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ABSTRACT

Multi-Label Image Recognition (MLIR) aims to predict multiple object labels in a
single image. Graph representations have been used to model label correlation or
visual relationships separately. However, the representations of label embeddings
and visual features are not well aligned, which hinders effective representation
learning and leads to inferior performance. In this work, we propose the first fully
graph convolutional model, termed Multi-Label Vision Graph Convolutional Net-
work (ML-ViG), for the task of MLIR. ML-ViG unifies the representation of vi-
sual features and label embeddings, enabling the graph structures to capture the (1)
spatial relationship among visual region features, (2) semantic relationship among
object labels, and (3) cross-level relationship between labels and regions. In or-
der to effectively pass messages between visual features and labels, Multi-Label
Graph Convolutional Network (MLG) module is proposed. ML-ViG achieves
state-of-the-art performance with significantly lower computational costs on MS-
COCO, VOC2007, and VG-500 datasets. Codes and models will be released.

1 INTRODUCTION

Multi-label image recognition (MLIR) (also referred to as multi-label classification) is a fundamen-
tal task in computer vision, which aims to predict a set of labels of a single image. Compared
with single-label image recognition, MLIR is more challenging due to its combinatorial nature. It
has received great attention because of its broad real-world applications, such as human attribute
recognition (Li et al., 2016) and scene understanding (Shao et al., 2015).

It is common that some related objects may co-occur in the real world. For example, the tennis
racket often occurs along with the sports ball. So capturing such label correlation (or label depen-
dencies) is key for MLIR. Inspired by the success of graph models in relationship modeling, many
works (Ye et al., 2020; Chen et al., 2019c; Wang et al., 2020; Zhao et al., 2021) utilize Graph Convo-
lutional Network (GCN) to capture the label correlation as shown in Figure 1a. In this line of works,
Convolutional Neural Network (CNN) is applied to predict the multi-labels, and GCN is adopted
for message passing among these labels to refine the predictions. However, these works mainly
focus on capturing semantic relations among labels and ignore the spatial relations inherent in the
visual features. In addition, the representations of visual features and those of labels are not aligned
and are processed individually, which hinders integral representation learning and results in limited
performance.

More recently, the graph representation of images (Han et al., 2022) has attracted increasing re-
search attention. As shown in Figure 1b, in the graph structure, image patches are viewed as graph
nodes and the relationship and inter-dependencies between image patches are represented by graph
edges. As the nodes are linked by content instead of by spatial position, ViG (Han et al., 2022)
avoids the inductive biases in CNNs and is able to capture global and wider range relations among
regions. However, as ViG is specially designed for single-label image recognition, it only explores
the spatial relationship among visual region features without considering the semantic relationship
among object labels.

In this paper, we propose the first fully graph convolutional network (GCN) for the task of multi-label
image recognition, termed Multi-Label Vision Graph Convolutional Network (ML-ViG). ML-ViG
utilizes effective and flexible graph representations for both representation learning and correlation
extraction. As shown in Figure 1c, ML-ViG simultaneously captures three kinds of relationships:

1



Under review as a conference paper at ICLR 2023

(a)

(b) (c)

Figure 1: Different graph-based methods to solve MLIR task. (a) generates label embeddings via
CNN and then further updates the label embeddings in the following GCN modules, where labels are
treated as nodes in graph (Ye et al., 2020; Zhao et al., 2021; Wang et al., 2020; Chen et al., 2019c).
(b) views image patches as nodes, then visual features are updated through GCN (Han et al., 2022).
The spatial relationship among image patches is modeled, but the relationships between labels are
unexplored. (c) is our work. We integrate spatial patch nodes and semantic label nodes in a unified
graph, which takes into account both visual representation learning and label correlation learning.

(1) spatial relationship among visual region features, (2) semantic relationship among object labels,
and (3) cross-level relationship between labels and regions. Specifically, our unified graph represen-
tations include two types of nodes, i.e. patch node (visual features of image patches) and label node
(label embeddings). Three types of connections, i.e. patch-to-patch, patch-label, and label-to-label
are explored by ViG block (Han et al., 2022) , Patch-Label GCN (PLG), and Label-Label GCN
(LLG) respectively. An image can be viewed as a composition of multiple objects distributed in
different spatial locations. ViG block (Han et al., 2022) constructs the graph of image patches and
performs information exchange to capture spatial correlation of visual features. PLG dynamically
constructs connections between patch nodes and label nodes to learn to locate the spatial locations
of the target labels. With effective message passing, it explicitly learns to extract category-correlated
interest region features. LLG creates the label correlation matrix to guide information propagation
among the label embeddings.

