre + λLcls, (3)
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Figure 6: Comparisons with the state-of-the-art methods for online Chinese handwriting generation.
The red and blue boxes highlight failures of style imitation and structure preservation, respectively.
The green boxes highlight comparisons between the local details of targets and generated characters.

Table 1: Comparisons with state-of-the-art methods on Chinese dataset.

Method Style Score ↑ Content Score ↑ DTW ↓ User Prefer. (%) ↑
Drawing (Zhang et al., 2017) 38.75 78.15 1.1813 4.73
FontRNN (Tang et al., 2019) 46.14 92.18 1.0448 9.93
DeepImitator (Zhao et al., 2020) 51.69 90.92 1.0622 10.27
WriteLikeYou (Tang & Lian, 2021) 73.07 93.89 0.9832 17.20
SDT(Ours) 94.50 97.04 0.8789 57.87

where λ is a trade-off factor, Lins and Lpat correspond to the instance and patch head of the style
encoder, respectively, while Lpre and Lcls are equipped on the transformer decoder.

4 EXPERIMENTS

4.1 CHINESE HANDWRITING GENERATION

Settings To evaluate SDT with the Chinese handwriting generation task, we use CASIA-
OLHWDB (1.0-1.2) (Liu et al., 2011) for training and ICDAR-2013 competition database (Yin
et al., 2013) for testing, following Tang & Lian (2021). The training set has about 3.7 million online
Chinese handwritten characters produced by 1,020 writers, while the test set contains 60 writers and
each writer covers 3,755 most frequently used characters set of GB2312-80. As suggested in Ha &
Eck (2018), the Ramer–Douglas–Peucker algorithm (Douglas & Peucker, 1973) with a parameter
of ϵ=2 is applied to remove redundant points of characters, leading to an average sequence length
of 50. Following Zhao et al. (2020), we render offline style references using coordinate points of
online characters. For content images, we use the popular average Chinese font (Jiang et al., 2019).

In all experiments, we use K = 15 style references, as in Zhao et al. (2020); Bhunia et al. (2021),
and resize reference style and content images to 64× 64. For architecture details, each transformer
encoder employs 2 self-attentions layers while the transformer decoder adopts 4 layers for receiving
style representations (2 for writer-wise and 2 for character-wise). Following the original transformer
work (Vaswani et al., 2017), each transformer layer applies multi-headed attention with c = 512
dimensional states and 8 attention heads. We impose sinusoidal positional encoding (Vaswani et al.,
2017) on the input tokens before feeding them to the transformer encoder and decoder. For training,
we first pre-train the content encoder with 138k iterations (batch size is set to 256) for character
classification over training samples and then train the whole model with 148k iterations (batch size
is set to 128), on a single RTX3090 GPU. The optimizer is Adam (Kingma & Ba, 2015) with the
learning rate of 0.0002 and gradient clipping of 5.0. As suggested in Tang & Lian (2021), we set
λ=2. More implementation details are put in Appendix A.1.1.
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Figure 7: Frequency magnitude (8 × 8) belongs to 7 writers, where the top row shows the writer-
wise style while the bottom represents the character-wise one. Each magnitude is averaged over 100
character samples written by the same person. A pixel that is closer to the center means a lower
frequency. The brighter the color, the larger the magnitude.

Table 2: Effect of two style representations.
H−E denotes the transformer decoder first re-
ceives character-wise style features and then
accepts writer-wise ones (and vice versa).

character-wise writer-wise H−E E−H Style Score↑
85.52

✓ 90.31
✓ 91.38

✓ ✓ ✓ 93.72
✓ ✓ ✓ 94.50

Table 3: Evaluation of different combinations
between q and {yj}t−1

j=1.

Combination Style Score ↑ Content Score↑ DTW ↓
Concat 91.61 96.95 0.8976
Ours 94.50 97.04 0.8789
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Figure 8: The heat map of the DTW matrix. The
dark diagonal indicates that the generated char-
acters still owns a higher similarity even using
different Xs belonging to the same writer.

