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Abstract

Estimating the density of a distribution from samples is a fundamental problem
in statistics. In many practical settings, the Wasserstein distance is an appropriate
error metric for density estimation. For example, when estimating population den-
sities in a geographic region, a small Wasserstein distance means that the estimate
is able to capture roughly where the population mass is. In this work we study
differentially private density estimation in the Wasserstein distance. We design
and analyze instance-optimal algorithms for this problem that can adapt to easy
instances.
For distributions P over R, we consider a strong notion of instance-optimality:
an algorithm that uniformly achieves the instance-optimal estimation rate is com-
petitive with an algorithm that is told that the distribution is either P or QP for
some distribution QP whose probability density function (pdf) is within a factor
of 2 of the pdf of P . For distributions over R2, we use a different notion of in-
stance optimality. We say that an algorithm is instance-optimal if it is competitive
with an algorithm that is given a constant-factor multiplicative approximation of
the density of the distribution. We characterize the instance-optimal estimation
rates in both these settings and show that they are uniformly achievable (up to
polylogarithmic factors). Our approach for R2 extends to arbitrary metric spaces
as it goes via hierarchically separated trees. As a special case our results lead to
instance-optimal private learning in TV distance for discrete distributions.

1 Introduction

Distribution estimation is a fundamental problem in statistics. In this work, we focus on the problem
of learning the density of a distribution over a low-dimensional real space. Our motivation for
studying this problem comes from practical problems such as estimating the population density
in a geographical area (defined by bounded two dimensional space, for e.g. [0, ℓ]2), learning the
distribution of accuracy of a machine learning model (i.e. a distribution over [0, 1]), estimating the
average temperature across latitude, longitude, and altitude (i.e. a distribution over [0, ℓ]3) etc.

In this work, we are interested in the non-parametric version of this question, where we make no
assumptions on the form of the distribution we are learning. This is frequently of interest in practice,
where population densities for example may change over time (become more or less concentrated),
and it is difficult to specify a meaningful parametric class that will simultaneously capture all densi-
ties of interest. Given estimation is often done using sensitive data (for e.g. health data), our interest
in this question is in, and consequently all our results are for, the differentially private version of this
question. While we believe our results in the non-private setting are also novel and interesting, we
view the private results as our main contribution.

Any statistical algorithm learning from samples is inexact. The appropriate gauge to measure the
(in)accuracy of a density estimation algorithm depends on how this density estimate is used. In
this work, we focus on the Wasserstein distance between the original distribution and the learnt
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distribution as our measure of accuracy. Known by many names (Earthmover distance, Kantorovich
distance, Optimal Transport distance), this distance is defined over any distance metric d as the
minimum over all couplings π from P to Q of the quantity Ex∼P [d(x, π(x))]. It is arguably one
of the most natural ways to define distances between distributions over a metric space and has been
extensively studied (see Appendix C) . We note that Wasserstein distance is particularly salient in
many practical applications of density estimation where the geometry of the space is significant. As
a simple example, when creating population density estimates, if the population is concentrated in a
few cities, then outputting a distribution concentrated close to these cities (even if not exactly at the
cities) is intuitively better than outputting a distribution that is more spread out. Metrics such as TV
distance that do not incorporate the geometry of the space do not capture this nuance. Additionally,
Wasserstein distance is versatile and can be adapted to the setting of interest by varying the metric. In
the case of the metric being a discrete metric with d(x, y) = 1(x ̸= y), it reduces to the commonly
used total variation (TV) distance. Our focus in this work is on the case of Euclidean distance metric
on [0, 1] or [0, 1]2, though our results apply to both to higher-dimensional Euclidean space as well as
to any finite metric. In the [0, 1] case (with the standard Euclidean metric), the Wasserstein distance
is equivalent to the total area between the cumulative distribution functions.

The problem of learning a distribution under Wasserstein distance has a long history, starting with
[Dud69] proving worst-case bounds on the rate of convergence of the Wasserstein distance between
the empirical distribution P̂n and the target distribution P over Rd. Similarly, this question for
the case of the discrete metric (d(x, y) = 1(x ̸= y)) has been very well studied. However, most
known results for this problem look at it from the point of view of worst-case analysis. This can
paint a rather pessimistic picture. For example, the minimax rate of ε-privately learning a discrete
distribution over {0, . . . , k} in TV distance (i.e. Wasserstein with the discrete metric described
above) scales linearly with k, which can be prohibitive for large support size k. For Wasserstein
distance with ℓ2 norm, the rate of convergence of the empirical distribution suffers a curse of di-
mensionality, with the worst-case error between the distribution and the empirical distribution being
Θ(n− 1

d ) for distributions over [0, 1]d. For the differentially private version of this question, recent
works [BSV22, HVZ23] have shown that the optimal Wasserstein minimax error between the sam-
ple and the private estimate is Θ̃((εn)−

1
d ). This worst-case analysis viewpoint fails to distinguish

between algorithms that perform very differently on the types of instances one may see in practice.
In particular, many practical distributions may be more feasible to estimate than suggested by the
minimax rate. As an example, Figure 1 shows the cumulative distribution function of a bimodal
distribution on [0, 1] with very sparse support, and the cdf learnt by a minimax optimal algorithm,
as well as an algorithm we present in this work (See Appendix F for details on this experiment). As
is clear from the figure, the minimax optimal algorithm is easily outperformed. This phenomenon
only gets worse in higher dimensions. Similarly, if the distribution in Red lies on a k-dimensional
subspace, the worst-case error scaling with Õ((εn)−

1
d ) is significantly larger than our algorithm’s

scaling of Õ((εn)−
1
k ).

This motivates the problem of viewing this question through the lens of instance optimality. 2

Briefly, instance optimal algorithms are those that on any given instance of the problem, are able to
perform competitively with what any algorithm can do on this instance. Let M be a class of algo-
rithms of interest (e.g. all (ε, δ)-differentially private algorithms) and cost(·, P ) be a cost measure
for an instance P . In our setting, we have a distribution P over a metric space, and given a set P̂n

of n samples from P , we want to learn an estimate A(P̂n) for the distribution. Our measure of
performance is the Wasserstein distance W , so cost(A, P ) = E[W(P,A(P̂n))]. We would ideally
like to say that an algorithm A is α-instance optimal in a class M if for all instances P , and all
A′ ∈ M ,

cost(A(P̂n)), P ) ≤ α · cost(A′(P̂n)), P ). (InstanceOptimality-Ideal)

The reader would have noticed that this definition is however impossible to achieve except for trivial
classes M. The algorithm A′ that ignores its input and always outputs P makes the right hand side 0.
However, this algorithm performs poorly on any distributions far from P and so is not a reasonable
benchmark. A common approach in many works is to measure the performance of the competing
algorithm A′ not just on the given instance, but on a small neighborhood around it. Thus we say

2c.f. related work section for discussion of other beyond worst case analysis approaches for this question
and Appendix B for a more in-depth discussion of our approach.
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Figure 1: (Left) A sparsely supported distribution on integers [0,999] (pdf). (Right) CDF for the
same distribution (green, solid line), along with a (non-private) minimax optimal learnt distribution
(blue, dashed line), as well as 1-DP instance-optimal algorithm (red, dotted), both learnt from the
same 1600 samples. The W1 error for the minimax optimal algorithm is 13.4, whereas the DP
estimated distribution has W1 error of 0.86. While this example is artificial, it demonstrates the
large potential gap between minimax optimal and instance optimal algorithms on specific instances.

that that an algorithm A is α-instance optimal amongst a class M with respect to a neighborhood
function N if for all instances P , and all A′ ∈ M

cost(A(P̂n)), P ) ≤ α · sup
P ′∈N (P )

cost(A′(P̂ ′
n)), P

′).

In other words, the benchmark we evaluate against is the cost of the best algorithm for a neighbor-
hood N (P ) that knows this neighborhood. We would like our algorithm A, that is not tailor-made
for N (P ), to nevertheless be competitive against this benchmark.

This definition is general, and captures most notions of instance optimality that have been studied
in the literature. The set N (P ) must be carefully defined for this notion to be meaningful; we
can always define N (P ) to be the set of all instances whence this notion reduces to worst-case
analysis. In many previous works, this neighborhood map has been defined to capture the belief
that any natural algorithm must not have significantly different performance on different members
of N (P ). For example, [FLN01, ABC17, VV16, OS15, GKN20] include in N (P ) appropriate
renamings of P to capture some kind of permutation invariance of natural algorithms. In statis-
tics, one often enforces that the cardinality of N (P ) is 2, often called the hardest one-dimensional
subproblem [CL15, AD20, DLSV23]. Some recent works in privacy [HLY21, DKSS23] have de-
fined instance optimality w.r.t. neighboring datasets obtained by deleting a small number of data
points. Any reasonable definition of instance optimality for a problem must justify its choice of the
neighborhood map; similar choices must be justifiable in every other notion of beyond worst case
analysis [Rou21]. In instance-optimality definitions, this choice of neighborhood is what encapsu-
lates what class of domain-specific algorithms our algorithm competes against. A good definition
thus depends on the context and on the kind of domain knowledge we imagine an expert designing
a custom algorithm for an application may have. Ideally, the definition is broad (i.e. the neighbor-
hoods N (P ) are sufficiently contained) so that in a large class of applications, we expect the domain
knowledge to not be enough to rule out any member of N (P ). We discuss this general definition of
instance optimality further in Appendix B. We remark that for reasonable neighborhood maps, this
is an extremely strong requirement: an instance-optimal algorithm must simultaneously do well on
every single input, in fact as well as any other algorithm that is given this neighborhood N (P ) in
advance!