Extensive experiments on several well-known benchmarks, i.e. MS-COCO, VOC2007, and VG-500,
verify the effectiveness of the proposed method. Our proposed method achieves new state-of-the-art
performance with significantly lower computational costs.

This paper’s contribution can be summarized as follows:

• We propose Multi-Label Vision Graph neural network (ML-ViG for short) to build unified
graph representations for both visual features and label embeddings. To our best knowl-
edge, it is the first to successfully apply a fully graph convolutional model for the task of
multi-label image recognition.

• MLG is proposed to explicitly model the relationship between labels and visual regions
(PLG), and the correlations among labels (LLG) in a unified graph convolutional way.

• We validate the effectiveness of the proposed model on three widely used benchmark
datasets, including MS-COCO, VOC2007, and VG-500. We show that our model consis-
tently outperforms the previous state-of-the-art approaches with significantly lower com-
putational complexity.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORK FOR VISION TASKS

Graph is a flexible data structure and it can process any kind of data that can be converted into a
set of nodes and edges. For example, non-euclidean data like a social network and euclidean data
like images can be viewed as graph (Zhou et al., 2020). Graph Convolutional Network (GCN) has
shown great effectiveness in representation learning for graph-structured data. Especially, GCN has
been widely applied for message passing and correlation modeling in many computer vision tasks,
e.g. multi-label classification (Chen et al., 2019c), scene graph generation (Zhu et al., 2022) and
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human action recognition (Yan et al., 2018; Jain et al., 2016). However, these works only explore
the semantic relationship, while ignoring the spatial relationship among the regional visual features.
Recently, Han et al. (2022) proposes ViG to directly convert an image to the graph structure and
learn visual representations. ViG divides an image into sets of patches and treats these patches as
nodes in the graph. The graph is built by finding K-nearest neighbors for each patch node. With
effective message passing, the spatial relationship of these visual patches is captured. Previous
works have been independently explored in graphs on semantic space or spatial space, but how to
unify these two kinds of graphs is still unexplored, which is a crucial question for the MLIR task. In
this work, we design a graph convolutional network considering connections among spatial regions,
connections among label semantic embeddings, and connections between regions and labels, which
is key to multi-label classification.

2.2 MULTI-LABEL IMAGE RECOGNITION

Multi-label image recognition (MLIR) (also referred to as multi-label classification) is an extension
of single-label image recognition. MLIR aims to predict multiple mutually non-exclusive class
labels for an input image. CNN (Convolutional Neural Network) serves as the standard network
model for MLIR and many efforts have been dedicated (He et al., 2016; Zhu et al., 2017; Jia et al.,
2021) to designing powerful CNN architectures for better performance. They view the task of MLIR
as multiple binary classification tasks, and to predict all labels independently. Such approaches are
simple and straightforward, however, they do not take into account the semantic relationship among
the labels (or label co-occurrence). For example, some combinations of labels are very common
(e.g. ‘person’ and ‘tie’) while some are rare (e.g. ‘zebra’ and ‘train’). Such kinds of relationships
can be important regularizers for our model. Recently, some works (Lanchantin et al., 2021; Liu
et al., 2021; Cheng et al., 2022) explore to use Transformer based model for the task of MLIR to
capture such kinds of relationship. Lanchantin et al. (2021) first apply the transformer encoder to
multi-label classification and Liu et al. (2021) further add the transformer decoder to improve the
model performance. Cheng et al. (2022) explore a convolutional free Transformer model to address
the task of MLIR. These works typically require large computational costs, and especially the costs
will increase rapidly as the image resolution increases.

