
Large Language Models as Foundations for Next-Gen Dense Retrieval: A
Comprehensive Empirical Assessment

Anonymous EMNLP submission

Abstract

Pre-trained language models like BERT and T5001
serve as crucial backbone encoders for dense002
retrieval. However, these models often ex-003
hibit limited generalization capabilities and004
face challenges in improving in-domain accu-005
racy. Recent research has explored using large006
language models (LLMs) as retrievers, achiev-007
ing state-of-the-art performance across various008
tasks. Despite these advancements, the spe-009
cific benefits of LLMs over traditional retriev-010
ers and the impact of different LLM configura-011
tions—such as parameter sizes, pre-training du-012
ration, and alignment processes—on retrieval013
tasks remain unclear.014

In this work, we conduct a comprehensive015
empirical study on a wide range of retrieval016
tasks, including in-domain accuracy, data ef-017
ficiency, zero-shot generalization, lengthy re-018
trieval, instruction-based retrieval, and multi-019
task learning. We evaluate over 15 different020
backbone LLMs and non-LLMs. Our find-021
ings reveal that larger models and extensive022
pre-training consistently enhance in-domain023
accuracy and data efficiency. Additionally,024
larger models demonstrate significant potential025
in zero-shot generalization, lengthy retrieval,026
instruction-based retrieval, and multi-task learn-027
ing. These results underscore the advantages028
of LLMs as versatile and effective backbone029
encoders in dense retrieval, providing valuable030
insights for future research and development in031
this field.032

1 Introduction033

Dense retrieval, a novel paradigm in Information034

Retrieval (IR), has emerged with the advance-035

ment of deep neural networks. Unlike traditional036

IR methods, dense retrieval encodes both queries037

and documents as embeddings within a shared la-038

tent space, capturing their semantic relationships039

through embedding similarities. Dense retrieval040

models have become the predominant choice in041

recent neural retrieval approaches and are widely042

applied in various downstream tasks such as web 043

search, question answering, and sentence similarity 044

(Karpukhin et al., 2020; Xiong et al., 2020; Muen- 045

nighoff et al., 2022). 046

In the past few years, dense retrieval models 047

intensively adopted pre-trained language models, 048

such as BERT (Devlin et al., 2018) and T5 (Raffel 049

et al., 2020), as their backbone encoders. These 050

models excel in identifying semantic similarities 051

between queries and documents. However, they 052

still face significant challenges in becoming ver- 053

satile enough to handle a wide range of retrieval 054

tasks (Muennighoff et al., 2022). Their in-domain 055

retrieval accuracy is often constrained by the capac- 056

ity of their backbone encoders, such as the number 057

of parameters (Ni et al., 2021). Additionally, dense 058

retrieval models typically struggle to generalize to 059

unseen data, necessitating fine-tuning with a large 060

amount of labeled data to perform well in the tar- 061

get domain. Finally, achieving versatility in dense 062

retrieval models requires training on multiple re- 063

trieval tasks simultaneously, which demands suffi- 064

cient capacity from the backbone encoder (Zhang 065

et al., 2023; Xiao et al., 2023). 066

Recently Large Language Models (LLMs) have 067

been prompted or fine-tuned as dense retrieval mod- 068

els and achieved improved performance across a 069

wide range of retrieval tasks, thanks to their supe- 070

rior capability for semantic understanding and rich 071

world knowledge (Li et al., 2023; Wang et al., 2023; 072

Zhuang et al., 2024; Muennighoff et al., 2024). 073

These models vary in parameters from 2 billion 074

to 56 billion, with pre-training sufficiency rang- 075

ing from hundreds of billions to tens of trillions 076

of tokens, and include both base models and hu- 077

man preference aligned chat models. Despite the 078

common understanding that larger models gener- 079

ally yield better performance (Kaplan et al., 2020; 080

Biderman et al., 2023), the specific benefits of vary- 081

ing parameter numbers, pre-training sufficiency, 082

and alignment processes of backbone LLMs for 083
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different retrieval tasks still remain unclear.084