Instance optimality guarantees are most useful when there is a big difference between achievable
utility guarantees for typical cases and the worst-case utility guarantees. Wasserstein estimation is
an example of such a problem. We will see that achievable utility bounds for, for example, con-
centrated distributions are a lot better than worse case distributions. Our definition of instance op-
timality is particularly suitable for metric spaces, and our notion of neighborhood allows the target
utility bound to adapt to the distribution. We note that for estimation in Wasserstein distance with
practically important metrics such as ℓ1 and ℓ2 norms, it is unclear if existing instance optimality
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definitions (using notions of neighborhood discussed above) capture this. For example, for discrete
distributions, setting the neighborhood to be all permutations of the distribution destroys all struc-
ture of the distribution (for e.g. concentration), and hence performance on this neighborhood may
not capture the relative ease of estimation of a concentrated distribution. Similar problems apply
to other previously studied definitions of instance optimality, which are not well-suited to density
estimation with error metrics that incorporate the geometry of the metric space. See Appendix B
and Appendix C for further discussion on the inadequacy of existing instance optimality definitions
for our setting of interest.

Our notion of neighborhood will correspond to small balls in one of the strictest notions of dis-
tance between distributions. Recall that for distributions P,Q on X , D∞(P,Q) is defined as
supx∈X max

(
ln P (x)

Q(x) , ln
Q(x)
P (x)

)
. Our neighborhood map N will have the property that for all P ,

and for all Q ∈ N (P ), D∞(P,Q) ≤ ln 2. This corresponds to the benchmark algorithm A′ be-
ing given as auxiliary input a multiplicative constant factor approximation to the probability density
function P (x) (and we can replace the constant 2 by any constant). In particular, an algorithm that
knows the support of the distribution P will not be able to do much better than our algorithm that
gets no such information. Notice that this implicitly implies that our algorithm is able to exploit
sparsity in the data distribution since it is competitive with an algorithm that is told the support. In
the one-dimensional real case we can achieve an even stronger notion of instance-optimality. In this
case N (P ) is defined to be {P,Q} where Q is a distribution with D∞(P,Q) ≤ ln 2. This is a
strengthening of the rate defined by the hardest one-dimensional subproblem.

We also give a definition that captures another aspect of instance optimality, related to the notion
of super efficiency, that we term local minimality in Appendix B. Informally, local minimality says
that if any comparator algorithm does better than A on P , then there is a distribution Q in the
neighborhood of P where A does better than the comparator. Approximate local minimality relaxes
the latter condition to being better than some constant times the comparator. The two definitions of
approximate local minimality and instance optimality are in general incomparable (see Appendix B)
but for suitable smooth algorithms, we show that these definitions are equivalent. Our algorithms,
both for the 1-dimensional and the case of general metric spaces approximately satisfy both these
definitions.

In order to show that the instance optimality definition is achievable, we give both algorithmic upper
bounds and matching, up to logarithmic factors, theoretical lower bounds. The algorithms we use
in our upper bounds are built largely from ingredients previously used for similar problems. We
see this as an asset since these algorithms are implementable in practice. A key ingredient that we
do introduce is the use of randomised HST approximation of finite metric spaces. This replaces
deterministic hierarchical decompositions that were used in prior work, allowing us to gain tighter
utility guarantees. Our main conceptual contribution is to introduce what we believe to the right no-
tion of instance optimality for this problem, including the definition of a meaningful neighbourhood
function. The main technical challenge is in the lower bounds, which require carefully building nets
of distributions within each neighborhood N (P ) that allow us to use a slight generalisation of DP
Assoud’s Lemma to give a lower bound on the target estimation rate for each distribution P .

Preliminaries: First, we define differential privacy. Further discussion on differential privacy can
be found in Appendix A.
Definition 1.1 (Differential Privacy [DMNS17, DKM+06]). A randomized algorithm A : Xn → Y
is (ε, δ)-differentially private if for every pair of datasets x,x′ ∈ Xn that differ in at-most one data
entry, and for all events Y ⊆ Y ,

Pr[A(x) ∈ Y ] ≤ eε · Pr[A(x′) ∈ Y ] + δ.

Given an estimation algorithm A : Xn → M, the estimation rate of A for distribution P is:

RA,n(P ) = inf
t∈R

{t : w.p. ≥ 0.75 over x ∼ Pn and the randomness of the algorithm, Wd(A(x), P ) ≤ t}.
(1)

1.1 Our Results

We start by stating an informal version of our result in the one-dimensional real case.
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Theorem 1.2 (Informal 1-dimensional result). Let ε, γ ∈ (0, 1]. There is an ε-differentially private
algorithm A such that, for all distributions P supported in [0, 1], for all natural numbers n >
polylog 1/γ

ε , there exists a distribution Q (with D∞(P,Q) ≤ ln 2) such that the following is satisfied.

For any ε-DP algorithm A′, with probability at least 0.75 over the randomness of x ∼ Pn and
additional randomness of the algorithm,

W(A(P̂n), P ) ≤ polylog n · sup
P ′∈{P,Q}

RA′,n′(P ′) + γ

where n′ ≈ n
polylogn/γ

In this one-dimensional case, our algorithm is based on DP quantile estimation. The additive γ term
can be made polynomially small. The lower bound is based on (differentially private) simple hypoth-
esis testing where for each distribution P , we find a distribution in N (P ) that is indistinguishable
from P given n samples but also sufficiently far from P in Wasserstein distance.

Extending the quantiles based approach from the one dimensional setting to even the two dimen-
sional setting is challenging, as there is no “right” way to generalize quantiles to dimensions 2 or
beyond. Several previous works on Wasserstein density estimation (e.g. [BNNR09]) have used a hi-
erarchical decomposition approach to address this question. A hierarchical approach has also been
used in various more practical works on private density estimation (e.g. [CB22, QYL12, BKM+21,
MJT+22, ZXX16]). These works focus on practical performance and do not offer tight theoretical
bounds. A hierarchical approach was also used by [GHK+23], who proved theoretical bounds for a
related problem, but not through the lens of instance optimality. We compare our results to theirs in
more detail later in this section.

The use of deterministic hierarchical decompositions in all these papers means that some points
that are very close (but on opposite sides of the boundaries of the hierarchical decomposition) get
mapped to relatively far points, resulting in high distortion factors that are not appropriate for in-
stance optimality.

Inspired by the above approaches but noting their constraints, we use a randomized embedding
into hierarchically separated trees instead of a deterministic one. We define our algorithm on any
hierarchically separated tree metric and use the fact that there is a randomized embedding of [0, 1]2
on a hierarchically separated tree metric space with low distortion. This, along with some other
important technical modifications (such as truncating low values to 0), allows us to analyze a variant
of the above practical algorithms theoretically and show that it satisfies our strong notion of instance
optimality, up to polylogarithmic factors in the number of samples.
Theorem 1.3 (Informal two-dimensional result). There is a polynomial time ε-differentially private
algorithm A that for any distribution P on [0, 1]2, any integer n, and any ε-DP algorithm A′ with
probability at least 0.75, satisfies

W2(A(P̂n), P ) ≤ (log n)O(1) sup
P ′:D∞(P,P ′)≤ln 2

E[W2(A′(P̂ ′
n′), P ′)],

where n′ ≈ n
polylogn . Here, the expectation is taken over the internal coin tosses of A as well as

over the choice of the i.i.d. samples P̂n.

In fact, since our algorithm is defined on any hierarchically separated tree metric space, it has the
added bonus of giving instance optimality results for any finite metric space (since powerful re-
sults [Bar96, FRT03] show that any finite metric space can be embedded in a hierarchically separated
tree metric space with a distortion factor at most logarithmic in the size of the metric space).
Theorem 1.4 (Informal finite metric result). Let (X , d) be an arbitrary metric space with diameter
1. There is a polynomial time ε-differentially private algorithm A such that for any distribution P
on X any integer n and any ε-DP algorithm A′ with probability at least 0.75, satisfies

W(A(P̂n), P ) ≤ (log |X | · log n)O(1) sup
P ′:D∞(P,P ′)≤ln 2

E[W(A′(P̂ ′
n′), P ′)],

where n′ ≈ n
polylogn . Here, the expectation is taken over the internal coin tosses of A as well as

over the choice of the i.i.d. samples P̂n.
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Our lower bound result is actually slightly stronger than stated in Theorem 1.4 since it holds not
only for ε-DP, but also for (ε, δ)-DP. At this point, we also compare specifically to the paper
of [GHK+23] who give an algorithm for obtaining two-dimensional heatmaps and analyze it theoret-
ically. They focus on the empirical version of a variant of this problem as opposed to the population
version, and aim to compete with the best k-sparse distribution. Their algorithm takes the sparsity
parameter k as input in order to set parameters and achieves additive error

√
k/n (and a constant

multiplicative factor). On the other hand, our algorithm also performs better for sparse distributions
but is automatically adaptive to the sparsity (and hence doesn’t need to take it as an input). Addi-
tionally the additive term in our work can be made polynomially small (for any polynomial) in n
at a logarithmic cost to the multiplicative error (regardless of the sparsity of the distribution). On
the other hand, for large k their results have additive error that scales with 1/

√
n. Their use of a

deterministic hierarchical decomposition makes their algorithm unsuitable for our notion of instance
optimality (as discussed earlier), and it is unclear if their algorithm can be directly extended to all
finite metric spaces.

Note that instance optimality for all finite metric spaces implies instance optimality results for a
wide variety of applications not addressed in prior work. For example, our results immediately
extend to other low-dimensional real spaces with arbitrary metrics (for e.g. ℓp norms). They also
give non-trivial improvements on worst-case analysis for higher-dimensional spaces that are not the
main focus of our work (for [0, 1]d, we can use a fine grid of size (1/(η/

√
d))d at an additive cost

of η in the Wasserstein distance in order to create a finite metric space to apply our result on. Since
the dependence on |X | in the result above is logarithmic, this translates to a d log d

η multiplicative
overhead term replacing the log |X | factor above. While this is still a significant overhead, all
previous results on density estimation in the Wasserstein distance (in both the private and non-
private literature) are worst case, where the sample complexity is exponential in d. Since our results
only have a polynomial dependence in d over the optimal error, this is a non-trivial improvement
over worst-case error, even when d is large.