Quantitative Evaluation Metrics Dynamic time warping (DTW) (Berndt & Clifford, 1994), an
elastic matching technique for aligning the given two sequences, is employed to calculate the dis-
tance between the generated and real characters. Content score (Zhao et al., 2020) is adopted to
measure the structure correctness of generated characters. Style score (Tang & Lian, 2021) is em-
ployed to quantify the style similarity between the generated and real handwritings. User preference
study is conducted to quantify the subjective quality of the output characters. More details are pre-
sented in Appendix A.1.2.

Comparison with State-of-the-Art Methods We compare our proposed SDT with the state-of-
the-art online Chinese character generation methods, including Drawing (Zhang et al., 2017),
FontRNN (Tang et al., 2019), DeepImitator (Zhao et al., 2020) and WriteLikeYou (Tang & Lian,
2021). For a fair comparison, we re-implement the variants of Drawing and FontRNN by adding a
style branch proposed in DeepImitator (Zhao et al., 2020) using the PyTorch library, enabling them
to achieve arbitrary stylized character generation.

Quantitative comparison The quantitative results are shown in Tab. 1. We observe that our SDT
achieves the best performance on all the evaluation metrics. Particularly, SDT outperforms the
second best with significant gaps in style score, i.e., a remarkably 21.43% gain. This demonstrates
the strong generation performance of the proposed method in terms of the style imitation.

Qualitative comparison We illustrate the generated samples in Fig. 6 for each method, which intu-
itively explains the significant superiority of SDT in the user preference study. In Fig. 6, we observe
that Drawing generates the worst results, as it often produces unreadable characters. FontRNN and
DeepImitator occasionally synthesize unpleasant stroke paddings. WriteLikeYou performs not well
on complex characters in terms of style mimicry. Compared to previous SOTA works, our method
generates higher quality results, particularly recovering better local details of characters.
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Figure 9: Comparisons with the competitors for online handwriting generation on various scripts.

4.2 ANALYSIS

Effect of two style representations. To evaluate the effectiveness of the two extracted style repre-
sentations, we conduct ablation studies on the test set and show the experimental results in Tab. 2.
From these results, we have the following observations: (1) Both style representations contribute to
improving the quality of the generated results in terms of style score. (2) Combining the two style
features is able to further promote the model performance in terms of style score, which indicates
the two extracted styles are complementary. Additionally, the order of the two style features enter-
ing transformer decoder has no significant impact in terms of style score. To further analyze the
differences between the two styles, we resize the output patch tokens representing the two styles to
feature maps, respectively, and visualize their frequency magnitudes in Fig. 7. A qualitative com-
parison indicates that character-wise style features contain more high-frequency information and
writer-wise ones mainly focus on the low-frequency information. According to Cooley et al. (1969),
the high-frequency information in an image usually captures local fine details while the low fre-
quencies contain the global part of objects. This fact and the visualization strongly align with our
motivation to separate the overall and detailed style representations from the style images.

Evaluation of different combinations between q and {yj}t−1
j=1. To evaluate the effect of different

combination strategies, we re-implement a variant of our method by concatenating q with each point
yj ∈ {yj}t−1

j=1 and compare it with our method on the test set. As presented in Tab. 3, we find that
our combination strategy improves the style consistency without decreasing content correctness of
the generated results. This indicates that our method is able to draw global dependencies between q
and {yj}t−1

j=1 unlike previous RNN-based methods (Zhao et al., 2020) that suffer from the forgetting
phenomenon Graves (2012), which demonstrates the effectiveness of the proposed method.

Effect of using different style inputs Xs. As mentioned in Tang & Lian (2021), the imitation
model may generate inconsistent characters if given different style inputs Xs belonging to the same
writer ws. To evaluate the effect of different style inputs, we conduct two independent experiments
using different Xs on the same model. In each experiment, the model generates 200 characters for
each writer in the test set, as in Tang & Lian (2021). We calculate the DTW distance between
the corresponding character individually produced in the two experiments and then average them
according to the writer index (see Appendix A.1.3 for more details of the calculation) to get a
DTW square matrix, visualized as Fig. 8. The dark diagonal in Fig. 8 indicates that the generated
characters still owns a higher similarity even using different Xs belonging to the same writer, which
demonstrates that our SDT is able to generate comparable results from different style inputs.

