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Abstract

Large Language Models require substantial computational re-
sources for inference, posing deployment challenges. While
dynamic pruning offers superior efficiency over static meth-
ods through adaptive circuit selection, it exacerbates align-
ment degradation by retaining only input-dependent safety-
critical circuit preservation across diverse inputs. As a re-
sult, addressing these heightened alignment vulnerabilities
remains critical. We introduce Alignment-Aware Probe Prun-
ing (AAPP), a dynamic structured pruning method that adap-
tively preserves alignment-relevant circuits during inference,
building upon Probe Pruning. Experiments on LLaMA 2-7B,
Qwen2.5-14B-Instruct, and Gemma-3-12B-IT show AAPP
improves refusal rates by 50% at matched compute, enabling
efficient yet safety-preserving LLM deployment.

Introduction
LLMs deliver impressive capabilities yet impose high com-
putational costs, with inference costs scaling directly with
model size (Kaplan et al. 2020). Pruning offers a promis-
ing route to reduce these costs (Han, Mao, and Dally
2016), using different techniques, including static structured
pruning (Ma, Fang, and Wang 2023) as well as dynamic
probe-guided pruning (PP) (Le et al. 2025) which improves
the accuracy-efficiency frontier by pruning columns of the
learnable linear transformation that maps intermediate hid-
den state to the output hidden state, referred to as an input
channel. However, these methods risk pruning alignment-
critical structures, potentially weakening safety guardrails
and degrading behaviors such as refusal of harmful instruc-
tions. Recent analyses (Wei et al. 2024) show that removing
as little as 3% of parameters is enough to compromise safety.
This brittleness motivates the development of Alignment-
Aware Probe Pruning (AAPP)—a method that explicitly pre-
serves alignment-critical circuits.

AAPP uses the average activation value for each in-
put channel. By comparing these scores obtained from be-
nign and harmful prompts to the scores obtained from our
probe pass, our method detects adversarial inputs and en-
forces hard exclusions on alignment-critical structures. This
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Figure 1: Refusal rates of LLaMA-2-7B, Qwen-2.5-14B,
and Gemma-3-12B models on the WildJailbreak dataset
(Jiang et al. 2024) under pruning ratio r = 0.3. We com-
pare our Alignment-Aware Probe Pruning (AAPP) against
two baselines: Probe Pruning (PP) (Le et al. 2025) and ran-
dom pruning. Across all three models, AAPP consistently
achieves higher refusal rates, demonstrating that preserving
alignment-critical circuits upon the detection of adversarial
prompts improves safety behavior under pruning.

structured pruning approach yields an improved efficiency-
alignment frontier: AAPP outperforms PP, having refusal
rates up to 50% greater for the same computational bud-
get. These findings suggest constraint-satisfying pruning as
a practical route to efficient yet safe LLMs. Our key contri-
butions are as follows:
• We develop a pruning framework that preserves inter-

pretable circuits
• We evaluate our framework on refusal rate, toxicity, ac-

curacy, and computational cost (FLOPs)

Related Work
Structured Pruning
Structured pruning is a key approach for reducing the com-
putational cost of LLMs. LLM-Pruner (Ma, Fang, and Wang
2023) removes entire attention heads and MLP neurons via
gradient-based importance, while Wanda (Sun et al. 2024)
prunes weights with small magnitude and activation values
post-hoc, achieving high sparsity without retraining. Probe
Pruning (Le et al. 2025) extends this line by using probed
hidden states to guide batch-wise pruning, improving the
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Figure 2: Alignment-Aware Probe Pruning (PP) is executed in five stages: (1) From the layer-normalized hidden states, pick
tokens based on residual-importance and build a small probe. (2) Run the probe a few layers ahead to produce probing states
(3a) A KL Gate compares them to historical states from safe and harmful prompts and fires when closer to harmful, ensuring the
preservation of alignment-critical structures. If the gate does not fire, the probe states are just fused with the general historical
states (4) Using the integrated states to calculate the pruning metric (Le et al. 2025), prune low-score channels. (5) Perform full
inference on the remaining weights.

accuracy-efficiency frontier. However, these methods risk
pruning the preservation of alignment-critical structures.

Alignment Preservation
Several methods aim to preserve alignment during model
modification. Safe LoRA (Hsu et al. 2024) and SaLoRA
(Li et al. 2025) constrain LoRA updates to remain within
safety-aligned subspaces, while LoRI (Zhang et al. 2025)
and LoTA (Panda et al. 2024) apply structural sparsity
to reduce catastrophic forgetting. These works show that
constraining fine-tuning helps preserve desirable behav-
iors in LLMs. NLSR (Yi et al. 2025) restores safety by
transplanting safety-critical neurons from an aligned refer-
ence model. These approaches show that explicit parame-
ter constraints and neuron transplantation can maintain re-
fusal, honesty, and toxicity safeguards even under struc-
tural changes. Layer-level analyses further support targeted
preservation: Shi et al. (Shi et al. 2024) showing that align-
ment changes concentrate in late-stage layers and that com-
pression can focus on non-critical regions.

