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Abstract

Motivated by the recent development of Nat-
ural Laguage Generation (NLG), we give an
overview of several untrained metrics used to
evaluate NLG algorithms’ performances, for a
translation task. We use a dataset (WMT16,
de-en) composed of pairs of sentences, each
of which being labelled with a human score
reflecting how similar both sentences are ac-
cording to human judgment. We compute the
correlation between each metric’s score and
the human reference score, as well as corre-
lations among metrics. Our results show that
embedding-based metrics are more correlated
with human judgment than string-based met-
rics; the highest correlation coefficients be-
ing obtained for BERTScore. Among metrics,
embedding-based metrics are the most corre-
lated with each other.

1 Introduction

The fast development of Natural Language Pro-
cessing (NLP) algorithms comes with a key com-
ponent of any machine learning model: perfor-
mance evaluation. As text’s human annotation is
expensive and time-consuming (Sai et al., 2020),
researchers rely on automatic metrics as a proxy of
quality. In Natural Language Generation (NLG)
(Colombo* et al., 2019; Jalalzai* et al., 2020;
Colombo et al., 2021b), building metrics remains
a challenge as it requires evaluating text similar-
ity between the output given by text generating
systems and one or several gold-standard refer-
ence texts. Each text generation task (translation,
story generation, data2text generation...) requires
its own performance criteria. For example, key
criteria for translation may be fidelity or fluency
(King et al., 1999; White et al., 1994).

In order to better assess the progress of new
methods, we go through several metrics and com-
pare their performance by evaluating their correla-
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tion with human judgment, as the latter is consid-
ered to be one of the most important performance
criteria (Chatzikoumi, 2019; Specia et al., 2010;
Koehn, 2009; Lavie and Agarwal, 2007).

In the following, we consider only untrained
metrics (using just the model’s output and calcu-
lating the metric from a pre-defined algorithm)
applied to translation tasks (Doddington, 2002;
Popovi¢, 2015). The metrics we focus on are
listed in Table 1, classified into two categories:
string-based metrics evaluate the textual represen-
tation of the inputs, while the chosen embedding-
based metrics rely on contextualized embeddings
that are continuous representations (Devlin et al.,
2018; Wang et al., 2020).

String-based BLEU (Papineni et al., 2002)
ROUGE (Lin, 2004)
chrF (Popovié, 2015)

Embedding-
based

BERTScore (Zhang et al., 2020)
MoverScore (Zhao et al., 2019)
BaryScore (Colombo et al., 2021c¢)

Table 1: Classification of metrics considered in our study.

String-based metrics rely on string represen-
tation and are therefore known to fail to cap-
ture nuances when reference and candidate carry
the same meaning but with different forms, for
example with synonyms and paraphrases (Reiter
and Belz, 2009). Embedding-based metrics over-
come this limit by measuring semantic similar-
ity rather than lexical overlap. While the latter
achieves stronger correlation with human judg-
ment, the former are still the most widely used
in Machine Translation (MT) papers (Marie et al.,
2021), some reasons being the explainability of
the scores (string-based metrics are mostly highly
transparent while embedding-based metrics rely
on black-box language models such as BERT) or



the computational inefficiency to run expensive
new metrics at large scale (Leiter et al., 2022).

Hence, choosing a NLG metric is far from being
obvious, even for a given task such as translation;
reviews of existing evaluation metrics for NLG
tasks have multiplied lately (Marie et al., 2021;
Chatzikoumi, 2019; Sai et al., 2020; Reiter and
Belz, 2009; Chhun et al., 2022; Staerman et al.,
2021; Colombo, 2021). We propose a simple com-
parison of metrics, in the context of translation, in
order to understand what characterizes and differ-
entiates them.

We provide a theoretical framework as well
as an implementation of all considered meth-
ods than can be found in a github repository:
https://github.com/AlexLsn/Text_
similarity_metrics.

2 Problem Framing

Given a dataset

D = {z, v, h(xiayi)}éil

where x; is the i-th reference text, y; is the i-
th associated candidate text; N is the number of
texts in the dataset. h(z;,y;) € RT is the score
associated by a human annotator to the candidate
text y; when comparing it with the reference text.
‘We will consider several evaluation metrics m (see
Table 1) and compare them to h.

More precisely, we aim at comparing scores
given by metrics prediction and text level hu-
man judgment (Chatzikoumi, 2019). Text-level
correlation refers to the evaluation of the abil-
ity of a metric to measure the semantic equiva-
lence between a candidate and a reference sen-
tence (Colombo et al., 2021c). Using above-
introduced notations, with C' a correlation coeffi-
cient, it writes:

1 N
Cleat = 7 2 C((m(ys, 1), Myi, x:)).
=1

As mentioned in introduction (1), we use this
correlation as an evaluation measure of the trans-
lation task we consider.

3 Experiments and Protocol

Choice of dataset We conduct our experiments on
the WMT16 dataset (Bojar et al., 2016). We focus
on the de-en pair, that is translation from German

to English. This dataset is composed of 500 pairs
of sentences and the associated human similarity
score (a real number between —1.9 and 1.3).

Text level correlation To measure text-level cor-
relation introduced in Section 2, we consider three
common coefficients: Pearson’s coefficient (Pear-
son, 1895; Leusch et al., 2003) measures linear
correlation, while Spearman’s (Fieller et al., 1957;
Melamed et al., 2003) and Kendall’s (Kendall,
1938) coefficients compare the ranks of data.
Significance testing To check how trust-worthy
the differences between our metric scores are, we
follow the recommandations of Marie et al. (2021)
and perform statistical significance testing using
Williams test (Steiger, 1980) as considered ob-
servations are correlated (Graham and Baldwin,
2014; Graham, 2015; Graham et al., 2015).
Choice of model Some metrics (BERTScore,
MoverScore, BaryScore) performances are depen-
dent on the choice of the model; thus, we work
with one single model in the whole study to be
able to compare scores. Due to computational
constraints, we choose to use DistilBERT (Sanh
et al., 2019). This model reduces the size of a
BERT model (Devlin et al., 2018) by 40%, while
retaining 97% of its language understanding capa-
bilities and being 60% faster.

4 Results

4.1 Correlation to human judgment

Absolute correlations between metric prediction
and text level human judgement on the de-en pair
of WMT16 are given in Table 2. Pearson’s r,
Spearman’s p and Kendall’s 7 coefficients are re-
ported. They are all significant at the 1% level. We
use ROUGEI] for computing ROUGE scores.

r p T
BLEU 0.54 048 0.34
ROUGE 0.57 053 0.38
chrF 0.60 056 041
BERTScore 0.72 0.70 0.62
MoverScore 0.70 0.68 0.50
BaryScore 0.69 0.65 048

Table 2: Absolute correlations (Pearson - 7, Spearman -p,
and Kendall - 7) between metric prediction and text level hu-
man judgment on the de-en pair of WMT16.

As reported in Table 2, the absolute correla-
tion coefficient with human judgment is higher
for embeddings-based metrics than for edit-based
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metrics. These results are not surprising: for
example, metrics relying on contextualized em-
beddings, as opposed to string-based metrics, are
able to handle synonyms, and these should not be
penalized by humans for a task such as transla-
tion. BERTScore gives the highest values, with
BaryScore and MoverScore being close to the for-
mer.

Figures 1 and 2 show the distribution of BLEU
scores -respectively BERTScores- compared to
human scores. One can notice that at low values of
BLEU score, there is high a level of uncorrelation
with human judgment, which can take whatever
values in the admitted interval.

BERTScore and human judgment display a
stronger correlation, with a linear relationship pat-
tern arising. Interestingly enough, lower values of
human judgment are associated with a higher vari-
ance in BERTScore while the distribution is more
concentrated for higher values. Plots for other
metrics can be found in Appendix 6.1.
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Figure 1: BLEU score vs human judgement score.

100 r=072
tho=0.7
tau=052
0.95

[=]
w
(=]

BERTScore
=}
=2}
n

0.80

0.75

s -10 05 00 05 10
Human judgement score

Figure 2: BERT score vs human judgement score.

We test the significance of the increase in cor-
relation between each pair of considered met-
rics for the Pearson correlation coefficient, us-

ing William’s test as our observations are cor-
related (Graham and Baldwin, 2014). Re-
sults can be found in Figure 3. One can
notice the less-significant results are concern-
ing string-based metrics on one side (BLEU-
ROUGE, chrF-ROUGE) and embedding-based
on the other side (MoverScore-BERTScore,
MoverScore-BaryScore), showing once again that
this categorization is relevant.
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Figure 3: Significance testing on de-en for WMT16. In the
matrix is reported the p-value of the Williams Test.

Despite the fact that embedding-based metrics
give significant better results than string-based
metrics, almost 99% of the research papers in ma-
chine translation rely on BLEU to evaluate trans-
lation quality, while more than 100 other met-
rics have been proposed since 2010 (Marie et al.,
2021; Novikova et al., 2017). An understanding
would come from the fact that BLEU is explain-
able, quick, inexpensive, language independent,
and that due to its use the comparison to previous
research is easier (Leiter et al., 2022). Still, know-
ing that such a metric cannot measure semantic
similarity, this calls into question the credibility of
the NGL evaluation field.

4.2 Correlation across metrics

Figure 4 displays the intercorrelation across met-
rics based on Pearson’s r (results for Spearman’s
p and Kendall’s 7 can be found in Appendix 6.2).
For all three measures, the highest levels of cor-
relation are observed for metrics based on BERT
(BertScore, MoverScore and BaryScore) (Devlin
et al., 2018), which is consistent with similar find-
ings in the literature (Colombo et al., 2021c¢). This
high level of correlation is due to the common
pre-trained pattern of BERTScore, BaryScore and
MoverScore metrics, that have been trained on



general text generation tasks, without specific fit to
translation (Zhang et al., 2020; Zhao et al., 2019;
Colombo et al., 2021c; Devlin et al., 2018). Our
result is consistent with Gupta et al. (2019), who
are able to group metrics by correlation pattern.
The authors also investigate the possibility of al-
lowing for more complex relationship (non-linear)
between correlated metrics, but their results are
similar to the Pearson’s measure.
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Figure 4: Absolute intercorrelation among metrics accord-
ing to Pearson’s r.

5 Conclusion

Our results show clear better performance of
embedding-based metrics for measuring text sim-
ilarity on the WMT16 de-en dataset. We provide
ways of visualizing correlations between metrics
and human judgment that support these findings.
However, the latter must be contextualized: a
recent study by Colombo et al. (2022) reveals
that automatic metrics, old (string-based) and new
(embedding-based), show stronger similarity be-
tween each other than with humans. The au-
thors thus encourage further research to focus on
minimizing similarity with existing metrics rather
than maximizing correlation with human judg-
ment, in order to capture new aspects and ensure
that the field is progressing. In Belouadi and Eger
(2022), the authors advocate for the use of fully
untrained metrics so as to be able to apply metrics
to cases were supervision is infeasible (rare lan-
guages translation).

With more time, and to support our results, we
would perform evaluation on other datasets. It
would also be interesting to include more string-
based metrics such as METEOR (Banerjee and
Lavie, 2005) or embedding-based metrics such

as InfoML (Colombo et al., 2021a). Moreover,
a more comprehensive comparison of our results
with the literature would be a definite avenue for
improvement. Finally, comparing untrained met-
rics on other tasks such as data2textgeneration
(Perez-Beltrachini et al., 2016; Castro Ferreira
et al., 2020; Gardent et al., 2017) or summary gen-
eration (Nenkova and Passonneau, 2004; Bhandari
et al., 2020; Nallapati et al., 2016; Colombo et al.,
2022) would also provide a better understanding
of metrics’ specificities.



6 Appendix

6.1 Correlation plots: metrics vs human
judgement

We report on Figures 5, 6, 7, 8 the correlation be-
tween metrics and human score as well as each
correlation coefficient on WMT16 for the de-en
pair. Results for BLEU and BERT can be found
in the main content.
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Figure 5: ROUGE score vs human judgment score. The
values of the correlation coefficients r, p and 7 are given.
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Figure 6: chrF score vs human judgment score. The values
of the correlation coefficients r, p and 7 are given.

6.2 Correlation among metrics

Correlation between metrics’ prediction WMT16
(de-en) can be found in Figure 9 for Spearman’s
p and Figure 10 for Kendall’s 7. Results for Pear-
son’s coefficients can be found in the main con-
tent.
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Figure 7: MoverScore vs human judgment score. The values
of the correlation coefficients r, p and 7 are given.
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Figure 8: BaryScore vs human judgment score. The values
of the correlation coefficients r, p and 7 are given.
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Figure 9: Absolute intercorrelation among metrics accord-
ing to Spearman’s p.
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Figure 10: Absolute intercorrelation among metrics accord-
ing to Kendall’s 7.
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