In this study, we focus on the following two re-085

search questions: 1) For different retrieval tasks,086

what specific benefits can LLMs offer compared to087

non-LLMs as the backbone encoders? 2) For LLMs088

with varying configurations (i.e., different param-089

eter numbers, pre-training sufficiency and align-090

ment processes), what contributes more to different091

retrieval tasks as the backbone encoder. We con-092

duct comprehensive empirical investigation across093

a wide range of retrieval tasks, assessing various094

critical retrieval capabilities: in-domain accuracy,095

data efficiency, zero-shot generalization, lengthy096

retrieval generalization, instruction-based retrieval,097

and multi-task learning. Our study explore over098

15 different backbone LLMs and non-LLMs, with099

parameter numbers ranging from 0.1 billion to 32100

billion and varying pre-training sufficiency, includ-101

ing both base LLMs and chat LLMs.102

Previous dense retrieval models have demon-103

strated inferior in-domain accuracy due to the104

limited capacity of their backbone encoders (Ni105

et al., 2021). We employ MS MARCO (Nguyen106

et al., 2016), one of the largest web search datasets,107

to train and evaluate the in-domain accuracy of108

dense retrieval models with different backbone en-109

coders. Our results indicate that both increasing110

the model size and enhancing pre-training suffi-111

ciency can consistently improve the upper limit112

of in-domain accuracy. Notably, we discover that113

both base LLMs and human-preference-aligned114

chat LLMs show comparable potential as back-115

bone encoders for dense retrieval tasks. By train-116

ing with different proportions of MS MARCO, we117

explore data efficiency and find that scaling up118

model size facilitates convergence, allowing LLMs119

to converge swiftly even with limited annotated120

data, without the need for intricate multi-stage train-121

ing processes.122

We examine generalization ability from three123

perspectives: zero-shot generalization, lengthy re-124

trieval generalization, and instruction-based re-125

trieval generalization. First, we evaluate zero-shot126

generalization using BEIR benchmark (Thakur127

et al., 2021). Our findings indicate that model128

size is the most crucial factor for zero-shot re-129

trieval generalization. Moreover, traditional dense130

retrieval models are limited by the maximum input131

length used during pre-training and retrieval train-132

ing. We investigate whether LLM-based retrievers,133

pre-trained with longer context windows, can ef-134

fectively generalize to lengthy retrieval tasks even 135

when trained with shorter passage lengths. Finally, 136

dense retrieval models often lack flexibility in han- 137

dling varying retrieval intents (Su et al., 2022). We 138

explore the capability of different models to incor- 139

porate instructions during retrieval, discovering 140

that training with instruction benefits LLMs but 141

not non-LLMs, and that human-preference align- 142

ment does not significantly improve performance 143

compared to base LLMs. 144

We further explore the multi-task learning ca- 145

pabilities of models with different backbone en- 146

coders, essential for developing versatile retrievers 147

(Zhang et al., 2023; Xiao et al., 2023). We adopt 148

five distinct retrieval tasks, where interference ex- 149

ists due to varying retrieval intents. Our findings 150

reveal that although all models experience perfor- 151

mance decreases with multi-task training compared 152

to training on each single-task, increasing model 153

size consistently mitigates this gap. 154

To summarize, we make the following contri- 155

butions: 1) We conduct a thorough experimental 156

study using more than 15 backbone encoders with 157

different configurations for dense retrieval across 158

six distinct retrieval tasks. 2) We demonstrate that 159

LLM-based retrievers consistently enhance perfor- 160

mance across all retrieval tasks compared to non- 161

LLM-based retrievers. 3) We investigate how dif- 162

ferent configurations of backbone LLMs impact 163

each retrieval task, focusing on distinct retrieval 164

capabilities. 165

2 Related Work 166

The related works are reviewed from two aspects: 167

dense retrieval, LLM-based retriever. 168

First of all, in the realm of neural retrievers, 169

dense retrieval models have consistently demon- 170

strated superior performance over traditional sparse 171

models like BM25 across a wide array of retrieval 172

tasks (Karpukhin et al., 2020; Ni et al., 2021; Muen- 173

nighoff et al., 2022). A critical factor contributing 174

to the success of dense retrieval models is the uti- 175

lization of powerful pre-trained language models 176

as their initialization. 177

Over the past few years, pre-trained language 178

models such as BERT (Devlin et al., 2018) and 179

T5 (Raffel et al., 2020) have been intensively used 180

as backbone encoders for dense retrieval. For in- 181

stance, GTR (Ni et al., 2021) highlights the in- 182

domain accuracy and generalization capabilities 183

of T5-based dense retrieval models, with model 184
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parameters reaching up to 4.8 billion. Fang et al.185