Methods
As shown in Figure 2, Alignment-Aware Probe Pruning
consists of five stages, namely probe generation; probing,
recording activations; comparison to our historical activa-
tion scores; history-informed pruning; and inference.

Activations and Scoring
For each target with C input channels, we create 3 tensors:
general, benign, and harmful using sets of prompts: (1) gen-
eral prompts to maintain linguistic functionality from C4
dataset (Raffel et al. 2020); (2) benign prompts from wild

adversarial dataset; and (3) harmful prompts from wild ad-
versarial dataset. ((Jiang et al. 2024)). Each set of scores
stores the squared ℓ2 norm of channel activations com-
pressed across the batch and sequence dimensions. We refer
to this value as the “channel’s energy”.

For structured pruning, we adopt the PPsp importance
metric from Probe Pruning (Le et al. 2025), which computes
per-channel pruning scores using the ℓ2 norms of each in-
put channel’s activations. Here, W final denotes the learnable
linear transformation between hidden states, and X int the in-
termediate hidden state. A lower PPsp score, Ik, indicates
less important channels.

Ik =
∥∥∥{ |W final

i,k |2 · ∥X int
:,:,k∥22

}Cout

i=0

∥∥∥
2
, (1)

Finally, we blend live scores with stored activation scores
obtained from the set of general prompts.

Risk-aware gate and channel selection
We keep k = ⌈(1 − r)C⌉ channels, reserving kalign =
⌊align frac · C⌋ channels for safety. Probing states; and his-
torical states from benign and harmful prompts are normal-
ized into distributions: ‘p’; and ‘qsafe, and qjail’, respectively,
using Equation 2.

KLharm =
∑
c

pc log
pc

qcjail
, KLsafe =

∑
c

pc log
pc

qcsafe
. (2)

If KLharm − KLsafe ≥ τmargin, we preserve the top kalign
channels by histjail as we wish to protect channels most ac-
tive under harmful prompts because they include refusal cir-
cuitry. We then fill the remainder by descending score. Oth-
erwise, we retain the top k channels by score. Using these
scores, binary masks are generated for pruning and then ma-
terialized to obtain real compute reductions.



0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

9.4 9.9 10.4 10.9

R
ef

u
sa

l 
R

at
e

Compute (GFLOPs/token)

Llama 2-7B: Refusal Rate against Compute
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Figure 3: Refusal rate vs compute (GFLOPs/token) on
Llama-2-7B-chat. AAPP maintains substantially higher re-
fusal rates at comparable compute budgets, achieving safer
behavior with fewer FLOPs compared to standard PP.

Experimentation and Results
We evaluate on HuggingFace implementations of Llama-2-
7B-chat, Qwen2.5-14B-Instruct, and Gemma-3-12B-IT, us-
ing prompts from the WildJailbreak dataset ((Jiang et al.
2024)) which were not used for the generation of historical
states. Workloads contain prompts of avg. length 300 tokens
with 120 tokens generated. Unless stated otherwise, we fix
hyperparameters to align frac = 0.3, refresh window = 20,
and batch size = 20 for prompts.

We estimate inference FLOPs calculated using 2 FLOPs/-
MAC ((Hoffmann et al. 2022)) taking into account the num-
ber of layers, attention heads, hidden size, intermediate size,
and vocabulary size for the given model. We prune only in
the input channels of attention oproj and MLP downproj, ex-
cluding the first 6 and last 3 layers. Outputs are post-hoc
labeled for refusal and toxicity. Metrics include through-
put compute (FLOPs/token), refusal rate (trained classifier),
classification accuracy and toxicity (Perspective API (Lees
et al. 2022)).

Across the two methods (AAPP and PP), We first con-
sider the model’s ability to classify harmful and unharmful
prompts and act accordingly. This is investigated across var-
ious compute budgets and prune ratios. Following this, we
assess the safety of the model’s responses for AAPP and PP
using toxicity as the measure.

Refusal Rates at Fixed Prune Ratio
Figure 1 presents refusal rates at prune ratio r = 0.3. Across
all three models, AAPP achieves higher refusal rates (im-
plicit and explicit) than both Randomly Pruned and Probe
Pruning (PP) baselines, preserving alignment behavior. On
Llama-2-7B-chat, AAPP attains a refusal rate (0.57) 50%
and 78% greater than PP (0.38) and Random Pruning (0.32),
respectively. Similar improvements hold for Llama-2-7B-
chat (37% and 61%) and Gemma-3-12B-IT (13% and 48%),
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Figure 4: Refusal rate vs compute (GFLOPs/token) on
Qwen2.5-14B-Instruct. AAPP preserves refusal perfor-
mance as compute decreases, improving the refusal-
compute trade-off relative to PP across the efficiency spec-
trum.

confirming the robustness of our approach across architec-
tures.