4.3 APPLICATIONS TO OTHER LANGUAGES

Japanese handwriting generation. For Japanese handwriting generation task, we conduct exper-
iments on TUAT HANDS databases (Matsumoto et al., 2001) to evaluate the superiority of our
method (more dataset information can be seen in Appendix A.1.4). Tab. 4 and Fig. 9 (a) summarizes
the results of Japanese handwriting generation with a comparison to previous works (i.e., Draw-
ing, DeepImitator and WriteLikeYou). From these results, we observe that our SDT outperforms
all compared methods on three quantitative metrics. In terms of style score, our SDT outperforms
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Table 4: Quantitative evaluations of our SDT and competitors on Japanese datatset.

Datasets Methods Style Score ↑ Content Score↑ DTW ↓

Japanese

Drawing (Zhang et al., 2017) 20.67 50.74 1.4657
DeepImitator (Zhao et al., 2020) 25.80 53.20 1.2564
WriteLikeYou (Tang & Lian, 2021) 28.22 86.08 1.2388
SDT(Ours) 41.85 91.31 1.1289

Table 5: Quantitative evaluations of our SDT
and competitors on Indic datatset.

Methods Content Score↑ DTW ↓
Drawing 2.34 9.8230
DeepImitator 4.13 6.7421
WriteLikeYou 11.61 4.7314
SDT(Ours) 97.22 0.7075

Table 6: Quantitative evaluations of our SDT
and competitors on English dataset.

Methods Content Score↑ DTW ↓
Drawing 79.14 1.8519
DeepImitator 76.53 1.6460
WriteLikeYou 84.54 1.6282
SDT(Ours) 85.52 1.6048

WriteLikeYou by a large margin (41.85% vs. 28.22%), which further demonstrates our method has
a better imitation performance in respect of handwriting styles regardless of the script type.

Indic handwriting generation. We evaluate our method with Indic handwriting generation task
using Tamil dataset1. We compare our methods with Drawing, DeepImitator and WriteLikeYou on
the test set of Tamil dataset (see more dataset information in Appendix A.1.4). As shown in Tab. 5,
we report the experimental results in terms of content score and DTW, as it is intractable to train
a high-performance writer recognizer (see details in Tab. 8) on Indic script due to the limited data.
From these results, we find that our SDT surpasses the second best with significant gaps on the two
quantitative metrics, i.e., achieving 85.61% higher content score and 4.02 lower DTW. This means
our SDT is able to handle handwritten characters with large amount of points (with an average of
88) and ensure structure correctness of the generated samples, as shown in Fig. 9 (b).

English handwriting generation. To demonstrate the effectiveness of our method on English hand-
writing generation task, we collect all of the English samples from the symbol part of CASIA-
OLHWDB(1.0-1.2) (Liu et al., 2011) and ICDAR-2013 competition database (Yin et al., 2013) (see
more details in Appendix A.1.4). Similarly, due to the lack of high-performance writer identifier
(see details in Tab. 8), we use content score and DTW as evaluation metrics . Fig. 9 (c) shows the
qualitative results comparing our SDT with three competitors on the test set. From these results, we
find that all methods achieve sound and comparable performance. One reason is that English script
contains fewer character classes and a smaller number of points (with an average of 30), which
makes their imitation easier compared to other scripts. Nevertheless, our SDT still outperforms
other methods with a small margin both in content score and DTW, as shown in Tab. 6. Moreover,
we observe that corresponding uppercase and lowercase letters sometimes have subtle inter-class
differences, e.g., O vs. o, which leads to our SDT achieving a relatively low content score.

5 CONCLUSION

In this paper, we propose a novel method named style-disentangled transformer (SDT) to synthesize
realistic and diverse online handwritings. Our SDT improves imitation performance by disentan-
gling the overall writer-wise and detailed character-wise style representations from the individual
calligraphy handwritings. For the writer-wise style, we propose to group characters from a writer
together and separate characters from different writers, encouraging SDT to learn the overall unifor-
mity in individual handwritings. For the character-wise style, we propose maximizing the mutual
information between sampling results that represent distinct views of a character. Moreover, we
outline an offline-to-offline framework for improving the generation quality of offline handwritten
Chinese characters. Promising results on various language scripts verify the effectiveness of our
SDT. Though the SDT is currently designed for handwriting generation, it can be extended to other
generation tasks in future works, e.g., font and artistic character generation.