Another immediate application of our results is to give (to the best of our knowledge) new bounds
for private estimation of discrete distributions in TV distance. Generally, for learning a discrete
distribution defined by probabilities {p1, . . . , pk}, our results lead to a rate (up to polylogarithmic

factors) of
∑

i min
{
pi(1− pi),

√
pi(1−pi)

n

}
+
∑

i min
(
pi, (1− pi),

1
εn

)
.

This can give significant improvements over the worst case bounds for practically important distri-
butions. The minimax rate is linear in the support size k, namely Θ(k/εn) (for sufficiently small
ε). Now, consider the following power-law distribution over support size k: p(i) ∝ i−2. (Power
law distributions arise frequently in practice for e.g. frequencies of family names, sizes of power
outages etc. all follow power law distributions.) Applying our result above gives a bound that is
Õ
(
min{ k

εn ,
1√
εn
}
)

, which is much better than the worst case bound for large support distributions.

Our result also applies to other practically important settings such as building lists of popular se-
quences such as n-grams over words. We leave open the questions of designing instance-optimal
algorithms for other practically important questions in private learning and statistics, and of de-
signing better instance optimal algorithms for higher dimensional spaces. We also leave open the
question of removing the polylogarithmic factors in our instance optimality bounds.

1.2 Techniques

1.2.1 Distributions over R:

We start by describing the rate we obtain for distributions P over R.In order to state the rate, we will
use qα to represent the α-quantile of the distribution P and use P |a,b to define a certain restricted
distribution described below. The rate consists of three terms and roughly looks as follows— we
suppress logarithmic factors in n.

RA,n(P ) = Õ

(
E
[
W
(
P, P̂n

)]
+

1

εn

(
q1− 1

εn
− q 1

εn

)
+W(P, P |q 1

εn
,q

1− 1
εn

)

)
,

The first term is E[W(P, P̂n)], the expected Wasserstein distance between the true distribution and
the empirical distribution over n samples, and is the non-private term. The remaining two terms
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represent the cost of privacy- the first is a specific interquantile distance, roughly 1
εn (q1− 1

εn
− q 1

εn
),

and the second can be thought of as capturing the weight of the tails- represented by the Wasserstein
distance between P and a ‘restricted’ version of P with its tails chopped off (i.e. the cumulative
distribution function is 0 below q1/εn and 1 above q1−1/εn and identical to P otherwise). Observe
that all 3 of the terms above are smaller for distributions with small support or greater concentration,
and hence the rate adapts to the hardness of the distributions.

Upper Bounds: The upper bound involves estimating roughly εn equally spaced quantiles of the
empirical distribution differentially privately (using a known private CDF estimation algorithm), and
placing roughly 1/εn mass at each of the estimated quantile points. For the analysis, the intuition
for each of the terms is as follows: since we only have access to the empirical distribution, the
non-private term E[W(P, P̂n)] comes from that. Next, if the quantile estimates are good, then the
pointwise CDF differences between the empirical distribution and the estimated distribution are
at most 1/εn (due to the discretization), and so we will pay 1/εn multiplied by the interquantile
distance of the empirical distribution. This aligns with the accuracy of state-of-the-art DP quantile
estimation algorithms. Finally, since the distribution is restricted to the estimated quantiles, the
distribution is 0 before the first estimated quantile and 1 above the last estimated quantile and so
we pay the Wasserstein distance between the empirical distribution and a restricted version of the
empirical distribution. Some care needs to be taken while reasoning about expectation versus high
probability (for various terms), and in relating population quantities to empirical quantities (which
we do using various concentration inequalities). Details can be found in Section E.2.

Lower Bounds: We prove that the private and non-private terms are lower bounds separately. Both
proofs follow the same framework. The idea is that given knowledge of two distributions P and Q,
we can use a (private) Wasserstein estimation algorithm to construct a hypothesis test distinguishing
P from Q. If the (private) estimate for P and Q with n samples gives error smaller than 1

2W(P,Q),
we can use this to distinguish P from Q. This would give a contradiction if P and Q are (privately)
indistinguishable with n samples. Hence, this would give a lower bound of 1

2W(P,Q) on the error
of the Wasserstein estimation algorithm on P or Q.

Thus the task reduces to constructing a distribution Q that satisfies three properties: 1) it is (pri-
vately) indistinguishable from P given n samples, 2) the Wasserstein distance between P and Q is
sufficiently large, 3) D∞(P,Q) ≤ ln 2. The main technical work is in identifying a distribution Q
that satisfies these properties.

For the privacy term, we construct the distribution Q by taking half the mass from the first 1/εn-
quantile of P (scaling the density function by half) and moving it to the last 1/εn-quantile of P
(scaling the density function by 3/2). The third property is satisfied by definition, so we reason
about the other two. Intuitively, since the Wasserstein distance captures how hard it is to ‘move’ P
to Q, this mass needs to move at least the interquantile distance to change P to Q. This implies
that the Wasserstein distance is at least the interquantile distance scaled by 1/εn, as described in
the rate. Additionally, mass that is further out in the tail needs to move more, which is captured
by the Wasserstein distance between the distribution P and its ‘restriction’. Hence, the Wasserstein
distance between P and Q is lower bounded by these two terms of interest. The intuition behind
Property 2 is that it is hard for any ε-DP algorithm to pinpoint the location of an 1

εn -fraction of the
points in the dataset. Overall, this shows the privacy lower bound.

The non-private lower bound requires a more careful construction of Q. We divide P into various
scales and carefully adjust them differently to obtain the desired properties. Formally, to construct
Q from P , we consider q1/2 and all quantiles of the form q1/2i and q1−1/2i for i > 1. For 1 ≤ i <

log n, we add mass to [q1/2i+1 , q1/2i), by setting the density fQ to be (1 +
√

2i/n)fP and balance
out the extra mass by setting fQ to be (1−

√
2i/n)fP between [q1−1/2i , q1−1/2i+1). For i ≥ log n

(i.e. the tail), we add mass to [q1/2i+1 , q1/2i), by setting fQ to be (1 + 1
2 )fP and balance out the

extra mass by setting fQ to be (1− 1
2 )fP between [q1−1/2i , q1−1/2i+1).

The third property is again trivially satisfied. For the first property, observe that to ‘move’ P to
Q the extra 1√

2in
mass between [q1/2i+1 , q1/2i) has to ‘travel’ between q1/2i and q1−1/2i , and so

the Wasserstein distance between P and Q can be lower bounded by a sum of various scaled in-
terquantile distances. We attempt to upper bound the expected Wasserstein distance between P and
P̂n by a similar term. It is more intuitive to reason about this using an alternative (equivalent) for-
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mulation of Wasserstein distance as the area between the CDF curves of P and Q. The intuition is
that the expected pointwise CDF difference between P and P̂n in the interval [q1/2i+1 , q1/2i) would
be roughly 1√

2in
(by properties of a Binomial) and hence the contribution of this interval to the

area would be roughly 1√
2in

(
q1/2i − q1/2i+1

)
and similarly for the corresponding interval [q1−1/2i ,

q1/2i+1). Hence, the expected Wasserstein distance would be a sum of these scaled quantile interval
distances. We formalize this intuition using a result of Bobkov and Ledoux [BL19] that character-
izes the expected Wasserstein distance between P and P̂n as an integral of a function of the CDF
of P . We now have a bound in terms of the sum of scaled quantile interval distances, but we want
to bound it by a sum of scaled interquantile distances. We can telescope the sum to indeed bound
it by a sum of scaled interquantile distances. This establishes that W(P,Q) ≥ E[W(P, P̂n]. Next,
we show that P is indistinguishable from Q by analyzing the KL divergence between P and Q.
The main idea is that high density intervals are modified by a small multiplicative factor of roughly
1+ 1√

n
, but low density intervals (with mass less than 1/n) are modified by a constant multiplicative

factor, so overall the contribution of each interval to the KL divergence is sufficiently small. This
establishes indistinguishability with n samples. For formal details we refer the reader to Section E.1.

1.2.2 Distributions on HSTs

Since the main technical challenge of proving Theorem 1.4 is proving the equivalent result for
distributions on HST metric spaces, we focus on that problem in this section. Standard results on
low distortion embeddings of metric spaces into HST metric spaces can be used to translate the HST
result to [0, 1]2 and to general metric spaces X with log |X| overhead.
Definition 1.5 (Hierarchically Separated Tree). A hierarchically separated tree (HST) is a rooted
weighted tree such that the edges between level ℓ and ℓ − 1 all have the same weight (denoted rℓ)
and the weights are geometrically decreasing so rℓ+1 = (1/2)rℓ. Let DT be the depth of the tree.

HSTs can be defined with any geometric scaling but we will only need a factor of 2 in this work.
HSTs may also have arbitrary degree. A HST defines a metric on its leaf nodes by defining the
distance between any two leaf nodes to be the weight of the minimum weight path between them.

HST metric spaces are particularly well-behaved when working with the Wasserstein distance since
the Wasserstein distance on a HST has a simple closed form. A distribution P on the the underlying
metric space in a HST induces a function GP on the nodes of the tree where the value of a node ν
is given by the weight in P of the leaf nodes in the subtree rooted at ν. For every level ℓ ∈ [DT ] of
the tree, let Pℓ be the distribution induced on the nodes at level ℓ where the probability of node ν is
GP (ν). Thus Pℓ is a discrete distribution on a domain of size Nℓ, where Nℓ is the number of nodes
in level ℓ of the tree.
Lemma 1.6 (Closed form Wasserstein distance formula). Given two distributions P and Q defined
in a HST metric space, the Wasserstein distance between P and Q has the closed formula:

W(P,Q) =
1

2

∑
ν

rν |GP (ν)−GQ(ν)| =
∑
ℓ

rℓTV(Pℓ, Qℓ),

where rν is the weight of the edge connecting ν to its parent, and the sum is over all nodes in the
tree.