(2024) explores scaling laws for dense retrieval186

models but restricts their study to BERT backbones187

with up to 110 million parameters and only ex-188

plores the in-domain situation. Currently, state-of-189

the-art dense retrievers employ models with more190

than 7 billion parameters or more as backbones.191

Neelakantan et al. (2022) discuss large-scale un-192

supervised text embedding pre-training, observing193

consistent performance improvements when scal-194

ing up GPT-based dense retrieval model sizes from195

300 million to 175 billion parameters. Addition-196

ally, recent studies such as Wang et al. (2023) have197

shown that fine-tuning directly with labeled data198

can achieve strong performance. Our study focuses199

on fine-tuning directly using labeled data while200

comparing various backbone encoders.201

Large Language Models (LLMs) have recently202

demonstrated significant potential as backbone en-203

coders for dense retrieval, attributed to their vast204

number of parameters and extensive pre-training.205

Repllama (Ma et al., 2023) fine-tuned Llama-2-7B206

and Llama-2-13B to function both as dense retriev-207

ers and pointwise rerankers. LLaRA (Li et al.,208

2023) introduced two pretraining tasks specifically209

designed to better adapt the backbone Llama-2-210

7B model for dense retrieval, resulting in notable211

improvements in both supervised and zero-shot sce-212

narios. E5-mistral and Gecko (Wang et al., 2023;213

Lee et al., 2024) enhanced the training of LLM-214

based dense retrievers using synthetic data, employ-215

ing models with 1.5 billion and 7 billion parameters216

to achieve notable results across various retrieval217

tasks. GRIT (Muennighoff et al., 2024) success-218

fully unified text embedding and generation within219

a single LLM, maintaining performance levels com-220

parable to those of specialized embedding-only and221

generative-only models, using a model with 56 bil-222

lion parameters (14 billion activation parameters).223

LLM2Vec (BehnamGhader et al., 2024) presented224

an unsupervised method for transforming decoder-225

only LLMs into dense retrievers, demonstrating226

significant promise for adapting LLM backbone en-227

coders for dense retrieval in an unsupervised man-228

ner. PromptReps (Zhuang et al., 2024) employed229

human preference-aligned chat LLMs to produce230

high-quality dense representations unsupervised.231

These models vary in parameters from 1.5 billion232

to 56 billion, with pre-training covering hundreds233

of billions to tens of trillions of tokens, and include234

both base LLMs and human preference-aligned235

chat LLMs. Despite the exciting advancements 236

in retrieval tasks achieved by leveraging various 237

LLMs with distinct configurations and diverse train- 238

ing strategies, the specific benefits of variations in 239

parameter count, pre-training extent, and alignment 240

processes of backbone LLMs for retrieval tasks re- 241

main still uncertain. 242

3 Preliminary 243

Dense retrieval leverages an encoder to project both 244

the query q and the candidate passage p into a 245

shared dense embedding space, resulting in embed- 246

dings hq and hp. A scoring function, such as the 247

inner product or cosine similarity, is then applied 248

to these dense vectors to model relevance: 249

s(q,p) = ⟨hq, hp⟩ (1) 250

This allows for the retrieval of relevant docu- 251

ments by performing approximate nearest neighbor 252

(ANN) search within the embedding space. 253

In our study, we compare more than 15 backbone 254

encoders, varying in model architecture (encoder- 255

only and decoder-only), model size (0.1B to 32B), 256

and pre-training sufficiency(up to 15T tokens). 257

Consistent with prior research, we utilize the [CLS] 258

token to obtain text representations for the BERT 259

model and employ mean-pooling for the T5 model. 260

For instance, BERT tokenizes the input text into 261

a sequence T: [CLS], t1, ..., tN , [EOS]. This tok- 262

enized sequence is subsequently encoded by BERT, 263

generating output embeddings that are combined 264

to form the text embedding, with the [CLS] token 265

performing this integration: 266

ht = BERT(T)[CLS] (2) 267

When using large language model (LLM) as the 268

backbone encoder, text embeddings need to be cre- 269

ated differently. Most LLMs use a decoder-only 270

architecture and causal attention mechanism, mean- 271

ing that only the last token in the input sequence 272

can access the global context. As a result, the text 273

embedding is taken from the output embedding of 274

the special token [EOS]: 275

ht = LLM(T)[EOS] (3) 276

Given the query-passage pair (qi, p+i ), we adopt 277

the standard InfoNCE loss L over the in-batch neg- 278

atives and hard negatives for training: 279

L = − lg
exp(s(qi,p

+
i ))

exp(s(qi,p
+
i )) +

∑
j
exp(s(qj , p

−
j ))

(4) 280
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where p−j is the set of negative passages and s(q,p)281

is the scoring function of query and passage. In282

this paper, we adopt the temperature-based cosine283

similarity function as follows:284

s(q, p) =
1

τ
cos(hq, hp) (5)285

τ is a temperature hyper-parameter, which is fixed286

to 0.02 in all experiments.287

4 Empirical Study288

In this section, we aim to address two key research289

questions: 1) For different retrieval tasks, what290

specific benefits can LLMs offer compared to non-291

LLMs as the backbone encoders? 2) For LLMs292

with varying configurations (i.e., different param-293

eter numbers, pre-training sufficiency, and align-294

ment processes), what contributes more to different295

retrieval tasks as the backbone encoder. To answer296

these questions, we conduct a comprehensive em-297

pirical study across six critical dimensions of dense298

retrieval, each encompassing several specific re-299

trieval tasks. These dimensions are investigated300

using various pre-trained language models as back-301

bone encoders, focusing on: in-domain accuracy302

(Section 4.1), data efficiency (Section 4.2), zero-303

shot generalization (Section 4.3), lengthy retrieval304

generalization (Section 4.4), instruction-based re-305

trieval (Section 4.5), and multi-task learning (Sec-306

tion 4.6).307

4.1 In-domain Accuracy308

Setting We utilize MS MARCO (Nguyen et al.,309

2016) to train and evaluate the in-domain accu-310

racy of dense retrieval models with varying back-311

bones encoders. Specifically, we employ BERT312

(Devlin et al., 2018) with 110M and 330M parame-313

ters (BERT-base and BERT-large), T5 (Raffel et al.,314

2020) encoders with parameter numbers ranging315

from 110M to 4.8B, and a diverse set of LLMs316

including the Llama, Phi, Gemma, and Qwen1.5317

series (Touvron et al., 2023; Gunasekar et al., 2023;318

Bai et al., 2023; Team et al., 2024). It is impor-319

tant to note that different LLMs have varying con-320

figurations. For instance, the phi-1.5 model is321

a lightweight LLM with 1.3B parameters and is322

pre-trained on a relatively small amount of tokens323

(150B), indicating less pre-training sufficiency. In324

contrast, the Llama-3-8B model is extensively pre-325

trained on over 15T tokens, significantly more than326

the 2T tokens used for Llama-2-7B. The Qwen1.5327

series offers a variety of models in different sizes,328

all pre-trained on the same corpus, enabling direct 329

comparisons of the effects of scaling up model size. 330

All models are trained with a batch size of 128 331

and incorporate 7 hard negative samples to en- 332

sure fair comparisons of in-domain retrieval accu- 333

racy. All training operations take place on 8xA800 334

(80GB) GPUs. We use the Adam optimizer with 335

an initial learning rate of 3e-4 and linear decay. 336

For training LLM retrievers, we employ LoRA(Hu 337

et al., 2021), which has demonstrated similar ef- 338

ficacy to full-parameter fine-tuning for retrieval 339

tasks (Ma et al., 2023). The in-domain accuracy 340

of each model is evaluated using the MS MARCO 341

development set, comprising 6,980 queries. We 342

use NDCG@10, MRR@10, Recall@10, and Re- 343

call@1000 as evaluation metrics, providing a com- 344

prehensive analysis of in-domain performance. 345

Results and Analysis As presented in Figure 1, the 346

results indicate that model performance generally 347

improves with an increase in parameter numbers. 348

This trend is particularly noticeable within models 349

from the same series. For instance, the Qwen1.5 se- 350

ries demonstrates this progression: Qwen1.5-0.5B 351

model scores 36.7, while the Qwen1.5-32B model 352

achieves 42.6, representing an improvement of 5.9 353

points. This trend suggests that increasing model 354

size is a feasible way to yield better in-domain 355

accuracy. Detailed results are presented in Table 5. 356

Additionally, the results demonstrate that LLM- 357

based retrievers significantly outperform non-LLM 358

retrievers. The performance of Gemma-2B has al- 359

ready surpassed all BERT and T5-based models 360

despite having fewer parameters than the T5-xxl 361

model. This suggests that LLMs’ extensive pre- 362

training and advanced language understanding ca- 363

pabilities offer significant advantages as backbone 364

encoders for dense retrieval. 365

An interesting observation is that smaller mod- 366

els can sometimes marginally outperform larger 367

ones. The Qwen1.5-0.5B model, with fewer pa- 368

rameters, surpasses the Phi-1.5-1.3B model and 369

competes closely with the Phi-2-2.7B model. This 370

performance discrepancy may be attributed to dif- 371

ferences in pre-training sufficiency. The Qwen1.5 372

models benefit from more extensive and diverse 373

pre-training data, totaling over 3 trillion tokens, 374

whereas the Phi models are pre-trained on a smaller 375

amount of high-quality data, with 150 billion to- 376

kens for the Phi-1.5 and 1.4 trillion tokens for 377

the Phi-2. This extensive pre-training enables the 378

Qwen1.5-0.5B model to perform better when fine- 379
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Figure 1: In-domain accuracy (measured by MRR@10)

Figure 2: Data efficiency

tuned for retrieval tasks. A similar conclusion can380

be drawn from the comparison between the Llama-381

3-8B and Llama-2-7B models, as well as between382

LLMs and non-LLMs. Extensive and varied pre-383

training of backbone encoders can significantly en-384

hance in-domain retrieval accuracy, even compen-385

sating for a smaller parameter count.386

4.2 Data Efficiency387

Setting We use checkpoints from models trained388

on MS MARCO for different numbers of steps389

to evaluate their performance on the development390

set, in order to better understand the impact of391

parameter number and pre-training sufficiency on392

data efficiency and convergence speed.393

We compare BERT-large, Qwen1.5-0.5B, and394

Llama-2-7B to explore the impact of data efficiency395

with model parameter number and pre-training396

sufficiency. Notably, BERT-large and Qwen1.5-397

0.5B have similar non-embedding parameter num-398

ber, while Qwen1.5-0.5B is based on decoder ar-399

chitecture and has undergone more extensive pre-400

training.401

Results and Analysis As presented in Figure402

2, Our findings indicate that larger model sizes403

lead to higher data efficiency and faster conver-404

Figure 3: Lengthy retrieval

gence. Specifically, after 100 training steps on MS 405

MARCO, Llama-2-7B outperforms Qwen1.5-0.5B 406

by 5.4 points and BERT-large by 14.4 points. This 407

suggests that with an increase in parameter num- 408

ber, better performance can be achieved with less 409

labeled data. Furthermore, as shown in Table 1, 410

when comparing the relative score difference be- 411

tween 100 steps and the full training of 3700 steps, 412

Llama-2-7B shows a score difference of 8.8 points, 413

which is smaller than the 9.7 points for Qwen1.5- 414

0.5B and 15.3 points for BERT-large. This indi- 415

cates that larger models are able to converge faster. 416

The experiment results also demonstrate that 417

LLMs have better data efficiency compared to 418

non-LLMs, even with similar parameter sizes. 419

For example, after 100 training steps on MS 420

MARCO, Qwen1.5-0.5B outperforms BERT-large 421

by 9 points. Despite having a similar number of 422

parameters, Qwen1.5-0.5B has undergone more 423

extensive pre-training (over 3 trillion tokens com- 424

pared to BERT’s 3.3 billion tokens) and employs a 425

decoder architecture, which enhances its language 426

understanding ability and enables faster conver- 427

gence in the retrieval task where text discriminative 428

ability is crucial. 429
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Figure 4: Zero-shot performance (measured by NDCG@10)

Model Parameter Number NDCG@10 MRR@10 Recall@10

100 Steps

Bert-large 0.3 B 24.6(δ = 15.3) 20.0 40.5
Qwen1.5-0.5B 0.5 B 33.6(δ = 9.7) 27.9 53.2
Llama-2-7B 7 B 39.0(δ = 8.8) 32.4 61.0

Full 3700 Steps

Bert-large 0.3 B 39.9 33.8 60.3
Qwen1.5-0.5B 0.5 B 43.3 36.7 65.5
Llama-2-7B 7 B 47.8 40.8 70.9

Table 1: Model convergence speed.

4.3 Zero-Shot Generalization430

Setting Dense retrieval models typically struggle431

with zero-shot retrieval on unseen data (Ni et al.,432

2021). We investigate the specific benefits that433

LLM-based retrievers can bring to zero-shot gen-434

eralization, focusing on varying model sizes and435

pre-training sufficiency.436

We evaluate all models on 13 zero-shot retrieval437

tasks in the BEIR (Thakur et al., 2021) evalua-438

tion suite, which encompasses a diverse range of439

retrieval tasks and domains, including medical re-440

trieval, financial retrieval, and duplication detec-441

tion. All models are directly transferred for zero-442

shot evaluation on BEIR after being trained on MS443

MARCO. During the evaluations, we set the max-444

imum length of the query to 64 tokens and the445

maximum length of the passage to 256 tokens.446

Results and Analysis The results are shown in447

Figure 4, measured by average performance of448

NDCG@10 across 13 retrieval tasks. LLM retriev-449

ers significantly outperform non-LLM retrievers in450

zero-shot retrieval tasks, indicating that the exten-451

sive knowledge and robust generalization capabili-452

ties of LLMs are highly advantageous for zero-shot453

retrieval. Notably, this improvement is not merely454

a result of increased model size: even the Qwen1.5-455

0.5B model, which has a similar non-embedding456

Model Parameter Number MSMARCO-ID MSMARCO-OOD

Bert-large 0.3 B 40.0 39.3
Qwen1.5-0.5B 0.5 B 43.5 43.6
Qwen1.5-4B 4 B 47.0 47.0
Qwen1.5-14B 14 B 48.9 48.9
Llama-3-8B 8 B 49.6 49.6

Table 2: Unseen instruction comparison. ”ID” means
instructions are seen during training, ”OOD” means the
instructions are unseen during training.

parameter count, demonstrates much better gener- 457

alization (+1.6%) than the BERT-large model. This 458

highlights the potential of LLMs to serve as robust 459

encoders for various retrieval domains. 460

For different configurations of LLMs, model size 461

is the primary factor influencing their generaliza- 462

tion capability. Unlike in-domain accuracy, where 463

both model size and pre-training sufficiency are 464

important, generalization performance is almost 465

directly correlated with the number of parameters. 466

For example, the Qwen-0.5B model, despite bene- 467

fiting from more extensive pre-training, performs 468

worse than the Phi-1.5-1.3B and Phi-2-2.7B mod- 469

els with larger parameter sizes but less pre-training 470

sufficiency. This suggests that larger models, with 471

better capacity, can prevent overfitting to domain- 472

specific retrieval data, resulting in better general- 473

ization to unseen data. 474

4.4 Lengthy Retrieval Generalization 475

Setting Traditional dense retrieval models are con- 476

strained by the maximum input length used during 477

pre-training and retrieval training, while extending 478

this length significantly increases computational 479

costs (Chen et al., 2024). Given that LLMs are 480

pre-trained with longer context windows, we inves- 481

tigate if they can be trained with shorter passage 482

lengths while effectively generalizing to longer 483
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Model Hotpot NQ MSM FiQA NFCorpus SciFact Average

BERT-large 46.8 47.3 40.0 24.3 24.7 55.5 39.8(-1.0)
Qwen1.5-0.5B 59.3 50.5 43.5 33.5 31.8 66.2 47.4(+1.7)
Qwen1.5-4B 63.6 57.7 47.0 39.8 34.8 72.1 52.5(+1.4)
Qwen1.5-14B 69.5 63.0 48.9 45.6 37.0 75.9 56.7(+1.8)
Llama-3-8B 70.9 63.1 49.6 44.8 37.8 75.4 56.8(+3.2)
Qwen1.5-0.5B-Chat 57.5 59.5 43.6 32.8 31.7 65.0 46.7
Qwen1.5-4B-Chat 64.0 58.1 47.2 40.2 36.1 71.3 52.8
Qwen1.5-14B-Chat 69.4 63.5 49.0 44.4 37.1 76.0 56.6
Llama-3-8B-Chat 70.6 63.0 49.6 44.8 38.2 75.5 56.9

Table 3: Instruction-based retrieval performance measured by NDCG@10. The average performance discrepancy is
compared to training without instruction.

Model Hotpot STS MSM Tool QReCC Average

BERT-large 62.1(-2.4) 80.2(+2.7) 38.8(-1.1) 76.6(-5.2) 47.3(-4.1) 61.0(-2.0)
Qwen1.5-0.5B 72.1(-1.5) 80.1(+1.0) 43.7(+0.2) 84.8(-4.8) 50.7(-3.9) 66.3(-1.8)
Qwen1.5-4B 79.8(-0.6) 82.0(+2.2) 46.8(+0.0) 86.1(-4.2) 54.9(-4.4) 69.9(-1.4)
Llama-3-8B 85.7(+0.3) 82.8(+1.3) 48.9(+0.2) 89.9(-2.7) 59.5(-3.3) 73.4(-0.8)

Table 4: Multi-task learning performance measured by NDCG@10. The performance discrepancy is compared to
training on each single task.

lengths during retrieval. We use MS MARCO for484

training and set the maximum query length to 64485

tokens and the maximum passage length to 256486

tokens. All other hyperparameters are aligned with487

those used in Section 4.1.488

For evaluation, we utilize NarrativeQA (Kočiskỳ489

et al., 2018), which requires long context informa-490

tion to accurately retrieve target queries. The eval-491

uation was conducted with maximum lengths rang-492

ing from 256 to 8192 tokens for passages, with the493

goal of thoroughly assessing each model’s length494

generalization capabilities in the retrieval task.495

Results and Analysis The results are illustrated496

in Figure 3. The long context window of LLMs497

improves length generalization compared to BERT.498

When evaluated with a context length of 256 tokens499

on the NarrativeQA Retrieval task, BERT-large out-500

performs Qwen1.5-0.5B by 0.4 points. However,501

with a length of 512 tokens, Qwen1.5-0.5B exceeds502

the performance of BERT-large by 0.9 points. This503

interesting finding demonstrates that LLM retriev-504

ers consistently generalize better with increasing505

input lengths, while non-LLM retrievers like BERT506

struggle with longer inputs and are constrained by507

a 512-token limit unless explicitly extended. De-508

tailed results are presentend in Table 7509

Furthermore, increasing the parameter number510

of LLM retrievers consistently enhances perfor-511

mance with longer inputs. This indicates that scal-512

ing up LLMs is an effective strategy for improving513

lengthy retrieval generalization, obviating the need514

for specific training on longer retrieval inputs.515

4.5 Instruction-Based Retrieval 516

Setting Dense retrieval models often lack flexibil- 517

ity in adapting to varying retrieval intents of users, 518

which is both common and critical in real-world 519

retrieval scenarios (Su et al., 2022). We incorporate 520

instructions into the training of dense retrieval mod- 521

els, aiming to evaluate the instruction comprehen- 522

sion capabilities of models with different backbone 523

encoders. Specifically, we prepare five retrieval 524

instructions and prepend them to queries during 525

training on MS MARCO. We conduct evaluation 526

on six retrieval tasks, including both in-domain 527

and out-of-domain scenarios, to determine whether 528

incorporating instructions can enhance the under- 529

standing of retrieval intent thus improving general 530

performance of different models. The instructions 531

are presented in Figure 5. 532

Results and Analysis As shown in Table 3, train- 533

ing with instructions significantly improves the per- 534

formance of LLM retrievers, whereas for BERT 535

retrievers results in decreased performance. This 536

suggests that LLMs have superior semantic under- 537

standing, enabling them to adjust retrieval objec- 538

tives based on instructions. 539

We evaluate models on MS MARCO (Nguyen 540

et al., 2016) development set using instructions not 541

seen during training. The result is presented in 542

Table 2. These instructions are complex modifi- 543

cations of the training instructions (Figure 5), de- 544

signed to test the models’ robustness. The results 545

show that LLM retrievers exhibit strong robustness 546

to these new instructions, while BERT experience 547

performance degradation due to interference from 548

7



the unseen instructions. This implies that LLMs549

can better utilize their capabilities in real-world550

retrieval scenarios as backbone encoder for dense551

retrieval, offering better customizability and adapt-552

ability to meet diverse user retrieval needs.553

Furthermore, we adopt chat LLMs as backbone554

encoders to investigate if these aligned models555

could better utilize retrieval instructions, the result556

is shown in Table 3. Contrary to expectations, chat557

LLMs do not show further improvements when558

trained and tested under the same setting as base559

models. Thus, given the superior scalability of base560

LLMs across various downstream tasks, the base561

LLMs remain more suitable as backbone encoders562

for dense retrieval models.563

4.6 Multi-Task Learning564

Setting Training a versatile dense retrieval model565

is challenging due to the specific semantic infor-566

mation required by various retrieval tasks, often567

causing mutual interference (Zhang et al., 2023;568

Xiao et al., 2023; Neelakantan et al., 2022). We569

explore the multi-task learning capacity of different570

backbone encoders, which is essential for develop-571

ing robust retrievers.572

Our study encompasses four distinct retrieval573

tasks alongside a text similarity task: 1) ToolLLM574

(Qin et al., 2023): This task evaluates the ability575

of retrievers to identify necessary tools based on576

provided instructions and tool descriptions. Per-577

formance is measured using NDCG@5 on the test578

set. 2) QReCC (Anantha et al., 2020): This task579

involves retrieving relevant knowledge based on580

the concatenation of conversation context and the581

most recent query. Performance is assessed using582

NDCG@3, in line with previous studies (Mao et al.,583

2023). 3) NLI (Bowman et al., 2015): We utilize584

the NLI training set to establish text similarity capa-585

bilities and evaluate models on STS tasks from the586

MTEB (Muennighoff et al., 2022). 4) HotpotQA587

(Yang et al., 2018): This task tests retrieval perfor-588

mance in a multi-hop question-answering scenario.589

5) MS MARCO (Nguyen et al., 2016): This task590

assesses the web search capabilities of different591

models.592

Results and Analysis As shown in Table 4, the593

results demonstrate a clear trend: as model size594

increases, the average performance across the five595

distinct retrieval tasks improves. This indicates596

that larger models exhibit enhanced universality597

and capacity, suggesting their greater potential to598

serve as versatile embedding models in multi-task 599

scenarios. 600

In addition to comparing the absolute perfor- 601

mance of each model across multiple tasks, we con- 602

ducted experiments contrasting the performance 603

of models trained on each individual task versus 604

joint multi-task training. Table 4 presents the rel- 605

ative performance discrepancy. We observed that 606

multi-task training results in a relative performance 607

decrease compared to single-task training across all 608

tasks. This aligns with the hypothesis proposed by 609

(Neelakantan et al., 2022), suggesting that certain 610

retrieval tasks might have inherently conflicting 611

definitions, such as search and sentence similarity 612

tasks. Notably, the performance decrease dimin- 613

ishes as model size increases, indicating that larger 614

models might be capable of learning the intrinsic 615

relationships and distinctions between tasks during 616

multi-task training. This capability potentially al- 617

lows these models to narrow the performance gap 618

between multi-task and single-task training, and in 619

some cases even achieve improvements over single- 620

task training. This suggests that LLMs with more 621

parameter numbers have the potential to serve as 622

versatile general-purpose retrievers across multiple 623

retrieval tasks. 624

5 Conclusions 625

In this paper, we conduct a comprehensive empir- 626

ical investigation into the benefits and configura- 627

tions of large language models (LLMs) as back- 628

bone encoders for dense retrieval tasks. Our focus 629

is on comparing LLMs with non-LLMs and ana- 630

lyzing the impact of various LLM configurations, 631

such as parameter count, pre-training sufficiency, 632

and alignment processes. Our study highlights the 633

significant advantages of utilizing LLMs as back- 634

bone encoders for dense retrieval tasks. We find 635

that increasing the parameter count and ensuring 636

sufficient pre-training of backbone encoders en- 637

hance in-domain accuracy. Additionally, adopt- 638

ing larger models consistently yields performance 639

gains in zero-shot retrieval generalization, lengthy 640

retrieval generalization, and multi-task learning. 641

These insights provide a foundation for future re- 642

search aimed at optimizing dense retrieval mod- 643

els by balancing model size and pre-training suf- 644

ficiency of backbone LLMs to achieve superior 645

performance across diverse retrieval scenarios. 646
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6 Limitation647

While our study provides valuable insights into the648

benefits and configurations of LLMs as backbone649

encoders for dense retrieval tasks, several limita-650

tions should be considered: Firstly, some experi-651

ments lack comparisons with other models in the652

same series, such as in data efficiency and multi-653

task performance. Secondly, there are still some ca-654

pability dimensions of retrieval models that haven’t655

been examined, such as multilingual retrieval and656

robustness against noisy data. Additionally, cer-657

tain characteristics of LLMs, such as whether they658

use unidirectional or bidirectional attention mech-659

anisms, and the overlap between pre-training data660

and downstream retrieval task data, have not been661

explored. Addressing these aspects in future stud-662

ies could provide a more complete, general conclu-663

sion.664

7 Ethical consideration665

Our research explores the use of various Large666

Language Models (LLMs) as backbone encoders667

for dense retrieval tasks. Despite undergoing ad-668

ditional fine-tuning in various experiments, these669

models retain ethical and social risks inherent in670

their pretraining data. Notably, open-source LLMs671

may incorporate private or contentious data dur-672

ing the training phase, thereby raising additional673

ethical concerns.674

References675

Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,676
Shayne Longpre, Stephen Pulman, and Srinivas677
Chappidi. 2020. Open-domain question answering678
goes conversational via question rewriting. arXiv679
preprint arXiv:2010.04898.680

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,681
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei682
Huang, et al. 2023. Qwen technical report. arXiv683
preprint arXiv:2309.16609.684

Parishad BehnamGhader, Vaibhav Adlakha, Marius685
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and686
Siva Reddy. 2024. Llm2vec: Large language models687
are secretly powerful text encoders. arXiv preprint688
arXiv:2404.05961.689

Stella Biderman, Hailey Schoelkopf, Quentin Gregory690
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-691
lahan, Mohammad Aflah Khan, Shivanshu Purohit,692
USVSN Sai Prashanth, Edward Raff, et al. 2023.693
Pythia: A suite for analyzing large language mod-694
els across training and scaling. In International695

Conference on Machine Learning, pages 2397–2430. 696
PMLR. 697

Samuel R Bowman, Gabor Angeli, Christopher Potts, 698
and Christopher D Manning. 2015. A large annotated 699
corpus for learning natural language inference. arXiv 700
preprint arXiv:1508.05326. 701

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu 702
Lian, and Zheng Liu. 2024. Bge m3-embedding: 703
Multi-lingual, multi-functionality, multi-granularity 704
text embeddings through self-knowledge distillation. 705
arXiv preprint arXiv:2402.03216. 706

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 707
Kristina Toutanova. 2018. Bert: Pre-training of deep 708
bidirectional transformers for language understand- 709
ing. arXiv preprint arXiv:1810.04805. 710

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, 711
Weihang Su, Jia Chen, and Yiqun Liu. 2024. 712
Scaling laws for dense retrieval. arXiv preprint 713
arXiv:2403.18684. 714

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 715
César Teodoro Mendes, Allie Del Giorno, Sivakanth 716
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 717
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 718
you need. arXiv preprint arXiv:2306.11644. 719

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 720
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 721
and Weizhu Chen. 2021. Lora: Low-rank adap- 722
tation of large language models. arXiv preprint 723
arXiv:2106.09685. 724

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 725
Brown, Benjamin Chess, Rewon Child, Scott Gray, 726
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 727
Scaling laws for neural language models. arXiv 728
preprint arXiv:2001.08361. 729

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 730
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Model Dimension NDCG@10 MRR@10 R@10 R@1000

BERT-base 768 37.5 31.6 57.4 95.2
BERT-large 1024 39.9 33.8 60.3 96.0
T5-base 768 40.1 33.7 61.5 97.3
T5-xl 2048 42.3 35.8 64.0 98.3
T5-xxl 4096 44.2 37.6 66.2 98.6
Phi-1.5-1.3B 2048 40.6 34.1 62.2 98.0
Phi-2-2.7B 2560 43.3 36.6 65.8 98.6
Gemma-2B 2048 46.8 39.8 70.1 99.2
Gemma-7B 3072 48.7 41.7 72.1 99.4
Llama-2-7B 4096 47.8 40.8 70.9 99.4
Llama-3-8B 4096 49.0 42.1 71.9 99.5
Llama-2-13B 5120 48.7 42.0 71.4 99.5
Qwen1.5-0.5B 1024 43.3 36.7 65.5 98.2
Qwen1.5-4B 2048 46.8 40.0 69.7 99.2
Qwen1.5-14B 5120 48.3 41.3 71.5 99.4
Qwen1.5-32B 5120 49.5 42.6 72.7 99.5
Qwen1.5-0.5B-Chat 1024 43.3 36.8 65.1 98.1
Qwen1.5-4B-Chat 2048 47.0 40.1 70.0 99.2
Qwen1.5-14B-Chat 5120 48.6 41.5 71.8 99.4
Llama-3-8B-Chat 4096 48.7 41.8 71.6 99.4

Table 5: Detailed result of in-domain accuracy on MS MARCO.

Model ArguAna ClimateFEVER DBPedia FEVER FiQA2018 HotpotQA NFCorpus NQ Quora SCIDOCS SciFact Touche2020 TRECCOVID Avg

Bert-base 42.9 19.9 30.3 69.4 24.4 50.2 25.3 42.3 84.8 13.1 50.6 21.8 57.4 40.9
Bert-large 43.1 21.7 31.9 68.1 26.4 51.4 26.7 46.4 85.7 13.8 54.7 20.7 59.2 42.2
t5-v1 1-xxl 44.0 24.6 35.2 63.4 36.1 57.5 31.4 50.3 85.1 15.1 62.0 22.7 52.9 44.6
Phi-v1.5-1.3B 45.4 26.3 28.0 64.9 32.1 54.5 31.7 42.5 86.6 16.2 65.9 23.6 65.0 44.8
Phi-v2-2.7B 49.4 31.2 34.4 70.7 38.4 62.2 36.5 50.8 86.9 18.5 67.2 23.3 66.1 48.8
Gemma-2B 47.9 31.5 40.2 72.9 39.0 61.9 36.0 52.5 84.8 18.1 72.4 18.7 55.7 48.5
Gemma-7B 49.9 31.3 42.8 73.5 44.0 67.3 38.1 60.4 86.9 18.7 74.7 21.5 58.3 51.2
Llama-2-7B 48.7 31.2 44.4 76.2 42.3 68.1 36.2 57.3 86.8 18.3 73.8 19.6 47.8 50.0
Llama-2-13B 57.4 30.7 43.9 70.4 45.6 67.7 37.1 60.9 85.8 17.7 74.6 21.8 55.0 51.4
Llama-3-8B 56.1 30.8 41.6 72.7 41.7 66.0 35.2 56.4 85.8 17.8 74.0 20.6 56.9 50.4
Qwen1.5-0.5B 46.0 26.6 32.9 68.1 31.9 56.6 29.8 43.4 84.6 15.8 65.4 13.5 54.7 43.8
Qwen1.5-4B 50.2 30.5 40.5 72.9 39.4 63.7 35.4 54.3 85.3 17.5 70.8 18.3 58.6 49.0
Qwen1.5-14B 56.5 30.1 43.0 73.4 45.0 64.4 36.4 59.3 85.7 19.3 74.2 21.9 60.8 51.5
Qwen1.5-32B 57.5 31.3 44.5 75.3 47.9 68.0 37.1 59.7 86.0 18.8 75.6 24.5 60.3 52.8

Table 6: Detailed result of zero-shot retrieval generalization.

Model 256 512 1024 2048 4096 8192
BERT-large 18.0 18.1 - - - -
Qwen1.5-0.5B 17.6 19.0 20.1 21.1 37.1 44.9
Qwen1.5-4B 22.8 23.9 25.4 27.1 49.1 54.9
Qwen1.5-7B 24.3 26.4 27.8 28.2 52.3 55.9
Qwen1.5-32B 26.9 28.4 28.7 30.8 54.8 59.0
Llama3-8B 28.4 29.2 29.9 30.4 53.4 57.9

Table 7: Detailed result of lengthy retrieval on narrativeqa with varying maximum input passage length.

11



Figure 5: Instrctions used in instruction-based retrieval.

12