1http://lipitk.sourceforge.net/datasets/tamilchardata.htm
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A APPENDIX

We organize our supplementary material as follows.

• In section A.1, we describe more experimental details.

• In section A.2, we review the works in font generation.

• In section A.3, we provide additional qualitative results of offline Chinese handwriting
generation with a comparison to previous state-of-the-art works.

• In section A.4, we show a large number of generated online samples, covering Chinese,
Japanese, Indic and English scripts.

• In section A.5, we provide more visualization examples for spectrum analysis of two style
representations.

A.1 MORE EXPERIMENTAL DETAILS.

A.1.1 IMPLEMENTATION DETAILS OF ROBUSTNESS TRAINING

After removing the redundant points of online characters, we follow Zhang et al. (2017) to normalize
the absolute coordinates of points into a standard interval. As mentioned in Sec. 3.3, we define
three states “pen-down”, “pen-up” and “pen-end” respectively, which are denoted as m1,m2,m3.
Specifically, pen-down means that the pen is touching the paper now, and the current and following
points will be connected by strokes. Pen-up indicates that the pen has just finished a stroke and is
to be lifted up. Pen-end means that the pen has finished writing a completed character. It is obvious
that pen-end data points are much less than the other two classes. To solve the biased dataset issue,
we pad each online character Y= [y1, ..., yL] to a fixed length Nmax, where Nmax is the length of
the longest character in our training dataset and L is the length of Y , following (Ha & Eck, 2018).
As L is usually shorter than Nmax, we set yi to be (0, 0, 0, 0, 1), for i > L. During training, we
set the temperature τ=0.07 both in Eqn.1 and Eqn.2. Following Tang & Lian (2021), we use the
Gaussian mixture model (GMM) with m=20 bivariate normal distributions, i.e., the final output
Ot ∈ R123.

A.1.2 IMPLEMENTATION DETAILS OF METRICS

DTW The lower DTW distance, the better quality of the generated characters. Following Tang &
Lian (2021), we normalize the DTW distance by the spatial size and length of real handwritings.

Content and Style score We use the content recognizer and writer identifier to evaluate the content
and style score of generated handwritings, respectively. We give the implementation details of the
two recognizers below. For the content recognizer (Tang & Lian, 2021), we train it on the training
set. The optimizer is Adam with the learning rate of 0.001 and the batch size is set to 256. In total,
we train four content recognizers on four training sets, i.e., Chinese, Japanese, Indic and English
datasets, respectively. Tab. 7 summarizes their recognition results on the corresponding test sets.
For the writer identifier, we train it on the handwritings belonging to the test writers. Different from
the content recognizer receiving a character once, the writer identifier takes 15 characters written by
the same person as one input set (Zhao et al., 2020). Similarly, we use the Adam optimizer to train
four writer identifiers with the batch size of 128, learning rate of 0.001. We report their recognition
accuracy in Tab. 8.

User preference study At each time, given a style reference along with several candidates gener-
ated by different methods, participants are required to pick up the most similar candidate with the
reference. We finally collect 1500 valid responses contributed by 50 volunteers.

A.1.3 IMPLEMENTATION DETAILS OF DTW MATRIX

As mentioned in Sec. 4.2, we generate two groups of characters {ai}Ti=1 and {bj}Tj=1 using different
style inputs, where T is the number of test writers, ai= [a1, ..., aM ] and bj= [b1, ..., bM ] denote the
M characters belonging to the writer wi and wj , respectively. Next, we formulate the average DTW
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Table 7: Quantitative evaluations of four con-
tent recognizers on four datasets.

Datasets Acc.(%)

Chinese (Yin et al., 2013) 95.43
Japanese (Matsumoto et al., 2001) 93.61
Indic4 94.48
English (Yin et al., 2013) 80.12

Table 8: Quantitative evaluations of four writer
identifiers on four datatsets.

Datasets Acc.(%)

Chinese (Yin et al., 2013) 99.98
Japanese (Matsumoto et al., 2001) 99.64
Indic4. 72.54
English (Yin et al., 2013) 20.57

distance between ai and bj as:

dave(a
i,bj)=

1

M

M∑
m=1

d(am, bm), (4)

where d(·, ·) is the DTW distance between two characters. Finally, we denote the DTW matrix
C=(cij) ∈ RT×T , where cij can be formulate as:

cij=dave(a
i,bj). (5)

In particular, when i=j, cij indicates the average DTW distance between generated characters using
different style references belonging to the same person.

A.1.4 DATASET DETAILS

Japanese Dataset TUAT HAND (Matsumoto et al., 2001) contains about 3 million online handwrit-
ten Japanese characters belonging to 271 writers. We randomly select 216 writers for training and
55 writers for testing. Similarly, we use the Ramer–Douglas–Peucker algorithm (ϵ=2) to preprocess
the online characters. After simplification, the maximum sequence length of characters reaches 770,
which is a trouble for training RNN (Bengio et al., 1994). For a fair comparison with the previous
RNN-based works (Zhao et al., 2020), we drop characters with points more than 150, accounting
for about 2% of the total datasets (Tang & Lian, 2021). After that, the average length of characters is
shortened to 68. We render style images from processed online characters and use easily obtainable
printed font as content references.

Indic Dataset Tamil dataset2 consists of samples of 156 Indic character classes written by 169
people, which offers an official train set and test set, i.e., 117 writers for training and 52 writers
for testing. Similarly, we remove the redundant points of characters via Ramer–Douglas–Peucker
algorithm (ϵ=2) and discard characters with points more than 150. After that, the average sequence
length of characters are reduced to 88. We use online Indic characters to render style images. As
for content references, we use character embeddings instead of offline images. This is because
Tamil encodes characters to special indexes that can not be directly matched with the printed font in
UTF-83 Format.

English Dataset In total, we have 53,248 English characters (Liu et al., 2011) written by 1,020
persons for training, and 3,120 characters (Yin et al., 2013) from 60 writers for testing, where the
characters written by each writer cover 52 classes. Similarly, the Ramer–Douglas–Peucker algo-
rithm (ϵ = 2) is adopted to remove redundant points of characters, leading to an average sequence
length of 30. We render style images using coordinate points of online characters and employ printed
English font as content images.

A.2 FONT GENERATION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) open a new door for font gener-
ation and bring amazing performance gains. zi2zi (Tian, 2017) regards font generation as an image
translation task and achieves diverse font style transfer via a condition GAN. MC-GAN (Azadi et al.,
2018) generates the whole set of letters with a consistent style by observing only a few examples

2http://lipitk.sourceforge.net/datasets/tamilchardata.htm
3https://www.utf8.com
4http://lipitk.sourceforge.net/datasets/tamilchardata.htm
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via the proposed glyph generation network and texture transfer module. Later, EMD (Zhang et al.,
2018) and TET-GAN (Yang et al., 2019) learn the disentangled representations for contents and
styles, and thus achieve the unseen style transfer. To further generate high-quality characters, some
component-based methods are proposed to take auxiliary annotations (e.g., stroke and radical de-
composition) as inputs (Jiang et al., 2019; Park et al., 2021; Liu et al., 2022) or supervisions (Huang
et al., 2020; Kong et al., 2022). However, all of the above works do not explicitly consider the
geometric deformation of fonts. DG-font (Xie et al., 2021) introduces a feature deformation skip
connection to conduct spatial deformation, thus performing better on cursive characters. Nonethe-
less, the advanced DG-font struggles to address the large geometric variations, as shown in Fig. 10.

A.3 OFFLINE CHINESE HANDWRITTEN CHARACTERS GENERATION.