Our work is mostly related to the GCN-based models (Chen et al., 2019c; Wang et al., 2020; Ye
et al., 2020; Zhao et al., 2021). They propose to use CNN to generate semantic embeddings for
each label and use GCN to model the label relationship, combining the benefits of both CNN and
GCN to achieve better results. However, current GCN methods do not adequately explore the spatial
relationship of region vision features and the interest region feature extraction. To handle this, we
instead propose a fully graph convolutional network and learn unified graph representations for both
visual features and label embeddings.

3 METHOD

3.1 OVERVIEW

We propose a fully graph convolutional network (GCN), termed Multi-Label Vision GCN (ML-
ViG), for the task of multi-label image recognition. ML-ViG captures three kinds of relationships
including visual patch connections, label connections, and patch-label connections to jointly pre-
dict multiple labels. As shown in Figure. 2, ML-ViG consists of multiple stages, and each stage
includes L Vision GCN (ViG) blocks and M Multi-Label GCN (MLG) blocks. The input image
is represented as patch nodes and is processed by ViG blocks. Then patch nodes and label nodes
(represented by learnable label embeddings) will be sent to Multi-Label GCN (MLG) blocks to
capture multi-label correlation and exchange information between visual features and label embed-
dings. After multi-stage refinement, the outputs of the ViG blocks and MLG blocks are combined
together to predict the possibilities of categories. The technical details of ViG blocks are introduced
in Section 3.2 and those of MLG blocks are presented in Section 3.3.

3.2 RECAP: VISION GCN (VIG)

Vision Graph Convolutional Network (ViG) (Han et al., 2022) views a single image as the graph
structure, which is a more flexible representation than the original grid structure. Instead of treating
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Figure 2: Overview of ML-ViG. An input image is firstly divided into a set of patches. These
patches are viewed as nodes and their connections are learned with K-nearest neighbors (KNN) in
ViG. After patch nodes are updated via GCN in ViG blocks, they will be input to MLG blocks to-
gether with label nodes. In MLG blocks, each label node will also connect patch nodes by KNN and
extract features from these patch nodes, thus cross-level relation between semantic labels and spa-
tial regions is constructed in PLG blocks. And label nodes will be updated with a learned adjacency
matrix in LLG blocks. There are 4 stages in ML-ViG, and each stage consists of L ViG blocks and
M MLG blocks, where the specific values of L and M at each stage are different. The outputs of the
final ViG blocks and MLG blocks are combined together to predict the possibilities of categories.

each pixel as a graph node, which introduces a huge computational cost, the input image is divided
into N patches. Each patch is represented by a feature vector via a fully-connected layer and is
viewed as a patch node. Each patch node searches its Kvig nearest neighbors measured by cosine
similarity and the edges are constructed among them. ViG blocks are applied to process the con-
structed graph structure, in which max-relative graph convolution (Li et al., 2019) is adopted. Feed-
forward network (FFN) and the residual structure are used to relieve the over-smoothing problem
in GCN. Compared to convolutional neural network (CNN), the receptive field of ViG is expanded
to the whole image in theory by message passing among the nodes of the graph. Global context
information can be captured to establish long-range dependencies, which is especially important for
the task of multi-label classification, where the regions of interest are distributed in the image.

3.3 MULTI-LABEL GCN (MLG)

Each target label may be related to several regions of interest, so capturing the relationship between
labels and regions is critical for multi-label image recognition. Also, the label correlation and se-
mantic relationship between multiple labels are expected to be modeled. Therefore, we propose the
Multi-Label GCN (MLG) to capture the connections, where Patch-Label GCN (PLG) is designed for
the relationship between visual regions and target labels, and Label-Label GCN (LLG) is proposed
for the multi-label correlation.

3.3.1 PATCH-LABEL GCN (PLG)

PLG block captures the relationship between visual patches and multiple labels. The nodes of the
graph are represented by patch features and label embeddings, where patch nodes and label nodes
are X = {x1,x2, · · ·,xN} ∈ RN×C and H = {h1,h2, · · ·,hS} ∈ RS×C respectively. C is the
dimension of patch features and label embeddings, and S is the number of labels. Each label node
connects to its Kplg nearest neighbors in patch nodes measured by cosine distance. The label node
hi is updated by aggregating the features of the most related patch regions as follows:

ĥi = concat(hi, max({hi − xj |j ∈ N (hi)})), (1)

h
′

i = hi + ĥiW . (2)
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where N (hi) is the set of nearest neighbors of the label node hi, i.e. there exists edges between
the label node hi and the patch node xj for j ∈ N (hi). They are integrated by maximizing
every dimension of hi − xj ∈ R1×C(j ∈ N (hi)) among all the Kplg neighbors following max-
relative graph convolution (Li et al., 2019). W ∈ R2C×C is the learnable update matrix. The
label embedding is updated via the message passing from the corresponding visual features, which
builds the connections between image regions and target labels. The residual structure is applied
to preserve the diversity of the label embedding and avoids over-smoothing. PLG allows the label
embedding to select the most distinctive visual features of local regions, reducing the interference
of invalid background, as shown in Section 4.4.

3.3.2 LABEL-LABEL GCN (LLG)

Recent work (Wang et al., 2020; Chen et al., 2019c; Ye et al., 2020; Zhao et al., 2021) have proven
the adjacency matrix is useful in explicitly modeling inter-label occurrence. We propose LLG to
capture the connections between different labels. The updated label embeddings are used as graph
nodes. They are fully connected, where there exists an edge between any pair of nodes. Each label
node is further updated by aggregating the features of the associated label nodes.

H̄ = AH
′
+H

′
, (3)

where H
′
= [h

′

1,h
′

2, · · ·,h
′

S ] ∈ RS×C is the matrix that concatenates the updated label embeddings
output by PLG. A ∈ RS×S is the learnable weights with random initialization. H̄ = [h̄1, h̄2, · ·
·, h̄S ] ∈ RS×C indicates the concatenation of S refined label node h̄i. The label correlation is
jointly learned during the training of A. Then, a feed-forward network (FFN) consisting of two
simple fully-connected layers is applied to encourage non-linear interaction among multiple labels.

3.4 CLASSIFIER AND LOSS FUNCTION

The classifier utilizes both patch nodes and label nodes for multi-label classification. For patch
nodes, they are aggregated via global average pooling, in which the contextual information of the
image is processed as a whole for all the label. A linear layer is then applied to compute all the
classification scores:

Ŷx = Linear(AvgPool(X)), (4)
where AvgPool() and Linear() denote the average pooling operation and the linear layer respec-
tively. Ŷx ∈ R1×S indicates the classification scores predicted via patch nodes. For label nodes, S
linear layers are applied to the refined label nodes h̄i independently:

ŷhi = Lineari(h̄i). (5)

The classification score of each label ŷhi is predicted according to each label embedding h̄i. They
are concatenated as Ŷh = [ŷh1 , ŷ

h
2 , ..., ŷ

h
S ] ∈ R1×S and are processed with Ŷx together for the final

scores:

Ŷ = Sigmoid(Ŷx + Ŷh), (6)

where Ŷ = [ŷ1, ŷ2, ..., ŷS ] is the output classification probability of ML-ViG. Label smooth loss
Lsmooth (Szegedy et al., 2016) and asymmetric loss Lasy(Ridnik et al., 2021) are applied to super-
vise the training process using the ground truth multi-labels Y = [y1, y2, ..., yS ]:

y
′

s =

{
ε
S ys = 0

1− ε+ ε
S ys = 1

, Lsmooth = − 1

S

S∑
s=1

y
′

slog(ŷs). (7)

Lasy = − i

S

S∑
i

{
(1− ŷs)

γ+log(ŷs) ys = 1
(ŷs)

γ−log(1− ŷs) ys = 0
. (8)

where ε is the parameter that controls the smoothness, and y
′

s is the smoothed target of the sth label
ys. γ+ and γ− are different focal values for positive samples and negative samples. In our work,
we set ε = 0.1, γ+ = 0, and γ− = 2. The total loss is L = Lsmooth + Lasy .
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4 EXPERIMENTS

We evaluate our model on several benchmark datasets, including MS-COCO (Lin et al., 2014),
Pascal VOC (Everingham et al., 2015), and VG-500 (Krishna et al., 2017). We follow common
practice (Wang et al., 2020; Lanchantin et al., 2021; Ye et al., 2020) to report the average of Over-
all Recall (OR), Overall Precision (OP), Overall F1-score (OF1), per-Class Recall (CR), per-Class
Precision (CP), per-Class F1-score (CF1) and the mean Average Precision (mAP) as the evaluation
metrics. Since OR/OP/CR/CP are easily affected by the classification threshold, mAP/CF1/OF1 are
more important evaluation metrics. We set the threshold as 0.5 for recall, precision, and F1 score in
our experiments.

4.1 IMPLEMENTATION DETAILS

ML-ViG uses ViG (Han et al., 2022) as the backbone. We follow (Han et al., 2022) to set Kvig = 9
in ViG blocks. For PLG blocks, we set Kplg = 33 when the input image size is 448 × 448 or
576×576, and Kplg = 9 when the input image size is 224×224. For the number of ViG blocks and
MLG blocks at each stage, we follow ViG (Han et al., 2022) to set L = [2, 2, 6, 2] and find the best
setting for M to be M = [1, 1, 1, 3]. During training, class-balance sampling strategy (Kang et al.,
2020) is adopted to reduce the adverse effects of class imbalance. We over-sample the categories
whose frequency is lower than τ , where τ = 0.01 in MS-COCO and VOC, and τ = 0.02 in VG-
500. We utilize AdamW (Loshchilov & Hutter, 2018) optimizer with the weight decay rate of 0.05
and the momentum of 0.9. The initial learning rate is set to 1 × 10−4 and a linear warm-up with
the ratio of 1 × 10−3 is used. On Pascal VOC dataset, we reduce the learning rate by a factor of
0.1 on epoch 5. On MS-COCO (Lin et al., 2014) and VG-500 (Krishna et al., 2017) datasets, we
reduce the learning rate by a factor of 0.1 on epoch 10. All experiments are implemented based on
MMClassification (Contributors, 2020).

Table 1: Comparisons with state-of-the-art methods on MS-COCO dataset. All reported results
are pre-trained on ImageNet-1K dataset and the input image size is 224 × 224 when pre-training.
We report multiple evaluation metrics (in %), among which mAP, CF1, and OF1 are the primary
metrics. Our ML-ViG outperforms existing models in terms of both accuracy and efficiency. The
best results are marked as bold.

All Top3
Resolution Param(M) Flop(G) mAP CP CR CF1 OP OR OF1 CF1 OF1

ResNet-101(He et al., 2016) 224 × 224 44.5 7.8 78.3 80.2 66.7 72.8 83.9 70.8 76.8 69.7 73.6
SRN(Zhu et al., 2017) 224 × 224 76.8 9.0 77.1 81.6 65.4 71.2 82.7 69.9 75.8 67.4 72.9
Mltr(Cheng et al., 2022) 224 × 224 33.0 - 81.9 80.7 71.5 75.2 81.4 76.3 78.1 - -
ML-ViG (Ours) 224 × 224 43.2 6.9 82.1 82.4 72.3 77.0 83.7 75.6 79.4 73.5 76.0
CADM(Chen et al., 2019b) 448 × 448 - - 82.3 82.5 72.2 77.0 84.0 75.6 79.6 73.5 76.0
ML-GCN(Chen et al., 2019c) 448 × 448 44.9 31.5 83.0 85.1 72.0 78.0 85.8 75.4 80.3 74.6 76.7
KSSNet(Wang et al., 2020) 448 × 448 173.8 - 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - -
MS-CMA(You et al., 2020) 448 × 448 - - 83.8 82.9 74.4 78.4 84.4 77.9 81.0 74.9 77.1
MCAR(Gao & Zhou, 2021) 448 × 448 - - 83.8 85.0 72.1 78.0 88.0 73.9 80.3 75.1 76.7
TDRG(Zhao et al., 2021) 448 × 448 68.3 42.2 84.6 86.0 73.1 79.0 86.6 76.4 81.2 75.0 77.2
Q2L(ResNet101)(Liu et al., 2021) 448 × 448 193.6 51.4 84.9 84.8 74.5 79.3 86.6 76.9 81.5 73.3 75.4
ML-ViG (Ours) 448 × 448 43.9 24.7 86.9 84.8 79.0 81.8 86.0 80.9 83.4 77.4 78.9
SSGRL(Chen et al., 2019a) 576 × 576 92.3 68.5 83.8 91.9 62.5 72.7 93.8 64.1 76.2 76.8 79.7
MCAR(Gao & Zhou, 2021) 576 × 576 - - 84.5 84.3 73.9 78.7 86.9 76.1 81.1 75.3 77.0
ADD-GCN(Ye et al., 2020) 576 × 576 48.2 52.7 85.2 84.7 75.9 80.1 84.9 79.4 82.0 75.8 77.9
C-Trans(Lanchantin et al., 2021) 576 × 576 120.4 84.2 85.1 86.3 74.3 79.9 87.7 76.5 81.7 76.0 77.6
TDRG(Zhao et al., 2021) 576 × 576 68.3 69.8 86.0 87.0 74.7 80.4 87.5 77.9 82.4 76.2 78.1
Q2L(ResNet101)(Liu et al., 2021) 576 × 576 193.6 80.8 86.5 85.8 76.7 81.0 87.0 78.9 82.8 76.5 78.3
ML-ViG (Ours) 576 × 576 44.6 44.6 87.9 85.5 80.4 82.9 86.6 82.2 84.3 78.3 79.6

4.2 COMPARISONS WITH THE STATE OF THE ARTS

4.2.1 MS-COCO

MS-COCO (Lin et al., 2014) is one of the most widely used benchmark datasets for multi-label
classification. It contains 122,218 images which are composed of 82,081 training images and 40,137
validation images. In total, there are 80 kinds of object labels, with 2.9 labels on average for each
image.

There are three commonly used input resolution settings for MS-COCO, i.e. 224× 224, 448× 448,
and 576× 576. For fair comparisons, we report the results of our ML-ViG on all these settings and
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compare them with the state-of-the-art methods in Table 1. All the models adopt the pre-trained
model on ImageNet1k (Deng et al., 2009) with 224× 224 input size for initialization.

As shown in Table 1, our model obtains the best performance on all the input resolution settings in
terms of mAP, CF1, and OF1. ML-GCN (Chen et al., 2019c), KSSNet (Wang et al., 2020), MS-
CMA (You et al., 2020), ADD-GCN (Ye et al., 2020), SSGRL (Chen et al., 2019a), and TDRG (Zhao
et al., 2021) are also GCN based models. We find that our proposed ML-ViG outperforms them
by a large margin in all experiments, which demonstrates the superiority of our proposed unified
graph representations for both visual features and label embeddings. For the input resolution of
448 × 448, our model improves upon ML-GCN (Chen et al., 2019c), KSSNet (Wang et al., 2020),
MS-CMA (You et al., 2020), and TDRG (Zhao et al., 2021) by 3.9%, 3.2%, 3.1%, and 2.3% re-
spectively. And for the higher resolution of 576 × 576, our model improves upon SSGRL (Chen
et al., 2019a), ADD-GCN (Ye et al., 2020), TDRG (Zhao et al., 2021) by 4.1%, 2.7%, and 1.9%
respectively. We also compare ML-ViG with recently proposed transformer-based methods (e.g.
C-Trans (Lanchantin et al., 2021), and Q2L (Liu et al., 2021)). It is worth noting that our method
achieves significantly lower computational complexity. For example, for high resolution (576×576)
experiments, our model outperforms the previous state-of-the-art model (Q2L (Liu et al., 2021)) by
1.4 mAP, with only about a quarter of the parameter numbers (44.6M vs 193.6M) and half the
computational complexity (44.6 GFlops vs 80.8 GFlops)

Table 2: Comparisons with state-of-the-art methods on VOC2007 dataset. All reported results are
obtained by pre-training on the MS-COCO dataset. The best results are marked as bold.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
SSGRL(Chen et al., 2019a) 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
ASL(Ridnik et al., 2021) 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8
ADD-GCN(Ye et al., 2020) 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0
Q2LLiu et al. (2021) 99.9 98.9 99.0 98.4 87.7 98.6 98.8 99.1 84.5 98.3 89.2 99.2 99.2 99.2 99.3 90.2 98.8 88.3 99.5 95.5 96.1
ML-ViG (Ours) 99.9 99.2 99.5 99.6 88.6 98.8 98.7 99.4 88.9 99.0 92.4 99.5 99.5 99.1 99.5 90.5 99.3 91.2 99.4 97.3 97.0

Table 3: Comparisons with state-of-the-art methods on VG-500 dataset. All reported results are
pre-trained on ImageNet-1K dataset and the input image size is 224 × 224 when pre-training. The
best results are marked as bold.

All Top3
mAP CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ResNet101(He et al., 2016) 30.9 39.1 25.6 31 61.4 35.9 45.4 39.2 11.7 18 75.1 16.3 26.8
ML-GCN(Chen et al., 2019c) 32.6 42.8 20.2 27.5 66.9 31.5 42.8 39.4 10.6 16.8 77.1 16.4 27.1
SSGRL(Chen et al., 2019a) 36.6 - - - - - - - - - - - -
KGGR(Chen et al., 2020) 37.4 47.4 24.7 32.5 66.9 36.5 47.2 48.7 12.1 19.4 78.6 17.1 28.1
C-Tran(Lanchantin et al., 2021) 38.4 49.8 27.2 35.2 66.9 39.2 49.5 51.1 12.5 20.1 80.2 17.5 28.7
ML-ViG (ours) 39.0 45.8 35.3 39.9 60.4 48.6 53.9 49.4 12.9 20.4 80.3 17.7 28.9

4.2.2 PASCAL VOC

Pascal VOC 2007 (Everingham et al., 2015) is also a common dataset in the MLIR task, which
contains 20 label categories. VOC 2007 has 9,963 images and is divided into a train-val dataset
(5,011 images) and a test dataset (4,952 images). We follow the common settings (Ridnik et al.,
2021; Ye et al., 2020; Chen et al., 2019a; Liu et al., 2021) to train the model on the train-val dataset
and evaluate on the test dataset.

For fair comparisons, we follow previous works (Chen et al., 2019a; Ye et al., 2020) to pre-train
the model on the MS-COCO dataset and report the results at the input resolution of 576 × 576. As
shown in Table 2, our model has 0.9% improvement on mAP compared with the previous state-of-
the-art methods. Especially, we report the AP of each category and show that our model achieves
the best performance for 16 of all the 20 categories and very competitive results for the remaining 4
categories. This demonstrates that our model brings general and consistent improvement.

4.2.3 VG-500

Visual Genome (Krishna et al., 2017) contains 108,249 images. The train set has 98,249 images and
the test set has 10,000 images. It has 80,138 categories with densely annotated objects, attributes,
and relationships. About 500 categories are frequently used and the remaining categories are rel-
atively rare (Lanchantin et al., 2021). The dataset with 500 frequent categories is called VG-500
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dataset. Compared with MS-COCO and Pascal VOC dataset, VG-500 is much more challenging be-
cause of a more complex and larger output label space and a more severe class imbalance. The label
space not only contains specific object categories but also includes abstract attributes (e.g. ‘yellow’)
and relationship categories (e.g. ‘on’).

Our experimental results are demonstrated in Table 3. For fair comparisons, all results are reported
at the input resolution of 576 × 576 and the models are pre-trained on ImageNet1k (Deng et al.,
2009) with 224 × 224 input resolution. We show that our method establishes a new state of the
art on the VG-500 dataset in terms of mAP, CF1, and OF1. Especially, compare with the previous
state-of-the-art model C-Tran (Lanchantin et al., 2021), we show that our model obtains an 8.1%
gain on ALL-CR and 9.4% gain on ALL-OR, which in turn brings 4.7% improvement on ALL-CF1
and 4.4% improvement on ALL-OF1. This indicates that ML-ViG can better model label occurence
and improve the recall of those categories with a few occurrences.

4.3 ABLATION STUDY

Effect of each component in MLG. Our proposed MLG block includes a PLG module to extract
features from the local region, and an LLG module to further capture the relationship between
labels. We conduct ablation studies to demonstrate the importance of these two modules separately
in Table 4. The experiments are conducted on the MS-COCO dataset with the setting of 576× 576
input resolution. We show that adding PLG brings large gains (87.3% vs 86.2% mAP), which
demonstrates the necessity and effectiveness of extracting features from the interest regions. And
we also show that adding LLG on the basis of PLG further brings improvements (87.9% vs 87.3%
mAP). This validates the importance of modeling label occurrence. Both of these two modules are
indispensable for the success of ML-ViG.

Table 4: Ablation studies on the MS-COCO dataset. The experiments are conducted with the setting
of 576× 576 input resolution. Both PLG and LLG modules can improve the model performance.

PLG LLG mAP CF1 OF1
86.2 80.7 83.8

✓ 87.3 82.1 83.8
✓ ✓ 87.9 82.9 84.3

Effect of the number of nearest neighbors (Kplg). In our proposed PLG block, K-nearest neigh-
bors (KNN) is used for graph construction, connecting each label node with Kplg nearest neigh-
bor patch nodes. The number of neighbors Kplg is a hyperparameter controlling the range of the
area where region features will be extracted and aggregated. Large Kplg will lead to feature over-
smoothing and involve interference of the invalid background, while small Kplg will affect feature
extraction and message passing. We explored the effect of Kplg from 12 to 48 on the MS-COCO
dataset and show the results in Figure 3. The experiments are conducted with the setting of 576×576
image size. We find that the model performance is not sensitive to the setting of Kplg. The best per-
formance is achieved when Kplg = 33 and the computation costs are almost unaffected by Kplg.
Therefore, we select the best setting Kplg = 33 for all the experiments.

10 20 30 40

87

87.2

87.4

87.6

87.8

88

Kplg

m
A

P

Figure 3: Effect of different Kplg of PLG. Experiments are conducted on MS-COCO dataset with
the setting of 576× 576 input resolution. Our model is not sensitive to the changes of Kplg.
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(a) person (b) tennis racket (c) zebra

Figure 4: Visualization of the learned connections between patch nodes and label nodes (MLG), and
also the connections between patch nodes (ViG). (a), (b), and (c) correspond to ”person”, ”tennis
racket”, and ”zebra”, respectively. The colored blocks are the label nodes’ nearest patch nodes.
For clarity, we visualize the top-4 nearest neighbor patch nodes for each label node. For patch-
level graph visualization, the yellow dot is the center node and the red dots connecting to it are the
neighbor nodes. The red lines represent the connections between patch nodes.

4.4 VISUALIZATION AND ANALYSIS

In this section, we visualize the learned graph structure in both ViG and MLG to better understand
how our ML-ViG works. Specifically, we visualize the connections between patch nodes and label
nodes in the last PLG block, and the connections between patch nodes in the last ViG block.

As shown in Figure 4, (a), (b), (c) are person, tennis, racket, respectively. Especially, (a) and (b)
correspond to two different labels existing in the same image. Images are divided into a set of
patches and the colored blocks are the label nodes’ nearest patch nodes. For clarity, we visualize
the top-4 nearest neighbor patch nodes for each label node. In Figure 4a, the pink patches are the
neighbors of the label “people”, and we see that these regions locate on human body parts, including
arms, legs, and feet. And in Figure 4b and Figure 4c, we can observe that the label “tennis racket”
and the label “zebra” accurately find the related regions corresponding to the object label. This
validates that the representations of label embeddings and visual features are well aligned in our
proposed PLG block.

We further visualize the learned connections between patch nodes in ViG block. The yellow dot is
the center node and the red dots connecting to it are the neighbor nodes. The red lines represent the
connections between patch nodes. For clarity, we only visualize a small number of center nodes.
In Figure 4a, we can see that the patch on the arm is linked to other parts (e.g. the hand and the
knee) of the person. Figure 4b and Figure 4c also show that the ViG block has the flexibility to
aggregate features from both surrounding areas, and other areas at a distance since they are linked
by semantic content instead of by position distance. This indicates that our model can learn better
visual representations based on global and wider range relations, which avoids inductive biases of
CNN and helps to better categorization.

5 CONCLUSION

In this paper, we propose ML-ViG, a novel and flexible fully graph convolutional model for the
task of MLIR. We pioneer to study the unified graph representations for both visual features and
label embeddings. And three kinds of relationships are effectively captured in the graph structure,
including region space relations, label semantic relations, and cross-relations between labels and
regions. Comprehensive experiments on public benchmark datasets, i.e. MS-COCO, VOC2007,
and VG-500, demonstrate the effectiveness of our proposed method. We hope our work will draw
the community’s attention to unified graph representations for general vision tasks.
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