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ABSTRACT

Federated graph learning (FGL) has rapidly gained prominence as a privacy-
preserving collaborative paradigm. However, the increasing prevalence of backdoor
attacks presents significant challenges to federated systems. These attacks rely on
the injection of carefully crafted triggers that lead to erroneous predictions. Recent
research has shown that the diversity of trigger structures and injection locations in
FGL diminishes the effectiveness of traditional federated defense methods. Notably,
existing defense strategies for FGL have yet to fully exploit the unique topological
structures of graphs, highlighting opportunities for improvement in countering
these attacks.
To this end, we propose a tailored topology- and distribution-aware backdoor
defense against federated graph learning method (FedTD). At the client level, we
introduce an energy function to integrate the underlying data distribution into the
local model, assigning low energy to benign clients and high energy to malicious
clients. By combining topological features with the energy function, we establish a
more comprehensive energy estimation. At the server level, we construct a virtual
graph based on estimation of each client to evaluate the maliciousness score of
each client. The homophily level of each local graph is considered to ensure the
reliability of the virtual graph. During aggregation, we assign lower weights to
clients with high malicious scores and higher weights to clients with low malicious
scores, thus achieving a more robust FGL. FedTD remains robust under both small
and large malicious client ratios. Extensive results across various federated graph
scenarios under backdoor attacks validate the effectiveness of FedTD. The code is
anonymous available1.

1 INTRODUCTION

Federated Learning (FL) (Yang et al., 2019; McMahan et al., 2017) enables distributed collaborative
machine learning by allowing multiple clients to jointly train a shared global model while preserving
the privacy of sensitive data. This eliminates the need for aggregating distributed data and ensures
compliance with privacy protocols (Wei et al., 2020a). Recently, some studies have focused on
training Graph Neural Networks (GNNs) (Kipf, 2016; Wu et al., 2020) on isolated graph data using
FL, a paradigm referred to as Federated Graph Learning (FGL) (Liu et al., 2024a). FGL presents
a promising solution for distributed graph-structured scenarios, such as epidemiology (Liu et al.,
2024b) and scene graphs (Wei et al., 2020b; Xu et al., 2025b).

While the distributed paradigm of FL offers many benefits, it also introduces additional vulnerabilities,
particularly in the form of backdoor attacks from malicious participants (Li et al., 2022; Bagdasaryan
et al., 2020). These attacks involve injecting harmful data or models during training, embedding
hidden behaviors that are activated under specific conditions to trigger erroneous model outputs. The
goal of such attacks is to cause local models to learn incorrect information and activate the backdoor
at critical moments, leading to inaccurate predictions. In traditional FL setting, extensive studies
have provided mature defense method against backdoor attacks (Gong et al., 2022; Lyu et al., 2022).
Specifically, some studies (Shejwalkar & Houmansadr, 2021; Ozdayi et al., 2021) exclude outlier
updates based on the statistical properties of model outputs, while others (Pillutla et al., 2022) identify

1https://anonymous.4open.science/r/FedTD-r
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malicious clients by measuring statistical differences between local models or between local and
global models.

However, the complex graph structures and highly diverse feature information in FGL setting limit
the effectiveness of existing backdoor defense methods. A few recent study (Huang et al., 2024) has
explored backdoor defenses in graph classification tasks, but defenses for backdoor attacks in node
classification tasks remain underdeveloped. More recently, FedTGE (Wan et al., 2025) pioneered
exploration into backdoor defenses for node classification tasks. It uses an energy function combined
with graph convolution to model clients’ data distributions, thereby identifying malicious clients.
However, two significant limitations still persist: 1) The difference in graph homophily levels among
different clients influences with the modeling of data distributions and the identification of triggers.
2) Graph topological features is not sufficiently considered. We further introduce on these two
limitations in detail.

1) The difference in graph homophily levels among different clients influences with the modeling
of data distributions and the identification of triggers. Recent study (Tan et al., 2025) has revealed
that the homophily level of clients in the FGL setting significantly impacts the differences among
clients. Specifically, the homophily level of a client is defined as the proportion of homophily edges
within its graph. An homophily edge is defined as an edge connecting two nodes with the same label,
while a heterophily edge connects two nodes with different labels. Based on this definition, the set
of all edges E in a graph G can be divided into two subsets: the homophily edge set Eho and the
heterophily edge set Ehe. The homophily level is then defined as the proportion of homophily edges
in the graph: Eho

Eho+Ehe
. We provide an intuitive illustration of this concept in Figure 1 (a). Unlike

the traditional FL setting, the homophily level of clients in the FGL setting affects the distributional
differences among clients, as noted in previous study (Tan et al., 2025). In backdoor attacks, the
difference between homophily and heterophily edges increase the difficulty for defense methods to
identify triggers. Triggers with the same shape and size can exhibit diverse distributional differences
due to the differing nature of edges (refer to Figure 1 (b)). Therefore, incorporating the homophily
level into the design of backdoor defense methods is crucial.

Type 1 Type 2

TriggerOriginal graph

(b)(a)

Heterophilic Edge
Homophilic Edge

Homophilic Level
Calculation:

𝒉𝒉 =
 
+ 

Original graph

(c)
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𝟐𝟐
𝟔𝟔 𝒉𝒉 =

𝟒𝟒
𝟔𝟔

Homophilic 𝒉𝒉

Node Degree

Centrality

injection

Figure 1: Problem illustration.

2) Graph topological features is not
sufficiently considered. Previous
study (Wan et al., 2025) has simply
utilized GCNs to aggregate energy
within graphs, thereby modeling the
data distribution of each client’s en-
tire graph. However, the topological
features of client graphs (e.g., node
degree, clustering coefficient, central-
ity, etc.) have not been sufficiently
explored (refer to Figure 1 (c)), re-
sulting in a lack of consideration for
graph topology. Moreover, directly us-
ing GCNs to aggregate energy within
graphs fails to distinguish between homophily and heterophily edges. For homophily edges, the
connected nodes are expected to have similar features, while for heterophily edges, the connected
nodes exhibit feature dissimilarity. These topological features are highly correlated with the shape
and size of triggers. Therefore, incorporating topology into the design of backdoor defense methods
is crucial for enhancing their robustness and effectiveness.

To address these two significant limitations, we propose a tailored topology- and distribution-aware
backdoor defense against federated graph learning method (FedTD). Specifically, we introduce an
tailored Topology- and Distribution-aware Client Estimation component (TDCE). TDCE includes an
energy function with GCN that incorporates the underlying data distribution into the local model.
This function assigns low energy to benign samples and high energy to constructed malicious
substitute samples. By combining topological features with the energy function, we establish a more
comprehensive energy estimation for each client. Furthermore, we introduce a tailored Topology-
and Distribution-aware Graph Construction component (TDGC). TDGC calculates the estimation
differences between each pair of clients and constructs edges between nodes with high similarity in
their estimations, thereby forming a new virtual graph. Notably, beyond simply utilizing distributional
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information and topological features for similarity calculation, TDGC additionally incorporates the
homophily level to achieve more fine-grained identification of malicious clients. Furthermore, TDGC
leverages the structural features of the virtual graph to evaluate the maliciousness score of each
client. Nodes with low degrees indicate their deviation from the majority of clients, implying a higher
maliciousness score. During the aggregation process, clients with higher maliciousness scores are
assigned lower weights, while clients with lower maliciousness scores are assigned higher weights,
thereby enabling more robust FGL. Through these two carefully designed components, our FedTD
effectively addresses the aforementioned two limitations.

• We identify significant limitations of existing backdoor attack defense methods in FGL setting for
node classification task.

• We propose FedTD, an novel method that effectively defense backdoor attacks in FGL setting via
both topological and distribution features. Our FedTD enables clients to model the data distribution
and topological features of each client, considering both malicious scores and homophily level
during clients aggregation.

• We conducted comprehensive experiments on five widely-used datasets under both IID and Non-
IID settings, with varying proportions of malicious clients. The results show that our FedTD
significantly outperforms the current state-of-the-art baselines.

2 RELATED WORK

2.1 FEDERATED GRAPH LEARNING

Federated Graph Learning (FGL) (Wan et al., 2025; Fu et al., 2022; Yue et al., 2024; Li et al.,
2024b; Cai et al., 2024; Fu et al., 2025) is a decentralized graph learning paradigm that combines
the characteristics of Federated Learning (FL) (Yang et al., 2019; McMahan et al., 2017; Zhao et al.,
2018; Li et al., 2021a) and Graph Neural Networks (GNNs) (Xu et al., 2024; 2025a; Han et al., 2022;
Shi & Rajkumar, 2020; Yang et al., 2021; Wang et al., 2024). It enables collaborative learning across
multiple clients with graph-structured data while preserving data privacy. In recent years, a significant
amount of studies on FGL have focused on improving the performance of global and local models (Li
et al., 2024b; Cai et al., 2024; Fu et al., 2025), yet they have largely overlooked the risks of backdoor
attacks introduced by graph structures and decentralization. Although extensive efforts have been
devoted to defending against backdoor attacks in FL (Yazdinejad et al., 2024; Hu et al., 2024; Chen
et al., 2024; Hallaji et al., 2024; Yazdinejad et al., 2024), the complex topological features of graph
data and the additional client heterogeneity in the FGL setting make these methods less effective.
Similarly, existing backdoor defense methods (Zhang et al., 2021b; 2024; Alrahis et al., 2023; Dong
et al., 2025) for GNNs also show suboptimal performance under the FGL setting. In recent years,
only FedTGE (Wan et al., 2025) has explored backdoor defenses specifically for FGL. However,
FedTGE primarily focuses on data distribution while failing to fully leverage the topological features
of graphs. Our work is the first to propose a robust FGL method that effectively defends against
backdoor attacks by simultaneously utilizing topological features and data distribution.

2.2 GRAPH ROBUST LEARNING

Some traditional graph robust learning methods provide verifiable guarantees for node and graph
classification predictions. For example, (Zugner & Gunnemann, 2019; Wang et al., 2021) use graph
structural information to bound adversarial perturbations and propose certifiable GNN training.
DropEdge (Rong et al., 2020) improves robustness and generalization by randomly dropping edges
for structural smoothing. RES (Lin et al., 2023) introduces certifiable robustness for graph contrastive
learning under structural perturbations. DiffSmooth (Zhang et al., 2023) enhances robustness by
smoothing representations through diffusion/denoising processes. However, these methods highly
rely on centralized graph learning and are difficult to be used in federated graph learning scenarios.