Experimental Setting. To demonstrate the superiority of the proposed offline-to-offline hand-
writing generation framework, we use the offline character images of ICDAR-2013 competition
database (Yin et al., 2013), which contains 60 writers and 3755 different Chinese characters for
each writer. We randomly select 80% of the entire dataset as the training set, and the remaining
20% as the test set. As for content images, we use the popular average Chinese font (Jiang et al.,
2019). In our experiments, we resize input images to 64 × 64. We insert an extra ornamentation
network (Xie et al., 2021) behind our method and compare it with font generation and handwrit-
ing image generation methods. Specifically, (1) font generation methods include zi2zi (Tian, 2017)
and DG-FONT (Xie et al., 2021). (2) handwriting image generation methods such as GANWrit-
ing (Kang et al., 2020) and HWT (Bhunia et al., 2021) are considered compared methods.

Qualitative Comparison. Fig. 10 shows qualitative comparison between our method with four
competitors. To ensure fair comparisons, we randomly select source and target characters with the
same textual contents. The rows of “Source” present standard characters with different content.
Each row of “Target” presents characters belonging to the same writer. We can observe that the
handwritten characters generated by our SDT (rows of “Ours”) yield the most similar styles to target
images in terms of geometric shape and ink-blot. Besides, serious artifacts (e.g., blur and collapsed
character structure) appear on the handwritings generated by zi2zi (rows of “Zi2zi”) and HWT
(rows of “HWT”). There are different degrees of stroke missing in the handwritings generated by
GANWriting (rows of “GANW.”) and DG-Font (“rows of DG-F.”). Moreover, except our SDT, other
methods struggle to synthesize the stroke width and ink-blot similar to the target characters. Further,
we provide more qualitative results with a comparison to GANWriting and DG-Font in Figs. 11-14.
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Figure 10: Additional qualitative comparisons between our proposed SDT with four competitors,
including zi2zi (Tian, 2017), DG-FONT (Xie et al., 2021), GANWriting (Kang et al., 2020) and
HWT (Bhunia et al., 2021), on offline handwritten Chinese character generation.
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Figure 11: Additional qualitative comparisons between our proposed SDT with DG-FONT (Xie
et al., 2021) and GANWriting (Kang et al., 2020), on offline handwritten Chinese character genera-
tion.
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Figure 12: Additional qualitative comparisons between our proposed SDT with DG-FONT (Xie
et al., 2021) and GANWriting (Kang et al., 2020), on offline handwritten Chinese character genera-
tion.
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Figure 13: Additional qualitative comparisons between our proposed SDT with DG-FONT (Xie
et al., 2021) and GANWriting (Kang et al., 2020), on offline handwritten Chinese character genera-
tion.
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Figure 14: Additional qualitative comparisons between our proposed SDT with four competitors
DG-FONT (Xie et al., 2021) and GANWriting (Kang et al., 2020), on offline handwritten Chinese
character generation.
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A.4 ONLINE HANDWRITING GENERATION.

Figs. 15-18 show qualitative comparisons between our proposed SDT and the previous state-of-
the-art work WriteLikeYou (Tang & Lian, 2021) on online multilingual characters generation (e.g.,
Chinese, Japanese, Indic and English scripts). The results suggest that our method is more competi-
tive in both style imitation and structure preservation of generated multilingual characters.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Figure 15: Additional generated online Chinese characters by our method and WriteLikeYou (Tang
& Lian, 2021).

21



Under review as a conference paper at ICLR 2023

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Ours

Target

WriteLi.

Figure 16: Additional generated online Chinese characters by our method and WriteLikeYou (Tang
& Lian, 2021).
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Figure 17: Additional generated online Chinese characters by our method and WriteLikeYou (Tang
& Lian, 2021).
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Figure 18: Additional generated online characters, covering Japanese, Indic and English scripts, by
our method and WriteLikeYou (Tang & Lian, 2021).
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A.5 MORE VISUALISATIONS ON SPECTRUM ANALYSIS.

In Fig. 19, we provide additional frequency magnitude visualizations for writer-wise and character-
wise style representations, respectively. Clearly, the results indicate that character-wise styles focus
on more high-frequency information, while writer-wise styles mainly pay attention to low-frequency
information.

Wri.

Char.

Figure 19: Frequency magnitude (8× 8) belongs to 7 writers. The magnitude is averaged over 100
samples.
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