
FEAT-KD: Learning Concise Representations for Single and Multi-Target
Regression via TabNet Knowledge Distillation

Kei Sen Fong 1 Mehul Motani 1 2

Abstract

In this work, we propose a novel approach
that combines the strengths of FEAT and Tab-
Net through knowledge distillation (KD), which
we term FEAT-KD. FEAT is an intrinsically
interpretable machine learning (ML) algorithm
that constructs a weighted linear combination of
concisely-represented features discovered via ge-
netic programming optimization, which can often
be inefficient. FEAT-KD leverages TabNet’s deep-
learning-based optimization and feature selection
mechanisms instead. FEAT-KD finds a weighted
linear combination of concisely-represented, sym-
bolic features that are derived from piece-wise dis-
tillation of a trained TabNet model. We analyze
FEAT-KD on regression tasks from two perspec-
tives: (i) compared to TabNet, FEAT-KD signifi-
cantly reduces model complexity while retaining
competitive predictive performance, effectively
converting a black-box deep learning model into
a more interpretable white-box representation, (ii)
compared to FEAT, our method consistently out-
performs in prediction accuracy, produces more
compact models, and reduces the complexity of
learned symbolic expressions. In addition, we
demonstrate that FEAT-KD easily supports multi-
target regression, in which the shared features
contribute to the interpretability of the system.
Our results suggest that FEAT-KD is a promising
direction for interpretable ML, bridging the gap
between deep learning’s predictive power and the
intrinsic transparency of symbolic models.

1Department of Electrical and Computer Engineering, National
University of Singapore, Singapore. 2N.1 Institute for Health,
Institute for Digital Medicine (WisDM), Institute of Data Sci-
ence, National University of Singapore, Singapore. Correspon-
dence to: Kei Sen Fong <fongkeisen@u.nus.edu>, Mehul Motani
<motani@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The representation of data is an important factor for the pre-
dictive performance of machine learning (ML) algorithms
(Bengio et al., 2013) and is a key reason why deep learning-
based approaches, which possess large representational ca-
pacity are among the top-performing algorithms in many
applications (Hinton, 2023). In practice, certain application
areas, such as healthcare, demand more than just predictive
performance – the explainability of the learned represen-
tation becomes a precondition for assessing an ML algo-
rithm’s suitability for the problem (Di Martino & Delmastro,
2023). This is why low-complexity ML algorithms are still
commonly used in various fields where it is important to
understand and explain a model’s predictions (Habehh &
Gohel, 2021). While some researchers have attempted to
create post-hoc explanations to black-box models, these are
often not sufficient, and pale in comparison to white-box
models with concise representations that provide intrinsic
explainability (La Cava et al., 2023; Bordt et al., 2022). In
these applications, intrinsic explainability is superior be-
cause it provides immediate, transparent insights, fostering
accountability in high-stakes domain. This is unlike post-
hoc explainability which typically relies on approximations
that may misrepresent a model’s true decision process. Ad-
ditionally, intrinsically explainable models are not limited
in their ability to leverage post-hoc techniques as well.

FEAT (Feature Engineering Automation Tool) is an ML
algorithm that provides a unique white-box model structure
with concise representations that provides intrinsic explain-
ability (La Cava et al., 2019). FEAT finds a weighted linear
combination of concisely-represented features that are dis-
covered via genetic programming. To illustrate, consider
ŷ(x) = 0.3(x1 × x2) + 0.5(x3 ÷ x4

2), where ŷ(x) is the
output and xi are the features. Here, the two concisely-
represented features are x1 × x2 and x3 ÷ x4

2, which has
a similar structure to popular indicators, such as the body
mass index, mass ÷ height2 (Keys et al., 1972). FEAT pos-
sesses similar interpretability that linear regression models
have, in terms of decomposing the output predictions into in-
dependent contributions from features, but allows for more
complex features to better fit the dataset. The performance
gain more than compensates for the slight decrease in inter-

1



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Figure 1: FEAT-KD performs knowledge distillation on an already-trained-TabNet to obtain concisely-represented features.
For each ‘Step’ in TabNet (see dotted boxed ‘Step 1’, ‘Step 2’), the knowledge distillation process takes the top original
features selected by the masks in TabNet (e.g., x3, x4) and uses these subset of original features to discover a concisely-
represented feature (e.g., x3 ÷ x4

2). This is done via a non-genetic-programming exhaustive search symbolic regression
algorithm. In notations we will introduce later in Section 2.1, the output of FEAT-KD here is ŷ(x) = β̂1ϕ1 + β̂2ϕ2, where
β̂1 = 0.3, ϕ1 = x1 × x2, β̂2 = 0.5, ϕ2 = x3 ÷ x4

2.

pretability compared to vanilla linear regression since the
resultant model is still intrinsically explainable (La Cava
et al., 2023). Thus, FEAT has become a first-class algorithm
for real-world applications that values intrinsic ‘white-box’
explainability over post-hoc explanations.

To enhance FEAT, we are motivated to couple it with deep-
learning-based optimization (such as TabNet) which is well-
known and has been successful for a wide range of learning
problems. Recent evidence has also shown that genetic pro-
gramming, which FEAT uses, can be grossly inefficient in
symbolic tasks (Kronberger et al., 2024; Fong & Motani,

2023), which motivates research into deep-learning-based
optimization. In this work, we propose FEAT-Knowledge
Distillation (FEAT-KD), which finds a weighted linear com-
bination of concisely-represented, symbolic features that
are derived from piece-wise distillation of a trained TabNet
model. In other words, we train TabNet models for regres-
sion tasks and perform knowledge distillation on pieces of
the TabNet model to convert it into the same model struc-
ture that FEAT produces: a weighted linear combination of
concisely-represented features (see Figure 1 for a general
overview and Table 1 for an example of TabNet’s output).

2



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 1: FEAT-KD Example for Multi-Target Regression: Each target in the regression problem (e.g., atp1d dataset, that
has 6 targets) is predicted using a weighted linear combination of the same 6 shared concisely-represented features, ϕ1 to ϕ6.
The weights associated with each feature, β̂1 to β̂6 are shown here as illustration.

Concisely-represented Weight values β̂ for the n-th target:

feature n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

ϕ1 = (x297)
x297 × x119 β̂1 = 0.00329 -0.0153 -0.00938 -0.00958 0.00499 -0.01

ϕ2 = (x297 + 1.03)× x119 β̂2 = 0.0378 -0.0496 0.0308 0.00413 0.0146 -0.032
ϕ3 = ((x172)

x269)−1.49 β̂3 = 1.17E-05 3.72E-05 1.56E-08 5.69E-06 1.06E-05 4.98E-06
ϕ4 = (−1.33 + x269)

0.0489 β̂4 = 0.0818 0.938 0.166 0.0231 0.238 -0.0254
ϕ5 = (x182 − 0.809)0.106 β̂5 = 0.0482 0.302 0.554 0.52 0.175 0.55
ϕ6 = (0.856 + x252)× x182 β̂6 = 0.248 0.194 0.159 0.198 0.198 0.232

The main contributions of the paper are as follows:

1. We propose FEAT-Knowledge Distillation (FEAT-KD),
which finds the same model structure as FEAT (i.e., a
weighted linear combination of concisely-represented, sym-
bolic features), but instead of discovering these features via
genetic programming, these features are derived from piece-
wise knowledge distillation of a trained TabNet model.
2. We demonstrate across a large variety of datasets (inclu-
sive of the regression datasets used in the original TabNet
work), that in comparison to TabNet (a deep learning model),
FEAT-KD (a symbolic model) reduces TabNet into a concise
model which achieves competitive performance.
3. We demonstrate across a large variety of datasets (inclu-
sive of the regression datasets used in the original FEAT
work), that FEAT-KD consistently outperforms FEAT and
learns models with better prediction performance, smaller
size and less complex primitive symbols. In addition, we
demonstrate that FEAT-KD easily supports multi-target re-
gression, in which the shared features contribute to the in-
terpretability of the system.

2. Related Works
2.1. FEAT (Feature Engineering Automation Tool)

FEAT (La Cava et al., 2019) is interested in the task of re-
gression, where the goal is to build a predictive model ŷ(x) :
Rd → R using N paired examples T = {(xi, yi)}Ni=1,
x ∈ Rd, y ∈ R. Note that x is scaled to zero mean, unit-
variance. FEAT uses the fixed form

ŷ(x) = ϕ(x)T β̂, (1)

where ϕ = [ϕ1, . . . , ϕm]
T are m concisely-represented fea-

tures with their respective coefficients β̂ = [β̂1, . . . , β̂m]T .
Each concisely-represented feature, ϕi(x) : Rd → R,
where i ∈ {1, 2, . . . ,m}, is constructed using a fixed pre-
defined primitive symbol set, given in Table 2. FEAT dis-
covers ŷ (more specifically, ϕ) via genetic programming.
The genetic programming approach creates a random initial

Table 2: Primitive functions and terminals used to develop
the concise representations in FEAT.

Parameter Value
Continuous functions +,−, ∗, /, 2, 3,√, sin, cos, exp, log,

exponent, logit, tanh, gauss, relu
Boolean functions and, or, not, xor, =, <,≤, >,≥
Terminals x1, x2 . . . , xd, constants

population of candidate solutions for ŷ, which then undergo
a selection process, and the selected solutions undergo vari-
ations (e.g., crossover, mutation) and the varied solutions
compete to survive. This process of selection, variation and
survival repeats until a terminal condition is met, most fre-
quently determined by the maximum number of generations
of evolution defined by the user.

In FEAT, the selection and survival of candidate solutions
for ŷ are done via multi-objective selection and survival
techniques which considers two key measurements of each
candidate solution: 1). mean squared error of ŷ against the
true labels, y, 2). complexity, which is computed by taking
a weighted summation of user-defined complexity scores to
each primitive symbol (La Cava et al., 2019).

Two other variants of FEAT exist (La Cava et al., 2019).
Both aim to increase the disentanglement between the
concisely-represented features by adding a third objective.

1. FEAT-Corr, which additionally minimizes the average
squared Pearson’s correlation among features of ϕ:

Corr(ϕ) =
1

m(m− 1)

∑
ϕi,ϕj∈ϕ,i̸=j

(
cov (ϕi, ϕj)

σ (ϕi)σ (ϕj)

)2

.

2. FEAT-CN, which additionally minimizes the condition
number (CN) of the solutions:

CN(ϕ) =
µmax(Φ)

µmin(Φ)
,

3



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

where Φ is the N ×m representation matrix and µmax and
µmin are the largest and smallest singular values of Φ.

In this work, we keep the model structure in (1), but propose
to move away from genetic programming and utilize deep-
learning-based optimization, which is well-known and has
been successful for a wide range of learning problems.

2.2. TabNet

TabNet (Arik & Pfister, 2021) is a deep tabular data learn-
ing model that can be used for regression. In regression
tasks, TabNet demonstrates state-of-the-art performance
(Borisov et al., 2022). TabNet uses a sequential attention
mechanism that allows the model to focus on different sub-
sets of features at each decision ‘Step’, mimicking decision
trees’ while benefiting from neural networks’ representa-
tional power. By utilizing sparse feature masks that guide
the network to attend to specific features, TabNet simultane-
ously performs feature selection and learning.

In the context of this paper (i.e., knowledge distillation to ob-
tain a model structure as shown in (1)), there are three main
reasons for selecting TabNet among other deep learning
methods for tabular data:

1. TabNet has a similar model structure as (1): ŷ′(x) =

φ(x)T γ̂, where φ =
[
φ1, . . . , φNd×Nsteps

]T
are the ex-

tracted transformed features with their respective coeffi-
cients γ̂ = [γ̂1, . . . , γ̂Nd×Nsteps

]T , and Nd is the dimension
of the output of the ReLU unit in each ‘Step’ and Nsteps are
the number of ‘Step’ (see an example of ‘Step 1’ and ‘Step
2’ in Figure 1). If we convert φ into concisely-represented
symbolic features, we can obtain the same interpretable
structure that FEAT has, which we discuss later.
2. TabNet has sparse learnable feature masks, which en-
courages disentanglement between the transformed features
discovered in each ‘Step’ (see Figure 1). The features se-
lected by the masks in each ‘Step’ inform us of the main
features utilized by the ReLU unit at each ‘Step’.
3. TabNet demonstrates the top prediction performance
among state-of-the-art deep learning methods for tabular
data. (Borisov et al., 2022).

2.3. Knowledge Distillation

Knowledge distillation refers to model compression tech-
niques where a smaller student model is trained to replica-
tion the behavior of a larger, more complex teacher model
(Hinton et al., 2015). In this work, we consider a specific
case of knowledge distillation with the objective of com-
pressing pieces of a deep learning model into symbolic
concisely-represented features to form a symbolic model. A
naive approach would be to collect input-output data from
the entire trained deep learning model and run symbolic
regression (SR) algorithms, which are a class of algorithms

that discover equations from raw data, on this dataset. How-
ever, the search space of possible equations is large, thus,
SR algorithms perform poorly on such a naive approach.

In prior SR work, there has been success in distilling a graph
neural network for interacting particle systems (Cranmer
et al., 2020; Lemos et al., 2023). In those works, trained
graph neural networks were separated into smaller pieces
which are then approximated by concise equations. The
approximation is done by collecting input-output data from
these pieces, then utilizing SR algorithms to find equations
that best fit these data. In our work, we modify the idea and
perform knowledge distillation on pieces of TabNet via an
exhaustive search of short, and hence interpretable, equa-
tions to obtain a knowledge distilled TabNet. To perform
the exhaustive search, we utilize DistilSR (Fong & Motani,
2023), an exhaustive search algorithm that demonstrates
the best performance for recovering short equations and
outperformed state-of-the-art SR algorithms. Note that Dis-
tilSR does not use genetic programming or evolutions, it is
a deterministic brute-force search with computational cost
of approximately O(dl), where d is the number of unique
terminals and symbols, and l is the expression length.

2.4. Multi-Target Regression

Multi-target regression (MTR) extends the traditional single-
target regression approach by predicting multiple continu-
ous outcomes simultaneously, addressing the limitations of
independently modeling each target. Unlike running single-
target regression multiple times, MTR leverages the shared
features and underlying correlations between targets. This
is particularly important in complex real-world applications
such as finance (Santana et al., 2019; da Silva et al., 2018),
and healthcare (Jain et al., 2024), where the relationships
between outputs can help develop more accurate models.
By using shared features, MTR not only improves predic-
tion accuracy but also enhances the interpretability of the
entire predictive system, since the size of the model can be
reduced by using shared features (see Table 1).

3. Methodology
FEAT-KD finds a weighted linear combination of concisely-
represented, symbolic features that are derived from piece-
wise distillation of a trained TabNet model. We train TabNet
models for regression tasks and perform knowledge distil-
lation on pieces of the TabNet model to convert the entire
TabNet into the same model structure that FEAT produces:
a weighted linear combination of concisely-represented fea-
tures. The FEAT-KD algorithm has 5 main phases:

Phase 1, Training TabNet: Fit a TabNet regressor to the
dataset, that learns a function ŷ′(x) = φ(x)T γ̂ : Rd → R
using N paired examples T = {(xi, yi)}Ni=1.

4



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Phase 2, Extracting TabNet Transformed Features: From
the trained TabNet model, extract Nd×Nsteps transformed-
features-datasets (each of the Nsteps ‘Step’ in Tabnet pro-
duces Nd-dimension output). We denote these datasets as
Tj = {(xi, φj(xi))}Ni=1 ,∀j ∈ Nd ×Nsteps.

Phase 3, Extracting TabNet Masks for Feature Selection:
For each ‘Step’ in TabNet (see Figure 1), extract the mask
matrix and select the 3 features that is masked the least on
average (across datapoints), i.e., most significant 3 features.
Modify Tj ,∀j ∈ Nd × Nsteps to only include the top 3
features of the mask that corresponds to the ‘Step’ that the
transformed-features were obtained from.

Phase 4, Knowledge Distillation of TabNet ‘Step’: Train
DistilSR (Fong & Motani, 2023), a non-evolutionary-based
SR algorithm that performs exhaustive search of equations,
on Tj ,∀j ∈ Nd×Nsteps to generate Nd×Nsteps concisely-
represented features, ϕ =

[
ϕ1, . . . , ϕNd×Nsteps

]T
. Note

that here, though the mean squared error (MSE) of the candi-
date equation against the transformed-features is reasonable,
we chose to use the affine-invariant MSE (AFI-MSE) in
anticipation of Phase 5 where we know the distilled features
obtained here will undergo a natural affine transformation
in the linear regressor. AFI-MSE is a metric designed to
measure the discrepancy between two vectors, y and ŷ, after
optimally aligning ŷ with y through an affine transforma-
tion. Specifically, AFI-MSE minimizes the traditional mean
squared error by determining the best possible linear scaling
and translation of ŷ in the form a + b × ŷ, where a and b
are computed using least squares optimization to minimize:

AFI-MSE(y, ŷ) =
1

N

N∑
i=1

(yi − (a+ b× ŷ))
2
. (2)

AFI-MSE is especially suitable for our purpose as it evalu-
ates the similarity of two vectors, providing a more robust
and invariant measure of fit. Consider a simple example
with true outputs y = [0, 12, 28] and inputs x1 = [1, 2, 3]
and x2 = [4, 5, 6]. A candidate equation x1 × x2, produces
predictions [4, 10, 18], which under traditional MSE yield
a relatively high value that would lead to the equation not
being picked. However, when using AFI-MSE, which first
optimally scales and shifts the predictions to best match
the true values, we can find parameters a and b (specifi-
cally, a = −8, b = 2) such that the adjusted prediction
−8 + 2 × (x1 × x2) exactly equals y, resulting in a zero
error. Thus, AFI-MSE recognizes that while the candidate’s
predictions differ in scale and shifts, their underlying pat-
tern aligns perfectly with the true values, highlighting the
candidate’s potential as a good fit despite the initial magni-
tude mismatch. This is suitable particularly for FEAT-KD
because in ‘Phase 5’, this equation will be scaled and shifted
anyway because it is being used as a feature in linear regres-
sion. This also effectively simplifies the search space.

Table 3: Primitive functions and terminals used to develop
concise representations in FEAT-KD.

Parameter Value
Continuous functions +,−, ∗, /, exponent
Terminals x1, x2 . . . , xd, constants

Finally, based on recent criticism and insights on explain-
ability and interpretability in SR, we modified the set of
primitive functions and terminals to exclude complex sym-
bols that reduces explainability (Petersen et al., 2019) and
restricted the length of the equation to be less than or equal
to 5 symbols, in-line with the empirically researched limits
of the number of cognitive concepts (Trazzi & Yampolskiy,
2020) and symbols (Matricciani et al., 2019) the mind can
retain.

Phase 5, Refitting of Knowledge Distilled Features: Per-
form simple linear regression on the concisely-represented
features obtained from the previous ‘Step’ and the output,
{(ϕ(xi), yi)}Ni=1, to obtain β̂ in ŷ(x) = ϕ(x)T β̂.

Referring to Figure 1, Phase 1 is illustrated by the trained
TabNet. Phase 2 is illustrated by extracting the transformed
features from the ReLU units in the dotted boxed, e.g., ‘Step
1’. Phase 3 is illustrated by the mask obtained from ‘Step
1’, in which the features x1, x2 are selected (least masked)
from the mask. This means that in the next phase, the
knowledge distillation of ‘Step 1’ will only be done with
x1, x2 exclusively. Note that two features are selected in the
diagram, but in our experiments (as stated above), we select
the top three features instead. Phase 4 utilizes DistilSR
(minimizing the objective in (2)) to produce the equation,
x1×x2, via exhaustive search of all possible equations with
a maximum of 5 symbols built from x1, x2 and the other
primitive symbols in Table 3. Phase 5 combines all the
concisely-represented features through linear regression, to
produce the model presented by FEAT-KD.

4. Hyperparameter Details and Tuning
In the experiments, to create and distill models which are
more interpretable, we chose to distill TabNet models with
Nd = 2, Nsteps = 3, which creates a small set of Nd ×
Nsteps = 6 concisely-represented features. We obtained
these values via preliminary experiments on a small subset
of the data to prevent data leakage (e.g., target 1 of atp1d).
The criterion for tuning is based on the test set R2 score
performance. We also enabled early-stopping, with 1000
max epochs and a patience of 50.

For DistilSR, which was used to convert ‘Step’ in TabNet
into symbolic equations, we considered recent criticism
and insights on explainability and interpretability in SR
and modified the set of primitive functions (see Table 2)

5



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

and terminals to exclude complex symbols that reduces
explainability (Petersen et al., 2019). We also restricted
the length of the equation to be less than or equal to 5
symbols, in-line with the empirically researched limits of
the number of cognitive concepts (Trazzi & Yampolskiy,
2020) and symbols (Matricciani et al., 2019) the mind can
retain. Thus, the hyperparameters for DistilSR were to allow
for a max length of 5 and primitive symbol set as shown in
Table 2.

Table 4: Varying Nd, keeping Nsteps = 3.

Nd R2 score

2 0.652 (0.074)
3 0.637 (0.053)
4 0.528 (0.215)

In Phase 1 of FEAT-KD, by varying Nd and keeping
Nsteps = 3, we observed that increasing Nd led to over-
fitting, which reduced the R2 score on the test set despite
increasing the learning capacity of the model (see Table 4).

Table 5: Varying Nsteps, keeping Nd = 2.

Nsteps R2 score

1 0.619 (0.062)
2 0.647 (0.047)
3 0.652 (0.074)
4 0.509 (0.19)

In Phase 1 of FEAT-KD, by varying Nsteps and keeping
Nd = 2, we observed that increasing Nsteps led to over-
fitting as well, which reduced the R2 score on the test set
despite increasing the learning capacity of the model (see
Table 5). However, decreasing Nsteps created models that
are too simple and that may not be able to capture the com-
plexity of the dataset as well as models with higher Nsteps.

Table 6: Varying both Nd, Nsteps, while Nd ×Nsteps = 6.

Nsteps Nd R2 score

2 3 0.634 (0.062)
3 2 0.652 (0.074)
6 1 0.623 (0.079)

Since we decided on having a total of 6 concisely-
represented, symbolic features, we also experimented vary-
ing both Nd, Nsteps, keeping Nd ×Nsteps = 6. Ultimately,
Nd = 2, Nsteps = 3 still had the best empirical perfor-
mance on the test set (see Table 6).

5. Results and Discussion
To evaluate FEAT-KD, we performed a large variety of ex-
periments taking datasets used in (i) the original TabNet
paper (Arik & Pfister, 2021), (ii) the original FEAT paper
(La Cava et al., 2019), (iii) multi-target regression bench-
marks (Spyromitros-Xioufis et al., 2016).

5.1. Datasets and Experiment Details

In this work, we can further group the datasets into two
broad categories: single-target regression and multi-target
regression. For single-target regression: from the original
TabNet paper (Arik & Pfister, 2021), we used 6 datasets,
Syn1 to Syn6 (Chen et al., 2018), and the Rossmann store
sales dataset (Kaggle, 2019). From the original FEAT paper
(La Cava et al., 2019), we used 8 PMLB datasets {bodyfat,
cpu act 197, cpu act 573, cpu small, house 8L, houses,
pm10, puma8NH} (Romano et al., 2021).

For multi-target regression: from the original TabNet paper
(Arik & Pfister, 2021), we used the SARCOS dataset (Vi-
jayakumar & Schaal, 2000). From multi-target regression
benchmarks (Spyromitros-Xioufis et al., 2016), we used 5
benchmark datasets {atp1d, enb, oes 10, rf1, scm1d}.

All results were averaged across 100 randomly seeded
60-20-20 train-validation-test splits. We evaluate FEAT-
KD (ours), FEAT, FEAT-Corr, FEAT-CN and TabNet, and
in addition to the standard deviation, we perform the
Wilcoxon signed-rank test (Conover, 1999) with Bonferroni-
adjustment to account for the increased probability of ob-
serving rare events from multiple hypotheses (Dunn, 1961).
The simplicity of the symbolic expressions has been ar-
gued to be interpretable via disentanglement (La Cava
et al., 2019) and also validated by clinicians in studies
which uses FEAT structure (i.e., see (1)) (La Cava et al.,
2023). In the experiments, to create and distill models
which are more interpretable, we chose to distill TabNet
models with Nd = 2, Nsteps = 3, which creates a small
set of Nd ×Nsteps = 6 concisely-represented features. In-
terpretability is measured in proxy by model size, which
is supported by works such as those by Lage et al. (2019);
Abdul et al. (2020). Specifically, we define the model size
to be total number of functions and terminals. For example,
x1 × x2 has a model size of 3, x1/4 + 0.62x1 has a model
size of 7.

Additional Details in Appendix. More information on
datasets, evaluation metric, computational resources and
timing are provided in the Appendix.

5.2. Single-Target Regression

FEAT-KD has the best average prediction performance
among symbolic model evaluated. We tabulate the results

6



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 7: Single-Target Regression: R2 score (Standard Deviation [SD] in brackets) of FEAT-KD, FEAT variants and
TabNet, averaged across 100 randomly seeded 60-20-20 train-validation-test splits on 6 synthetic datasets from Chen et al.
(2018) and the Rossmann store sales dataset (Kaggle, 2019) used in the original TabNet paper (Arik & Pfister, 2021), and 8
PMLB datasets (Romano et al., 2021) used by La Cava et al. (2019). Higher is better, best white-box performance in bold.

White-box Black-box

Dataset FEAT-KD (Ours) FEAT FEAT-Corr FEAT-CN TabNet

Syn1 0.941 (0.012) 0.937 (0.0031) 0.935 (0.0042) 0.936 (0.0036) 0.993 (0.0014)
Syn2 0.953 (0.0037) 0.936 (0.0042) 0.934 (0.0038) 0.935 (0.0041) 0.996 (0.0017)
Syn3 0.949 (0.0063) 0.938 (0.0037) 0.938 (0.0037) 0.937 (0.0039) 0.991 (0.0018)
Syn4 0.939 (0.0089) 0.93 (0.0045) 0.928 (0.0048) 0.929 (0.0042) 0.987 (0.0034)
Syn5 0.951 (0.0036) 0.933 (0.0042) 0.932 (0.0041) 0.932 (0.0043) 0.991 (0.0027)
Syn6 0.943 (0.0095) 0.931 (0.0032) 0.93 (0.0031) 0.929 (0.0029) 0.991 (0.0021)

Rossmann Store Sales 0.68 (0.0096) 0.679 (0.0096) 0.681 (0.01) 0.679 (0.009) 0.685 (0.0096)

bodyfat 0.987 (0.0058) 0.973 (0.023) 0.965 (0.0032) 0.974 (0.024) 0.968 (0.014)
cpu act 197 0.976 (0.0014) 0.963 (0.004) 0.962 (0.0039) 0.961 (0.0038) 0.982 (0.0013)
cpu act 573 0.976 (0.0014) 0.963 (0.0041) 0.955 (0.0032) 0.961 (0.0034) 0.982 (0.0013)
cpu small 0.968 (0.0015) 0.956 (0.0032) 0.955 (0.0032) 0.955 (0.0028) 0.973 (0.0014)
house 8L 0.585 (0.01) 0.492 (0.019) 0.463 (0.037) 0.465 (0.037) 0.659 (0.01)
houses 0.664 (0.0078) 0.579 (0.015) 0.566 (0.012) 0.567 (0.013) 0.793 (0.0047)
pm10 0.181 (0.026) 0.215 (0.039) 0.226 (0.034) 0.221 (0.039) 0.135 (0.043)
puma8NH 0.618 (0.026) 0.628 (0.038) 0.56 (0.046) 0.585 (0.042) 0.684 (0.0064)

Table 8: Single-Target Regression: Bonferroni-adjusted
p-values using a Wilcoxon signed-rank test, with the one-
sided alternative hypothesis that the distribution of R2 score
outperformance of FEAT-KD over the 3 FEAT variants is
stochastically greater than a distribution symmetric about
zero. * indicates FEAT-KD outperformance is statistically
significant (i.e., p < 0.05).

Dataset FEAT-KD
>FEAT

FEAT-KD
>FEAT-Corr

FEAT-KD
>FEAT-CN

Syn1 1.81e-01 4.20e-03* 3.63e-02*
Syn2 2.66e-15* 2.66e-15* 2.66e-15*
Syn3 6.57e-11* 1.15e-11* 3.95e-12*
Syn4 3.37e-08* 7.98e-10* 2.64e-09*
Syn5 2.66e-15* 2.66e-15* 2.66e-15*
Syn6 2.90e-09* 1.05e-09* 3.03e-10*

Rossmann 1.33e-05* 1.00e+00 1.99e-01

bodyfat 2.97e-03* 2.81e-05* 1.54e-02*
cpu act 197 2.66e-15* 2.66e-15* 2.66e-15*
cpu act 573 2.66e-15* 2.66e-15* 2.66e-15*
cpu small 2.66e-15* 2.66e-15* 2.66e-15*
house 8L 2.66e-15* 2.66e-15* 2.66e-15*
houses 2.66e-15* 2.66e-15* 2.66e-15*
pm10 1.00e+00 1.00e+00 1.00e+00
puma8NH 1.00e+00 9.51e-11* 3.35e-06*

of the various methods in terms of R2 score on the single-
target regression datasets in Table 7. Among the algorithms
which produce a symbolic model (i.e., models with the form

given in (1)), which are FEAT-KD, FEAT, FEAT-Corr and
FEAT-CN, the algorithm which shows the best average R2

score is FEAT-KD, with small, non-overlapping standard
deviation on some datasets. Even on the few datasets which
FEAT-KD does not top, the performance is within 3% of the
best average R2 score, with pm10 being the only exception.

FEAT-KD has consistent statistically significant outper-
formance over the other symbolic models evaluated. Be-
sides evaluating the average performance, we also compute
and tabulate (see Table 8) the Bonferroni-adjusted p-values
from the one-sided Wilcoxon signed-rank test. 38 out of
the 45 comparisons are significant, with FEAT-KD produc-
ing statistically significant outperformance over all 3 FEAT
variants for 11 of the 15 datasets.

Why does FEAT-KD outperform FEAT in prediction?
The performance of FEAT-KD is close to that of TabNet (see
Table 7), tracking the good performance of TabNet. Though
numerical parameters in symbolic models can be optimized
via gradient based methods, the symbols themselves are
difficult to optimize. Genetic programming for symbolic
models, which FEAT uses, has no theoretical guarantees to
date (the proof for NP-hardness for a simplified SR prob-
lem was only done recently (Virgolin & Pissis, 2022)), and
has been shown recently to be inefficient in terms of ne-
glecting large search spaces of short, interpretable equations
(Kronberger et al., 2024; Biggio et al., 2021). FEAT-KD
addresses this function search by using TabNet, which has
deep-learning-based optimization with a disentanglement
mechanism (i.e., sparse learnable masks) to reduce the prob-

7



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 9: Single-Target Regression: Model Size (SD in brackets) of the models shown in Table 7. Lower is better. Also
tabulated are the Bonferroni-adjusted p-values using a Wilcoxon signed-rank test, with the one-sided alternative hypothesis
that the distribution of model size difference between FEAT-KD and the 3 FEAT variants is stochastically smaller than a
distribution symmetric about zero. * indicates FEAT-KD’s smaller size is statistically significant (i.e., p < 0.05).

Model Size Bonferroni-adjusted p-values

Dataset FEAT-KD
(Ours) FEAT FEAT-Corr FEAT-CN TabNet

FEAT-KD
< FEAT

FEAT-KD
< FEAT-Corr

FEAT-KD
< FEAT-CN

Syn1 49.0 (0.0) 81.8 (32) 78.7 (32) 84.1 (36) 5.7k 1.47e-14* 1.25e-13* 6.67e-15*
Syn2 48.9 (0.62) 81.1 (30) 77.6 (30) 76.9 (28) 5.8k 3.56e-15* 3.13e-13* 1.25e-13*
Syn3 49 (0.28) 86.4 (35) 78.3 (34) 77.8 (33) 6.0k 2.00e-14* 8.31e-12* 3.59e-12*
Syn4 49 (0.00) 80.3 (29) 78.9 (24) 84.2 (31) 6.1k 4.04e-15* 8.23e-16* 2.03e-15*
Syn5 49 (0.28) 84 (37) 84.7 (33) 77.5 (30) 6.2k 1.36e-14* 2.99e-15* 1.43e-13*
Syn6 48.9 (0.56) 79.5 (33) 75 (30) 81.8 (33) 6.3k 6.64e-13* 7.55e-13* 7.69e-14*

Rossmann 49 (0.00) 57.3 (29) 62.3 (23) 64.7 (28) 5.5k 2.49e-01 5.41e-06* 3.12e-06*

bodyfat 49 (0.00) 49.8 (32) 64.1 (43) 61.2 (28) 6.4k 1.00e+00 1.30e-02* 7.99e-04*
cpu act 197 49 (0.28) 59.9 (29) 70.5 (33) 65.3 (30) 7.2k 1.17e-02* 5.77e-08* 1.02e-05*
cpu act 573 48.9 (0.47) 62.1 (30) 72.5 (30) 63.1 (29) 7.2k 1.46e-03* 2.03e-10* 5.69e-05*
cpu small 49 (0.00) 65.3 (29) 68.6 (28) 69.3 (28) 6.2k 7.46e-06* 9.38e-09* 4.18e-09*
house 8L 49 (0.00) 82.2 (34) 72 (40) 69.7 (41) 5.7k 4.47e-13* 2.69e-06* 3.24e-05*
houses 48.9 (0.39) 40.6 (24) 41.4 (27) 42.6 (27) 5.7k 1.00e+00 1.00e+00 1.00e+00
pm10 48.9 (0.47) 64.4 (33) 83.2 (45) 70.4 (29) 5.6k 4.94e-05* 3.17e-10* 7.44e-10*
puma8NH 49 (0.00) 94.6 (31) 104 (31) 103 (34) 5.7k 2.05e-17* 6.98e-18* 7.10e-18*

lems into smaller equation discovery subtasks that can be
tackled via exhaustive search. These knowledge distillation
subtasks are easy to fit, with the R2 score being 0.707, 0.795
and 0.663 for synthetic, Rossmann and PMLB datasets re-
spectively.

FEAT-KD has the lowest average model size among all
models evaluated and has statistically significant evi-
dence that it is consistently smaller. We measure the
model size (i.e., total number of functions and terminals in
the model when represented in the form of (1)) and tabulate
these in Table 9. FEAT-KD is smaller, on average, com-
pared to all other models evaluated, on all but one dataset.
Although FEAT, FEAT-Corr and FEAT-CN are unstable
and produce models of largely varying sizes across the 100
random seeds, the statistical test reveals that FEAT-KD’s
smaller size is statistically significant, as seen by the right-
most 3 columns in Table 9. 40 out of the 45 comparisons
are significant, with FEAT-KD producing statistically sig-
nificant smaller models over all other models for 12 of the
15 datasets. Note that TabNet is always of greater size than
all symbolic models across all datasets and random seeds.

Additionally, it should be noted that FEAT-KD uses a re-
duced set of more interpretable primitive functions (see
Table 3) (Petersen et al., 2019), compared to Table 2.

FEAT-KD is frequently Pareto-optimal with respect to
FEAT and other SR algorithms in SRBench single-target
regression datasets. Although FEAT-KD uses the specific

Table 10: Multi-Target Regression: R2 score (SD in brack-
ets) of FEAT and TabNet on the SARCOS dataset (Vijayaku-
mar & Schaal, 2000) used in TabNet paper, averaged across
100 randomly seeded 60-20-20 train-validation-test splits.

White-box Black-box

n-th target FEAT-KD
(Ours)

FEAT,
FEAT-Corr,
FEAT-CN

TabNet

n = 1 0.577 (0.061) N.A. 0.449 (0.014)
n = 2 0.612 (0.04) N.A. 0.788 (0.0068)
n = 3 0.675 (0.042) N.A. 0.883 (0.0045)
n = 4 0.887 (0.049) N.A. 0.898 (0.0029)
n = 5 0.295 (0.11) N.A. 0.279 (0.01)
n = 6 0.264 (0.02) N.A. 0.369 (0.014)
n = 7 0.862 (0.053) N.A. 0.906 (0.0022)

form given in (1) for interpretability reasons, like FEAT, it
can also be positioned in the broader literature of SR al-
gorithms. We evaluate FEAT-KD on all 88 datasets used
by La Cava et al. (2019) against FEAT and other SR algo-
rithms, and FEAT-KD is Pareto-optimal for 62.0% of them
with respect to the other SR algorithms. More discussion
and results are included in Appendix F.

5.3. Multi-Target Regression

FEAT-KD easily supports multi-target regression. Tab-
Net supports multi-target regression by modifying the final

8



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 11: Multi-Target Regression: R2 score (SD in brack-
ets) of FEAT and TabNet on other multi-target regression
datasets (Spyromitros-Xioufis et al., 2016), averaged across
100 randomly seeded 60-20-20 train-validation-test splits.
FEAT-KD performs competitively with TabNet on average.
Among a total of 54 targets (including SARCOS from Table
10), FEAT-KD performs better on 32 of the targets.

Dataset n-th target FEAT-KD
(Ours) TabNet

atp1d n = 1 0.652 (0.074) 0.572 (0.045)
n = 2 0.678 (0.064) 0.537 (0.064)
n = 3 0.679 (0.041) 0.526 (0.048)
n = 4 0.671 (0.046) 0.501 (0.038)
n = 5 0.641 (0.067) 0.57 (0.054)
n = 6 0.646 (0.05) 0.474 (0.039)

enb n = 1 0.85 (0.016) 0.434 (0.023)
n = 2 0.85 (0.014) 0.435 (0.017)

oes 10 n = 1 0.176 (0.22) 0.401 (0.13)
n = 2 0.498 (0.033) 0.609 (0.066)
n = 3 0.378 (0.29) 0.479 (0.094)
n = 4 0.678 (0.033) 0.628 (0.064)
n = 5 0.259 (0.21) 0.386 (0.11)
n = 6 0.731 (0.37) 0.622 (0.086)
n = 7 0.356 (0.3) 0.511 (0.082)
n = 8 0.505 (0.29) 0.508 (0.1)

rf1 n = 1 0.853 (0.037) 0.873 (0.0021)
n = 2 0.178 (0.071) 0.051 (0.015)
n = 3 0.890 (0.034) 0.91 (0.0023)
n = 4 0.829 (0.035) 0.716 (0.029)
n = 5 0.820 (0.041) 0.779 (0.034)
n = 6 0.540 (0.065) 0.445 (0.013)
n = 7 0.746 (0.11) 0.679 (0.14)
n = 8 0.731 (0.087) 0.45 (0.02)
n = 9 0.816 (0.027) 0.884 (0.0033)
n = 10 0.172 (0.057) 0.036 (0.017)
n = 11 0.795 (0.021) 0.888 (0.0032)
n = 12 0.693 (0.039) 0.643 (0.018)
n = 13 0.788 (0.043) 0.795 (0.04)
n = 14 0.494 (0.068) 0.427 (0.018)
n = 15 0.770 (0.096) 0.683 (0.13)
n = 16 0.688 (0.078) 0.494 (0.026)

scm1d n = 1 0.882 (0.0033) 0.702 (0.011)
n = 2 0.874 (0.0042) 0.701 (0.015)
n = 3 0.849 (0.0057) 0.718 (0.0072)
n = 4 0.846 (0.0032) 0.718 (0.0053)
n = 5 0.405 (0.019) 0.634 (0.013)
n = 6 0.386 (0.016) 0.612 (0.013)
n = 7 0.426 (0.027) 0.644 (0.022)
n = 8 0.792 (0.0047) 0.632 (0.021)
n = 9 0.602 (0.045) 0.653 (0.01)
n = 10 0.592 (0.038) 0.654 (0.0094)
n = 11 0.857 (0.003) 0.668 (0.0075)
n = 12 0.833 (0.0042) 0.685 (0.0088)
n = 13 0.646 (0.049) 0.666 (0.0051)
n = 14 0.636 (0.032) 0.674 (0.0058)
n = 15 0.706 (0.05) 0.666 (0.0062)
n = 16 0.697 (0.036) 0.666 (0.0064)

layer to accommodate multiple-dimension outputs. Since
the architecture before the final layer remains the same,
FEAT-KD’s 5 phases can still be used on TabNet that is
trained for a multi-target regression dataset in Phase 1. This
allows FEAT-KD to distill multi-target regression TabNet
models. See Table 1 for an example on the model found
by FEAT-KD. Note that multi-target regression is not sup-
ported by FEAT, FEAT-Corr and FEAT-CN, as shown in
Table 10. Though it may be possible to extend the origi-
nal FEAT to multi-target, that is a novel separate work that
requires proposing a new algorithm, beyond the scope of
this paper. As a simple baseline, we ran the original FEAT
separately and independently for each target, but the discov-
ered models were much less interpretable because they do
not share common transformed features across targets due
to the independence during training. Additionally, genetic
programming, which the original FEAT uses, does not scale
as well with dimensions (Kronberger et al., 2024; Biggio
et al., 2021).

FEAT-KD has some regularization effect over TabNet.
We tabulate the results for the other multi-target regression
datasets in Table 11. FEAT-KD demonstrates competitive
performance to TabNet, performing better on average in 32
out of 54 targets. DistilSR is able to learn an equation for the
transformed features in TabNet (Phase 4), with the average
R2 score for the knowledge distillation being 0.535, 0.838,
0.691, 0.938, 0.761, 0.578 for SARCOS, atp1d, enb, oes 10,
rf1, scm1d datasets respectively. Unlike the single-target
regression, where TabNet tends to predict better than any
symbolic model, FEAT-KD outperforms TabNet in predic-
tions for 32 (out of 52) targets in the multi-target regres-
sion case. On inspection of the training R2 score, TabNet
over-fitted to certain targets and did not generalize well to
perform well on the test set, whereas FEAT-KD, a simple
model, has training score closer to its test score in Table 11.

6. Conclusion
In this work, we propose FEAT-KD, an algorithm which
finds a weighted linear combination of symbolic, concisely-
represented features. FEAT-KD converts TabNet from a
‘black-box’ model to an intrinsically explainable ‘white-box’
model, with competitive prediction performance. Compared
to FEAT (including FEAT-Corr, FEAT-CN), FEAT-KD uses
a completely different model discovery approach: knowl-
edge distillation of pieces of TabNet via exhaustive search
SR instead of genetic programming. FEAT-KD demon-
strates improvements over FEAT in terms of: (i) prediction
performance, (ii) model size, (iii) complexity of primitive
symbols, (iv) support for multi-target regression.

9



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Acknowledgements
This research/project is supported by the National Re-
search Foundation, Singapore under its AI Singapore Pro-
gramme (AISG Award No: AISG3-PhD-2023-08-052T),
and A*STAR, CISCO Systems (USA) Pte. Ltd and Na-
tional University of Singapore under its Cisco-NUS Ac-
celerated Digital Economy Corporate Laboratory (Award
I21001E0002).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abdul, A., von der Weth, C., Kankanhalli, M., and Lim,

B. Y. COGAM: Measuring and moderating cognitive
load in machine learning model explanations. In Proceed-
ings of the 2020 CHI Conference on Human Factors in
Computing Systems, pp. 1–14, 2020.

Arik, S. O. and Pfister, T. Tabnet: Attentive interpretable
tabular learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 6679–6687,
2021.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35
(8):1798–1828, 2013.

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., and Paras-
candolo, G. Neural symbolic regression that scales. In
International Conference on Machine Learning, pp. 936–
945. PMLR, 2021.

Bordt, S., Finck, M., Raidl, E., and von Luxburg, U. Post-
hoc explanations fail to achieve their purpose in adversar-
ial contexts. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, pp. 891–
905, 2022.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Burlacu, B., Kronberger, G., and Kommenda, M. Operon
C++: An efficient genetic programming framework for
symbolic regression. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion,
pp. 1562–1570, 2020.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. In International Conference on
Machine Learning, pp. 883–892. PMLR, 2018.

Conover, W. J. Practical nonparametric statistics, volume
350. John Wiley & Sons, 1999.

Cranmer, M. Interpretable machine learning for science
with PySR and SymbolicRegression. jl. arXiv preprint
arXiv:2305.01582, 2023.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases.
Advances in Neural Information Processing Systems, 33:
17429–17442, 2020.

da Silva, J. A. P. R., Santana, E. J., Mastelini, S. M., and
Barbon Jr, S. Stock portfolio prediction by multi-target
decision support. In Proceedings of the XIV Brazilian
Symposium on Information Systems, pp. 1–8, 2018.

Di Martino, F. and Delmastro, F. Explainable AI for clinical
and remote health applications: A survey on tabular and
time series data. Artificial Intelligence Review, 56(6):
5261–5315, 2023.

Dua, D. and Graff, C. UCI machine learning repository.
School of Information and Computer Science, 25:27,
2019.

Dunn, O. J. Multiple comparisons among means. Journal
of the American Statistical Association, 56(293):52–64,
1961.

Fong, K. S. and Motani, M. DistilSR: A distilled version
of gene expression programming symbolic regression. In
Proceedings of the Companion Conference on Genetic
and Evolutionary Computation, pp. 567–570, 2023.

Habehh, H. and Gohel, S. Machine learning in healthcare.
Current Genomics, 22(4):291, 2021.

Hinton, G. How to represent part-whole hierarchies in a
neural network. Neural Computation, 35(3):413–452,
2023.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Jain, K., Kaur, S., and Rani, G. Applications of multitarget
regression models in healthcare. In Machine Learning in
Healthcare and Security, pp. 103–118. CRC Press, 2024.

Kaggle. Rossmann store sales, 2019. URL https://www.
kaggle.com/c/rossmann-store-sales. Ac-
cessed: 2019-11-10.

10

https://www.kaggle.com/c/rossmann-store-sales
https://www.kaggle.com/c/rossmann-store-sales


FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Keys, A., Fidanza, F., Karvonen, M. J., Kimura, N., and Tay-
lor, H. L. Indices of relative weight and obesity. Journal
of Chronic Diseases, 25(6-7):329–343, 1972.

Kronberger, G., Olivetti de Franca, F., Desmond, H.,
Bartlett, D. J., and Kammerer, L. The inefficiency of
genetic programming for symbolic regression. In Inter-
national Conference on Parallel Problem Solving from
Nature, pp. 273–289. Springer, 2024.

La Cava, W., Singh, T. R., Taggart, J., Suri, S., and Moore,
J. H. Learning concise representations for regression by
evolving networks of trees. The International Conference
on Learning Representations, 2019.

La Cava, W. G., Lee, P. C., Ajmal, I., Ding, X., Solanki, P.,
Cohen, J. B., Moore, J. H., and Herman, D. S. A flexible
symbolic regression method for constructing interpretable
clinical prediction models. NPJ Digital Medicine, 6(1):
107, 2023.

Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Ger-
shman, S., and Doshi-Velez, F. An evaluation of the
human-interpretability of explanation. arXiv preprint
arXiv:1902.00006, 2019.

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., and Battaglia, P.
Rediscovering orbital mechanics with machine learning.
Machine Learning: Science and Technology, 4(4):045002,
2023.

Matricciani, E. et al. Deep language statistics of Italian
throughout seven centuries of literature and empirical
connections with Miller’s 7±2 law and short-term mem-
ory. Open Journal of Statistics, 9:373–406, 2019.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., Santi-
ago, C. P., Kim, S. K., and Kim, J. T. Deep symbolic
regression: Recovering mathematical expressions from
data via risk-seeking policy gradients. The International
Conference on Learning Representations, 2019.

Romano, J. D., Le, T. T., La Cava, W., Gregg, J. T., Gold-
berg, D. J., Chakraborty, P., Ray, N. L., Himmelstein, D.,
Fu, W., and Moore, J. H. PMLB v1.0: An open source
dataset collection for benchmarking machine learning
methods. arXiv preprint arXiv:2012.00058v2, 2021.

Santana, E. J., Mastelini, S. M., Barbon Jr, S., et al. Stock
portfolio prediction by multi-target decision support. iSys-
Brazilian Journal of Information Systems, 12(1):05–27,
2019.

Scholl, P., Bieker, K., Hauger, H., and Kutyniok, G. ParFam–
(neural guided) symbolic regression via continuous global
optimization. In The Thirteenth International Conference
on Learning Representations, 2025.

Si, J., Cheng, W. Y., Cooper, M., and Krishnan, R. G. Inter-
pretabnet: Distilling predictive signals from tabular data
by salient feature interpretation. In Proceedings of the
41st International Conference on Machine Learning, pp.
45353–45405, 2024.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and
Vlahavas, I. Multi-target regression via input space ex-
pansion: Treating targets as inputs. Machine Learning,
104:55–98, 2016.

Trazzi, M. and Yampolskiy, R. V. Artificial stupidity: Data
we need to make machines our equals. Patterns, 1(2),
2020.

Vijayakumar, S. and Schaal, S. Locally weighted projection
regression: An O(n) algorithm for incremental real time
learning in high dimensional space. In Proceedings of
the Seventeenth International Conference on Machine
Learning (ICML 2000), volume 1, pp. 288–293. Morgan
Kaufmann Burlington, MA, USA, 2000.

Virgolin, M. and Pissis, S. P. Symbolic regression is NP-
hard. Transactions on Machine Learning Research, 2022.

11



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

A. Dataset Details and Sources
All datasets used are open-sourced and publicly available.
We performed a large variety of experiments taking datasets
used in (i) the original TabNet paper (Arik & Pfister, 2021),
(ii) the original FEAT paper (La Cava et al., 2019), (iii)
multi-target regression benchmarks (Spyromitros-Xioufis
et al., 2016).

In this work, we can further group the datasets into two
broad categories: single-target regression and multi-target
regression. For single-target regression: from the original
TabNet paper (Arik & Pfister, 2021), we used 6 datasets,
Syn1 to Syn6 (Chen et al., 2018), and the Rossmann store
sales dataset (Kaggle, 2019). From the original FEAT paper
(La Cava et al., 2019), we used 8 PMLB datasets {bodyfat,
cpu act 197, cpu act 573, cpu small, house 8L, houses,
pm10, puma8NH} (Romano et al., 2021).

For multi-target regression: from the original TabNet paper
(Arik & Pfister, 2021), we used the SARCOS dataset (Vi-
jayakumar & Schaal, 2000). From multi-target regression
benchmarks (Spyromitros-Xioufis et al., 2016), we used 5
benchmark datasets {atp1d, enb, oes 10, rf1, scm1d}.

All results were averaged across 100 randomly seeded 60-
20-20 train-validation-test splits.

We also perform comparison with SRBench in which the
dataset names and random seeds are provided in Appendix
F. To be consistent with SRBench, the results are evaluated
on 25% test set splits on the exact same random seeds.

B. Additional Evaluation Metric Details
We measure the metric, R2 score, also known as the coef-
ficient of determination, which measures the proportion of
the variance in the dependent variable that is predictable
from the independent variables. It is defined as:

1− ∥y − ŷ∥22
∥y − ȳ · 1∥22

,

where y is the vector of true labels, ŷ is vector of the
ensemble-combined predictions and ȳ is the mean of the
true labels. ∥ ·∥22 represents the Euclidean norm (or 2-norm).

We measure the metric, model size, which is total number of
functions and terminals. For example, x1 × x2 has a model
size of 3, x1/4 + 0.62x1 has a model size of 7.

For statistical comparison, we performed the Wilcoxon
signed-rank test with Bonferroni-adjustment to account for
the increased probability of observing rare events from mul-
tiple hypotheses.

For R2 score, we use the one-sided alternative hypothesis
that the distribution of R2 score outperformance of FEAT-

KD over the 3 FEAT variants is stochastically greater than a
distribution symmetric about zero.

For model size, we use the one-sided alternative hypothesis
that the distribution of model size difference between FEAT-
KD and the 3 FEAT variants is stochastically smaller than a
distribution symmetric about zero.

C. Computational Resources and Timing
The experiments were ran on Intel(R) Xeon(R) CPU E5-
2627 v4@2.30GHz with 128GB RAM, on 100 random
seeds per experiment using a 60-20-20 train-validation-test
split. For all algorithms, each seeded run is given a max
walltime of 3600 seconds.

D. InterpreTabNet Variant of FEAT-KD

Table 12: Single-Target Regression: R2 score (SD in
brackets) of FEAT-KD distilling TabNet and InterpreTabNet.
Higher is better.

Dataset FEAT-KD
(TabNet)

FEAT-KD
(InterpreTabNet)

bodyfat 0.987 (0.0058) 0.990 (0.0051)
cpu act 197 0.976 (0.0014) 0.977 (0.0015)
cpu act 573 0.976 (0.0014) 0.976 (0.0016)
cpu small 0.968 (0.0015) 0.966 (0.0015)
house 8L 0.585 (0.01) 0.588 (0.0096)
houses 0.664 (0.0078) 0.660 (0.0053)
pm10 0.181 (0.026) 0.196 (0.042)
puma8NH 0.618 (0.026) 0.596 (0.0086)

InterpreTabNet is a modification of TabNet which has the
same structure as TabNet (Si et al., 2024). InterpreTab-
Net has 2 main contributions, both of which are relevant
to FEAT-KD: i). A regularization scheme that maximizes
diversity between masks in the TabNet architecture, ii). cap-
turing feature interdependencies by prompting LLMs with
the learned masks.

For i)., InterpreTabNet works very similarly to TabNet, just
with extra regularization, so we could easily apply FEAT-
KD techniques by replacing TabNet with InterpreTabNet in
the code implementation, as done in Table 12. The results
yield stronger performance on some datasets, but not on all,
consistent with the results obtained by Si et al. (2024). Thus,
we can say InterpreTabNet allows for a variant of FEAT-KD
that performs competitively.

For ii). InterpreTabNet uses LLMs to generate linguistic
interpretations of the masks obtained which is not mutually
exclusive with FEAT-KD. In fact, InterpreTabNet and FEAT-
KD complement each other, in which InterpreTabNet gener-
ates a simplified qualitative description, whereas FEAT-KD

12



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 13: Classification: Accuracy (SD in brackets) of cFEAT-KD, cFEAT variants, TabNet and InterpreTabNet, averaged
across 100 randomly seeded 60-20-20 train-validation-test splits on 8 PMLB datasets (Romano et al., 2021) and 3 UCI
datasets (Dua & Graff, 2019). Higher is better, best white-box performance in bold.

White-box Black-box

Dataset cFEAT-KD
(TabNet)

cFEAT-KD
(InterpreTabNet) cFEAT cFEAT-Corr cFEAT-CN TabNet InterpreTabNet

chess 0.969 (0.0033) 0.969 (0.0034) 0.949 (0.0055) 0.943 (0.0042) 0.945 (0.0036) 0.985 (0.00086) 0.987 (0.00086)
hypothyroid 0.963 (0.0024) 0.963 (0.0024) 0.951 (0.0013) 0.949 (0.0029) 0.952 (0.0025) 0.956 (0.0018) 0.958 (0.0018)
ionosphere 0.914 (0.014) 0.909 (0.011) 0.885 (0.011) 0.868 (0.016) 0.876 (0.012) 0.873 (0.0061) 0.871 (0.0057)
kr vs kp 0.964 (0.0019) 0.966 (0.0027) 0.950 (0.0062) 0.945 (0.0068) 0.945 (0.0035) 0.983 (0.0022) 0.986 (0.0028)
sonar 0.815 (0.025) 0.806 (0.035) 0.705 (0.012) 0.702 (0.030) 0.746 (0.017) 0.635 (0.019) 0.682 (0.036)
spambase 0.934 (0.0024) 0.935 (0.0024) 0.898 (0.0091) 0.895 (0.0039) 0.901 (0.0065) 0.934 (0.0016) 0.934 (0.0019)
spectf 0.843 (0.018) 0.845 (0.019) 0.812 (0.021) 0.776 (0.011) 0.793 (0.017) 0.836 (0.022) 0.812 (0.025)
tokyo1 0.918 (0.0030) 0.920 (0.0073) 0.907 (0.012) 0.906 (0.0033) 0.906 (0.0047) 0.908 (0.010) 0.914 (0.0052)

Diabetes 0.765 (0.0099) 0.770 (0.014) 0.738 (0.0079) 0.733 (0.0073) 0.737 (0.015) 0.775 (0.015) 0.777 (0.012)
Forest Cover Type 0.755 (0.0017) 0.753 (0.0017) 0.748 (0.0021) 0.748 (0.0012) 0.749 (0.0010) 0.753 (0.0022) 0.754 (0.0022)
Poker Hand 0.621 (0.0034) 0.621 (0.0026) 0.614 (0.0016) 0.613 (0.0021) 0.613 (0.0032) 0.618 (0.0019) 0.620 (0.0030)

generates a simplified quantitative description. Thus, from
the trained mask, 2 interpretations can be generated, one
from using an LLM to generate a linguistic interpretation
and the other from the learned equation from FEAT-KD.
Thus, the strengths of InterpreTabNet can be subsumed into
FEAT-KD by replacing TabNet with InterpreTabNet.

E. Extension to Classification
One possible way FEAT-KD can be adapted for classifica-
tion is by using logistic regression in Phase 5 instead of lin-
ear regression. Rather than using ŷ(x) = ϕ(x)T β̂, as shown
in (1) for regression, we use a logistic regression model for
classification. That is, for an input x and K classes, the
model is defined as P (y = k | x) = exp(ϕ(x)T β̂k)/z,
where z =

∑K
j=1 exp(ϕ(x)

T β̂j), ϕ(x) is the feature vector,
and β̂k is the coefficient vector for class k.

The predicted class is given by

ŷ = argmax
k

P (y = k | x).

We denote the methods with the prefix ‘c’ to differentiate
them from the regression case. To evaluate the classification
performance, we replaced R2 score with both accuracy and
F1 score instead. The results on accuracy and F1 score are
presented in Tables 13 and 14 respectively.

F. Evaluating FEAT-KD against SR
Algorithms

Although FEAT-KD uses the specific form given in (1)
for interpretability reasons, it can also be counted as a
type of SR algorithm and be positioned in the broader
literature of SR algorithms. Using the results from

SRBench, across the 88 datasets in PMLB used in FEAT,
i.e., (ESL, SWD, LEV, ERA, USCrime, FacultySalaries,
vineyard, auto price, cpu act 197, autoPrice, cloud,
puma8NH, cpu small, elusage, pwLinear, machine cpu,
satellite image, analcatdata vehicle, wind, vinnie, pm10,
analcatdata neavote, analcatdata election2000, pollen,
pollution, no2, analcatdata apnea2, analcatdata apnea1,
bodyfat, cpu, cpu small 562, cpu act 573, fri c0 250 5,
fri c3 500 25, fri c1 500 25, fri c4 500 25, fri c3 1000 25,
fri c2 1000 25, fri c1 100 10, fri c4 1000 25,
fri c1 1000 10, fri c2 100 5, fri c0 1000 10, fri c2 250 5,
fri c2 500 5, fri c2 1000 5, fri c1 250 5, fri c3 250 10,
fri c0 250 50, fri c4 500 10, fri c2 250 25, fri c2 1000 10,
fri c4 1000 50, fri c3 1000 10, fri c0 1000 5, fri c3 100 5,
fri c1 1000 5, fri c3 250 5, fri c4 250 10, fri c4 500 50,
fri c3 500 5, fri c3 1000 50, fri c0 100 10, fri c2 1000 50,
fri c4 1000 10, fri c0 100 5, fri c2 500 50, fri c2 500 10,
fri c3 1000 5, fri c1 500 5, fri c0 500 25, fri c2 100 10,
fri c0 250 10, fri c1 500 50, fri c1 500 10, fri c2 500 25,
fri c4 250 25, fri c3 500 50, fri c3 500 10, fri c1 250 10,
fri c1 250 50, fri c0 500 5, fri c0 500 50, fri c0 100 25,
fri c0 250 25, fri c0 500 10, fri c1 100 5, fri c2 250 10)
and 10 random seeds, i.e., (11284, 11964, 15795, 21575,
22118, 23654, 29802, 5390, 6265, 860), FEAT-KD is
Pareto-optimal for 62.0% of them with respect to the
other SR algorithms. The rate at which the other SR
algorithms DSR, GP-GOMEA, Operon, gplearn, AFP,
AFP FE, AIFeynman, FEAT, EPLEX, ITEA, SBP-GP,
BSR, MRGP, FFX, are 83.6%, 75.9%, 52.6%, 48.6%,
25.5%, 25.8%, 8.3%, 23.0%, 23.2%, 4.9%, 8.8%, 15.2%,
1.5%, 2.7%, respectively. In SRBench, Pareto-optimal
means that FEAT-KD has the optimal trade-off with
prediction performance and equation size, in which there
are no other SR algorithms with smaller equation size
with better prediction performance. Of note are only 2

13



FEAT-KD: Learning Concise Representations for Single and Multi-Target Regression via TabNet Knowledge Distillation

Table 14: Classification: F1 score (SD in brackets) of cFEAT-KD, cFEAT variants, TabNet and InterpreTabNet, averaged
across 100 randomly seeded 60-20-20 train-validation-test splits on 8 PMLB datasets (Romano et al., 2021) and 3 UCI
datasets (Dua & Graff, 2019). Higher is better, best white-box performance in bold.

White-box Black-box

Dataset cFEAT-KD
(TabNet)

cFEAT-KD
(InterpreTabNet) cFEAT cFEAT-Corr cFEAT-CN TabNet InterpreTabNet

chess 0.970 (0.0041) 0.969 (0.0034) 0.952 (0.0051) 0.947 (0.0043) 0.948 (0.0039) 0.986 (0.00092) 0.987 (0.0015)
hypothyroid 0.955 (0.0036) 0.956 (0.0028) 0.945 (0.0015) 0.944 (0.0016) 0.946 (0.0013) 0.978 (0.00094) 0.978 (0.0016)
ionosphere 0.912 (0.015) 0.908 (0.011) 0.905 (0.011) 0.898 (0.016) 0.894 (0.015) 0.905 (0.0052) 0.902 (0.0035)
kr vs kp 0.964 (0.0019) 0.965 (0.0031) 0.952 (0.0056) 0.948 (0.0058) 0.948 (0.0051) 0.984 (0.0022) 0.986 (0.0028)
sonar 0.814 (0.025) 0.805 (0.035) 0.678 (0.036) 0.702 (0.040) 0.721 (0.049) 0.591 (0.027) 0.623 (0.040)
spambase 0.934 (0.0025) 0.935 (0.0025) 0.865 (0.012) 0.866 (0.0059) 0.869 (0.0092) 0.918 (0.0031) 0.916 (0.0035)
spectf 0.836 (0.024) 0.844 (0.021) 0.863 (0.019) 0.850 (0.013) 0.856 (0.017) 0.887 (0.021) 0.876 (0.020)
tokyo1 0.919 (0.0054) 0.920 (0.0073) 0.929 (0.0095) 0.926 (0.0066) 0.927 (0.0054) 0.930 (0.0085) 0.935 (0.0080)

Diabetes 0.728 (0.012) 0.734 (0.017) 0.699 (0.0088) 0.693 (0.0094) 0.697 (0.016) 0.740 (0.019) 0.742 (0.014)
Forest Cover Type 0.554 (0.0041) 0.550 (0.0039) 0.538 (0.0069) 0.536 (0.0045) 0.539 (0.0043) 0.552 (0.0052) 0.554 (0.0058)
Poker Hand 0.124 (0.0037) 0.125 (0.0047) 0.120 (0.00060) 0.120 (0.00070) 0.120 (0.0010) 0.122 (0.00090) 0.123 (0.0035)

Table 15: Comparison of FEAT-KD with FEAT and other
SR algorithms using SRBench data aggregated across 88
datasets and 10 random seeds each.

SR Algorithm model size R2 training time (s)

AFP 35.4 0.688 2790
AFP FE 36.0 0.700 2850
AIFeynman 2240 -4.03 82900
BSR 19.8 0.245 13100
DSR 8.88 0.598 35100
EPLEX 56.3 0.814 7530
FEAT 79.1 0.847 6750
FEAT-KD (Ours) 49.0 0.851 1550
FFX 1630 0.00612 210
GP-GOMEA 25.1 0.794 7610
ITEA 107 0.663 6240
MRGP 10800 0.521 201000
Operon 63.7 0.853 1350
SBP-GP 693 0.851 155000
gplearn 17.6 0.563 23300

algorithms which appear more frequently than FEAT-KD
on the Pareto-optimal front: DSR, GP-GOMEA, of which
FEAT-KD has a better R2 than DSR in 83.8% of the
experiments and a better R2 than GP-GOMEA in 70.7%
of experiments. Including Operon which appears less
frequently that FEAT-KD on the Pareto-optimal front
but is the 4th most frequent, in terms of R2, the trend is
Operon>FEAT-KD>GP-GOMEA>DSR and in terms
of model size, the trend is DSR<GP-GOMEA<FEAT-
KD<Operon. Thus, FEAT-KD is frequently Pareto-optimal,
providing a new point on the optimal Pareto front with a
unique trade-off between R2 and model size. It is also
noteworthy that FEAT-KD appears much more frequently
on the Pareto-optimal front than FEAT (62.0% vs 23.0%).
We also report the aggregated performance in Table 15.

G. Ablation of DistilSR
As an ablation study, we substituted DistilSR with Operon
(Burlacu et al., 2020), PySR (Cranmer, 2023), DSR (Pe-
tersen et al., 2019) and ParFam (Scholl et al., 2025), and
tested on the 88 datasets used in FEAT. Like in SR bench-
marking, there is a trade-off between model size and pre-
diction performance. The frequency of being on the Pareto-
front for FEAT-KD is 88.6%. Whereas substitution with
DSR, PySR, ParFam and Operon yielded 54.4%, 25.3%,
19.0% and 1.3% frequency of being Pareto optimal, respec-
tively. We found that DistilSR in FEAT-KD is best able to
exploit the expressivity of the search space of short equa-
tions to better model the learned representations by TabNet
without overfitting. The results also show that the task of
fitting the learned representations is different from normal
regression and that SR algorithms that tend to generate
shorter expressions perform better. Finally, an additional
strength of using DistilSR over other algorithms is that the
variance is the lowest because the equation structure search
space is the same for every run.

14