We will call a node ν α-active under the distribution P if GP (ν) ≥ α. Let γP (α) be the set of
α-active nodes under P and γPℓ

(α) be the set of α-active nodes at level ℓ. Then there exists an
algorithm A such that given a distribution P , ε > 0, and n ∈ N,

RA,n(P ) = Õ

max
ℓ

rℓ
∑

x∈[Nℓ]

min

{
Pℓ(x)(1− Pℓ(x)),

√
Pℓ(x)(1− Pℓ(x))

n

}
+

∑
x/∈γPℓ

(2κ)

Pℓ(x) + (|γPℓ (2κ) | − 1)κ

 ,

where the max is over all the levels of the tree and κ = Θ( log(n)εn ). Further, this bound matches (up
to logarithmic factors) the lower bound minε-DP A′ supP ′:D∞(P,P ′)≤ln 2 E[W(A′(P̂ ′

n′), P ′)] where
n′ ≈ n

polylogn . The error rate RA,n does indeed adapt to easy instances as we expected. The error
decomposes into three components. The first component is the non-private sampling error; the error
that would occur even if privacy was not required. The second component indicates that we can not
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privately estimate the value of nodes that have probability less than ≈ 1/(εn). The third component
is the error due to privacy on the active nodes. If P is highly concentrated then we expect most
nodes to either be κ-active or have weight 0, so the first two terms in RN ,n,ε(P ) are small. There
should also be few active nodes, making the last term also small. Conversely, if P has a large region
of low density then we expect a large number of inactive nodes, as well as non-zero inactive nodes
that are at higher levels of the tree and hence contribute more to the final term. Thus, in distributions
with high dispersion we expect the right hand side to be large.

Upper Bounds: As in the one-dimensional setting, we want to restrict to only privately estimating
the density at a small number (≈ εn) of points. While we could try to mimic the one-dimensional
solution by privately estimating a solution to the εn-median problem, it’s not clear how to prove
such an approach is instance-optimal. It turns out that a simpler solution more amenable to analysis
will suffice. Our algorithm has two stages; first we attempt to find the set of κ-active nodes, then
we estimate the weight of these active nodes. Since these nodes have weight greater than log(n)

εn , we
can privately estimate them to within constant multiplicative error. Any nodes that are not detected
as active, are initially ascribed a weight of 0. The error due to not estimating the non-active nodes
is absorbed into the third error term. The final step is to project the noisy density function into the
space of distributions on the underlying metric space. The error of the upper bound algorithm is
summed over all levels of the tree, although since the depth of the tree is logarithmic in the size of
the metric space, this is within a logarithmic factor of the maximum over the levels.

Lower Bound: We first observe that in order to estimate the distribution well in Wasserstein dis-
tance, an algorithm must estimate each level of the tree well in TV distance. This is derived from
Lemma 1.6. This allows us to reduce to the problem of lower bounding the error of density estima-
tion of discrete distributions in TV distance. The main tool we use is a differentially private version
of Assouad’s method. Similar to how the technique in the previous section allowed us to relate
lower bounding estimation rates to simple hypothesis testing, Assouad’s lemma allows us to relate
lower bounding estimation rates to multiple hypothesis testing. Note that unlike the technique in the
previous section, Assouad’s lemma allows us to prove lower bounds on the expected error, rather
than lower bounds on high probability error bounds. It involves constructing nets of distributions in
N (P ) that are pairwise far in the relevant metric of interest (which for us in the TV distance) but the
multiple hypothesis testing problem between the distributions is sufficiently hard. For proving the
third term belongs in the lower bound, the standard statement of DP Assouad’s lemma [ASZ21] suf-
fices, where one builds a set of distributions indexed by a hypercube. For the first and second terms,
we need to slightly generalise the statement to allow for sets of distributions indexed by a product of
hypercubes. We use the approximate DP version of DP Assouad’s so while our upper bounds are for
pure differential privacy, our lower bounds hold for both pure and approximate differential privacy.

Let us start with the third term. Suppose the number of active nodes is even (a small tweak is made
if there is an odd number of active nodes). We pair up the active nodes and index each pair by a
coordinate of the hypercube. For each corner of the hypercube, (u0, u1, · · · , uk) ∈ {±1}k, for each
coordinate j ∈ [k], if uj = +1, we move Õ(κ) mass from one node in the jth pair to the other
node. If uj = −1 then we leave the jth pair of nodes alone. Since each active node has mass > κ,
it’s clear that each resulting distribution belongs in N (P ). We can also show that these distributions
form a sufficiently hard multiple hypothesis testing problem. By DP Assouad’s (Lemma D.8), this
allows us to lower bound the estimation error by Ω(kκ), which is within Ω̃ of the third term when
the number of active nodes is ≥ 2. We treat the case where there is a single active node separately.

For the second term, we want to pair up the inactive nodes in a similar manner and move half their
mass from one node to the other. However, since we want to remain within N (P ), we can’t pair
any two inactive nodes together. Thus, we divide the inactive nodes into scales, where nodes within
a certain scale all have weight within a multiplicative factor of two. We then pair up nodes within
each scale and have a different hypercube for each scale. Again, it’s clear that these distributions are
all in N (P ) and we can show that these distributions form a sufficiently hard multiple hypothesis
testing problem. The proof for the first term follows similarly.
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[CR12] Guillermo D. Cañas and Lorenzo Rosasco. Learning probability measures with respect
to optimal transport metrics. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher
J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States, pages 2501–2509, 2012.

12



[CSS11] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of
statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, 2011.

[CWZ19] T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal
rates of convergence for parameter estimation with differential privacy. CoRR,
abs/1902.04495, 2019.

[CZ13] Shixi Chen and Shuigeng Zhou. Recursive mechanism: towards node differential pri-
vacy and unrestricted joins. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papa-
dias, editors, Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 653–664.
ACM, 2013.

[DHS15] Ilias Diakonikolas, Moritz Hardt, and Ludwig Schmidt. Differentially private learning
of structured discrete distributions. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2566–2574,
2015.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In International
Conference on the Theory and Applications of Cryptographic Techniques, EURO-
CRYPT ’06, pages 486–503, St. Petersburg, Russia, 2006.

[DKSS23] Travis Dick, Alex Kulesza, Ziteng Sun, and Ananda Theertha Suresh. Subset-
based instance optimality in private estimation. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages
7992–8014. PMLR, 2023.

[DL91] David L. Donoho and Richard C. Liu. Geometrizing Rates of Convergence, II. The
Annals of Statistics, 19(2):633 – 667, 1991.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 371–380.
ACM, 2009.

[DLSV23] Trung Dang, Jasper C.H. Lee, Maoyuan Song, and Paul Valiant. Optimality in mean
estimation: Beyond worst-case, beyond sub-gaussian, and beyond $1+\alpha$ mo-
ments. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[DMNS17] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. Journal of Privacy and Confidentiality,
7(3):17–51, 2017.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential pri-
vacy under continual observation. In Leonard J. Schulman, editor, Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5-8 June 2010, pages 715–724. ACM, 2010.

[DR18] John C. Duchi and Feng Ruan. The right complexity measure in locally private esti-
mation: It is not the fisher information. CoRR, abs/1806.05756, 2018.

[DSS11] Steffen Dereich, Michael Scheutzow, and Reik Schottstedt. Constructive quantiza-
tion: Approximation by empirical measures. Annales De L Institut Henri Poincare-
probabilites Et Statistiques, 49:1183–1203, 2011.

[Dud69] R. M. Dudley. The speed of mean glivenko-cantelli convergence. The Annals of
Mathematical Statistics, 40(1):40–50, 1969.

13



[DY95] Vladimir Dobric and Joseph E. Yukich. Asymptotics for transportation cost in high
dimensions. Journal of Theoretical Probability, 8:97–118, 1995.

[FG15] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in Wasserstein dis-
tance of the empirical measure. Probability Theory and Related Fields, 162(3-4):707,
August 2015.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’01, page 102–113, New York, NY,
USA, 2001. Association for Computing Machinery.

[Fou23] Nicolas Fournier. Convergence of the empirical measure in expected wasserstein dis-
tance: non asymptotic explicit bounds in Rd, 2023.

[FRT03] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the Thirty-Fifth Annual ACM
Symposium on Theory of Computing, STOC ’03, page 448–455, New York, NY, USA,
2003. Association for Computing Machinery.

[GHK+23] Badih Ghazi, Junfeng He, Kai Kohlhoff, Ravi Kumar, Pasin Manurangsi, Vidhya
Navalpakkam, and Nachiappan Valliappan. Differentially private heatmaps. In Brian
Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14,
2023, pages 7696–7704. AAAI Press, 2023.

[GJK21] Jennifer Gillenwater, Matthew Joseph, and Alex Kulesza. Differentially private quan-
tiles. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pages 3713–3722. PMLR,
2021.

[GKN20] Tomer Grossman, Ilan Komargodski, and Moni Naor. Instance Complexity and Unla-
beled Certificates in the Decision Tree Model. In Thomas Vidick, editor, 11th Innova-
tions in Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 56:1–56:38, Dagstuhl,
Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[HKM22] Samuel B. Hopkins, Gautam Kamath, and Mahbod Majid. Efficient mean estimation
with pure differential privacy via a sum-of-squares exponential mechanism. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Sympo-
sium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1406–1417.
ACM, 2022.

[HKMN23] Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, and Shyam Narayanan. Robust-
ness implies privacy in statistical estimation. In Barna Saha and Rocco A. Servedio,
editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 497–506. ACM, 2023.

[HLY21] Ziyue Huang, Yuting Liang, and Ke Yi. Instance-optimal mean estimation under dif-
ferential privacy. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 25993–26004,
2021.

[HO19] Yi Hao and Alon Orlitsky. Doubly-competitive distribution estimation. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine Learning Research, pages 2614–
2623. PMLR, 2019.

14



[HVZ23] Yiyun He, Roman Vershynin, and Yizhe Zhu. Algorithmically effective differentially
private synthetic data, 2023.

[KDH23] Rohith Kuditipudi, John C. Duchi, and Saminul Haque. A pretty fast algorithm for
adaptive private mean estimation. In Gergely Neu and Lorenzo Rosasco, editors, The
Thirty Sixth Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023,
Bangalore, India, volume 195 of Proceedings of Machine Learning Research, pages
2511–2551. PMLR, 2023.

[KLM+20] Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. Pri-
vately learning thresholds: Closing the exponential gap. In Jacob D. Abernethy and
Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12 July
2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine Learning
Research, pages 2263–2285. PMLR, 2020.

[KLSU19] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan R. Ullman. Privately learn-
ing high-dimensional distributions. In Alina Beygelzimer and Daniel Hsu, editors,
Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA,
volume 99 of Proceedings of Machine Learning Research, pages 1853–1902. PMLR,
2019.

[KMS22a] Gautam Kamath, Argyris Mouzakis, and Vikrant Singhal. New lower bounds for pri-
vate estimation and a generalized fingerprinting lemma. In NeurIPS, 2022.

[KMS+22b] Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, and
Jonathan R. Ullman. A private and computationally-efficient estimator for unbounded
gaussians. In Po-Ling Loh and Maxim Raginsky, editors, Conference on Learning
Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings of Machine Learning
Research, pages 544–572. PMLR, 2022.

[KMV22] Pravesh Kothari, Pasin Manurangsi, and Ameya Velingker. Private robust estimation
by stabilizing convex relaxations. In Po-Ling Loh and Maxim Raginsky, editors, Con-
ference on Learning Theory, 2-5 July 2022, London, UK, volume 178 of Proceedings
of Machine Learning Research, pages 723–777. PMLR, 2022.

[KNRS13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam D.
Smith. Analyzing graphs with node differential privacy. In Amit Sahai, editor, Theory
of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan,
March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer Science,
pages 457–476. Springer, 2013.

[KSS22] Haim Kaplan, Shachar Schnapp, and Uri Stemmer. Differentially private approximate
quantiles. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang
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A Preliminaries

For all distributions P , we will use fP to denote the density of P (when it exists) and FP to denote
the cumulative distribution function of P . Given a space X , let ∆(X ) be the set of distributions on
the space X . Given a logical statement a, let χa = 0 if a is false and 1 if a is true. For example,
χ0=0 = 1 and χ0=1 = 0.

A number of distances between distributions are important in this work. We start by defining the
infinity divergence, which is important in the notion of instance optimality we use.
Definition A.1 (D∞-divergence). Given two distributions P and Q with the same support, the
∞-Rényi divergence D∞(P,Q) = ln supt max

{
P (t)
Q(t) ,

Q(t)
P (t)

}
, if P and Q are discrete, and

D∞(P,Q) = ln supt max
{

fP (t)
fQ(t) ,

fQ(t)
fP (t)

}
, if P and Q are continuous distributions on R, and have

density functions. If P and Q don’t have the same support, then D∞(P,Q) = ∞.

We will use KL(P,Q) to denote the KL-divergence, H2(P,Q) to denote the squared Hellinger
divergence and TV(P,Q) to denote the total variation distance, defined later.

Wasserstein Distance: The error metric that we use to judge our performance on the density
estimation task is 1-Wasserstein distance (that we will call just Wasserstein distance where it is clear
from context). In this subsection, we define Wasserstein distance.
Definition A.2. For any separable metric space (E,D), let P,Q represent Borel measures on E.
Then, the 1-Wasserstein distance between P,Q is defined as

W(P,Q) = inf
π

∫
E

∫
E

D(t, t0)π(x, x0),

where the infimum is over all measures π on the product space E × E with marginals P and Q
respectively.

Finally, for one dimensional real spaces where the metric of interest is ℓ1 norm, we will use the
following equivalent formulation of Wasserstein distance extensively.
Lemma A.3 (Wasserstein formula over R). Let P,Q represent probability distributions on R with
finite expectation. Then, the 1-Wasserstein distance between P,Q is equal to

W(P,Q) =

∫ ∞

∞
|FP (t)− FQ(t)|dt,

where the F (·) represents the cumulative distribution function.

Given an metric space X , the Wasserstein metric is a well-defined metric on the set of the probability
distributions over X .

A.1 Distribution Distances

A number of other distances between distributions are used in this work.
Definition A.4 (KL-divergence). Given two distributions P and Q with supp(P ) ⊆ supp(Q), the
KL divergence KL(P,Q) =

∑
t∈supp(P ) P (t) ln P (t)

Q(t) , if P and Q are discrete, and KL(P,Q) =∫
t∈R:fP (t)>0

fP (t) ln
fP (t)
fQ(t)dt if P and Q are distributions on R, and have density functions. If

supp(P ) ̸⊆ supp(Q), then KL(P,Q) = ∞.
Definition A.5 (Hellinger distance). Given two distributions P and Q, the Hellinger dis-
tance H(P,Q) = 1√

2
∥
√
P −

√
Q∥2 (where we think of P and Q as vectors represent-

ing the probability masses, and the square root being component-wise.), if P and Q are dis-
crete. If P and Q are distributions on R, and have density functions, then H(P,Q) =
1√
2

√∫
t∈R:fP (t)>0

(
√
fP (t)−

√
fQ(t))2dt.

Note that we use H2(P,Q) to represent the squared Hellinger distance. Next, we define total varia-
tion distance, which will come up in our high-dimensional results.
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Definition A.6 (Total Variation distance). Given two discrete distributions P and Q, the Total Vari-
ation distance TV (P,Q) = 1

2∥P − Q∥1, (where we think of P and Q as vectors representing the
probability masses). More generally, for any two probability measures P and Q defined on (Ω,F),
the total variation distance is defined as supA∈F |P (A)−Q(A)| where P (A) represents the prob-
ability of A under measure P and likewise for Q.

We use the following relationship between Hellinger distance and KL divergence.
Lemma A.7. For all distributions P,Q such that KL-divergence of P,Q is well defined, we have
that

H2(P,Q) ≤ KL(P,Q), H2(P,Q) ≤ TV (P,Q) (2)

A.2 Differential Privacy

Lemma A.8 (Post-Processing [DMNS17]). If Algorithm A : Xn → Y is (ε, δ)-differentially pri-
vate, and B : Y → Z is any randomized function, then the algorithm B ◦ A is (ε, δ)-differentially
private.

Secondly, differential privacy is robust to adaptive composition.
Lemma A.9 (Composition of (ε, δ)-differential privacy [DMNS17]). If A is an adaptive composi-
tion of m differentially private algorithms A1, . . . ,Am, where Aj is (εj , δj) differentially private,

then A is
(∑

j εj ,
∑

j δj

)
-differentially private.

Finally, we discuss the Laplace mechanism, which we will use in one of our algorithms.
Definition A.10 (ℓ1-Sensitivity). The ℓ1-sensitivity of a function f : Xn → Rd is

∆f = max
x,x′∈Xn

dham(x,x′)≤1

∥f(x)− f(x′)∥1.

Lemma A.11 (Laplace Mechanism). Let f : Xn → Rd be a function with ℓ1-sensitivity ∆f . Then
the Laplacian mechanism is algorithm

Af (x) = f(x) + (Z1, . . . , Zd),

where Zi ∼ Lap
(

∆f

ε

)
(and Z1, . . . , Zd are mutually independent). Algorithm Af is ε-DP.

B On Instance Optimality

In this section, we discuss the notion of instance optimality, and argue that it provides a useful
benchmark that captures the idea of going beyond the worst case. The notion of instance optimality
we propose can be see as a generalisation of the hardest one-dimensional subproblem, or hardest
local alternative introduced by [CL15]. Suppose we have a family of distributions P ⊂ ∆(X ) on a
space X and our goal is to learn the parameter θ : P → M where M is a metric space with metric
d. Given an estimation algorithm A : Xn → M, we can define the estimation rate3 of A to be the
function RA,n : P → R+ where

RA,n(P ) = ED∼Pn [d(θ(P ),A(D))].

Since the estimation rate is a function of the distribution P , the estimation rate of an algorithm may
be lower at “easy” distributions and larger at “harder” distributions. As a classic example, consider
the estimation rate of Bernoulli parameter estimation where A simply outputs the empirical mean.
Then RA,n(Ber(p)) = min{p(1 − p),

√
p(1− p)/n}, so this algorithm performs better when the

Bernoulli parameter is close to 0 or 1, and has it’s worst case error when p = 1/2.

Cai and Low [CL15] proposed three desiderata that a target estimation rate Rn : ∆(X ) → R+

should satisfy in order to be a meaningful benchmark;

3We note that while the estimation rate here is defined in expectation, we will sometimes show results
(for e.g. in the one-dimensional case) where estimation rate is defined with probability at least 0.75 over the
randomness of the algorithm and the data; see Equation 1.

20



1. Rn(P ) varies significantly across P
2. Rn is an achievable estimation rate; there exists an algorithm A and constant α such that

RA,n(P ) ≤ αRn(P ) for all P ∈ P
3. Outperforming the benchmark Rn at one distribution leads to worse performance at another

distribution.

In this section we will discuss the definition of instance optimality we will use in this work by defin-
ing the target estimation rate that will serve as our benchmark estimation rate. The main theorems
of this paper establish that our chosen benchmark achieves desiderata 1 and 2 above. It is not imme-
diately obvious that desiderata 3 holds. We will show in Section B.2, through the introduction of a
related notion of instance optimality which we call local minimality, that desiderata 3 holds in many
important settings, including the problem studied in this paper.

B.1 Local Estimation Rates

We will start by defining a target estimation rate. We’ll say an algorithm is α-instance optimal if it
uniformly achieves this target estimation rate up to a multiplicative α factor. For each distribution
P ∈ P , we define a neighbourhood N (P ).

Definition B.1. Given a function N : P → P(P), where P(P) is the power set of P , we define the
optimal estimation rate with respect to N to be:

RN ,n(P ) = min
A

sup
Q∈N (P )

RA,n(Q). (3)

An algorithm A is α-instance optimal with respect to N if for all P ∈ P ,

RA,n(P ) ≤ αRN ,n(P )

If an algorithm A uniformly achieves the optimal estimation rate wrt a function N , then this implies
that for all distributions P , the error of the algorithm A on P is competitive with an algorithm that
is told the additional information that the distribution is in N (P ). Given a function N , it is possible
that there does not exist an algorithm that uniformly achieves RN ,n. For example, as discussed in
the introduction, if N (P ) = {P}, then RN ,n is not uniformly achievable. Conversely, if N (P ) is
not chosen carefully, then the estimation rate RN ,n may not define a meaningful benchmark; e.g.
an estimation rate that adapts to easy instances.

A different formalization may be more probabilistic: the algorithm designer may have in mind
a distribution D over distributions that they care about, and their objective may be to minimize
EP∼D[RA,n(P )]. Suppose that for the A⋆ chosen by the algorithm designer, and for our neighbor-
hood map N , the function RA⋆,n(P ) does not vary too much over N (P ) on average. Formally,
let

discNA⋆(P ) = sup
P ′∈N (P )

(RA⋆,n(P
′)−RA⋆,n(P )

and let disc
N
A⋆(P ) = EP∼D[disc

N
A⋆(P )]. Then for any algorithm A that is α-instance optimal with

respect to N , we can write

E
P∼D

[RA,n(P )] ≤ α · E
P∼D

[ sup
P ′∈N (P )

RA⋆,n(P
′)]

= α · E
P∼D

[RA⋆,n(P ) + discNA⋆(P ))]

= α · E
P∼D

[RA⋆,n(P )] + α · E
P∼D

[discNA⋆(P ))]

= α ·
(

E
P∼D

[RA⋆,n(P )] + disc
N
A⋆(P )

)
.

In other words, as long as the algorithm A⋆’s performance is relatively constant over N (P ) on
average over the distribution of interest, the instance optimal algorithm (that is not tailored to D) is
competitive with A⋆. A similar result holds for a multiplicative definition of disc.
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This discussion can help guide the choice of the neighborhood function that is appropriate for a
particular application. In the case of density estimation in the Wasserstein distance, we will define
N (P ) be a small D∞ ball around P . We believe this captures the kind of domain information
an algorithm designer may have. E.g. one may have a small amount of public data samples, in
which case the posterior over distributions in a D∞ ball will be relatively constant. If the algorithm
designer’s custom algorithm needs to do well for all distributions in this set, an instance-optimal
algorithm will be competitive with this custom algorithm.

Previous work in instance optimality has largely focused on two notions of neighborhood.
In [FLN01, ABC17, VV16, OS15], where the objects of interest are discrete subsets with no a
priori structure, it is natural to ask that the algorithm work well for any permutation of the inputs.
For example, if the goal is to compute the set of maximal points from a 2-d point set, the algorithm
designer would typically want an algorithm that works well for any permutation of the set of input
points. In our setting where the points of interest have a metric structure, this is not an appropriate
notion. In fact, even for the discrete case studied in Appendix D.2.2, permutation invariance cannot
capture natural prior beliefs that may arise in practice. For example, for power-law distributions
that one often sees in private learning applications [ZKM+20, CB22, CCD+23], a small number
of samples are sufficient to get a good estimate of the heavy bins, and rule out a large fraction of
permutations of the input space.

A second line of work arising from the statistics literature [CL15] has looked at defining instance-
optimality with respect to neighborhoods of size 2. While this approach has been very successful for
many problems, we find it inappropriate for density estimation (outside of density estimation on R)
as neighborhoods of size two are too weak to capture the difficulty of problems of interest. Even in
the simple case of discrete distributions, this neighborhood is provably insufficient to get instance-
optimality results with any o(K) competitive ratio. Indeed, for any two given distributions on [K]

with TV distance α, Õ( 1
α2 ) samples suffice to distinguish them, whereas learning a near uniform

distribution on K atoms requires Ω(K) samples. In the private setting, the need to use multiple
distributions to prove lower bounds is well-studied. Our approach shares this similarity of using a
multi-instance lower bounding argument with packing lower bounds in privacy, and local Fano’s and
Le Cam’s methods in statistics. Our work shows that some of the same lower bounding techniques
can be used to prove instance-optimality results with respect to natural neighborhood maps, going
well beyond the the worst-case results those works prove.

In the special case of density estimation in the Wasserstein distance on R, instance optimality with
respect to neighborhoods of size 2 is achievable. In the standard version of this benchmark met-
ric, N (P ) = {P,QP } where QP can be any distribution and is chosen to maximise RN ,n(P ).
However, this notion may not be an appropriate notion of instance optimality by itself. To see this,
consider a distribution P supported on an interval [a, b]. Moving a small amount of mass from one
end of the interval to the other would create an indistinguishable distribution that is far from P in
Wasserstein distance, and a hypothesis testing argument can be used to show that the target estima-
tion rate defined above (for the hardest one-d sub problem) depends on the interval size b− a. This
implies that the adaptivity of algorithms to support size of the distribution (crucial in Wasserstein
estimation) is not captured by this notion of instance optimality. Instead, we add a further restriction
to the definition to make it more appropriate for our setting; we only consider distributions Q that
are in a small D∞ ball around P (D∞(P,Q) ≤ ln 2), and ask that an algorithm is competitive
with an algorithm that is told the additional information that P ∈ {P,Q} (in the worst case over
distributions Q that are in this D∞ ball). That is, we define the benchmark estimation rate to be

Rloc,n(P ) = sup
Q:D∞(P,Q)≤ln 2

min
A

{RA,n(Q),RA,n(P )}. (4)

Note that all such distributions Q have the same support as P , which allows us to capture the
adaptivity of algorithms to the support size of the distribution. Specifically, we define the following
target estimation rate in the one-dimensional setting. In the case of estimating distributions on a
bounded subset of R, we will show that this error rate is achievable, up to logarithmic factors.

We also note that our notion of instance optimality more naturally captures the accuracy of algo-
rithms even for basic tasks. Note that for the Bernoulli case, our technique achieves a bound of√

p(1−p)√
n

+min{p, 1−p, 1
εn} which also appear to be better than the instance-optimal lower bounds

in [MSU22], which take the form
√

p(1−p)√
n

+ 1
εn . This apparent contradiction can be explained by
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the the use in [MSU22] of the hardest-one dimensional sub-problem to define the instance-optimal
rate, i.e., N (P ) is {P,Q} for a worst-case Bernoulli Q. On the other hand, the notion of instance-
optimality we use would only consider Bernoullis Q such that D∞(P,Q) ≤ ln 2. When p is close to
0, the lower bound in [MSU22] would on this instance consider Q to be Bern(p+ 1

εn ), which can
have a large D∞-distance from P , and so isn’t in the neighborhood used in our notion of instance-
optimality. Hence, the target rate one would obtain from our definition is smaller when p is close to
0. Our algorithm can achieve this improved rate, as it is likely to output 0 as an estimate of p in this
case, pushing small counts down to zero.

Recent differentially private algorithms such as those in [HLY21, DKSS23] have shown instance-
optimality for problems such as mean estimation. Relatedly, other works have designed algorithms
that adapt to the local/smooth/deletion sensitivity of the underlying function. An instance in these
works in a dataset rather than a distribution, and it is not clear how to extend the corresponding notion
of neighborhood to our setting. Our neighborhood notion perhaps comes closest to the deletion
neighborhoods considered in some of these works.

Finally, we remark that while we have stated our results as being competitive with the worst-case
instance in N (P ), they apply for the average case over a specific distribution over N (P ). Since that
specific distribution is adversarial, we don’t view this version as more natural than the worst case.

Given that we are focusing on private estimation, we will use use Rloc,n,ε to denote the version of
Eqn 4 where the minimum is taken over all ε-DP mechanisms, and RN ,n,ε to define the optimal
ε-DP estimation rate, i.e. Eqn 3 where the minimum is taken over all ε-DP mechanisms.

B.2 Locally Minimal Algorithms

In this section we address the third desiderata of [CL15]. An important concept in statistics is that
of efficiency of an estimator, which informally compares the rate of convergence of the estimator
with a benchmark that in general is not beatable. This idea has been used to argue that for some
fundamental estimation problems, the Maximum Likelihood Estimator (MLE) is the best possible.
Hodge showed an example of a superefficient estimator that is asymptotically as good as the MLE
everywhere, but beats the MLE on a certain set of inputs. The statistics community has argued
in multiple ways that these superefficient estimators do not limit our ability to argue that MLE is
“optimal”. We refer the reader to [vdV97, Wol65, Vov09] for a discussion of superefficiency. One of
the more compelling arguments here is a result saying that the set of points where superefficiency is
achieved has Lebesgue measure zero. This in particular implies that in a small neighborhood around
any point, there is a point (in fact many points) where the superefficient estimator does no better
than the MLE. In the partial order on estimators, the MLE is thus minimal and this is true even when
looking at the performance of the estimator only on a small neighborhood around a given point.

This motivates a slightly different notion capturing the goodness of the algorithm locally.
Definition B.2. Let M be a class of algorithms. We say that an algorithm A is α-locally minimal
with respect to a neighborhood map N , if for all instance P , and all A′ ∈ M, there is a Q ∈ N (P )
such that RA,n(Q) ≤ α · RA′,n(Q).

In words, local minimality says that for any other A′, the algorithm A is competitive with A′ for
some instance in the neighborhood of P . Put differently, no A′ can be uniformly much better than
A on the neighborhood, even one that knows P .

We show that in general, this notion is incomparable to our notion of instance optimality. Neverthe-
less, under reasonable assumptions, the two notions are closely related.
Example B.3 (Local Minimality ̸⇒ Instance Optimality). Consider a pair of instances {P,Q} with
N (P ) = N (Q) = {P,Q}. Let M contain two algorithms A, and A⋆ with

RA,n(P ) = 1; RA,n(Q) = 0;

RA⋆,n(P ) = 0; RA⋆,n(Q) = 0;

Then one can verify that A is (1-)locally minimal in M. However, it is not α-instance optimal for
any finite α as it fails to satisfy the definition at P .
Example B.4 (Instance Optimality ̸⇒ Local Minimality). Consider a set of instances {P1, P2, P3}
with N (P1) = {P1, P2},N (P2) = {P1, P2, P3},N (P3) = {P2, P3}. Let M contain algorithms
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A,A⋆ with

RA⋆,n(P1) = 1; RA,n(P1) = 2α;

RA⋆,n(P2) = 2α; RA,n(P2) = 4α2;

RA⋆,n(P3) = 4α2; RA,n(P3) = 4α2.

Then one can verify that A is (1-)instance optimal in M. However, it is not α-locally minimal at P1.

Under smoothness assumptions on A with respect to N , one can argue that the two notions are
essentially equivalent.

Proposition B.5. Let A be such that for all instances P and for all Q ∈ N (P ), RA,n(Q) ≤
β · RA,n(P ). Further, suppose that N (P ) is compact for any P . If A is α-instance optimal in M
with respect to N , then it is αβ-locally minimal.

Proof. Let P be an instance and let A′ be a competing algorithm. By definition of α-instance
optimality,

RA,n(P ) ≤ α · sup
Q∈N (P )

RA′,n(Q).

By compactness, this implies that there is a Q achieving the supremum. In other words, there exists
Q⋆ ∈ N (P ) such that

RA,n(P ) ≤ α · RA′,n(Q
⋆).

Since Q⋆ ∈ N (P ), our smoothness assumption implies that

RA,n(Q
⋆) ≤ β · RA,n(P ).

Combining the last two inequalities, this Q⋆ satisfies

RA,n(Q
⋆) ≤ αβ · RA′,n(Q

⋆).

Since P and A′ were arbitrary, this implies that A is αβ-locally minimal.

Proposition B.6. Let A be such that for all instances P and for all Q ∈ N (P ), RA,n(Q) ≥
β−1 · RA,n(P ). If A is α-locally minimal in M with respect to N , then it is αβ-instance optimal.

Proof. Let P be an instance and let A′ be a competing algorithm. By definition of α-local minimal-
ity, there is a Q⋆ ∈ N (P ) such that

RA,n(Q
⋆) ≤ α · RA′,n(Q

⋆).

Since Q⋆ ∈ N (P ), our smoothness assumption implies that

RA,n(P ) ≤ β · RA,n(Q
⋆).

Combining the last two inequalities, this Q⋆ satisfies

RA,n(P ) ≤ αβ · RA′,n(Q
⋆)

≤ αβ · sup
Q∈N (P )

cost(A′(Q), Q).

Since P and A′ were arbitrary, this implies that A is αβ-instance optimal.

A similar pair of results hold when the comparator algorithm A′ is smooth with respect to the
neighborhood map.
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B.3 Relaxed Definitions

We finish by noting relaxations of the above definitions that share the same semantic meaning (our
algorithms will achieve these relaxed notions).
Definition B.7. Given a function N : P → P(P), where P(P) is the power set of P , we define the
optimal estimation rate with respect to N to be:

RN ,n(P ) = min
A

sup
Q∈N (P )

RA,n(Q). (5)

An algorithm A is (α, β, γ)-instance optimal with respect to N if for all P ∈ P ,

RA,n(P ) ≤ αRN ,βn(P ) + γ

Definition B.8. Let M be a class of algorithms. We say that an algorithm A is (α, β, γ)-locally
minimal with respect to a neighborhood map N , if for all instance P , and all A′ ∈ M, there is a
Q ∈ N (P ) such that RA,n(Q) ≤ α · RA′,βn(Q) + γ.

Note that we think of β ∈ (0, 1] and γ as non-negative. The reason these are relaxed definitions is
because we allow for an additive approximation factor in addition to a multiplicative factor, and also
compare to a benchmark rate that depends on a potentially smaller number of samples (and is hence
easier to achieve). The original definition of instance optimality (Definition B.1) can be obtained by
setting β = 1 and γ = 0.

In our work, for most settings of interest, we roughly achieve β = 1/(log n)O(1) and γ to be an
arbitrarily small polynomial in the inverse of the number of samples 1/n at a log(1/γ) cost to the
multiplicative factor. We don’t view this as a significant issue since we expect the benchmark rate
with Õ(n/ log n) samples to behave asymptotically similarly to that with n samples in most cases.
We leave it as an open question as to whether the original definition of instance optimality can be
achieved.

C Additional Related Work

Instance Optimality for Differentially Private Statistics: Several recent works have focused
on formulating and giving ‘instance optimal’ differentially private algorithms for various statistical
tasks. The work of McMillan, Smith and Ullman [MSU22] is most directly related to our work; they
gave locally minimax optimal algorithms for parameter estimation for one-dimensional exponential
families in the central model of differential privacy. The work of Duchi and Ruan [DR18] also gives
locally-minimax optimal algorithms for various one-dimensional parameter estimation problems un-
der the stronger constraint of local differential privacy. The notion of local minimax optimality both
these papers use is based on the hardest one-dimensional sub-problem described in Section B.1.
While our results for density estimation in R1 satisfy this notion, they also satisfy a stronger no-
tion described in Section B.1. Additionally, as discussed in [MSU22], this definition is provably
unsuitable for higher dimensions; we instead suggest a looser definition of instance optimality that
is more promising in higher dimensions. More importantly, our paper is primarily focused on the
non-parametric setting, and hence our techniques are different than the ones used in those papers,
which focused primarily on parameter estimation.

Other Beyond Worse-Case Results in Central Differential Privacy: Several additional works
in the differential privacy literature study algorithms with accuracy that varies with the input dataset.
Nearly all of them look at the empirical setting where we are concerned with the specific input
dataset, rather than a distribution it may be drawn from. While initial algorithms in differential
privacy added noise based on a worse case notion of global sensitivity, these works give various
algorithmic frameworks that help develop algorithms with guarantees that adapt to the hardness
of the input dataset. These include algorithms based on smooth sensitivity [NRS07, BS19], the
propose-test-release framework [DL09, BA20], Lipschitz extensions [BBDS13, KNRS13, CZ13,
RS16], and sensitivity pre-processing [CD20]. However, none of these works study a formal notion
of instance optimality.

In contrast, some more recent work do study definitions of instance optimality in the empirical set-
ting. A work of Asi and Duchi [AD20] studies two notions of instance optimality: one by comparing
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the performance of an algorithm on a dataset against the performance of the best unbiased algorithm
on that dataset, and another based on an analogue of the ‘hardest one-dimensional sub-problem’ for
the empirical setting (they compare the performance of an algorithm on a dataset with all benchmark
algorithms that know that the input dataset is either of two possible datasets but whose performance
is evaluated as the worse over the two datasets). They give a general mechanism known as the
inverse sensitivity mechanism that they show is nearly instance optimal under these definitions for
various problems such as median and mean estimation. Our work is focused on population quantities
as opposed to empirical quantities—while these are related, they can be very different. For example,
as pointed out in McMillan, Smith and Ullman [MSU22], using the inverse sensitivity mechanism
in [AD20] to estimate the mean of a Gaussian (by using a locally minimax optimal algorithm for
empirical mean) will result in infinite mean squared error, whereas other approaches that reason
directly about the population quantities can get much better error.

In [DKSS23] and [HLY21], different notions of instance optimality are defined. Roughly, they
compare the performance of an algorithm on a dataset with a benchmark algorithm that knows the
input dataset but whose performance is evaluated as the worst-case performance over large sub-
sets of the input dataset. While the details of the definitions in these papers vary slightly, both
papers give instance-optimal algorithms for mean estimation under their respective definitions. For
one-dimensional distributions, our algorithmic technique at a high level shares ideas with these
algorithms—the algorithms in their papers try to adapt to the range of values in the dataset, whereas
we try to adapt to the level of concentration of the distribution. However, the details of how this
is done and the associated analyses vary. Our algorithm for general metric spaces uses different
techniques. Our work differs from these works in a few other prominent ways: firstly, they are pri-
marily concerned with estimating functionals of the underlying dataset, whereas we are concerned
with density estimation in Wasserstein distance—these are problems with different output types and
different error metrics. Finally, it is not clear if notions such as subset-based instance optimality that
are well defined in the empirical setting transfer meaningfully to the distributional setting.

Instance-Optimal Statistical Estimation without Privacy Constraints: Donoho and
Liu [DL91] formulated the notion of the ‘hardest one-dimensional sub-problem’ as a way of
capturing instance optimality for statistical estimation and gave non-private instance optimal algo-
rithms for some one-dimensional parameter estimation problems. Cai and Low [CL15] formulated
an instance-optimality type definition for non-parameteric estimation problems. Our results for
Wasserstein density estimation over R use a stronger version of this notion of instance optimality.
In higher dimensions, this notion is provably unachievable, and so we define a different notion.

The other line of work most related to ours is on instance-optimal learning of discrete distribu-
tions [OS15, VV16, HO19]. In their setting, instance optimality is defined by comparing the per-
formance of an algorithm on a discrete distribution P to the minimax error of any algorithm on the
class of discrete distributions with probability vectors that are permutations of the probability vector
of P . We note that this notion is not well suited to many metric spaces, because permutations may
not preserve properties such as concentration of the distribution, and hence this notion of instance
optimality may provide an overly pessimistic view of the performance of an algorithm. Our notion
of instance optimality (in terms of D∞ neighborhood) compares against algorithms with a different
type of prior knowledge- i.e., the location of where the distribution concentrates, and approximate
values of the probabilities at each point. We note that these are technically incomparable, and may
be useful in different settings. For estimation in Wasserstein distance, knowledge of where the dis-
tribution is concentrated could be very useful in algorithm design, and so comparing to algorithms
with this type of knowledge is more appropriate. See Appendix B for more discussion.

Finally, there is another line of work on getting similar instance optimal guarantees for other statis-
tical problems [ADJ+11, ADJ+12, AJOS13b, AJOS13a]. For the closeness testing problem (given
two sequences, determine if they are produced by the same distribution, or different distributions),
Acharya, Das, Jafarpour, Orlitsky, Pan and Suresh [ADJ+11, ADJ+12] developed a test (without
any knowledge about the generating distributions) that achieves the same error with O(n3/2) sam-
ples that an optimal label-invariant test that knows the distributions p and q would achieve with n
samples.

Other work on Differentially Private Statistics: There is a lot of other work on private sta-
tistical estimation, and we survey the most relevant parts of the literature here. There is a long
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line of work on minimax parameter/distribution estimation on various parametric distribution fam-
ilies: product distributions [BUV18, KLSU19, ASZ20, CWZ19, Sin23], Gaussian, sub-Gaussian
distributions (and more generally exponential families) [KV18, KLSU19, AAK21, BGS+21,
KMS+22b, KMS22a, HKM22, KMV22, AL22, LKO22, TCK+22, HKMN23, AKT+23, BHS23,
KDH23], mixtures of Gaussian distributions [KSSU19, AAL23b, AAL23a], heavy-tailed distribu-
tions [KSU20, Nar23], discrete distributions with finite support [DHS15, ASZ20], distributions with
finite covers [BKSW21] and more. This line of work focuses on minimax guarantees in the paramet-
ric setting, i.e. optimizing the worst-case error of an algorithm over the entire class of distributions.
Our work, on the other hand works in the non-parametric setting where we do not make assumptions
about the distribution the dataset is drawn from, but instead give ‘instance-optimal’ algorithms that
adapt to the hardness of the distribution the input dataset is drawn from.

There is also a line of work on differentially private CDF estimation [DNPR10, CSS11, BNS16,
BNSV15, ALMM19, KLM+20, CLN+23], and quantile estimation [KSS22, GJK21, ASSU24].
Our algorithm for density estimation over R uses a quantile estimation algorithm (based on a CDF
estimator) as a subroutine. Finally, there is a line of work on differentially private testing [ASZ17,
CDK17, CKM+19], and the work characterizing the sample complexity of simple hypothesis tests
forms an important part of our analysis of the instance-optimal rate for distributions over R.

Work on Estimation in Wasserstein Distance: In addition to the recent works [BSV22, HVZ23]
on private Wasserstein learning on [0, 1]d, there is a plethora of works studying it in the non-private
setting.

One line of work studies the convergence in Wasserstein distance of the empirical measure
(on n samples) to the true measure, as a function of the measure and the number of samples
n [Dud69, DY95, CR12, DSS11, BG14, FG15, BL19, WB19, Lei20, Fou23]. Some of the later
works above can be viewed as studying this problem from a beyond worst-case analysis viewpoint.
They give upper and lower bounds for the expected value of this quantity, in terms of various no-
tions of ‘dimension’ of the underlying measure, such as the covering number of the support of
the distribution, the upper and lower ‘Wasserstein dimensions’ of the measure, and others. Our
work shows that the empirical measure, appropriately massaged, is approximately instance-optimal
for density estimation without privacy constraints (for the notions of instance optimality we con-
sider), and hence these works give us a handle on the instance-optimal rate as a function of the
distribution and sample size n. Some more recent work studies minimax estimation in Wasserstein
distance [SP19, NWB19], and show that without additional assumptions on the distribution, the
empirical measure is minimax optimal. Our work extends this result to show that in the general non-
parametric setting, the empirical measure is also approximately instance-optimal; to the best of our
knowledge, instance optimal estimation in Wasserstein distance (even without privacy constraints)
has not been previously studied.

D Distribution Estimation on Hierarchically Separated Trees

Let us now turn to distribution estimation on arbitrary finite metric spaces. We will use the fact
that any metric on a finite space can be embedding in a hierarchically separated tree (HST) metric
to reduce the problem of density estimation in Wasserstein distance on an arbitrary metric space
to density estimation in Wasserstein distance on an HST. In Section D.2 we’ll characterise the tar-
get estimation rate RN ,n. In Section D.3, we’ll then provide an ε-DP algorithm and prove that it
achieves this target estimation rate up to logarithmic factors.

D.1 Preliminaries on Hierarchically Separated Trees

A key component of our proof strategy is the reduction to Hierarchically Separated Trees (HSTs).
HSTs are special class of tree metrics that are able to embed arbitrary metric spaces with low dis-
tortion. They are particularly well-behaved when working with the Wasserstein distance since the
Wasserstein distance on an HST has a simple closed form.

Definition D.1 (Hierarchically Separated Tree). A hierarchically separated tree (HST) is a rooted
weighted tree such that the edges between level ℓ and ℓ − 1 all have the same weight (denoted rℓ)
and the weights are geometrically decreasing so rℓ+1 = (1/2)rℓ. Let DT be the depth of the tree.
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An HST defines a metric on its leaf nodes by defining the distance between any two leaf nodes to
be the weight of the minimum weight path between the two nodes. We will rely on two main facts
about HSTs in this work.
Lemma D.2 (Low distortion metric embeddings [FRT03]). Let (V, d) be a metric space with M
points. There exists a randomized, polynomial time algorithm that produces an HST where the leaf
nodes of the tree correspond to the elements of the metric space and the induced tree metric dT is
such that for all u, v ∈ V

• d(u, v) ≤ dT (u, v)

• E[dT (u, v)] ≤ O(logM) · d(u, v)

The depth of the HST is logarithmic in the size of the metric space, DT = logM .

An immediate consequence of the O(logM) metric distortion in Lemma D.2 is that the Wasserstein
distance in the original metric space is also preserved up to a O(logM) factor in expectation. Thus,
Lemma D.2 allows us to translate the problem of learning densities on an arbitrary metric space
in Wasserstein distance to learning densities in Wasserstein distance on an HST. This is a useful
tool since HST metrics are generally easier to work with and, as we’ll see below, the Wasserstein
distance is particularly well-behaved on an HST. In order to use Lemma D.2 to translate the problem
of density estimation on a bounded ball in Rd into density estimation on an HST, one discretizes the
metric, paying a small additive term.
Corollary D.3. Given α > 0, there is a probabilistic embedding f of [0, 1]d into an HST such that
for all x, y ∈ [0, 1]d:

• d(x, y)− α ≤ dT (f(x), f(y))

• E[dT (f(x), f(y)] ≤ O(d · log 1
α ]) · (d(x, y) + α)

The distortion is logarithmic in 1
α , so taking α to be polynomially small, one gets the distortion to

be O(d log n). It is easy to see that this implies that the Wasserstein distance is preserved in both
directions up to O(d log 1

α , up to an α additive error.

A distribution P on the the underlying metric space in an HST induces a function GP on the nodes
of the tree where the value of a node ν is given by the weight in P of the leaf nodes in the subtree
rooted at ν. For every level ℓ ∈ [DT ] of the tree, let Pℓ be the distribution induced on the nodes at
level ℓ where the probability of node ν is GP (ν). Thus Pℓ is a discrete distribution on a domain of
size Nℓ, where Nℓ is the number of nodes in level ℓ of the tree.
Lemma D.4 (Closed form Wasserstein distance formula). Given two distributions P and Q defined
on an HST metric space, the Wasserstein distance between P and Q has the closed formula:

W(P,Q) =
1

2

∑
ν

rν |GP (ν)−GQ(ν)| =
∑
ℓ

rℓTV(Pℓ, Qℓ),

where rν is the length of the edge connecting ν to its parent, and the sum is over all nodes in the
tree.

D.2 The Target Estimation Rate

Recall the definition of our neighbourhood.
N (P ) = {Q ∈ P | D∞(P,Q) ≤ ln 2}

We will call a node ν, α-active node under the distribution P if the weight in P of the sub-tree
rooted at ν is greater than α. Let γP (α) be the set of α-active nodes under P and γPℓ

(α) be the
α-active nodes at level ℓ.
Theorem D.5. Given a distribution P on [N ], ε > 0, δ ∈ [0, 1], and n ∈ N, let κ =

1
10εn min{W

(
0.45ε

δ

)
, 0.6} where W (x) is the Lambert W function so W (x)eW (x) = x, then

RN ,n,ε(P ) = Ω

max
ℓ

rℓ
∑

x∈[Nℓ]

min

{
Pℓ(x)(1− Pℓ(x)),

√
Pℓ(x)(1− Pℓ(x))

n

}
+

∑
x/∈γPℓ

(2κ)

Pℓ(x) + (|γPