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Abstract

Fine-tuning zero-shot foundation models often
compromises their robustness to downstream dis-
tribution shifts. We propose dual risk minimiza-
tion (DRM) which combines empirical risk min-
imization with worst-case risk minimization to
better preserve core features conducive to down-
stream robustness. In particular, we utilize core-
feature descriptions generated by LLMs to induce
core-based zero-shot predictions which then serve
as proxies to estimate the worst-case risk. DRM
balances two crucial aspects of robustness: ex-
pected and worst-case performance over all pos-
sible domains, establishing a new state of the art
on various real-world benchmarks. DRM sig-
nificantly improves the out-of-distribution per-
formance of fine-tuned CLIP ViT-L/14@336
on ImageNet (75.9—77.1), WILDS-iWildCam
(47.1—51.8), and WILDS-FMoW (50.7—53.1);
opening up new avenues for achieving next-level
robustness in fine-tuning zero-shot models.

1. Introduction

Foundation models such as CLIP (Radford et al., 2021) have
revolutionized machine learning with their remarkable zero-
shot and adaptive capabilities. Research has shown that such
capabilities are mainly due to robust feature representations
gained from large-scale training data (Fang et al., 2022;
Mayilvahanan et al., 2023). The models have been proven
useful in various downstream tasks (Shen et al., 2022; Zhang
et al., 2022; Betker et al., 2023; Pi et al., 2024) and are the
cornerstones of recent large multimodal models (Alayrac
et al., 2022; Liu et al., 2023; Zhu et al., 2024).

Fine-tuning is one of the most common approaches to the
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downstream adaptation of foundation models (Bommasani
et al., 2021; Shen et al., 2022). However, such adaptation
often comes at the cost of robustness (Radford et al., 2021;
Pham et al., 2023), resulting in enlarged gaps between down-
stream in-distribution (ID) and out-of-distribution (OOD)
performance (Wortsman et al., 2022).

To address the issue, previous robust fine-tuning methods
mostly aim to preserve pre-trained features during or after
the course of fine-tuning (Kumar et al., 2022; Wortsman
et al., 2022; Goyal et al., 2023). Nevertheless, the process
is guided by the principle of empirical risk minimization
(ERM; Vapnik, 1998) which favors the most predictive but
not necessarily the most robust features.! In general, there
are two kinds of robust features: core features which essen-
tially define the target classes, and non-core features that
may aid prediction when the core features are not clear (Gao
et al., 2023). ERM models tend to exploit the generally less
reliable non-core features even when the core features are
clear (Geirhos et al., 2020; Shah et al., 2020).

To better preserve downstream core features, we propose
dual risk minimization (DRM) which combines ERM with
worst-case risk minimization (WRM; Wald, 1945), a com-
mon objective for domain generalization (Arjovsky et al.,
2019; Sagawa et al., 2020; Cha et al., 2021; Kirichenko
et al., 2023). More fundamentally, DRM rests on our view
that robustness concerns both the expected (or average) per-
formance and the worst-case performance over all domains.
As there is often a trade-off between them (Tsipras et al.,
2019; Teney et al., 2023), Figure 1 illustrates how DRM
balances the trade-off to improve overall robustness.

The main challenge of DRM is to assess the worst-case risk.
To this end, we use concept descriptions (Pratt et al., 2023)—
text that describes the core features of each class—obtained
with GPT-4 (Achiam et al., 2023). The description we ob-
tained for cougar, for instance, is “a large, tawny cat with a
muscular build and a small head > We subsequently feed
the descriptions to a pre-trained CLIP text encoder (Radford
et al., 2021) for the text embeddings which are then used to
construct soft class labels upon the similarity scores between
the text embeddings and the image embedding of each train-
ing image. The risk w.r.t. the soft labels can be considered
as a proxy for the worst-case risk and is optimized instead.

"More discussion on related work can be found in Appendix A.
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Figure 1. Dual risk minimization (DRM) combines empirical risk minimization (ERM) and worst-case risk minimization (WRM)
to complement their weaknesses. In this simple binary classification task predicting if there are skis in a given image, either ERM or
WRM is suboptimal because (i) ERM underperforms when the core features (the appearance of ski) are clear but the non-core features
such as background/context are spurious (i.e. negatively correlated with ski), and (ii) WRM underperforms when the core features are
unclear but the non-core features are robust (i.e. positively correlated with ski). DRM outperforms ERM and WRM under mild conditions
such that the core features are not always clear and the non-core features are more often robust than not.

Empirically, DRM significantly outperforms previous base-
lines on challenging benchmarks such as ImageNet (Deng
et al., 2009) and WILDS (Koh et al., 2021).

In summary, we make the following key contributions:

* We propose dual risk minimization (DRM), a novel
approach that combines ERM and WRM to improve
downstream robustness of zero-shot foundation models
through innovative use of concept descriptions.

* We highlight that real-world robustness often concerns
both expected and worst-case performance while most
previous works focus on only one. We show that DRM
offers a simple and effective way to balance them.

¢ We establish new states of the art on various real-world
benchmarks. For CLIP ViT-L/14@336, DRM signifi-
cantly improves the average OOD performance on those
benchmarks from 57.9 to 60.7 over the best baseline.

2. Dual Risk Minimization

Data model. Let X and Y be the input and ground-truth
target variables for which we adopt the following data gen-
eration model:

X + hx(Xc, Xn,e),

Y « hy(Xe); M

where (X, X,) are latent variables and ¢ is exogenous
noise. We call X, core features of (X,Y), and X,, non-
core features. X, and Y may be correlated due to hidden
confounders of (X, X,,) and direct causal mechanisms be-
tween (X., X, ). Following Peters et al. (2016), we assume
the causal mechanisms and the distribution of ¢ are invari-
ant across domains. There are no other hidden variables or

mechanisms. Similar models were widely adopted in the
literature (Tenenbaum & Freeman, 1996; Mahajan et al.,
2021; Mitrovic et al., 2021; Ahuja et al., 2021; Liu et al.,
2021; Lv et al., 2022; Ye et al., 2022; Zhang et al., 2023a;
Gao et al., 2024a) where X. and X, are sometimes referred
to as ‘content’ and ‘style’. We use curly letters such as X
and Y to denote the space of possible values the random
variables may take.

Ideal objective for maximal robustness. Let D be all pos-
sible domains of a task, and & be some natural distribution
over D. By definition, &#?(d) > 0 for all d € D. Every do-
main d is associated with a data distribution py(z, ¥, ¢, Ty )
consistent with (1). Let pg(y|z) be a prediction model pa-
rameterized by 6 € ©O. Its risk in terms of negative log-
likelihood, Rq(0) = E (4 )~p,[— 10g pe(y|x)], can be seen
as a measure of its performance in domain d. Let ds € D be
the training domain. We will omit d when it is clear from
the context, e.g., we will write R, (6) simply as Rs(6).

For real-world applications, we argue that a robust model
should optimize its expected performance over & while
maintaining acceptable worst-case performance across D.
The expected performance implies how well the model
would perform at the most general population level, while
the worst-case performance tells us the model’s performance
in the worst scenario one may encounter. Similar views are
shared by Eastwood et al. (2022) and Zhang et al. (2023b).

We formalize the intuition as the following constrained opti-
mization problem, namely idealized dual risk minimization
(IDRM), which aims to minimize the empirical risk while
ensuring the worst-case risk is below a threshold value o.

min R ()

min (IDRM)

subject to max R4(0) < a.
deD
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IDRM generalizes ERM (Vapnik, 1998) and WRM (Wald,
1945) as it reduces to ERM when « is large and to WRM
when « is small. IDRM also bears some resemblance to
invariant risk minimization (IRM; Arjovsky et al., 2019)
which involves an implicit WRM constraint. The constraint,
however, requires the classification head to be optimal in all
training domains and thus may be too demanding in prac-
tice. The threshold ov makes IDRM more flexible. Another
closely related work, GroupDRO (Sagawa et al., 2020), pro-
poses to minimize the worst risk among training domains—a
more empirical flavor of WRM. Both IRM and GroupDRO
rely on carefully grouped training data to capture invariance
across domains. For zero-shot models, we find this is un-
necessary, and provide a practical method to realize IDRM
with just single-domain data (to be elaborated in Section 3).

Relaxation from IDRM to DRM. IDRM is equivalent to
the following unconstrained problem due to strong duality.”

Theorem 1. Strong duality holds between IDRM and

max min

/ Y
max min R(6) + A max Rq4(0)| — N 2)

The worst-case risk in (2) is closely related to the degree to
which py(y|x) relies on core features to make predictions
because for a diverse set of domains D, leveraging non-core
features would always lead to worse performance in certain
domains (Arjovsky et al., 2019; Geirhos et al., 2020).

Let f.(x) be an oracle feature extractor that returns a faithful
representation of the core features for any input x, and let
pe(y|x) be the optimal model that can be built upon f.(x).
The risk of pg(y|z) w.r.t. p.(y|x) on the training domain dj,
ie, R{(0) = Eonp,Eymp. (y|z)[—log po(y|z)], measures
the degree to which the model’s prediction is based on the
core features and thus can be regarded as a proxy for the
worst-case risk. In summary, we relax IDRM to

min Rs(0) + ARS(0) (DRM)

with some properly chosen A > 0. Here, the risk RS(6) can
also be seen as a regularization term for ERM. Next, we
answer the key question on how to obtain a good estimate of
pe(y|x) by leveraging the zero-shot capability of foundation
models such as the CLIP models (Radford et al., 2021).

3. Fine-tuning Zero-shot Models with DRM

Zero-shot models like CLIP typically consist of an image en-
coder f, and a text encoder g, with parameters 6 = (¢, 1)).
Image classification with such models is usually done by
first creating a text prompt ¢, for each class label y € Y,
and then assigning a probability for each y to an image x by

exp(Ag(z,ty)/7)
vy exp(Ag(z,ty)/T)’

po(ylz) = 5 3)

2The proof can be found in Appendix B.

Affinity

0.367 N
0.265
Concept description
0286
A long, thin piece of wood or metal
that is elevated off the ground. 0.281

Figure 2. The affinities between the images and the default prompt
are not stable w.r.t. changes in the context (non-core features). On
the other hand, the changes do not significantly affect the affinities
between the images and the concept description. See Appendix D
for more examples and details about this empirical study.

Default text prompt

| An image of balance beam.

where Ag(z,t,) = (fo(x), gy(ty)) and 7 is the tempera-
ture. The inner product (fy(x), gy (t,)) can be intuitively
understood as the affinity between x and ¢,, and we thus
denote it as Ag(z, ty).

Estimating p.(y|z) with concept descriptions. Recall
that the oracle model p.(y|z) is based on a faithful repre-
sentation of the core features. To estimate p.(y|z), we ask
GPT-4 (Achiam et al., 2023) to describe the core visual fea-
tures of each class, producing a set of concept descriptions3,
T4 = {t5*|y € V}. We then feed every training image
2 and every t;d to a pre-trained CLIP model 8y = (¢g, 1)
to compute the affinities Ag(z,t;) between them. The
affinities reflect the significance of the core features of each
class y in an image x, and thus can be used to construct
an estimate for p.(y|z). Figuratively, the text embedding
Gy (t57) “pulls out” the core features from the image em-
bedding fy, () via the inner product. As shown in Figure 2,
the affinity Ag(x,t,) is indeed a good measure for the core
features of the ground-truth class of an image.

Following the above analysis, a direct estimate for p.(y|x)
is (3) with § =6y and ¢, = t;d; but there is a crucial caveat.
For an image x with label y, if 3’ is another label whose
core features are not in z, the affinity Ag(x,t,) should
ideally be close to 0. However, this is seldom the case due
to imperfections of the pre-trained model 6 and the concept
descriptions t;d. These extraneous affinity values, which we
call artifact terms, may be class-specific and lead to poor
estimates of p.(y|x). To remove the artifact, let £(z,y) =
exp(Ag(z,t,)/7), and X, C X be the training images
labeled y. For every training image x and class y, we confine
the comparison of the affinities within X, by

E(JC, y) B minx/exy €($/, y)
ma‘Xa;/EXy g(x/a y) - minl‘/EXy 5(33/, y)

y(z,y) =

b

i.e., the min-max normalization of &(z,y) over X,. The
final estimation for p.(y|z) we adopt is defined as

3See Appendix C for more details about concept descriptions.
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Table 1. ID and OOD performances of DRM and the baselines methods on three datasets, using CLIP ViT-B/16, with and without
WIiSE-FT. Performance metrics are averaged over 5 runs with 95% confidence intervals. Best performances are highlighted in bold. For
ImageNet, we report the average performance over its 5 OOD test sets. Results on individual test sets are provided in Appendix F.1.

ImageNet iWildCam FMowW
w/o WiSE-FT WiSE-FT w/o WiSE-FT WiSE-FT w/o WiSE-FT WiSE-FT
Method ID OOD ID OOD ID (0]0)b] ID OOD ID 00D ID 00D
0-shot  68.3+00 58.7+00 - - 8.7+00 11.0+00 - - 20.4+00 18.7+00 - -
LP 79.9+00 57.2+00 80.0+00 58.3+00 44.5+06 31.1+04 45.5+06 31.7+04 48.2+01 30.5+03 48.7+01 31.5+03
FT 81.4+01 54.8+01 82.5+01 61.3+01 48.1+05 35.0+05 48.1+05 35.0t05 68.5+01 39.2+07 68.5+01 41.5+05
L2-SP  81.6+0.1 579401 82.2+01 58.9+01 48.6+04 35.3+03 48.6+04 35.3+03 68.6+01 39.4+06 68.4+0.1 40.3+06
LP-FT 81.8+01 60.5+01 82.1+01 61.8+01 49.7+05 34.7+04 50.2+05 35.7+04 68.4+02 40.4+10 68.5+02 42.4+07
FLYP  82.6+00 60.2+t0.1 82.9+00 63.2+01 52.2+06 35.6+12 52.5+06 37.1+12 68.6+02 41.3+08 68.9+03 42.0+09
DRM  82.0+03 63.2+02 82.4+02 64.0+02 54.1+05 40.0+06 55.3+04 41.4+07 68.7+03 45.9+11 68.7+02 46.1+08
Table 2. DRM vs. FLYP on two larger CLIP ViT models. mizing RS. This leads to the final DRM objective,
. . df De(p. gcd
ImageNet iWildCam FMoW min Rs(0; T) + AR (0; T°7), (6)
Method ID 00D ID OOD ID OOD o ) ) )
FLYP 84.6+03 73.4+01 56.0+1.1 41.9+07 71.2+05 48.2+05 which is used t,O fine-tune CLIP models in 01}1‘ ma1n expfarl—
«+ +WIiSE-FT 85.1402 75.1401 57.2:07 42.1405 72.0+04 49.1z06  mments. The adjustment proves to be beneficial (in ablation
3 DRM 85.0£02 75.5+02 61.8%05 49.2+04 70.9+0s 513407 study) as it ensures both the target pc(y|x) and the classifier
+WiSE-FT 86.2+0.1 76.2202 61.6:03 49.8+04 71.4+05 51.3=07 po(y|x) are based on the same text prompts 7 °¢. It makes
o FLYP 85.4+02 75.0£03 58.7+06 45410 72.5£03 50.5:£05 R¢ more effective in limiting the divergence of 6 from 6,
é +WIiSE-FT 86.1+02 75.9+02 60.5+05 47.1+12 72.6:03 50.7+06 which helps better preserve pre-trained features compared
I DRM 85.9+0.1 76.0£02 628406 51.4405 73.8405 52.5409 to learning with a classifier based on different prompts.
3 +WiSE-FT 87.4+00 77.1+02 62.5+04 51.8+05 73.8+03 53.106

Y = Yz;

4
Y F Yu; @

pelylz) = 4 1Y
c [1—~(z,y.)] - %’

where y, is the ground-truth label of x. The overall im-
pact of artifact terms is now much reduced since p.(y|x) is
independent of variations in the artifact terms.

Practical improvements to DRM. Let 7 be the set of
text prompts used to construct the classifier py(y|z) defined
by (3). For such classifiers, the original DRM objective can
be re-expressed as mingeo Rs(0; T) + ARS(0; T) where
R and R not only depend on 6 but also on 7. Typically, a
set of default prompts 7 like “an image of [class name]”
is used. With the estimation of p.(y|x) also incorporated,
this gives rise to the following vanilla DRM for fine-tuning
zero-shot models:

min R (0; T) + ARS(60; T*), Q)

0co
where R stands for RS with p.(y|x) replaced by its estima-
tion P (y|z) derived from the concept descriptions 7 4.

We can further improve vanilla DRM (5) by using 7<¢
instead of 7% to construct the classifier py(y|z) for mini-

Inference. The fine-tuning process (6) involves two clas-
sifiers: the ERM classifier p§®(y|z) induced by 7%, and
the WRM classifier p§®(y|z) induced by 7°¢. While either
alone can be used for inference, we find that their mixture,

pgual(y|x) =5 pgf(y|x) + (1 — 6) pgd(mm) )

where 3 € (0, 1), usually performs the best. This is perhaps
unsurprising as (7) essentially combines ERM with WRM
as depicted in Figure 1. By default, we set 3 = 1/(1 + )
so to be as consistent with (6) as possible.

4. Experiments

We evaluate DRM on real-world DG benchmarks against
existing robust fine-tuning methods such as LP-FT (Kumar
et al., 2022) and FLYP (Goyal et al., 2023). Additionally,
we examine combining WiSE-FT (Wortsman et al., 2022),
a method that averages parameters between pre-trained and
fine-tuned models, with DRM and all baseline methods.
Training-domain validation is adopted for all methods. More
implementation details are in Appendix E.

Table 1 shows that on CLIP ViT-B/16, DRM consistently
outperforms the baselines in OOD performance across all
datasets, with and without WiSE-FT. Further results in Ta-
ble 2 on two larger models confirm that DRM consistently
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beats FLYP. The previous best OOD scores of CLIP ViT-
L/14@336 for iWildCam and FMoW were 47.1 and 50.7
by FLYP+WiSE-FT. DRM improves them to 51.8 and 53.1,
marking relative improvements of 10.0% and 4.7%.

We also compare DRM with some more recently proposed
robust fine-tuning methods, and the results are reported in
Appendix F.3. It is shown in Appendix F.6 that DRM is also
effective in fine-tuning ImageNet pre-trained CNNs.

Finally, we have conducted a thorough ablation study to
assess how various aspects of DRM including both training
and inference affect the model’s final performance. We have
also examined the impact of the hyperparameter A of DRM.
These results can be found in Appendix F.4 and F.5.
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A. Related Work

Robust fine-tuning of pre-trained models. Kumar et al. (2022) showed that fine-tuning tends to distort pre-trained robust
features, and the distortion is exacerbated by randomly initialized heads which would significantly alter the pre-trained
features to fit ID examples. The proposed remedy, LP-FT, first learns a linear probe (LP) on frozen features, followed by
regular fine-tuning (FT). Goyal et al. (2023) took this idea further by reusing the pre-trained text encoder of CLIP as the
classification head for fine-tuning. This method improves LP-FT and is colloquially known as “fine-tune like you pre-train”
(FLYP). WiSE-FT (Wortsman et al., 2022) combines pre-trained models with their fine-tuned versions by weight averaging,
yet another way to recover robust features lost during fine-tuning.

Recently, some new robust fine-tuning methods that regularize the difference in model outputs between pre-trained and
fine-tuned models have been proposed. The context-aware robust fine-tuning method (CAR-FT) (Mao et al., 2024) and
the method proposed in Cheng et al. (2024) seeks to reduce the distance in context distributions generated by pre-trained
and fine-tuned CLIP models. These methods however require prior knowledge of image contexts, such as background
and viewpoint, limiting their practical use. In contrast, without needing prior information, Lipsum-ft (Nam et al., 2024)
introduces a regularization term that minimizes the L? distance between the inner products of training image embeddings
and random text embeddings generated by the pre-trained CLIP model and those generated by the fine-tuned CLIP model.

In addition to WiSE-FT which combines the model parameters of pre-trained and fine-tuned models, several newer methods
also apply regularization directly to the parameter spaces. CLIPood (Shu et al., 2023) utilizes a beta moving average
for updating parameters during training. The calibrated robust fine-tuning (CaRot) method (Oh et al., 2023) focuses on
regularizing singular value distributions and incorporates an exponential moving average for parameter updates. In addition,
the trainable projected gradient method (TPGM) (Tian et al., 2023a) autonomously determines the most effective constraint
for each layer’s parameters, thereby achieving a more fine-grained regularization. The fast trainable projection (FTP) method
(Tian et al., 2023b) enhances TPGM by enabling a more efficient learning of layer-specific projection constraints.

Another recent method is the anchor-based robust fine-tuning (AFT) (Han et al., 2024) which improves the robustness of
fine-tuned CLIP models by incorporating richer text information with an additional image captioner. However, using the
captioner on each image is computationally costly, and the fine-tuning effectiveness highly depends on the captioner used.

Prior to the work which we have introduced above, Li et al. (2018) proposed to use the L? norm of the difference between
the parameters of pre-trained and fine-tuned models as a regularization penalty to help preserve pre-trained features. Some
other work explored updating only a small number of (pre-trained/add-on) parameters (Guo et al., 2019; Zhang et al., 2020;
Gao et al., 2024b). Similar ideas (Kirkpatrick et al., 2017; Zenke et al., 2017) were also discussed in continual learning to
mitigate catastrophic forgetting (McCloskey & Cohen, 1989). Without explicit constraints on model parameters, Ge & Yu
(2017) turned to the source of robust features and proposed to incorporate a subset of pre-trained data for fine-tuning, while
Cha et al. (2022) aimed to enhance the mutual information between pre-trained and fine-tuned features. Jiang et al. (2019);
Zhu et al. (2020) added smoothness constraints on model predictions for adversarial examples (Szegedy et al., 2013) to help
retain robust features. Andreassen et al. (2021) showed that the OOD accuracy tends to improve initially but then plateaus as
the fine-tuning proceeds.

Worst-case risk minimization. The study of worst-case risk minimization (WRM) dates back to the work of Wald (1945),
which has gradually evolved into what we know as robust optimization today (Ben-Tal et al., 2009). More recently, WRM
has been considered (by many) a basic principle for domain generalization (DG; Blanchard et al., 2011; Muandet et al., 2013).
A seminal work in this direction is invariant risk minimization (IRM; Arjovsky et al., 2019) which aims to learn core-feature
representations from multi-domain training data. Such representations, under certain causal invariant assumptions, give
rise to classifiers that minimize the worst risk (Peters et al., 2016). Another key paper introduces GroupDRO (Sagawa
et al., 2020) which applies higher penalties to domains with higher empirical risks. Neither IRM nor GroupDRO formulates
the worst-case risk as an explicit optimization constraint for ERM. Eastwood et al. (2022) pointed out that average and
worst-case performance are both important. Their proposed objective, namely probable DG, aims to minimize the risk
among the most likely domains, with little restriction on the worst-case risk. Our setup also has some similarities with the
work of Alabdulmohsin et al. (2023) on latent subgroup shift, which also relies on external sources of information but under
stronger causal invariance assumptions.

Prompt design for zero-shot models. To better leverage the capability of zero-shot models, various methods have been
proposed for designing better prompts. Menon & Vondrick (2022); Pratt et al. (2023); Maniparambil et al. (2023) mainly
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explored prompt designs for zero-shot classification. Their prompts are generated by large language models (LLMs; Radford
et al., 2019) with slightly different instructions than ours, not explicitly focusing on the core features. For example, Pratt et al.
(2023) used “Describe an image from the internet of a(n) ...”, which may include some descriptions of the non-core features
in the resulting prompts. The prompts considered by Yang et al. (2023); Yan et al. (2023) are closer to ours in this respect,
where they aimed to use the LLM-generated concept descriptions to build concept bottleneck models for interpretable image
classification.

B. Proofs

Lemma 1. Let p and q be two probability distributions over X x ). The cross-entropy between p(y|x) and q(y|z) over
p(x), i.e, Hy(q) = E(zy)~p[—logq(y|x)], is convex with respect to q.

Proof. Tt suffices to show that for any pair of (g1, ¢2) and o € [0, 1] we have Hy(aq1 + (1 — a)g2) < aH,(¢1) + (1 —
a)Hp(g2)-
Hy(aq + (1 = @)g2) = Bz y)np[—log(aqi (y|z) + (1 — a)ga(y|2))]
< Egpy)~pl-alogqi(ylz) — (1 — a)log ga(ylo)] (®)
= aHy(q1) + (1 — a)Hp(g2). O

Theorem 1. Strong duality holds between IDRM and

. ’ Y
max min R(0) + A max Rq4(0)| — Na. 2)

Proof. Recall that IDRM aims to solve for

. s <a
min R(#) subject to max Ry4(0) < « (IDRM)
Here, Ry(0) = Hp, (po(y|7)) = E(z,y)~p.[— l0g po(y|z)] is the cross-entropy between pa(y|x) and pe(y|z) over pa(z). It
follows from Lemma 1 that R4(6) is convex w.r.t. pg(y|z) for all d € D.

Since the point-wise maximum of multiple convex functions is also convex, maxgep Rq(6) is convex and therefore IDRM is
a convex optimization problem w.r.t. pg(y|x). By Slater’s condition, strong duality holds between IDRM and the Lagrangian
dual of IDRM:

in Rs(0) + N\ 0) —
max min B, (0) + {gleag Ra(0) Oé} ; )
with feasible « that is guaranteed to exist. O

C. Details on Concept Description Creation

We utilized GPT-4 (Achiam et al., 2023), a leading-edge language model developed by OpenAl, to create concept descriptions.
We supplied GPT-4 with the class name and tailored prompts designed to guide the model to focus on the essential visual
features of the class while omitting unrelated contextual information.

Specifically, for the iWildCam dataset, our prompt to GPT-4 was:

Q: Generate a short sentence that describes the visual features of a given animal. Do not include its function, its
surroundings, or the environment it usually inhabits. The sentence should be concise. For example, [goldfish: a
long, golden body with back fins].

After that, we asked it to generate a concept description for each wildlife class. For example:

Q: Now the given animal is Cougar.

A: [Cougar: a large, tawny cat with a muscular build and a small head.]
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Another example is the FMoW dataset. We found it is challenging to encapsulate the core visual features of land used for
specific purposes in just one short sentence. Consequently, we employed GPT-4 to generate six sentences for each type of
land use. When we implemented DRM on this dataset, we slightly modified the image classifier to use the average of the six
text embeddings for each class as the classification head.

For this dataset, our initial prompt to GPT-4 was:

Q: The Functional Map of the World (fMoW) dataset is designed to identify the functions of buildings and land
use by examining satellite images over time.

Your task is to generate six sentences, each describing the visual features likely to be seen in these satellite images,
given the functional purpose of buildings and land use. The features you describe should be visible from an aerial
perspective and consistent across various countries. Each sentence should clearly and comprehensively describe a
visual feature, focusing solely on its appearance without including details of the surrounding area or the purpose
of the features, such as “Helipad for urgent aerial access”.

After that, we asked it to generate concept description for each land use. For example:

Q: Now the given land use is Road Bridge.

A: [Road Bridge:

Visibly characterized by a straight or slightly curved linear structure that spans across natural or man-made obstacles.
Constructed from materials that appear robust in satellite images, often showing as grey or dark tones against the landscape.
The bridge deck is typically marked with parallel lines, indicating the lanes for vehicular traffic visible from above.
Elevation above the surrounding area is noticeable, with shadows often highlighting the height and structure of the bridge.
Support features like piers or columns are regularly spaced, visible as distinct vertical elements that support the span.

End points of the bridge integrate with road networks, appearing as seamless transitions from elevated to ground-level roads.)

The full list of concept descriptions generated by GPT-4 for each class of different datasets considered in this work will be
publicly available online later.

D. Empirical Study on Concept Descriptions

Intuitively, gy, (tfjd) is a representation of the core features of the class y from the text side. We use it to “pull out” the core
features from the image embedding. To verify this intuition, we conducted the following empirical study.

To be more specific, we conducted experiments to check how robust the affinity (fy, (), gy, (t52)) is to changes in the
context information (non-core features) while keeping the core visual features of y, unchanged (y,, is the ground-truth label
of z). It also tells us how well gy, (t;d) can represent the core features of the class y, from the text side. The default prompt
“an image of [class name].” was used as the baseline to compare with the concept descriptions.

Concept descriptions yield soft labels being more robust to change of context information. Since we have no access
to the training data of the zero-shot CLIP models and cannot control the image-text pairs that include the class name in its
pre-training, it is possible that, compared to the affinities (f, (), gy, (t;j )) based on the concept descriptions, the affinities
(fo0 (), gy, (t57)) associated with default text prompts could be heavily influenced by context information rather than
reflecting the core visual features of class gy, as intended.

To verify this hypothesis, we conducted experiments with 15 ImageNet classes identified by Hard ImageNet (Moayeri et al.,
2022) as having strong spurious cues. These classes include Baseball Player, which is typically depicted in a baseball
field, Volleyball, frequently shown alongside a volleyball player, and Balance Beam, where images commonly feature a
gymnast in action. Using the segmentations provided in Moayeri et al. (2022), we observed how the affinities from the CLIP
ViT-B/16 model changed when the background of an image was removed.

Using default prompts, we observed that the average affinities (£, (), gy, (t;°)) changed by 0.108 when the background
pixels were substituted with mean pixel values. In contrast, the affinities from concept description prompts ( fe, (), gy, (t52))
were relatively unaffected, exhibiting a small decrease of 0.036 on average. This indicates that default prompts are
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df affinity: 0.367 0.262 0.333 0.267
cd affinity: 0.286 0.281 0.258 0.273
df prompt: An image of balance beam. An image of gymnastic horizontal bar.
cd pI'OIIlptZ A long, thin piece of wood or metal Long metal or wood bar held up by upright supports.
that is elevated off the ground.
~
df affinity: 0.395 0.265 0.344 0.264
cd affinity: 0.261 0.250 0.254 0.272
df prompt: An image of howler monkey. An image of hockey puck.
cd prompt: Four-limbed silhouette with A small, hard, round black rubber disc.

a long tail and a large throat.

Figure 3. Concept descriptions (cd) yield affinities that are more robust to the change of context information than the affinities yielded by
the default text prompts (df).

Y e
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(a) Volleyball court or volleyball player without the volleyball (b) Baseball field or baseball bat without players

Figure 4. Images showing typical contexts associated with specific sports without the presence of the class object itself.

more sensitive to changes in background context, whereas concept description prompts provide more stable and context-
independent results. Four examples demonstrating this difference in affinity changes are presented in Figure 3.

To further understand this point, we created a variant of these 15 hard ImageNet classes where the usual context is present
but the class object itself is absent. For example, this included images of volleyball courts without the volleyball, and images
of baseball fields without the baseball player (examples are given in Figure 4). The development of this dataset variant was
inspired by the concept of Spurious ImageNet (Neuhaus et al., 2023), and some images were from this work.

In such images, affinities that accurately reflect the presence of the core visual features should be low, given the absence
of class-specific objects. Our findings indicate that while concept descriptions consistently yield low average affinities to
these images, default text prompts still produce relatively high affinities. For instance, in the group of images depicted in
Figure 4 (a), the default text prompt “An image of volleyball.” results in an average affinity of 0.292, whereas the more
descriptive prompt “A round, inflated ball.” yields a significantly lower affinity of 0.158. Similarly, for images in Figure 4
(b), the default prompt “An image of baseball player.” results in an affinity of 0.262, while the concept description prompt
“An athlete in uniform playing baseball.” yields an average affinity of 0.152. This result highlights the importance of using
concept descriptions generated by LLMs to reduce the impact of contextual biases when creating the proxy model.
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E. Experiment Details
E.1. Datasets

ImageNet (Deng et al., 2009) comprises a large-scale dataset with over a million images across 1000 categories. The
training set is utilized for model fine-tuning and the validation set for assessing ID accuracy. For OOD evaluation, we use
ImageNet variants: ImageNet-V2 (Recht et al., 2019) (images from a later decade), ImageNet-R (Hendrycks et al., 2021a)
and ImageNet-Sketch (Wang et al., 2019) (art variations), ImageNet-A (Hendrycks et al., 2021b) (objects in unusual
contexts), and ObjectNet (Barbu et al., 2019) (uncommon orientations and contexts).

WILDS-iWildCam (iWildCam) (Koh et al., 2021) contains camera trap images for wildlife classification, with training
images from 200 locations and OOD images from different locations. Both ID and OOD performances are measured using
macro F1 scores.

WILDS-FMoW (FMoW) (Koh et al., 2021) is a dataset of satellite images from different years and continents, used for
land-use prediction. The dataset is split into training, validation, and test domains based on the year of collection. There is
also a notable shift in the proportion of images from different continents between different domains. Its ID performance is
measured by the ID test accuracy, while OOD performance is evaluated by the worst-region accuracy on the OOD test set.

Dollar Street-DA and GeoYFCC-DA (Prabhu et al., 2022) contain images collected in different continents and countries.
For Dollar Street-DA, training images are from North America and Europe, with test images from other continents.
GeoYFCC-DA has a similar setup. Model effectiveness is measured by accuracy in seen and unseen countries.

E.2. Baseline Methods

The key baseline we compare our DRM method with is FLYP (Goyal et al., 2023). As explained in Section 3, both methods
utilize the text encoder when performing image classification tasks. They differ only in the loss functions they use when
fine-tuning the CLIP model. Conceptually, the FLYP loss is just the first term of our DRM loss. The first term of our DRM
loss is originally the standard cross-entropy loss. It has been shown by Goyal et al. (2023) that replacing the standard
cross-entropy loss with the CLIP contrastive loss (Radford et al., 2021) leads to superior image classification performance.
We do the same for DRM in all our experiments to ease comparison.

Besides FLYP, we include several other baselines that do not utilize the text encoder. They add a linear classification head to
the image encoder and fine-tune the resulting classifier. LP (linear probing) fine-tunes the classification only while keeping
the image encoder frozen. FT (fine-tuning) trains both the classification head and the image encoder. L2-SP (Li et al., 2018)
is a variant of FT that applies regularization to limit the divergence of the model under fine-tuning from the pre-trained
model. LP-FT (Kumar et al., 2022) starts with LP and then proceeds with full fine-tuning.

We also include a weight-space averaging method, WiSE-FT (Wortsman et al., 2022), which interpolates parameters of
a pre-trained model and that of a fine-tuned model using Oyise.t = p - 0,5 + (1 — p) - O. We consider the combination of
WIiSE-FT with DRM and all the baselines. The hyperparameter p is chosen from the range 0.1 to 0.9 via ID validation.

E.3. Hyperparameter Settings

As listed in Table 3, we primarily adopted the hyperparameter settings from the code released by FLYP (Goyal et al., 2023).
AdamW optimizer (Loshchilov & Hutter, 2017) is used for all datasets. In particular, for ImageNet, a batch size of 256 is
used for CLIP ViT-L/14@336, and a batch size of 512 is used for smaller models.

Table 3. Hyperparameter settings.

ImageNet iWildCam FMoW

Epochs 10 20 20
Learning rate le-5 le-5 le-5
Batch size 256/512 256 256
Weight decay 0.1 0.2 0.2
A 1.0 3.0 3.0
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The value of A for DRM was picked from {0.5, 1,2, 3, 4,5} based on the performance on the ID validation set. For datasets
lacking a publicly available validation split, we partitioned the training dataset into a training split and a validation split in
the ratio of 4:1. Following Goyal et al. (2023), we also implemented early stopping based on the ID validation performance.

In all experiments, we adopted the standard CLIP image pre-processing including resizing, center cropping, and normaliza-
tion. We also adopted the standard CLIP text pre-processing including the tokenization of texts into a series of integers, each
representing a unique series of characters.

E.4. Computation Resources

All experiments were conducted on a high-performance computing cluster equipped with NVIDIA DGX H800 nodes. Two
H800 GPUs with 80 GB memory were utilized to fine-tune CLIP ViT-B/16 and CLIP ViT-L/14, while four H800 GPUs
were employed to fine-tune CLIP ViT-L/14@336. Using the machines, fine-tuning on iWildCam requires approximately 8
GPU hours, on FMoW approximately 6 GPU hours, and on ImageNet between 24 to 30 GPU hours.

F. Additional Experiment Results
F.1. Detailed Performance on ImageNet OOD Test Sets

The average accuracy across the five ImageNet OOD test sets has been presented in Table 1. We report the detailed results
for each OOD test set in Table 4. Without WiSE-FT, DRM substantially outperforms the previous best fine-tuning results by
FLYP on ImageNet-R and ImageNet-A, with increases from 71.4 to 77.8 and from 48.1 to 53.3, respectively. Meanwhile,
the ID performance is at a comparable level. With WiSE-FT, the improvements remain significant, rising from 76.0 to 79.5
on ImageNet-R and from 53.0 to 54.2 on ImageNet-A.

Table 4. Performance on ImageNet OOD variants with CLIP ViT-B/16. “OOD” stands for the average performance over the OOD datasets.

w/o WiSE-FT WiSE-FT
Method ID Im-V2 Im-R Im-A Sketch ONet OOD ID Im-V2 Im-R Im-A Sketch ONet OOD

0-shot 683 619 777 500 483 554 587 683 619 777 500 483 554 587
LP 799 698 70.8 464 469 521 572 80.0 703 724 478 481 528 583
FT 81.3 712 66.1 378 46.1 533 549 825 728 749 481 519 590 613

L2-Sp 81.7 718 70.0 425 485 562 578 822 729 751 48.6 514 589 614

LP-FT 81.7 721 735 476 503 582 603 82.1 728 753 50.1 51.7 592 618

FLYP 82.6 730 714 481 496 58.7 602 829 735 760 530 523 60.8 63.1

DRM 820 734 778 533 525 586 632 824 739 795 542 528 597 64.0

F.2. Performance on Dollar Street-DA and GeoYFCC-DA

We followed the train-test split outlined by Prabhu et al. (2022). As there was no dedicated validation set, we split 20% of
the training set for validation purposes. The ID and OOD performance results are reported based on the ID performance on
the validation set and the OOD performance on the test set, which consists of images from countries not included in the
training and validation sets.

The results presented in Table 5 demonstrate that, compared to FLYP-trained models, DRM-trained models exhibit improved
performance on images from new countries.
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Table 5. ID and OOD performance on Dollar Street-DA and GeoYFCC-DA with CLIP ViT-B/16.

Dollar Street-DA GeoYFCC-DA

Method ID OOD D OOD

0-shot 64.0+00 53.7+00 56.24+00 52.3+00
FLYP 82.4+03 71.8+02 71.0+03 58.0+03
FLYP+WiSE-FT 82.4+t02 72.7+02 71.2+03 58.7+02
DRM 81.4+02 73.9+03 71.8+04 62.5+04

DRM+WIiSE-FT 82.0+01 74.7+02 71.8+03 63.0+0.2

F.3. Comparison to Some More Recent Methods

As discussed in Appendix A, there are some more recent robust fine-tuning methods. We include a comparison to some
of those methods based on the results of fine-tuning CLIP ViT-B/16 on iWildCam and FMoW datasets. The results are
reported in Table 6. The results clearly show that, the more recent methods still significantly lag behind DRM in term of
OOD performance.

Table 6. Performance results for iWildCam and FMoW with CLIP ViT-B/16 including some more recent methods.

iWildCam FMoW
Method w/o WiSE-FT WiSE-FT w/o WiSE-FT WiSE-FT
ID (0]0)b] ID 00D 1D OOD 1D 00D
0-shot 8.7+00  11.0+00 - - 20.4+00 18.7+00 - -
LP 44 5406 31.1+04 45.5+06 31.7+04 482+01 30.5+03 48.7+01 31.5+03
FT 48.1+05 35.0+05 48.1+05 35.0+05 68.5+01 39.2+07 68.5+01 41.5+05

L2-SP 48.6+04 35.3+03 48.6+04 35.3+03 68.6+01 39.4+06 68.4+01 40.3+06
LP-FT 49.7+05 34.7+04 50.2+05 35.7+04 68.4+02 40.4+10 68.5+02 42.4+07
FLYP 52.2+06 35.6+12 52.5+06 37.1+12 68.6+02 41.3+08 68.9+03 42.0+09

CLIPood 48.4+04 36.1+04 48.3+03 36.5+04 68.2+03 40.8+09 68.3+03 41.2+07
TPGM 475403 359+04 46.8+03 36.2+03 68.4+03 39.6+08 67.8+02 39.9+07
LipSum-FT  50.7+08 36.6+07 48.4+05 36.9+06 68.4+03 41.3+10 68.1+03 42.0+05
CaRot 497404 343103 48.3+03 34.7+03 68.8+02 39.8406 68.3+02 40.7+05

DRM 54.1+05 40.0+t06 55.3+04 41.4+07 68.7+03 459+11 68.7+02 46.1+08

F.4. Performance of DRM under Different )\

As in (6), our DRM training involves a hyperparameter A to balance the contribution of empirical risk and worst-case risk.
When A = 0, only empirical risk is involved in the training, resulting in an ERM-trained model. When A is large, the effect
of empirical risk is small, and the resulting model should be close to a WRM-trained model. In practical implementation, we
choose the value of X based on the performance on the ID validation set. In Table 7, we show the ID and OOD performance
of CLIP ViT-L/14 fine-tuned on the iWildCam dataset with DRM objective under different choices of A.

Table 7. ID and OOD performance for different values of A based on CLIP ViT-L/14 model performance on iWildCam.

A 00 01 05 1.0 20 30 40 50 100 500

ID 56.0 564 572 59.1 60.0 61.8 609 60.1 554 525
OOD 419 42,6 439 473 481 49.2 48.6 485 477 46.6

The results demonstrate that when A is small, the model’s performance is akin to that of an ERM-trained model, characterized
by a relatively low OOD F1 score. As ) increases, the model progressively aligns with the characteristics of an ideal DRM
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model, exhibiting enhancements in both ID and OOD performances, with the optimum performance achieved at A = 3.
However, further increases in A, to values such as 10 or even 50, lead the model to converge towards a DRM-trained model.
In this state, the model primarily relies on core visual features for making predictions. Such models can become overly
restrictive for practical applications, failing to deliver robust ID and OOD performance.

F.5. Ablation Study

Setup Given a labeled dataset {(z;,y;)}Y; sampled from the training domain d;, the final DRM objective (6), i.e.,
R.(0; T4) 4+ ARS(0; T°%), for fine-tuning zero-shot models can be expanded as

fZ[ log p§* (yilx:) /\Zpgﬁ(y’lxi)logpéd(y’lxi)], (10)

y' €y

where p§* (y|z) and p§*(y|z) are the classifiers (3) induced by the default prompts 7% = {tf |y € V} and the concept
descriptions 7°¢ = {t;* |y € Y}, respectively; and pj, (y|x) = pe(y|z) is defined by (4) to estimate p.(y|z). Here, we use
Ph, (y|z) (Where pr stands for ‘proxy’) instead of pc(y|z) to ease the discussion of possible variations of DRM.

Consider the following generalized form of (10) with three varying options, t1 and t2 indicating the classifier types defined
with different sets of text prompts, and type indicating the type of model used as the proxy for p.(y|x):

N

1 Z e

N { Inge (yilwi) — A g ptyp ‘1‘1 1ng (Z//|$z) ) (1D
i=1 y'ey

As stated in (10), our final DRM training objective (6) uses t1 = df in the ERM term, with t2 = cd and type = pr in the
regularization term. We denote this as our standard setting, (S) in short. We conduct the following ablation study with the
pre-trained CLIP ViT-L/14 and fine-tune the model on the iWildCam dataset, with results presented in Table 8.

Table 8. Ablation study on DRM with CLIP ViT-L/14 (w/o WiSE-FT) on iWildCam.

Specification Performance
General setting -
tl  t2 type Classifier comb. Infer w/ ID OOD
Standard DRM S) df «cd pr joint training @) 61.8 49.2
@) Infer with one classifier (al) df cd pr joint training daf 60.4 45.1
after dual classifier training  (a2) df «cd pr joint training cd 54.8 472
) Vanilla DRM using (b1) df df pr joint training df 544 45.1
one set of text prompts (b2) cd cd pr joint training cd 54.0 46.1
(cl) df cd cd joint training @) 32.1 242
(c) Use different proxy models (c2) df «cd pr-df joint training 7 544 45.1
(c3) df cd one-hot joint training @) 57.3 45.1
Use only one (d1) af  / / / df 56.0 419
(d) risk for training (d2) cd / / / cd 56.9 434
(d3) /  cd pr / cd 51.7 463
© Combine independently (el) df cd pr model ensemble @) 59.7 45.7
trained classifiers (e2) df cd pr weight average ) 57.5 447

(a) Inference options after dual classifier training: Two classifiers are involved in our DRM training: p3f (y|z) and
ps%(y|z). As outlined in (7), we combine both classifiers for inference. An alternative is to only use one of the two classifiers
for inference. We denote inference with only pj®(y|z) as (al), and with only p§?(y|x) as (a2). The comparison between
(al), (a2), and (S) in Table 8 shows combining both classifiers for inference enhances both ID and OOD performance
compared to using either alone. This reveals that the two classifiers have a complementary effect as illustrated in Figure 1,
and corroborates our view that ERM and WRM are both vital to OOD robustness.
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(b) Vanilla DRM using a single set of text prompts: In our standard DRM setting (S), t1 = df and t2 = cd. The
vanilla DRM we discussed in Section 3 uses t1 = t2 = df. Alternatively, one can also consider t1 = t2 = cd. We
experiment with these two alternative settings denoted by (b1) and (b2) in Table 8. The contrast between (b1l) and (S)
confirms our intuition: using the concept descriptions 7°¢ for p§?(y|z), i.e., t2 = cd, enhances robust feature preservation
and leads to better OOD performance. The other alternative (b2), which employs 7°¢ for both pj! (y|x) and p§?(y|z), i.e.,
tl = t2 = cd, slightly improves (b1). Intriguingly, (b2) is still much worse than (S) despite they both use cd for t2.

(c) Proxy model design: In our standard setting, type = pr. As discussed in Section 3, the proxy term pgz(ym) is based
on the affinity Ag(x,t5%) = (fg(x), gy (t5?)) according to the pre-trained CLIP model 6y = (¢, o) and the set of concept
descriptions 7%, In Section 3, we also mentioned the following direct estimation of the oracle model p.(y|z):

exp(Ap(z, t;d)/’f)
yey exXp(Ag(z, t50) /T)

P (ylz) = 5 (12)

However, as discussed in Section 3, pg‘;(y|x) is susceptible to artifact terms. Consequently, we made a technical adjustment
to mitigate the influence of these terms, resulting in the refined pe(y|x), which is denoted as pg, (y|x) here. After the
adjustment, there exists at least one x in &, for which pf’ (y|=) = 1, a condition not necessarily fulfilled by p§? (y|z). The
failure to fulfill this condition may weaken the regularization effect of the second term in the DRM objective. In comparison,
the first term of the DRM objective, the ERM term, always pushes pg(y|z) to either 1 or 0. As shown in Table 8, the
importance of this adjustment is empirically verified by the much lower performance of (c1) compared to (S).

One can also define pSZ'df(y|:c) by replacing 7°* with 7 in the formulation of pj (y|). As shown by the result of (c2),
this alternative still underperforms pgz (y|x) used in the standard setting. This discrepancy can be explained by the fact that
the affinities between default text prompts and images are easily affected by changes in the non-core visual features instead
of focusing on the core visual features, which has been discussed in Appendix D.

Another simple alternative, denoted by (c3), is to employ the ground-truth one-hot labels as the proxy. Perhaps unsurprisingly,
the OOD performance of (c3) is notably inferior to (S) based on the affinities between the images and the concept descriptions.

(d) Training with either ERM or WRM: Training with only the first term in (6) results in ERM models (d1) and (d2),
whereas training with only the second term leads to a WRM model (d3). Comparing them with DRM models (al) and (a2),
it is clear that models trained to minimize a single risk underperform those trained to minimize both risks, highlighting the
importance of dual risk minimization.

(e) Classifier combination strategy: Our standard DRM training jointly minimizes the two risks, but one can also train
an ERM model p§f (y|z) and a WRM model p§2  (y|x) separately. These models can be combined for inference using
techniques like model ensembling or weight-space averaging. The last two rows of Table 8 show that combining (d1) and

(d3) via model ensembling or weight-space averaging generally underperforms joint training (S).

F.6. Results of Applying DRM on ImageNet Pre-trained ResNet50

While this work focus on the fine-tuning of zero-shot models that are pre-trained on large-scale image-text pairs, we also
explore the possibility of applying DRM on fine-tuning the ImageNet pre-trained CNN models.

When implementing DRM on the CNN models, we introduce two randomly initialized classification heads on top of the
model. Similar to the application of DRM on the zero-shot model, one classification head is trained using cross-entropy loss
aligned with the ground-truth labels, while the other is trained using cross-entropy loss relative to the soft labels generated
by the pre-trained zero-shot model. We employed this strategy to fine-tune an ImageNet pre-trained ResNet50 model on the
iWildCam dataset, using soft labels generated by the CLIP ViT-L/14. The results are presented in Table 9. It is evident from
the results that DRM significantly enhances the OOD performance of ResNet50 compared to the ERM.

G. Limitations

Our research utilizes GPT-4 to generate concept descriptions for the core visual features of various classes across different
domains. It is important to note that the scope of GPT-4’s knowledge in certain domains might be limited, and as a result,
the model may not always generate useful concept descriptions. Additionally, due to the vast number of concept descriptions
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Table 9. Results of applying DRM on fine-tuning ImageNet pre-trained ResNet50 on iWildCam.

Method ID OOD

ERM+FT 51.6 33.7
ERM+LP-FT 50.5 364
DRM+LP-FT 51.0 39.1

generated, we have not been able to verify the accuracy of each generated concept description. To enhance the quality of
these descriptions, potential improvements could involve engaging domain experts to review and correct errors, or design
descriptions manually. Another approach could be to gather visual prototypes and use advanced multimodal LLMs such as
GPT-4V (Achiam et al., 2023), LLaVA (Liu et al., 2023), or MiniGPT-4 (Zhu et al., 2024), which might yield more precise
descriptions of the core visual features.

Another limitation concerns the CLIP models used in our experiments. These models may not perform optimally across all
domains, particularly in less common areas, where they may lack requisite knowledge in understanding both images and
text. The effectiveness of our DRM method is therefore contingent upon the breadth and depth of the pre-training data of
CLIP models. Unfortunately, the specifics of the CLIP pre-training dataset have not been disclosed by OpenAl, adding an
element of uncertainty to the performance of our method in niche domains.
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