2.3 BACKDOOR DEFENSE IN FEDERATED LEARNING

Backdoor attacks pose a significant threat to FL due to their decentralized paradigm (Kapoor &
Kumar, 2024; Uddin et al., 2025). To mitigate this threat, various defense methods have been

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Server

TDGC

Client

TDCE

Client K

Client k

…

𝑻𝑻𝒌𝒌

𝑬𝑬𝒌𝒌

Topology

Energy-based
 GCN

Node Degree

Local Centrality

PageRank Score …

Estimation
Distribution

NN 𝒛𝒛𝒌𝒌

topology- and 
distribution-aware estimation

Client 1

𝒛𝒛𝟏𝟏
 
𝒛𝒛𝒌𝒌
 
𝒛𝒛𝑲𝑲

…
…

…
… 𝑆𝑆𝑖𝑖𝑖𝑖𝒊𝒊∈

𝑲𝑲

𝑺𝑺
… …

… …

… …

…
…

…
…

…
…

𝒋𝒋 ∈ 𝑲𝑲

�𝑺𝑺Homophily
 

adjustment

�𝑺𝑺𝒎𝒎𝒎𝒎 = 𝑺𝑺𝒎𝒎𝒎𝒎 ·
𝟏𝟏 − 𝒉𝒉𝒎𝒎 − 𝒉𝒉𝒏𝒏

Virtual 
Client Graph𝒛𝒛𝒎𝒎 𝒛𝒛𝒏𝒏

�𝑺𝑺𝒎𝒎𝒎𝒎 ≥ 𝝉𝝉

𝜞𝜞𝒌𝒌
−

𝑑𝑑𝑘𝑘
max𝑙𝑙∈ �𝒱𝒱 𝑑𝑑𝑙𝑙

𝜻𝜻𝒌𝒌

Maliciousness score

Aggregation

Figure 2: The overview of FedTD, which consists of two main components: TDCE and TDGC.

proposed, which can be broadly categorized into backdoor detection and backdoor removal methods.
Backdoor detection aims to identify whether a model or input has been compromised. Techniques
such as analyzing input deviations in the feature space (Tran et al., 2018; Chen et al., 2018; Liu
et al., 2022) or detecting prediction anomalies on test inputs (Gao et al., 2019) have been widely
explored. Reverse engineering methods, such as neural cleanse (Wang et al., 2019), reconstruct the
trigger and identify the target label of the attack. On the other hand, backdoor removal methods
focus on eliminating backdoors from compromised models while preserving their performance on
benign inputs. Methods like fine-pruning (Liu et al., 2018) and neural attention distillation (Li et al.,
2021c) fine-tune the model using clean inputs, while methods such as adversarial unlearning of
backdoors via implicit hypergradient (Zeng et al., 2021) and anti-backdoor learning (Li et al., 2021b)
adjust training processes to ensure robustness. In the FL setting, additional challenges arise due to
client heterogeneity and data decentralization. Defense methods like vector filtering (Shejwalkar &
Houmansadr, 2021; Guerraoui et al., 2018; Pillutla et al., 2022) effectively mitigate malicious client
contributions by aggregating updates robustly. Furthermore, some studies (Park et al., 2021; Cao
et al., 2020) leverage proxy data and utilize server-side knowledge to enhance robustness.

However, compared to traditional FL, FGL is more vulnerable to backdoor attacks due to the more
complex topological features of graph data and the increased heterogeneity among clients, which
result in more diverse and harder-to-detect triggers. Although a few studies (Wan et al., 2025; Huang
et al., 2024; Yang et al., 2024) have explored backdoor defenses in FGL, they primarily rely on data
distribution to identify malicious clients, lacking sufficient utilization of topological features. Our
work is the first to integrate both topological features and data distribution, achieving a robust FGL.

3 METHODOLOGY

The overall framework of FedTD is depicted in Figure 2, with the corresponding algorithmic pseu-
docode provided in Algorithm 1 in Appendix A.2. In the following subsections, we first introduce the
preliminaries and then detail all key components.

3.1 PRELIMINARY

Definition. We follow the general paradigm of federated graph learning, where each client trains a
shared global model locally and uploads the trained model to the server. The server then aggregates
all uploaded models to update the shared global model. We use G = (V, E) to denote a graph, where
V represents the set of nodes and E ⊆ V × V represents the set of edges. Consider K clients defined
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as C = {ck}Kk=1 manage disjoint graphs Gk = (Vk, Ek). We denote the global model for t-th round
asMt with parameters wt, and the local model asMt

k with corresponding parameters wt
k. Each

client ck possesses distinct private data Gk = (Vk, Ek). The global set of nodes is V =
⋃K

k=1 Vk
with Vi ∩ Vj = ∅ for all i ̸= j. The adjacency matrix of Gk is defined as Ak = {Aij}i,j∈Vk

, where
Aij = 1 if there is an edge between nodes vi and vj , and Aij = 0 otherwise. Similarly, Xk represents
node features, and Yk represents the corresponding label set.

Client Homophily Level. For a client ck with given graph Gk = (Vk, Ek) with nodes labeled by the
Yk. The client homophily level is a measure of the consistency of connected nodes. It is defined as
the ratio of edges that connect nodes with the same label to the total edges. Formally, the homophily
level hk of client ck is calculated as:

hk =

∑
(i,j)∈Ek

I (yi = yj)

|Ek|
, (1)

where |Ek| is the total count of edges in graph Gk, and I (yi = yj) is a function that returns 1 if
yi = yj and 0 otherwise.

3.2 TOPOLOGY- AND DISTRIBUTION-AWARE CLIENT ESTIMATION (TDCE)

Unlike the traditional FL setting, the graph structure in the FGL setting provides more opportunities
for trigger injection, making it harder to detect. Existing studies (Wan et al., 2025; Huang et al.,
2024) primarily focus on utilizing data distribution to distinguish malicious clients, while neglecting
the consideration of graph topological features. Moreover, the differences between homophily and
heterophily edges further increase the difficulty of identifying trigger injections solely based on data
distribution. Therefore, combining graph topological features and data distribution to detect trigger
injections emerges as a promising solution. To this end, we propose the Topology- and Distribution-
aware Client Estimation (TDCE) framework. TDCE synergistically combines energy-based modeling
with topological feature analysis to provide a more holistic and discriminative client estimation,
significantly enhancing the robustness of FGL against sophisticated backdoor attacks.

First, we extend the standard Energy-Based GCN (Wan et al., 2025) to incorporate both feature and
structural information. A key feature of Energy-Based GCN is their flexibility: the energy function
can be implemented using various forms of neural networks without strict structural constraints. For
a given client k with graph Gk = (Vk, Ek), we define the energy of a node vi as:

Eθ (vi) = − log
∑
y

exp (fθ (xi,N (vi)) [y]) , (2)

where fθ(·, ·) denotes the GCN forward pass that aggregates features from the node’s neighborhood
N (vi). fθ(·, ·)[y] is the logits output of the model. This formulation captures both node features
and local graph structure. The meta energy represents the unnormalized likelihood of the sample
point. Lower energy corresponds to higher likelihood and consequently a greater probability of the
sample being benign. To better the assignment of lower energy to benign samples and higher energy
to malicious ones, we build upon prior studies (Hyvarinen & Dayan, 2005; Wan et al., 2025) by
calculating the meta energy and deriving the energy shift score to construct the corresponding loss
function. Specifically:

LESC =
1

|V∗|

|V∗|∑
i=1

[
∇viS (vi)

T ∇viS (vi) +
1

2
∥S (vi)∥2

]
, (3)

where S (vi) is the energy shift score between node energy Eθ (vi) and perturbed meta energy
M∗(vi). M∗(vi), which calculated by Eθ(Perturb(vi)), where Perturb(vi) conduct arbitrarily
adding or removing edges connected to vi and perturbing both its features and those of its neighbors.
Furthermore, the energy shift score between node energy Eθ (vi) and perturbed meta energy M∗(vi)
are calculated as:

S (vi) =

[
Eθ (v1)−M1(vi)

Eθ (v1)
, · · · , Eθ (vi)−MN (vi)

Eθ (vi)

]
. (4)

Since the perturbation introduced by Perturb(·) involves both features and topology, there are
theoretically infinite possibilities for M∗(·). We use N to represent the number of instances involved

5
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in the computation. A detailed analysis explaining why LESC improves the assignment of lower
energy to benign samples and higher energy to malicious ones, along with the hyper-parameter
sensitivity analysis for N , is provided in Appendix A.6.

To quantify the topological feature of each client’s graph, we compute a comprehensive set of
topological features Tk for each client k, including: Node Degree, Local Clustering Coefficient,
Degree Centrality, PageRank Score, and Standard Deviation of Neighbor Degrees. Details for these
features calculation can be found in Appendix A.1. These features are concatenated into a topological
descriptor vector Tk. The rich topological features further mitigate the potential noise introduced by
structure-based perturbations in LESC , ensuring the accuracy of graph topological features.

Then, we get a comprehensive topology- and distribution-aware estimation for each client k:

zk = MLPϕ ([norm (Ek) ; norm (Tk)]) , (5)

where Ek = {Eθ (vi)}vi∈Vk
is the energy distribution, norm(·) denotes layer normalization, [·; ·]

indicates concatenation, and MLPϕ is a multi-layer perceptron that projects the combined vector into
a latent space (To reduce computational costs, we utilize a single-layer MLP for practice).

3.3 TOPOLOGY- AND DISTRIBUTION-AWARE GRAPH CONSTRUCTION (TDGC)

To further enhance the discrimination between benign and malicious clients, we introduce a Topology-
and Distribution-aware Graph Construction (TDGC) component. TDGC constructs a virtual graph
Ḡ =

(
V̄, Ē

)
at the server, where each node v̄k ∈ V̄ corresponds to a client ck, and edges Ē are

established based on the similarity of the comprehensive client estimations zk obtained from the
TDCE component. This virtual graph enables the server to reason about the collective behavior of
clients and identify potential malicious participants through graph structural analysis.

First, we define a similarity metric between two clients cm and cn that incorporates both their energy
distributions and topological features, as encoded in zm and zn. Specifically, we compute the cosine
similarity between the client estimation vectors:

Smn =
zm · zn
∥zm∥ ∥zn∥

, (6)

where Smn ∈ [−1, 1]. To account for the homophily level hk of each client, we adjust the similarity
measure as follows:

S̃mn = Smn · (1− |hm − hn|) . (7)

This adjustment penalizes similarity between clients with divergent homophily levels, as significant
differences in homophily may indicate fundamentally different graph structures—potentially due to
malicious perturbations.

We apply a threshold τ to binarize the similarities and construct the edge set Ē of the virtual graph:

ēmn =

{
1, if S̃mn ≥ τ

0, otherwise
. (8)

Here, ēmn = 1 indicates that clients cm and cn are sufficiently similar in both distribution and
topology, and an edge is established between them in Ḡ.

Notably, model for each clients are jointly optimized via cross entropy loss LCE and energy shift
loss LESC with equal weights.

3.4 SERVER-SIDE AGGREGATION

The virtual graph Ḡ provides a structural representation of client relationships. We hypothesize that
malicious clients, having injected anomalous triggers and altered local graph topologies, will exhibit
estimation vectors that deviate from those of benign clients. Consequently, in Ḡ, malicious clients are
expected to have fewer connections to benign ones.

We leverage this intuition to compute a maliciousness score Γk for each client ck based on its degree
centrality within Ḡ: Γk = − dk

maxl∈V̄ dl
, where dk is the degree of node v̄k in Ḡ. Clients with low

6
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degrees are considered outliers and assigned higher maliciousness scores. This score is then used
during aggregation to down-weight potentially malicious updates:

ζk =
exp (−γΓk)∑K
l=1 exp (−γΓl)

, (9)

where γ > 0 is a temperature parameter that controls the sharpness of the weight distribution. (For
simplify, we utilize γ = 1 for practice).

For round t-th aggregation, the global model parameter are updated by: wt+1 =
∑K

k ζkw
t
k.

4 EXPERIMENT

To validate the effectiveness of FedTD, we conducted experiments under both IID and Non-IID-
Louvain (Wang et al., 2022; Zhang et al., 2021a) settings on five datasets.

4.1 EXPERIMENT SETTINGS

Datasets. Following previous studies (Liu et al., 2023; Wan et al., 2025), we evaluate efficacy and
robustness across three scenarios: Citation Network (Yang et al., 2016), Co-authorship (Shchur
et al., 2018), and Amazon-Purchase (McAuley et al., 2015). Details can be found in Appendix A.3.
Following previous studies (Dai et al., 2023; Wan et al., 2025), all original labeled datasets are divided
into training, validation, and testing sets (60%/20%/20%). Unlabeled nodes are utilized for trigger
injection and subsequently relabeled with the target class.

Baselines. We compare FedTD with various advanced baselines: 1) FedAvg (McMahan et al., 2017);
2) Trimmed Median and 3) Trimmed Mean (Yin et al., 2018); 4) FoolsGold (Fung et al., 2018); 5)
DnC (Shejwalkar & Houmansadr, 2021); 6) SageFlow (Park et al., 2021); 7) MMA (Huang et al.,
2023); 8) RLR (Ozdayi et al., 2021); 9) Freqfed (Fereidooni et al., 2023); 10) FedCPA (Han et al.,
2023); 11) G2uard (Yu et al., 2023); 12) FedGTA (Li et al., 2024a); 13) FGGP (Wan et al., 2024); 14)
FedTGE (Wan et al., 2025). Detailed introduction of these methods can be found in Appendix A.4.

Model Structure. Following previous studies in FGL (Dai et al., 2023; Wan et al., 2025), we employ
a two-layer GCN as both the feature extractor and classifier, using a hidden layer size of 32 across all
datasets. For efficiency reasons, we fix N = 1.

Backdoor Attack. Following previous studies (Wan et al., 2025), we evaluate the robustness of
FedTD under the widely adopt setting (Xu et al., 2021; Liu et al., 2023; Wan et al., 2025) (details in
Appendix A.9). Given the stealthy nature of backdoor attacks, the trigger size is limited to 4 nodes
in all experiments, with the trigger type set to Renyi and its location randomized. The malicious
client ratio (Υ) is configured as {0.1, 0.3, 0.5}, and experiments are conducted under both IID and
Non-IID-Louvain settings. Results for Υ = 0.3 are presented in Table 1 and Table 2, with additional
results detailed in Appendix A.1.

Metrics. Following previous studies (Li et al., 2020; Liu et al., 2023; Wan et al., 2025), we adopt
node classification accuracy A and backdoor failure rate R as the primary experimental metrics.
Additionally, we use B as a comprehensive metric to evaluate the overall performance, considering
both model accuracy and defense effectiveness. Notably, B = (A+R)/2.

Implement Details. To ensure the robustness and reliability of the results, each experiment is repeated
five times for every federated method. We conduct a hyperparameter grid search for all baselines
following the ranges suggested in their respective papers. The GNN models are trained using the
Adam optimizer (Adam et al., 2014) with a learning rate of 0.01. For hyper-parameter, we conduct
grid search for local training epoch R from {5, 10, 15, 20}, and threshold τ from {0.4, 0.5, 0.6, 0.7}.
Moreover, all trigger types (Renyi (Zhang et al., 2021b), GTA (Xi et al., 2021), WS (Watts & Strogatz,
1998), BA (Barabási & Albert, 1999), and Opt-GDBA (Yang et al., 2024)) for main experiment and
additional experiments mentioned in Section 4.1 are introduced in Appendix A.5.

4.2 EXPERIMENT RESULTS

4.2.1 PERFORMANCE COMPARISON
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Table 1: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.3 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 74.25 19.47 46.86 86.12 4.26 45.19 85.90 20.47 53.19 93.51 16.37 54.94 81.61 5.33 43.47

Trimmed Median 73.67 30.93 52.30 85.84 7.61 46.73 86.01 7.87 46.94 93.46 17.25 55.52 82.47 6.32 44.40
Trimmed Mean 73.17 25.60 49.38 86.08 5.72 45.90 86.11 6.05 46.09 93.35 17.55 55.45 81.74 6.32 44.03

FoolsGold 77.25 33.87 55.56 87.33 13.44 50.39 85.69 10.60 48.15 93.33 23.94 58.63 84.82 5.02 44.92
DnC 66.25 76.00 71.13 86.05 24.09 55.07 85.89 66.12 76.01 93.17 41.35 67.26 71.76 16.36 44.06

SageFlow 75.08 39.47 57.28 87.17 6.13 46.65 86.03 14.50 52.76 94.17 23.32 58.75 84.92 25.97 53.28
MMA 75.00 36.27 55.63 86.98 6.67 46.83 87.04 13.77 50.41 93.87 22.16 58.02 85.55 23.81 54.68
RLR 76.00 13.07 44.53 86.77 14.78. 50.78 84.02 15.37 49.70 93.56 14.53 54.05 78.26 6.84 42.55

Freqfed 76.25 18.67 47.56 86.16 7.25 46.71 86.93 10.93 48.93 93.38 6.78 50.08 81.76 4.33 43.05
FedCPA 74.42 24.27 49.34 85.60 8.77 47.19 86.87 15.12 51.00 93.99 19.32 56.66 80.76 4.33 42.55
G2uard 73.75 66.00 69.88 84.54 27.65 56.10 86.18 44.23 65.21 92.83 38.23 65.53 81.43 51.34 66.39

FedGTA 76.11 44.98 60.55 85.89 16.60 51.25 86.31 29.98 58.15 93.71 18.41 56.06 81.88 19.22 50.55
FGGP 77.02 32.54 54.78 86.29 14.10 50.20 85.91 22.85 54.38 93.49 18.20 55.85 81.59 8.98 45.29

FedTGE 75.00 70.47 72.83 85.79 57.19 71.49 85.63 70.45 78.04 93.99 57.02 75.51 80.81 97.92 89.37

FedTD 76.37 72.91 74.64 85.09 60.31 72.70 85.69 71.20 78.45 93.80 62.65 78.23 82.50 97.04 89.77

Table 2: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.3 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 61.81 25.24 45.53 85.81 5.85 45.83 90.57 39.87 65.22 94.61 39.58 67.09 71.98 66.88 69.43

Trimmed Median 63.85 22.15 43.00 86.01 17.85 51.93 87.68 50.84 69.26 94.52 45.96 70.24 63.45 76.13 69.79
Trimmed Mean 65.40 25.72 45.56 85.19 10.02 47.60 87.55 49.54 68.55 94.50 42.34 68.42 68.07 74.36 7121.

FoolsGold 76.86 38.24 57.55 86.77 13.27 50.02 90.96 43.09 67.02 95.34 35.22 65.28 84.99 51.23 68.11
DnC 41.21 80.05 60.63 60.40 13.12 36.76 53.21 77.43 65.32 85.48 64.69 75.08 45.90 94.09 60.99

SageFlow 79.80 54.38 67.09 87.88 23.47 55.67 89.42 53.86 71.64 93.26 53.36 73.31 77.10 64.75 70.93
MMA 75.97 56.75 66.36 87.86 25.70 56.78 87.14 50.70 68.92 95.07 52.91 73.99 78.77 68.73 73.75
RLR 79.09 33.94 56.52 86.54 15.28 50.91 87.78 37.56 62.67 95.29 30.33 62.81 78.87 51.75 65.31

Freqfed 76.92 37.78 57.35 86.67 10.23 48.45 89.65 38.33 63.99 79.18 8.49 43.84 58.23 68.14 63.19
FedCPA 77.60 40.14 58.87 86.70 22.36 54.53 89.31 43.14 66.23 95.31 35.45 65.38 77.36 54.69 66.03
G2uard 73.66 47.82 60.74 83.34 33.47 58.41 88.15 55.89 72.02 93.38 41.87 67.63 72.34 67.29 69.82

FedGTA 76.12 37.92 57.02 86.03 19.64 52.84 89.19 48.32 68.76 93.98 42.98 68.48 73.59 70.79 72.19
FGGP 75.80 35.90 55.85 87.02 15.99 51.51 90.01 46.98 68.50 94.32 39.85 67.09 72.98 69.09 71.04

FedTGE 77.32 55.85 66.58 86.79 67.22 77.01 88.15 72.10 80.13 94.06 57.98 76.02 77.46 94.81 86.14

FedTD 78.78 58.02 68.40 87.21 69.07 78.14 89.92 73.89 81.91 95.09 61.09 78.09 77.91 94.69 86.30

Cora CS Photo
IID Setting

20

40

60

80

100

Cora CS Photo
Non-IID-Louvain Setting

20

40

60

80

100

FedTD w/o-T w/o-D w/o-E w/o-H

Figure 3: Ablation study under IID and Non-IID settings with Renyi.

Table 1 and Table 2 show
the accuracy and defense
performance of all base-
lines (including traditional
FL defense methods and
FGL methods) under both
IID and Non-IID-Louvain
settings2. The results
demonstrate that FedTD ex-
hibits outstanding perfor-
mance under both IID and
Non-IID-Louvain settings,
proving its effectiveness against various attack patterns in FGL. Moreover, existing traditional
FL defense methods perform poorly due to their lack of consideration for decentralization, while
existing FGL methods underperform because they fail to defend against backdoor attacks. Although
FedTGE attempts to defend against backdoor attacks from the perspective of the energy model, it
still lacks sufficient consideration of topological features. FedTD better identifies backdoor attacks in
FGL by simultaneously considering data distribution and topological features.

4.2.2 ABLATION STUDY

To analyze the effectiveness of FedTD, we conduct comprehensive ablation studies to evaluate the
necessity and contribution of each individual component within FedTD. Specifically, we compare
FedTD with following variants: 1) w/o-T, which removes the topological features in TDCE compo-
nent. 2) w/o-D, which removes data distribution in TDCE component. 3) w/o-E, which removes

2Due to space limitations, we only present the results of Renyi with a client ratio of Υ = 0.3 in Table 1 and
Table 2. More experiments are provided in Appendix A.7.
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Figure 4: Training Curve with Renyi type trigger on Physics dataset.
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Figure 5: Hyper-parameter analysis under both IID and Non-IID settings with Renyi type trigger.

LECS in TDCE. 4) w/o-H, which removes adjustment about homophily level in TDGC component.
We conduct experiments on Cora, CS, and Photo datasets to cover all three scenarios to ensure the
reliability of the analysis. The evaluation results are demonstrated in Figure 3. We found that both
w/o-T and w/o-D underperform compared to FedTD, which we attribute to the data distribution and
topological features both significantly contribute to identifying triggers, highlighting the importance
of considering topological features. The performance of w/o-E is inferior to FedTD, indicating that
LESC contributes to better distinguishing between malicious and benign samples. Moreover, the
performance degradation caused by w/o-H indicates that differences in homophily levels across
clients affect trigger identification.

4.2.3 TRAINING CURVE

We plotted the curves of comprehensive metric B during the training curve on Physics dataset with
various malicious proportions Υ = {0.1, 0.3, 0.5} in both IID and Non-IID-Louvain settings. We
choose FedTGE, SageFlow, and Dnc as baselines due to their competitive performance. In Figure 4,
we observe that FedTD demonstrates outstanding performance and exhibits a more stable curve
across all settings.

4.2.4 HYPER-PARAMETER ANALYSIS

We evaluate the impact of the key hyper-parameters (local training epoch R and threshold τ ) on
FedTD’s performance across three widely adopted datasets (Pubmed, Physics, and Photo) cover
three distinct scenarios under both IID and Non-IID-Louvain settings. Figure 5 shows that a higher
number of local training rounds R benefits the model’s performance, which aligns with the common
experience in federated learning scenarios and can be dynamically adjusted based on computational
resources. In contrast, the choice of threshold τ in FedTD appears less significant. Empirically,
values of 0.5 or 0.6 tend to produce the most satisfactory results across all scenarios.

4.2.5 COMPLEXITY STUDY

In this section, we analyze the computational complexity of FedTD, which comprises two main
components: TDCE and TDGC, examined separately.

TDCE Complexity. The TDCE component operates at the client level to compute both energy
distributions and topological features. Let D represent the number of nodes, F the number of features

9
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Table 3: Efficiency analysis for FedTD and baselines.

Dataset FedCPA G2uard FedGTA FGGP FedTGE FedTD

Pubmed 32.16s 38.29s 37.21s 44.76s 26.29s 28.05s
Physics 102.27s 119.22s 115.57s 135.00s 82.93s 84.29s
Photo 44.19s 51.20s 49.14s 60.09s 37.29s 39.02s

per node, and E the number of edges in the local graph. The computational complexity of TDCE
consists of three main parts: energy distribution computation via Energy-based GCN, topological
feature extraction, and the final estimation fusion.

For the energy distribution computation: Forward propagation through GCN:O(E×F )+O(D×F ).
Energy shift score calculation with N perturbations: O(D ×N). Loss computation LESC: O(D).

For topological feature extraction: Node degree and centrality: O(D). Local clustering coefficient:
O(D × d2), where d is average degree. PageRank: O(E × Iter), where Iter is iteration count.
Neighbor degree statistics: O(E).

Since E is proportional to D in non-dense graphs, and considering the MLP fusion step, the total
TDCE complexity is:

O(E × F ×N) +O(D × d2) ≈ O(D × F ×N). (10)

TDGC Complexity. The TDGC component operates at the server level to construct the virtual graph
and compute maliciousness scores. Let K denote the number of clients and L the length of energy
distributions.

The computational complexity of TDGC involves: Similarity matrix computation: O(K2 × L).
Homophily adjustment: O(K2). Virtual graph construction with threshold τ : O(K2). Maliciousness
score calculation: O(K). Weight computation: O(K).

The overall TDGC complexity can be expressed as:

O(K2 × L) +O(K2) +O(K) ≈ O(K2 × L). (11)

Overall Complexity. Since K (number of clients) and L (energy distribution length) are typically
small constants in practical federated settings, and N (perturbation count) is fixed at 1 for efficiency,
the complexity simplifies to:

O(D × F ) +O(K2). (12)

This demonstrates that FedTD scales linearly with the graph size (nodes and features) and quadrati-
cally with the number of clients, making it suitable for large-scale graph datasets while maintaining
reasonable computational overhead in typical federated scenarios with moderate client numbers.

Furthermore, we conducted empirical experiments to compare the efficiency of FedTD with advanced
baselines. The experimental setup remains consistent with Table 2. As shown in Table 3, the results
confirm that FedTD exhibits competitive efficiency, aligning with our aforementioned analysis.

Notably, The only additional communication introduced by FedTD is the upload of the client
estimation vector zk from each client to the server. The dimension of zk is a hyperparameter (we
used a small MLP); in our experiments, it was a low-dimensional vector. This constitutes a negligible
increase in bandwidth compared to transmitting the entire local model update wt

k.

5 CONCLUSION

In this paper, we propose FedTD, a tailored topology- and distribution-aware backdoor defense
method for federated graph learning. At the client level, an energy function is introduced to integrate
the underlying data distribution into the local model, assigning low energy to benign clients and high
energy to malicious clients. By combining topological features with the energy function, FedTD
achieves a more comprehensive and accurate energy estimation. At the server level, a virtual graph is
constructed based on the estimation results from each client to evaluate their maliciousness scores.
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To ensure the reliability of the virtual graph, the homophily level of each local graph is considered.
During aggregation, clients with high maliciousness scores are assigned lower weights, while those
with low scores are assigned higher weights, resulting in a more robust federated graph learning
process. FedTD demonstrates strong robustness under both small and large malicious client ratios.
Extensive experimental results across various federated graph scenarios under backdoor attacks
validate the effectiveness of FedTD. By integrating graph topological features and data distribution,
our work provides a comprehensive and effective solution for backdoor defense in federated graph
learning, paving the way for future research in this direction.
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A APPENDIX

A.1 TOPOLOGICAL FEATURES

In our Topology- and Distribution-aware Client Estimation (TDCE) component, we compute a set
of five key topological features at the node level. These features are subsequently aggregated to
form a client-level topological profile, which is used in conjunction with energy distributions to
detect anomalous (potentially malicious) clients. The features were chosen for their ability to capture
different aspects of a node’s structural role within a graph, which is critical for identifying the
subgraph patterns often introduced by backdoor triggers.

The features for each node vi in a client’s graph Gk are calculated as follows:

A.1.1 NODE DEGREE (di)

Definition:

The number of edges incident to a node. It is the most fundamental measure of a node’s connectivity.

Formula:

di =

|Vk|∑
j=1

Aij , (13)

where A is the adjacency matrix of the graph and |Vk| is the total number of nodes.

Relevance:

Nodes with anomalously high or low degree in the context of their local graph may be part of an
injected trigger structure.

A.1.2 LOCAL CLUSTERING COEFFICIENT (Ci)

Definition:

Measures the degree to which a node’s neighbors are connected to each other, indicating the tightness
of its local clique structure.

Formula:

Ci =
2 |{ejk : vj , vk ∈ N (vi) , ejk ∈ Ek}|

di (di − 1)
, (14)

where N (vi) is the set of neighbors of vi and Ek is the set of edges. The denominator represents the
maximum possible number of edges between the neighbors.

Relevance:

Triggers often have significantly different structure from the original graph.
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A.1.3 DEGREE CENTRALITY (CD(vi))

Definition:

A normalized version of node degree that allows for comparison across graphs of different sizes. It
measures a node’s immediate network influence.

Formula:
CD (vi) =

di
|Vk| − 1

. (15)

Relevance:

This feature helps identify nodes that are anomalously central within their local subgraph, which
could be a characteristic of a trigger ‘hub’.

A.1.4 PAGERANK SCORE (PR(vi)))

Definition:

An algorithm that measures the transitive influence or importance of a node based on the quantity and
quality of its connections. A node has high PageRank if it is linked to by other important nodes.

Formula:

The PageRank score is computed iteratively until convergence:

PR (vi) =
1− α

|Vk|
+ α

∑
vj∈N (vi)

PR (vj)

dj
, (16)

where α ∈ [0, 1] is a damping factor (typically set to 0.85), representing the probability of a random
surfer following links.

Relevance:

PageRank helps identify nodes that are structurally important beyond their immediate connections.
Malicious triggers may create anomalous importance patterns.

A.1.5 STANDARD DEVIATION OF NEIGHBOR DEGREES (σdN(vi)
)

Definition:

Quantifies the dispersion or heterogeneity in the connectivity of a node’s neighbors.

Formula:

Let the multiset of degrees for the neighbors of vi be DN (vi) = dj : vj ∈ N (vi). Then:

µN (vi) =
1

di

∑
vj∈N (vi)

dj

σdN(vi)
=

√√√√ 1

di

∑
vj∈N (vi)

(
dj − µN (vi)

)2
.

(17)

Relevance:

This is a crucial feature for detecting nodes that act as ‘bridges’ between regions of the graph with
vastly different connectivity patterns—a role that nodes in a trigger subgraph may be forced into.

A.2 ALGORITHM

A.3 DATASETS

In this part, we introduce all datasets in details:
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Algorithm 1 Process of FedTD
1: Input: Total Rounds T , clients number K, global modelM with corresponding parameter w,

local models for all clients {Mk}Kk=1, with corresponding parameters {wk}Kk=1, and graphs for
all clients {Gk}Kk=1;

2: Output: The final optimized global modelMT ;
3: for t = 1 to T do
4: Client-Side:
5: for k = 1 to K in parallel do
6: Mt

k ← LocalUpdate(wt
k,Gk); // Utilizing Original Training Strategy.

7: Ek ← EnergyDistribution(fθ(·, ·),Xk,Yk,Gk); // Calculating Energy Distribution.
8: Tk ← TopologicalFearure(Gk); // Calculating Topological Features.
9: zk ← Estimation(Ek,Tk); // Calculating Final Estimation.

10: end for
11: Server-Side:
12: S̃ ← SimilarityMatrix({zk}Kk=1, {hk}Kk=1); // Calculating Similarity Matrix.
13: Ḡ ← VirtualGraph(S̃, τ); // Constructing Virtual Graph.
14: {Γk}Kk=1 ← MaliciousnessScore(Ḡ); // Calculating Maliciousness Score.
15: {ζk}Kk=1 ← ClientWeight({Γk}Kk=1); // Calculating Client Weights.
16: Mt+1 ← GlobalUpdate({Mt

k}Kk=1, {ζk}Kk=1); // Updating Global Model.
17: end for
18: return MT ;

Table 4: Statistics of the five evaluation datasets in three scenarios.

Scenarios Datasets #Nodes #Edges #Classes #Features

Citation Network Cora 2,708 5,278 7 1,433
Pubmed 19,717 44,324 3 500

Co-authorship CS 18,333 327,576 15 6,805
Physics 34,493 495,924 5 8,415

Amazon-purchase Photo 7,650 287,326 8 745

• Citation Network: Citation network datasets, including Cora and PubMed, comprise inter-
connected research papers, where nodes represent individual studies and edges signify citation
relationships. These datasets are widely used for tasks like research paper classification and knowl-
edge graph construction, offering valuable insights into research trends and prominent topics within
academic fields.

• Co-authorship: Co-authorship datasets, including Computer Science (CS) and Physics, are
constructed from the Microsoft Academic Graph. In these datasets, nodes represent authors, while
edges denote co-author relationships. They are commonly used to predict authors’ research fields,
facilitating the analysis of research collaboration networks, the distribution of research areas, and
academic influence.

• Amazon-purchase: The Amazon-purchase dataset, including the Photo dataset, are derived from
Amazon’s co-purchase relationships. In these datasets, nodes represent products, and edges indicate
co-purchase links. The primary goal is to predict product categories, making these datasets valuable
for recommendation systems and market analysis research.

The statistics of the datasets used in our experiments are provided in Table ??.

A.4 BASELINES

In this part, we introduce all baselines in details:
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• FedAvg: A standard Federated Averaging algorithm aggregates updates from all participating
clients at the server without implementing any defense strategies. Although it is a commonly used
method in federated learning, it is notably vulnerable to adversarial attacks, making it a less secure
option in hostile environments.

• Trimmed Median and Trimmed Mean: These methods aim to reduce the influence of malicious
clients by filtering out outliers or abnormal parameter updates. Specifically, the trimmed median
removes extreme values from client updates, while the trimmed mean discards a certain percentage
of the largest and smallest values before performing aggregation. By doing so, these methods
provide a level of defense against Byzantine failures and improve the robustness of the system.

• FoolsGold: A defense strategy is designed to counter model poisoning attacks by reducing the
aggregation weight of clients with highly similar updates. The underlying assumption is that
malicious clients often submit similar updates to amplify the effect of a backdoor attack. By
assigning lower weights to these clients during aggregation, the method mitigates their impact and
enhances the robustness of the model.

• DnC: This method groups clients into distinct clusters based on the similarity of their updates,
followed by aggregating updates within each cluster. By isolating clients into separate clusters,
DnC minimizes the risk of adversarial clients dominating the aggregation process, thereby making
it more difficult for attackers to compromise the global model.

• SageFlow: A distance-based defense method identifies and mitigates malicious updates by ana-
lyzing discrepancies between client updates. Updates that deviate significantly from the majority
are either discarded or assigned lower aggregation weights. This method enhances robustness by
reducing the influence of adversarial clients on the global model.

• MMA: An adaptive defense method utilizes multiple metrics, including gradient norms, update
similarities, and client performance, to detect and mitigate adversarial behaviors. By dynamically
adjusting the aggregation weights of clients based on their performance across these metrics, this
approach ensures a more robust and flexible defense against attacks.

• RLR: An adaptive learning rate defense method adjusts the learning rates of clients based on the
perceived reliability of their updates. Clients submitting suspicious or noisy updates are assigned
lower learning rates, reducing their influence on the global model. This strategy mitigates the
impact of malicious clients and promotes stability during training.

• Freqfed: A frequency analysis-based defense method designed to mitigate poisoning attacks in
federated learning. It leverages frequency domain transformations, such as Fourier transforms,
to analyze client updates and identify malicious updates with anomalous frequency patterns. By
decomposing updates into their frequency components, FreqFed effectively distinguishes between
benign and adversarial modifications. This method ensures that only updates with consistent and
expected frequency characteristics are aggregated, thereby reducing the impact of poisoning attacks
and enhancing the robustness and integrity of the global model.

• FedCPA: A resilient method designed to counter malicious client updates through critical parameter
analysis. It evaluates the significance of each parameter in the global model and selectively
aggregates updates, focusing on the most impactful parameters. By prioritizing these critical
parameters, FedCPA minimizes the attack surface available to adversaries, thereby strengthening
the overall robustness of the learning process. This strategy ensures that even if certain clients are
compromised, their ability to disrupt or manipulate the global model remains limited. Ultimately,
FedCPA preserves the integrity and performance of the model, providing a secure and attack-tolerant
federated learning solution.

• G2uard: A defense method that protects federated learning systems from backdoor attacks by
utilizing attributed client graph clustering. It reimagines the process of identifying malicious
clients as an attributed graph clustering problem, applying clustering methods to detect adversarial
participants. By introducing adaptive mechanisms, G2uard amplifies the differences between
aggregated models and compromised ones, effectively neutralizing backdoor threats. Theoretical
analysis confirms that G2uard preserves the convergence of the federated learning system, while
empirical results demonstrate its effectiveness in significantly reducing attack success rates across
various scenarios, with minimal impact on the model’s performance on benign data.

• FedGTA: A novel Federated Graph Topology-aware Aggregation to address the challenges in FGL.
Unlike conventional methods, FedGTA integrates topology-aware local smoothing confidence and
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mixed moments of neighbor features to enhance model aggregation and performance. By encoding
graph topology and node attributes, FedGTA customizes aggregation strategies for each client,
ensuring scalability and efficiency in handling large-scale graphs. Extensive experiments on 12
real-world datasets demonstrate that FedGTA achieves state-of-the-art performance, bridging the
gap between large-scale graph learning and FGL with superior generalization and robustness.

• FGGP: An innovative method designed to tackle the challenges of domain shifts in FGL. FGGP
decouples the global model into a feature extractor and a classification model, connected by
prototypes that serve as semantic centers. At the classification level, it employs Federated Cluster
Prototypes Prediction (FCPP) to retain domain signals and enhance multi-domain prediction.
At the feature extractor level, it proposes Global Knowledge Injected Contrast (GKIC), which
leverages contrastive learning to align local data with global knowledge, enriching feature diversity
and improving prototype quality. Extensive experiments demonstrate FGGP’s effectiveness in
significantly enhancing multi-domain generalization while addressing attribute and structure shifts,
setting a new benchmark for FGL in real-world heterogeneous environments.

• FedTGE: An innovative method for defending FGL against backdoor attacks, which exploit the
unique topological and heterogeneous nature of graph data. The proposed method, FedTGE,
leverages energy-based modeling to enhance defense mechanisms. At the client level, it injects
structural energy awareness into local models, assigning lower energy to benign samples and
higher energy to malicious ones. At the server level, FedTGE clusters clients based on their
energy distributions and constructs a global energy graph to propagate energy similarity, adjusting
aggregation weights to prioritize benign clients. Extensive experiments on multiple datasets
under IID and Non-IID settings demonstrate that FedTGE robustly mitigates backdoor attacks,
outperforming state-of-the-art methods while maintaining high accuracy and scalability in diverse
FGL scenarios.

A.5 TRIGGER TYPE

In this part, we introduce all trigger types below:

• Renyi: The Renyi trigger, based on the Erdős–Rényi random graph model, introduces random
nodes and edges into the graph. Each edge is formed with an independent probability, creating a
structure devoid of discernible patterns. This high level of randomness provides strong obfuscation,
making the trigger challenging to detect.

• GTA: The GTA trigger utilizes carefully designed, structured subgraphs (e.g., star or ring shapes)
that are injected into the graph. By simultaneously altering the features of the inserted nodes, the
attacker enhances their influence on targeted classifications. Although this design achieves high
attack success rates, its structural regularity increases the risk of detection by defense methods.

• WS: The WS trigger, based on the Watts-Strogatz small-world model, introduces subgraphs with
high clustering coefficients and short average path lengths, mimicking the characteristics of real-
world networks to enhance stealthiness. The high local clustering significantly impacts the graph’s
global properties, thereby increasing attack efficacy. However, the success of the attack heavily
relies on carefully selecting parameters such as rewiring probabilities.

• BA: The BA trigger, based on the Barabási-Albert scale-free network model, creates subgraphs
with a power-law degree distribution, where a few ‘hub’ nodes possess high connectivity. These
hubs effectively amplify the backdoor effect across the graph, leveraging their connectivity for
more potent attacks. Although this structure closely resembles real-world networks, the addition of
highly connected hub nodes may necessitate significant graph modifications, potentially affecting
efficiency.

• Opt-GDBA: Opt-GDBA trigger is a learned subgraph that is adaptively generated for each individ-
ual graph using an adaptive trigger generator. This generator optimizes both the location and shape
of the trigger by leveraging graph structure and node features, ensuring the trigger is attached to
the most influential nodes. This results in highly effective and stealthy attacks.

A.6 ANALYSIS FOR ENERGY SHIFT COMPUTATION LOSS

Previous studies (Deng et al., 2020; Wu et al., 2023; Wan et al., 2025) have shown that directly
maximizing the density function of an energy-based model faces a significant computational burden
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Figure 6: Analysis for N under both IID and Non-IID settings with Renyi type trigger.

due to the normalization partition function. Therefore, using score matching has emerged as a
promising alternative. Score matching is a technique for training energy-based models by aligning the
gradient of the log-probability density function. By transforming the distribution into an equivalent
score, we can train energy-based models more efficiently. Score matching, through ∇x log pθ(x) =
−∇xEθ(x), eliminates the need for a normalization constant in the density function. Therefore, Eq.
4 is equivalent to the following equation:

S (vi) =

[
log pθ (v1)− log pθ (Perturb(v1)1)

log pθ (v1)
, · · · , log pθ (v1)− log pθ (Perturb(v1)N )

log pθ (v1)

]
.

(18)
This implies that using the gradient surrogate ∇Eθ enables the model to learn the energy density
distribution of the real data pdata (vi). With an effective score proxy for the gradient in place, we
continue to adhere to the traditional score matching objective:

DF (pdata(x)∥pθ(x)) = Epdata(x)

[
1

2
∥∇x log pdata(x)−∇x log pθ(x)∥2

]
. (19)

With the energy score surrogate (Eq. 4 equal to Eq. 18), our optimization objective is formulated as:

DF (pdata (vi) ∥pθ (vi)) = Epdata(vi)

[
1

2
∥Sdata (vi)− S (vi)∥2

]
. (20)

Since Sdata of the real data is unknown during the actual training of the model. Following previous
study (Hyvarinen & Dayan, 2005) and incorporating my gradient proxy while reducing computational
complexity, we rewrite it as Eq. 3. Energy shift computation loss LECS in Eq. 3 effectively increase
M∗(vi)/Eθ(vi). This perfectly aligns with our goal of assigning lower energy to benign samples and
higher energy to malicious ones.

In Section 4, we fixed N to 1 for efficiency considerations. Here, we further perform a sensitivity
analysis on the hyperparameter N . Specifically, we conduct experiments on five datasets under both
IID and Non-IID settings with Renyi type triggers, varying N within the range of {1, 2, 4, 8}. The
experimental results in Figure 6 show that increasing N can lead to performance improvements. We
attribute this to the fact that more computational samples reduce the loss or misrepresentation of
topological features caused by random perturbations when generating M∗(vi). However, in TCDE, T
already provides sufficiently accurate topological features. Therefore, the performance improvement
brought by increasing N is not significant. For efficiency considerations, the performance with N = 1
is already satisfactory.

A.7 ADDITIONAL EXPERIMENTS

In this part, we provide comprehensive experiments to validate the effectiveness and reliability of
FedTD, covering various malicious client ratio and trigger types. Experiments results are demon-
strated in Table 5, Table 1, Table 6, Table 7, Table 2, and Table 8, show the superiority of FedTD
under different malicious client ratio. Moreover, Experiments results are demonstrated in Table 1,
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Table 5: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.1 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 74.08 44.80 59.44 85.81 7.21 46.51 90.21 18.58 54.39 93.89 18.84 85.37 90.68 17.92 54.30

Trimmed Median 69.33 53.60 61.47 85.63 6.60 46.12 90.05 19.45 54.75 93.71 21.16 57.43 90.26 20.26 55.26
Trimmed Mean 73.25 36.80 55.03 85.77 6.60 46.18 90.15 17.38 53.77 93.84 24.29 59.06 90.42 19.74 55.08

FoolsGold 76.17 44.00 60.08 87.42 8.63 48.03 90.89 19.13 55.01 94.27 21.10 57.69 91.39 16.62 54.01
DnC 64.50 80.80 72.65 84.38 8.12 46.25 83.44 36.97 60.21 92.67 46.78 69.73 88.26 9.61 48.94

SageFlow 76.08 60.80 68.44 87.04 9.54 48.29 90.09 22.62 56.36 94.14 25.51 59.82 91.50 47.01 69.26
MMA 75.33 63.20 69.27 86.93 8.32 47.63 90.84 20.11 55.48 94.15 19.83 56.99 91.39 48.31 69.85
RLR 75.58 72.00 73.79 87.29 10.05 48.67 91.81 18.91 55.36 94.54 15.13 54.84 91.24 20.26 55.75

Freqfed 75.00 71.99 73.50 86.85 9.14 47.99 90.60 18.58 54.59 93.57 6.78 50.18 90.45 16.88 53.67
FedCPA 74.17 64.00 49.08 85.29 9.14 47.22 89.98 20.77 55.37 93.20 24.41 58.80 90.66 24.68 57.67
G2uard 74.17 48.00 61.09 84.69 34.87 59.78 89.63 33.46 61.55 93.44 34.69 64.07 89.34 79.61 84.48

FedGTA 75.61 62.12 68.87 85.09 18.42 51.76 90.82 24.09 57.46 93.28 29.35 61.32 90.99 37.12 64.06
FGGP 75.93 58.92 67.43 85.70 20.02 52.86 90.95 23.80 57.38 91.05 33.09 62.07 90.52 42.09 66.31

FedTGE 75.42 84.00 79.71 85.12 46.19 65.66 90.31 40.43 65.37 93.28 57.10 70.42 90.76 98.44 94.60
FedTD 75.81 85.02 80.42 85.61 48.22 66.92 90.98 41.88 66.43 94.02 58.62 76.32 91.05 96.58 93.82

Table 6: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.5 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 72.00 15.36 43.68 85.91 5.97 45.94 90.09 12.48 51.28 93.88 16.33 55.11 90.53 20.36 55.45

Trimmed Median 69.17 11.68 40.42 85.58 5.02 45.30 90.37 9.36 49.86 93.46 11.85 52.65 89.71 18.29 54.00
Trimmed Mean 70.75 18.72 44.74 85.98 5.44 45.71 90.03 10.71 50.37 93.83 14.98 54.41 90.45 21.25 55.85

FoolsGold 73.83 15.52 44.68 87.17 5.56 46.37 90.87 11.89 51.38 94.19 15.01 54.60 91.13 10.13 50.63
DnC 62.33 55.04 58.69 83.77 4.65 44.21 87.61 82.19 84.75 92.65 57.45 75.05 87.29 20.68 53.98

SageFlow 75.58 26.24 50.91 87.14 5.28 46.21 90.55 5.46 48.01 92.99 17.33 55.16 91.18 17.25 54.22
MMA 75.33 15.36 45.35 87.39 5.42 46.41 90.98 11.26 51.12 94.18 18.52 56.35 91.08 20.42 55.75
RLR 76.33 12.48 44.41 87.28 5.50 46.39 91.56 11.93 51.75 94.53 11.61 53.07 91.16 11.48 51.32

Freqfed 74.05 28.61 51.33 85.21 5.28 45.24 90.77 9.29 50.03 93.05 11.88 52.56 90.05 15.06 52.59
FedCPA 74.17 11.20 42.68 86.01 5.18 45.59 90.60 10.93 50.77 93.37 13.22 53.30 90.05 9.61 49.83
G2uard 69.17 45.60 57.38 83.47 28.58 56.03 88.74 65.79 77.27 93.61 52.89 73.26 89.92 64.56 77.24

FedGTA 68.99 29.19 49.09 80.31 19.92 50.12 82.24 20.83 51.54 85.91 22.05 53.98 82.55 28.72 55.64
FGGP 66.87 33.02 49.95 80.04 22.34 51.19 81.67 24.15 52.91 86.50 23.19 54.85 82.49 35.72 59.11

FedTGE 72.80 73.76 73.28 85.47 53.56 69.52 90.21 80.63 85.42 93.69 62.52 78.10 90.55 92.62 91.59

FedTD 74.95 75.03 74.99 87.09 58.90 73.00 90.80 80.52 85.66 93.70 66.01 79.86 91.09 93.00 92.05

Table 9, Table 10, Table 11, Table 12, Table 2, Table 13, Table 14, Table 15 and Table 16, show the
superiority of FedTD under different trigger types. It is worth noting that for Opt-GDBA, which
considers node importance and graph structure when designing triggers, our FedTD demonstrates
significantly greater advantages compared to other baselines.

A.8 DIFFERENT GRAPH BACKBONES

To demonstrate the generality of the proposed FedTD method across different graph architectures, we
further examined the impact of replacing GCN with GAT (Velivckovic et al., 2018) and GraphSage
(Hamilton et al., 2017) on FedTD’s performance. Consistent with prior work (Liu et al., 2023), we
utilized two-layer GAT and GraphSage models for this analysis. The results in Table 17 show that

Table 7: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.1 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 62.52 40.69 51.60 85.41 22.19 53.80 90.08 35.30 62.69 92.54 46.91 69.72 74.44 70.79 72.61

Trimmed Median 65.07 46.90 55.98 86.23 21.09 53.66 90.15 41.21 65.68 93.29 53.01 73.15 66.36 65.26 65.81
Trimmed Mean 65.12 44.83 54.97 86.20 20.50 53.35 90.18 38.36 64.27 93.85 50.20 72.02 69.70 67.63 68.67

FoolsGold 78.84 62.07 70.45 87.86 25.57 56.77 91.20 46.90 69.05 95.44 51.09 73.26 85.24 62.89 74.07
DnC 41.94 100.00 70.97 57.57 90.95 74.56 56.50 67.40 61.95 86.01 71.13 78.57 44.06 95.53 69.80

SageFlow 76.13 60.53 68.33 87.76 26.77 57.26 86.30 61.28 73.79 95.14 55.00 75.07 76.13 66.84 71.49
MMA 77.49 60.26 68.88 87.60 25.27 56.44 86.72 66.62 76.66 94.88 57.42 76.15 80.20 60.26 70.23
RLR 80.46 65.52 72.99 87.95 24.18 56.07 90.04 41.71 65.87 95.52 44.45 69.99 65.85 63.16 65.51

Freqfed 77.71 55.17 66.44 86.63 25.37 56.50 77.39 61.84 69.61 78.42 40.47 59.44 75.39 61.84 68.61
FedCPA 77.43 78.76 78.09 86.68 16.55 51.62 90.01 48.54 69.90 94.40 56.64 75.52 75.53 71.05 73.29
G2uard 70.49 66.00 68.25 85.54 83.73 84.64 88.89 65.13 77.01 93.06 58.98 76.02 73.12 73.56 73.34

FedGTA 81.03 55.12 68.08 87.40 47.88 67.64 89.55 40.91 65.23 95.02 53.05 74.04 78.88 71.38 75.13
FGGP 80.45 56.09 68.27 86.64 43.95 65.30 88.68 42.51 65.60 94.91 54.18 74.55 76.22 72.59 74.41

FedTGE 78.76 73.68 76.22 86.54 95.52 91.03 89.23 77.37 83.30 94.66 69.75 82.21 75.50 80.26 77.89

FedTD 80.03 76.66 78.35 87.42 94.98 91.20 90.55 78.20 84.38 95.08 70.07 82.58 77.49 85.92 81.71
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Table 8: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.5 and a trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 60.13 22.37 41.25 85.44 12.21 48.82 89.75 36.69 63.22 92.24 33.85 63.05 66.16 52.89 59.53

Trimmed Median 62.20 25.01 43.60 85.59 14.57 50.08 89.78 34.92 62.35 91.69 34.76 63.23 66.75 45.42 56.08
Trimmed Mean 62.26 29.26 45.78 85.89 14.46 50.18 89.46 33.69 61.57 93.55 57.33 75.44 66.62 49.24 57.93

FoolsGold 76.46 26.88 51.67 87.77 16.10 51.93 90.64 41.38 66.01 95.35 36.38 65.87 78.59 35.48 57.03
DnC 52.62 36.76 44.69 69.12 20.53 44.83 56.26 88.24 72.25 86.65 73.46 80.05 61.56 40.35 50.96

SageFlow 74.47 40.79 57.63 86.43 18.56 52.50 89.14 46.12 67.63 94.78 42.93 68.85 77.36 54.43 65.90
MMA 74.68 37.41 56.04 86.93 22.91 54.92 88.15 41.43 64.79 94.07 50.68 72.37 76.82 38.60 57.71
RLR 80.38 28.85 54.62 87.68 18.75 53.21 89.60 42.96 66.28 95.24 36.17 65.70 61.02 30.99 46.00

Freqfed 73.05 28.61 50.83 85.63 18.55 53.09 90.84 40.36 65.60 94.31 38.82 66.57 73.30 29.45 51.38
FedCPA 74.54 39.78 57.16 86.68 20.55 53.62 90.50 38.24 64.37 94.34 37.32 65.84 73.52 32.14 52.83
G2uard 63.46 44.63 54.05 84.58 34.73 59.66 88.02 68.51 78.27 92.30 63.01 77.66 70.23 76.69 73.46

FedGTA 70.02 29.87 49.95 85.09 22.03 53.56 89.92 39.98 64.95 89.01 38.72 63.87 72.88 51.09 61.99
FGGP 71.02 31.41 51.22 85.18 24.03 54.61 90.05 40.25 65.15 92.01 36.60 64.31 73.91 55.88 64.90

FedTGE 73.45 58.13 62.79 85.52 74.78 80.15 90.71 77.87 84.29 93.45 72.11 82.78 76.86 94.36 85.61

FedTD 74.50 59.09 66.80 87.09 75.23 81.16 90.91 77.99 84.45 94.09 73.09 83.59 77.01 94.55 85.78

Table 9: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.3 and a trigger type of GTA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 76.54 25.96 51.25 84.86 9.70 47.28 81.92 52.82 67.37 91.42 22.86 57.14 70.32 48.32 59.32

Trimmed Median 77.49 31.06 54.26 84.63 12.58 48.60 82.16 57.94 70.05 91.55 25.39 58.47 71.76 57.91 64.83
Trimmed Mean 74.50 21.61 48.05 85.23 16.43 50.83 82.37 57.03 69.69 91.91 21.26 56.59 73.25 49.64 61.44

FoolsGold 77.56 23.60 50.58 87.15 14.07 50.61 88.78 46.48 67.63 92.68 38.56 65.62 70.97 41.39 56.18
DnC 65.90 54.82 60.36 73.92 30.83 52.37 56.25 88.42 72.33 77.51 56.64 67.07 60.79 93.08 76.93

SageFlow 77.95 27.49 52.72 87.04 14.70 50.87 88.09 68.80 78.45 92.54 52.69 72.62 71.49 40.51 55.99
MMA 77.72 44.95 61.34 86.11 21.91 54.01 88.43 73.92 81.17 92.63 37.62 65.12 69.49 56.13 62.81
RLR 81.65 25.48 53.56 86.88 15.20 51.04 89.28 73.42 81.35 92.99 39.56 66.27 70.83 48.45 59.64

Freqfed 79.91 27.62 53.76 85.86 13.60 49.73 88.49 53.92 71.21 92.95 38.96 65.95 71.20 46.89 59.05
FedCPA 76.79 22.00 49.40 86.42 12.62 49.52 88.64 58.24 73.44 92.55 38.16 65.35 70.97 36.36 53.67
G2uard 73.31 67.62 70.47 84.12 40.90 62.51 89.31 71.46 80.39 91.22 59.54 75.38 70.14 81.83 75.99

FedGTA 76.89 28.21 52.55 85.09 23.09 54.09 86.96 64.10 75.53 92.55 20.50 56.53 70.89 51.08 60.99
FGGP 77.92 30.81 54.37 86.04 11.91 48.98 85.09 52.73 68.91 91.89 28.05 59.97 71.99 58.06 65.03

FedTGE 78.23 73.23 75.73 85.56 53.34 69.45 88.53 85.82 87.18 92.39 70.37 81.38 72.46 95.56 84.01

FedTD 80.71 76.08 78.40 86.91 53.08 70.00 89.02 85.89 87.46 93.20 71.03 82.12 72.67 95.49 84.08

Table 10: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.3 and a trigger type of WS.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 74.81 72.24 73.53 82.84 79.47 81.16 83.56 74.13 78.85 91.32 60.53 75.93 71.53 76.51 74.02

Trimmed Median 74.81 72.24 73.53 82.63 68.89 75.76 87.72 75.29 81.51 90.45 55.91 73.18 78.32 75.25 76.79
Trimmed Mean 78.84 89.88 84.36 83.12 69.61 76.37 87.83 74.33 81.08 91.07 56.24 73.66 79.26 76.15 77.71

FoolsGold 80.41 82.22 81.32 84.52 75.78 80.15 88.41 75.62 82.02 91.59 65.79 78.69 77.57 86.18 81.88
DnC 62.39 83.90 73.15 76.25 69.68 72.97 75.25 93.94 84.60 75.84 75.93 75.89 64.28 96.28 80.28

SageFlow 79.31 86.90 83.11 83.60 83.84 83.72 87.04 74.28 80.66 91.50 64.74 78.12 75.26 70.76 73.01
MMA 78.60 88.80 83.70 84.32 77.53 80.93 84.27 76.95 80.61 91.88 62.80 77.34 78.42 72.62 75.52
RLR 79.32 94.72 87.02 84.84 74.30 79.57 88.12 74.50 81.31 92.14 64.04 78.09 77.69 73.88 75.79

Freqfed 80.91 70.28 75.60 84.25 73.82 79.04 88.41 87.15 87.78 90.81 66.31 78.56 77.96 75.99 76.98
FedCPA 79.70 88.00 83.85 83.31 76.59 79.95 87.74 77.15 82.45 92.07 67.33 79.70 78.52 74.34 76.43
G2uard 75.49 92.36 83.93 82.82 76.24 79.53 87.54 76.79 82.17 90.93 66.68 78.81 74.72 72.51 73.62

FedGTA 77.59 80.41 79.00 83.33 77.60 80.47 86.69 76.63 81.66 91.59 63.81 77.70 73.09 77.72 75.41
FGGP 77.51 81.91 79.71 82.68 77.49 80.09 87.41 77.52 82.47 90.62 63.31 76.97 76.72 75.69 76.21

FedTGE 79.26 89.48 84.37 83.73 87.69 85.71 88.33 90.46 89.40 91.95 83.19 87.57 76.19 94.62 85.41

FedTD 79.58 89.72 84.65 84.50 87.83 86.17 88.72 90.41 89.57 92.39 84.58 88.49 78.72 94.51 86.62
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Table 11: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.3 and a trigger type of BA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 76.55 77.03 76.79 83.05 83.20 83.13 88.51 69.74 79.13 90.45 61.41 75.93 76.18 74.77 75.48

Trimmed Median 77.68 86.05 81.86 82.71 67.13 74.92 85.91 75.60 80.76 90.36 55.76 73.06 77.77 76.15 76.96
Trimmed Mean 76.17 80.20 78.18 83.85 73.13 78.49 87.71 74.39 81.05 91.08 59.53 75.31 78.49 76.60 77.55

FoolsGold 79.62 85.66 82.64 83.71 69.37 76.54 87.25 76.95 82.10 91.88 64.77 78.33 78.67 74.85 76.76
DnC 70.94 90.83 80.89 80.72 70.45 75.59 71.23 75.39 73.31 74.56 68.65 71.61 68.42 76.15 72.29

SageFlow 80.16 88.92 84.54 85.35 72.89 79.12 87.55 76.89 82.22 89.75 65.65 77.70 79.74 76.60 78.17
MMA 78.47 90.03 84.25 83.17 75.77 79.47 85.47 75.31 80.39 89.84 58.00 73.92 76.17 74.38 75.28
RLR 77.29 92.73 85.01 85.05 80.27 82.66 88.67 77.15 82.91 92.04 61.79 76.92 78.05 75.70 76.88

Freqfed 78.94 90.25 84.60 83.37 77.71 80.54 88.19 74.09 81.14 91.94 58.07 75.01 78.94 75.73 77.34
FedCPA 77.56 84.93 81.25 83.56 76.90 80.23 87.31 71.20 79.26 91.97 58.42 75.20 79.47 74.83 77.15
G2uard 77.46 85.65 81.55 82.34 84.16 83.25 87.85 72.40 80.13 91.71 64.17 77.94 75.41 74.83 75.12

FedGTA 79.05 76.03 77.54 84.59 75.17 79.88 88.30 71.35 79.83 84.06 58.27 71.17 78.50 70.75 74.63
FGGP 78.34 80.01 79.18 82.49 77.13 79.81 88.05 72.11 80.08 88.42 58.61 73.52 77.69 71.72 74.71

FedTGE 79.48 90.08 84.78 84.77 89.06 86.92 88.63 84.39 86.51 91.05 73.17 82.11 78.28 86.21 82.25

FedTD 79.83 92.78 86.31 85.39 90.63 88.01 88.52 86.09 87.31 91.22 73.54 82.38 78.95 85.79 82.37

Table 12: Comparison with baselines over three distinct scenarios on five mainstream datasets under
IID setting with a malicious proportion of Υ = 0.3 and a trigger type of Opt-GDBA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 59.68 58.56 59.12 67.94 65.43 66.69 69.17 58.98 64.08 75.12 43.86 59.49 56.34 64.62 60.48

Trimmed Median 58.97 61.18 60.08 67.31 53.34 60.33 70.58 59.64 65.11 72.52 39.91 56.22 64.39 60.12 62.26
Trimmed Mean 65.73 72.91 69.32 66.98 55.31 61.15 69.08 57.19 63.14 74.92 40.99 57.96 63.65 62.93 63.29

FoolsGold 65.75 66.59 66.17 68.23 60.13 64.18 69.34 60.70 65.02 75.67 48.35 62.01 62.15 70.18 66.17
DnC 50.22 68.65 59.44 60.72 54.48 57.60 58.63 75.89 67.26 60.74 59.64 60.19 48.96 77.23 63.10

SageFlow 65.99 72.49 69.24 67.88 67.74 67.81 69.82 58.33 64.08 74.95 50.86 62.91 60.65 56.95 58.80
MMA 63.91 71.33 67.62 67.98 61.72 64.85 67.74 60.17 63.95 75.14 49.08 62.11 62.88 58.16 60.52
RLR 64.05 75.93 69.99 68.51 59.67 64.09 69.68 58.79 64.24 75.32 50.19 62.75 62.15 59.16 60.66

Freqfed 66.94 55.76 61.35 68.80 58.10 63.45 70.01 70.32 70.17 74.99 50.56 62.78 63.74 60.61 62.18
FedCPA 64.81 70.44 67.63 67.02 61.72 64.37 69.18 60.75 64.97 75.01 52.40 63.71 63.72 59.73 61.73
G2uard 60.61 74.60 67.61 66.94 60.67 63.80 69.26 60.92 65.09 72.99 51.49 62.24 59.97 58.61 59.29

FedGTA 62.84 64.47 63.66 67.57 61.63 64.60 69.03 60.89 64.96 74.34 48.46 61.40 57.48 62.86 60.17
FGGP 62.45 65.69 64.07 66.76 61.80 64.28 69.51 60.49 65.00 72.59 48.24 60.42 61.83 60.78 61.31

FedTGE 65.31 72.43 68.87 67.10 69.65 68.38 70.03 71.91 70.97 75.64 66.27 70.96 60.92 75.82 68.37

FedTD 71.92 80.25 76.09 76.52 74.51 75.52 78.28 79.03 78.66 83.91 73.85 78.88 71.55 85.01 78.28

Table 13: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.3 and a trigger type of GTA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 78.54 27.96 53.25 86.86 11.70 49.28 83.92 54.82 69.37 93.42 24.86 59.14 72.32 50.32 61.32

Trimmed Median 79.49 33.06 56.26 86.63 14.58 50.60 84.16 59.94 72.05 93.55 27.39 60.47 73.76 59.91 66.83
Trimmed Mean 76.50 23.61 50.05 87.23 18.43 52.83 84.37 59.03 71.69 93.91 23.26 58.59 75.25 51.64 63.44

FoolsGold 79.56 25.60 52.58 89.15 16.07 52.61 90.78 48.48 69.63 94.68 40.56 67.62 72.97 43.39 58.18
DnC 67.90 56.82 62.36 75.92 32.83 54.37 58.25 90.42 74.33 79.51 58.64 69.07 62.79 95.08 78.93

SageFlow 79.95 29.49 54.72 89.04 16.70 52.87 90.09 70.80 80.45 94.54 54.69 74.62 73.49 42.51 57.99
MMA 79.72 46.95 63.34 88.11 23.91 56.01 90.43 75.92 83.17 94.63 39.62 67.12 71.49 58.13 64.81
RLR 83.65 27.48 55.56 88.88 17.20 53.04 91.28 75.42 83.35 94.99 41.56 68.27 72.83 50.45 61.64

Freqfed 81.91 29.62 55.76 87.86 15.60 51.73 90.49 55.92 73.21 94.95 40.96 67.95 73.20 48.89 61.05
FedCPA 78.79 24.00 51.40 88.42 14.62 51.52 90.64 60.24 75.44 94.55 40.16 67.35 72.97 38.36 55.67
G2uard 75.31 69.62 72.47 86.12 42.90 64.51 91.31 73.46 82.39 93.22 61.54 77.38 72.14 83.83 77.99

FedGTA 78.89 30.21 54.55 87.09 25.09 56.09 88.96 66.10 77.53 94.55 22.50 58.53 72.89 53.08 62.99
FGGP 79.92 32.81 56.37 88.04 13.91 50.98 87.09 54.73 70.91 93.89 30.05 61.97 73.99 60.06 67.03

FedTGE 80.23 75.23 77.73 87.56 55.34 71.45 90.53 87.82 89.18 94.39 72.37 83.38 74.46 97.56 86.01

FedTD 82.71 78.08 80.40 88.91 55.08 72.00 91.02 87.89 89.46 95.20 73.03 84.12 74.67 97.49 86.08
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Table 14: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.3 and a trigger type of WS.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 77.31 74.74 76.03 85.34 81.97 83.66 86.06 76.63 81.35 93.82 63.03 78.42 74.03 79.01 76.52

Trimmed Median 77.31 74.74 76.03 85.13 71.39 78.26 90.22 77.79 84.01 92.95 58.41 75.68 80.82 77.75 79.29
Trimmed Mean 81.34 92.38 86.86 85.62 72.11 78.87 90.33 76.83 83.58 93.57 58.74 76.16 81.76 78.65 80.21

FoolsGold 82.91 84.72 83.82 87.02 78.28 82.65 90.91 78.12 84.52 94.09 68.29 81.19 80.07 88.68 84.38
DnC 64.89 86.40 75.65 78.75 72.18 75.46 77.75 96.44 87.10 78.34 78.43 78.38 66.78 98.78 82.78

SageFlow 81.81 89.40 85.61 86.10 86.34 86.22 89.54 76.78 83.16 94.00 67.24 80.62 77.76 73.26 75.51
MMA 81.10 91.30 86.20 86.82 80.03 83.42 86.77 79.45 83.11 94.38 65.30 79.84 80.92 75.12 78.00
RLR 81.82 97.22 89.52 87.34 76.80 82.07 90.62 77.00 83.81 94.64 66.54 80.59 80.19 76.38 78.29

Freqfed 83.41 72.78 78.10 86.75 76.32 81.53 90.91 89.65 90.28 93.31 68.81 81.06 80.46 78.49 79.48
FedCPA 82.20 90.50 86.35 85.81 79.09 82.45 90.24 79.65 84.95 94.57 69.83 82.20 81.02 76.84 78.93
G2uard 77.99 94.86 86.42 85.32 78.74 82.03 90.04 79.29 84.67 93.43 69.18 81.31 77.22 75.01 76.12

FedGTA 80.09 82.91 81.50 85.83 80.10 82.97 89.19 79.13 84.16 94.09 66.31 80.20 75.59 80.22 77.91
FGGP 80.01 84.41 82.21 85.18 79.99 82.59 89.91 80.02 84.97 93.12 65.81 79.47 79.22 78.19 78.71

FedTGE 81.76 91.98 86.87 86.23 90.19 88.21 90.83 92.96 91.90 94.45 85.69 90.07 78.69 97.12 87.91

FedTD 82.08 92.22 87.15 87.00 90.33 88.67 91.22 92.91 92.07 94.89 87.08 90.99 81.22 97.01 89.12

Table 15: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.3 and a trigger type of BA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 79.05 79.53 79.29 85.55 85.70 85.63 91.01 72.24 81.63 92.95 63.91 78.43 78.68 77.27 77.98

Trimmed Median 80.18 88.55 84.36 85.21 69.63 77.42 88.41 78.10 83.26 92.86 58.26 75.56 80.27 78.65 79.46
Trimmed Mean 78.67 82.70 80.68 86.35 75.63 80.99 90.21 76.89 83.55 93.58 62.03 77.81 80.99 79.10 80.05

FoolsGold 82.12 88.16 85.14 86.21 71.87 79.04 89.75 79.45 84.61 94.38 67.27 80.83 81.17 77.35 79.26
DnC 73.44 93.33 83.39 83.22 72.95 78.09 73.73 77.89 75.81 77.06 71.15 74.11 70.92 78.65 74.79

SageFlow 82.66 91.42 87.04 87.85 75.39 81.62 90.05 79.39 84.72 92.25 68.15 80.20 82.24 79.10 80.67
MMA 80.97 92.53 86.75 85.67 78.27 81.96 87.97 77.81 82.89 92.34 60.50 76.42 78.67 76.88 77.78
RLR 79.79 95.23 87.51 87.55 82.77 85.16 91.17 79.65 85.41 94.54 64.29 79.42 80.55 78.20 79.38

Freqfed 81.44 92.75 87.10 85.87 80.21 83.04 90.69 76.59 83.64 94.44 60.57 77.50 81.44 78.23 79.84
FedCPA 80.06 87.43 83.75 86.06 79.40 82.73 89.81 73.70 81.76 94.47 60.92 77.70 81.97 77.33 79.65
G2uard 79.96 88.15 84.05 84.84 86.66 85.75 90.35 74.90 82.63 94.21 66.67 80.44 77.91 77.33 77.62

FedGTA 81.55 78.53 80.04 87.09 77.67 82.38 90.80 73.85 82.33 86.56 60.77 73.67 81.00 73.25 77.13
FGGP 80.84 82.51 81.68 84.99 79.63 82.31 90.55 74.61 82.58 90.92 61.11 76.02 80.19 74.22 77.21

FedTGE 81.98 92.58 87.28 87.27 91.56 89.42 91.13 86.89 89.01 93.55 75.67 84.61 80.78 88.71 84.75

FedTD 82.33 95.28 88.81 87.89 93.13 90.51 91.02 88.59 89.81 93.72 76.04 84.88 81.45 88.29 84.87

Table 16: Comparison with baselines over three distinct scenarios on five mainstream datasets under
Non-IID-Louvain setting with a malicious proportion of Υ = 0.3 and a trigger type of Opt-GDBA.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
FedAvg 60.02 58.87 59.45 68.46 65.86 67.16 70.91 60.88 65.90 75.42 48.92 62.17 57.81 62.01 59.91

Trimmed Median 60.94 56.92 58.93 68.73 54.00 61.37 72.19 61.94 67.07 75.13 44.42 59.78 63.78 62.77 63.28
Trimmed Mean 65.86 73.16 69.51 68.64 55.80 62.22 72.70 60.84 66.77 75.64 44.96 60.30 64.97 62.98 63.97

FoolsGold 65.45 67.74 66.60 69.61 61.08 65.34 72.85 61.70 67.28 75.39 52.63 64.01 62.07 71.03 66.55
DnC 49.90 67.77 58.84 61.66 55.72 58.69 60.11 77.73 68.92 60.62 62.51 61.57 50.77 78.98 64.88

SageFlow 65.93 70.07 68.00 69.61 67.87 68.74 71.88 60.74 66.31 75.66 51.98 63.82 61.23 57.75 59.49
MMA 65.79 72.63 69.21 69.60 63.68 66.64 69.36 62.71 66.04 75.54 48.40 61.97 63.34 58.38 60.86
RLR 65.81 77.81 71.81 70.20 59.30 64.75 72.20 60.59 66.40 75.13 50.15 62.64 62.04 59.01 60.53

Freqfed 66.86 56.84 61.85 69.50 59.00 64.25 73.49 71.55 72.52 74.44 53.73 64.09 63.20 62.94 63.07
FedCPA 65.76 71.77 68.77 68.17 62.14 65.16 72.01 62.91 67.46 75.64 53.74 64.69 64.62 60.31 62.47
G2uard 62.87 75.31 69.09 68.62 61.13 64.88 71.95 62.68 67.31 74.31 53.71 64.01 60.93 59.69 60.31

FedGTA 64.85 65.70 65.28 69.23 63.85 66.54 71.95 63.06 67.51 75.19 49.24 62.22 58.88 62.65 60.77
FGGP 64.84 66.35 65.60 67.06 63.11 65.09 71.40 62.85 67.12 74.50 49.05 61.78 62.37 61.90 62.14

FedTGE 65.91 73.16 69.54 70.55 73.57 72.06 72.95 74.33 73.64 75.80 68.18 71.99 60.81 77.91 69.36

FedTD 73.19 84.61 78.90 79.23 81.09 80.16 80.28 81.85 81.07 82.09 75.66 78.88 70.72 84.44 77.58

Table 17: Comparison with different GNN backbones with a malicious proportion of Υ = 0.3 and a
trigger type of Renyi.

Scenarios Citation Network Co-authorship Amazon-purchase

Datasets Cora Pubmed CS Physics Photo

Metrics A R B A R B A R B A R B A R B
IID Setting

FedTD (GCN) 76.37 72.91 74.64 85.09 60.31 72.70 85.69 71.20 78.45 93.80 62.65 78.23 82.50 97.04 89.77
FedTD (GAT) 77.01 70.75 73.88 85.52 60.07 72.80 85.90 71.31 78.61 93.55 62.81 78.18 82.58 96.74 89.66

FedTD (GraphSage) 75.37 71.55 73.46 84.62 60.00 72.31 85.23 70.81 78.02 93.70 62.29 78.00 82.56 96.89 89.73

Non-IID-Louvain Setting

FedTD (GCN) 78.78 58.02 68.40 87.21 69.07 78.14 89.92 73.89 81.91 95.09 61.09 78.09 77.91 94.69 86.30
FedTD (GAT) 78.09 58.15 68.12 87.06 69.13 78.10 89.12 73.34 79.18 95.26 61.03 78.15 77.59 94.33 85.96

FedTD (GraphSage) 78.41 59.10 68.76 87.30 69.41 78.22 88.70 73.22 80.96 93.97 63.12 78.55 77.84 93.95 85.90
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Figure 7: Client selection analysis on the Cora dataset under IID setting with a malicious proportion
of Υ = 0.3 and a trigger type of Renyi.

FedTD delivers satisfactory performance across various GNN architectures, regardless of whether the
settings are IID or Non-IID-Louvain.

A.9 THREAT MODEL

We adopt threat model following previous studies (Wan et al., 2025; Xu et al., 2021; Liu et al., 2023;
Wan et al., 2025). Assume there are K clients in total, among which M (M ≤ K) are malicious.
Each malicious client independently executes a backdoor attack on its own model. The primary
objective of a backdoor attack is to manipulate the model so that it misclassifies specific pre-defined
labels (referred to as target labels) within the poisoned data samples, while maintaining high accuracy
on clean data. Attack Knowledge: In this context, it is assumed that each malicious client has
complete knowledge of its own training data and can generate triggers accordingly. This assumption is
practical, given that clients have full control over their local data. Attacker Capability: A malicious
client can inject triggers into its training datasets, subject to predefined constraints such as trigger
size and the poisoning rate. The purpose of this is to contaminate the training data. However, the
attacker cannot manipulate the server-side aggregation process or interfere with the training processes
or models of other clients.

Mathematically, the formal attack objective for each malicious client ci during round t can be defined
as follows:

w∗t
k =

argmin
wt

k

1

|Vk|

 ∑
vi∈V p

k

L
(
fθ

(
xi, gτ ◦N (vi) ;w

t−1
k

)
, τ
)
+

∑
vi∈V c

k

L
(
fθ

(
xi, N (vi) ;w

t−1
k

)
, yi

) ,

∀vi ∈ V p
k , Nτ = |gτ | ≤ △g and ρ =

|V p
k |
|Vk|

≤ △p,

(21)
where V p

k refers to the set of poisoned nodes and V c
k corresponds to the clean node set for client

ck. The GNN model is represented as fθ(xi, N(vi);wk) where N(vi) denotes the neighborhood
of node vi. Note that V p

k ∪ V c
k = Vk and V p

k ∩ V c
k = ∅, indicating the union and intersection of

the poisoned and clean node sets, respectively. gτ ◦N(vi) represents the poisoned graph structure
resulting from embedding trigger gτ into the neighborhood of node vi. τ denotes the target label.
Nτ = |gτ | denotes the trigger size and △g represents the constraint that ensures the trigger size
remains within the specified limit. ρ =

|V p
k |

|Vk| represents the poisoning rate, and△p denotes the budget
allocated for poisoned nodes.

In a federated graph backdoor attack, the process of generating triggers and poisoned datasets can be
divided into two key steps: trigger generation and trigger injection. The term "trigger" refers to a
specific pattern, which has been formally defined as a subgraph in prior work (Zhang et al., 2021b),
offering a clear and well-established framework. In our evaluation, we fix poisoning rate ρ = 0.3,
according to previous work (Wan et al., 2025).
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Figure 8: Client selection analysis on the Cora dataset under Non-IID-Louvain setting with a malicious
proportion of Υ = 0.3 and a trigger type of Renyi.
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Figure 9: Varying client scales analysis on the Pubmed dataset under both IID and Non-IID-Louvain
setting with a malicious proportion of Υ = 0.3 and a trigger type of Renyi.

A.10 CLIENT SELECTION

While many current FGL studies assume full client participation, it is undoubtedly more realistic
and efficient to select only a subset of clients. Therefore, we have included experiments based on
more practical scenarios using random selection (before training). Specifically, for random selection,
we select a subset of clients from all available clients at the beginning of each training round, with
participation rates set to 50%, 30%, and 10%. As shown in Figure 7 and Figure 8, FedTD consistently
outperforms all baselines under all participation rates. Specifically, we observed a smaller decline
in node classification accuracy A compared to the larger decline in backdoor failure rateR. This is
because, in scenarios involving malicious clients, selecting only a subset of clients for participation
often results in rounds where few or even no malicious clients are included. Such situations improve
accuracy but limit the ability to detect malicious clients effectively.

A.11 VARYING CLIENT SCALES

Figure 9 illustrates the performance of our FedTD method alongside advanced baselines across
varying client scales on the Pumbed dataset. The results indicate that FedSPA consistently achieves
superior performance compared to other methods, regardless of changes in client scale. Notably, the
number of clients is adjusted proportionally based on the size of the graph.

A.12 GRAPH OVERLAP STUDY

Real-world FGL often involves entities (nodes) that exist across multiple clients (e.g., a user present
in multiple social network databases). Instead of a strict disjoint partition (Vi ∩ Vj = ∅), use an
overlapping partition strategy. Allow a specific ratio of nodes (overlap ratio δ) to be shared among k
clients. We conduct relevant experiments on the Cora dataset under both IID and Non-IID-Louvain
settings with overlap ratios δ ∈ 0.1, 0.2, 0.3. During local training, clients treat shared nodes as their
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Figure 10: Graph overlap study on the Cora dataset under IID setting with a malicious proportion of
Υ = 0.3 and a trigger type of Renyi.
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Figure 11: Graph overlap study on the Cora dataset under Non-IID-Louvain setting with a malicious
proportion of Υ = 0.3 and a trigger type of Renyi.
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Figure 12: FedTD’s defense performance against specific FedTD-aware attack strategy on the Pubmed
dataset under both IID and Non-IID-Louvain settings.

own. During aggregation, the server treats the clients as distinct entities (as per the current FedTD
design). Figure 10 and Figure 11 show that results for FedTD and all baselines slightly as overlap
increases (due to potential label/feature conflicts or redundancy), but FedTD still outperform all
baselines.

A.13 DEFENSE AGAINST ADAPTIVE (FEDTD-AWARE) ATTACKS

We further evaluate FedTD’s defense performance against specific FedTD-aware attack strategy.
We propose a colluding clients forming dense subclusters. The intuition is that if malicious clients
are aware that FedTD penalizes outliers in the virtual graph, they may attempt to cluster together
to appear more “normal" or “central". Specifically, malicious clients coordinate to minimize the
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cosine distance between their estimation vectors (zk) and inject similar trigger patterns into their
local training, forcing their embeddings to converge around a target malicious mean. The attackers’
goal is to form a dense clique in the server’s virtual graph, thereby increasing their degree centrality
dk. We conduct relevant experiments on the Pubmed dataset under both IID and Non-IID-Louvain
settings. As Figure 12 shows, even if malicious clients align their distributions, their topological
features (Tk) still differ from benign clients. While the failure rate of FedTD degrade compared to
non-adaptive attacks, it remains higher than all baselines.

A.14 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized large language models (LLMs) in a limited capacity, solely for writing assistance tasks
such as grammar correction, style refinement, and table formatting. All suggested changes were
carefully reviewed and selectively incorporated by the authors. The scientific content, ideas, analysis,
and conclusions presented in this paper are entirely our own. The authors take full responsibility for
the paper’s content, including any remaining errors or inaccuracies.
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