Refusal Rates against Compute (FLOPs per Token)
Extending the investigation, we vary compute budgets to
look into the alignment-efficiency frontiers created us-
ing either method. Figure 3 and 4 illustrates alignment
(refusal rate) as a function of computational efficiency
(GFLOPs/token) for the Llama-2-7B-chat and Qwen2.5-
14B-Instruct models, respectively, under Probe Pruning (PP)
and Alignment-aware PP. Given the same computational
budget, our method achieves a higher refusal rate, shifting
the efficiency-alignment frontier upward. For example, on
Llama-2-7B-chat (3), to achieve a target refusal rate of 0.5,
our method requires only 10.3 GFLOPs/token, compared to
a higher cost with PP. Qwen2.5-14B-Instruct exhibits the
same pattern, demonstrating that AAPP maintains safety
more efficiently across various compute levels. These results
show that AAPP improves the alignment-efficiency trade-
off, achieving safer behavior while reducing inference cost,
and generalizing across diverse model families.

Alignment Accuracy
The accuracy of these refusals and the behavior of the
model, more generally, is shown in Table 1. It indicates that
AAPP outperforms PP across prune ratios on Llama-2-7B-
Chat and Qwen2.5-14B-Instruct. The results for the pruned
models are compared to the unpruned model, which we con-
sider to have a maximum for these metrics, as our pruned
models cannot exceed the performance of the base model.
We use F1 to balance recall and precision, accuracy and
False Acceptance Rate to indicate how often the model does
not refuse prompts. PP’s accuracy and F1 decline as prun-
ing increases, dropping to 0.575 and 0.585 at a 0.3 ratio for



Model Prune Ratio Method F1 (↑) Accuracy (↑) FAR (↓)

0 PP 1.000 1.000 0.000
AAPP 1.000 1.000 0.000

Llama-2-7B-chat 0.15 PP 0.725 0.702 0.290
AAPP 0.834 0.808 0.201

0.3 PP 0.645 0.624 0.313
AAPP 0.760 0.741 0.254

0 PP 1.000 1.000 0.000
AAPP 1.000 1.000 0.000

Qwen2.5-14B-Instruct 0.15 PP 0.876 0.891 0.058
AAPP 0.880 0.916 0.05

0.3 PP 0.730 0.820 0.169
AAPP 0.786 0.858 0.092

Table 1: Comparison of F1, Accuracy and FAR for PP and AAPP across prune ratios on Llama-2-7B-Chat and Qwen2.5-14B-
Instruct: AAPP has a lower False Acceptance Rate with higher classification accuracy, behaving more similarly to the unpruned
models.

Figure 5: Toxicity vs prune ratio on Llama-2-7B-chat. AAPP
maintains toxicity levels closer to the unpruned baseline
compared to PP, demonstrating better preservation of safety
alignment under aggressive pruning.

Llama2-7B-Chat. In contrast, AAPP retains higher values,
0.741 accuracy and 0.760 F1, indicating stronger classifica-
tion stability. Additionally, AAPP maintains a lower False
Acceptance Rate (FAR) (e.g. 0.216 vs 0.353 at 0.3). Simi-
lar results can be seen for Qwen2.5-14B-Instruct. Overall,
these results demonstrate AAPP’s ability to preserve safety
and behavior near to the unpruned models at reduced com-
pute.

Toxicity against Prune Ratio
Through toxicity, we can understand how safely the model
responds. Figure 5 and 6 indicates that across both mod-
els, AAPP shows clear safety gains over PP. On Llama-2-
7B-Chat, PP’s toxicity peaks at 0.044 at a 0.2 prune ratio,
while AAPP stays nearly constant near 0.0075, matching the
unpruned baseline. Similarly, on Qwen2.5-14B-Instruct, PP
reaches 0.08, but AAPP remains below 0.02. This demon-

Figure 6: Toxicity vs prune ratio on Qwen2.5-14B-Instruct.
AAPP sustains lower toxicity scores closer to the unpruned
model across pruning ratios, outperforming PP in safety
preservation.

strates that AAPP preserves alignment even under heavy
pruning. Although toxicity scores decrease at high pruning
ratios, this may reflect linguistic degradation rather than im-
proved safety. Pruning can suppress expressive activations,
yielding flatter, less coherent text that is rated as less toxic.

Conclusion
We a pruning method that preserves alignment while re-
ducing inference cost. By integrating a risk-aware gate with
probe-guided pruning, we prevent the removal of alignment-
critical structures upon the input of an adversarial prompt
and improves the efficiency-alignment frontier. Experiments
on Llama-2-7B-chat, Qwen2.5-14B-Instruct, and Gemma-
3-12B-IT show that AAPP sustains lower toxicity and
greater classification accuracy at lower FLOP budgets, of-
fering a practical route to safer and more efficient LLMs.
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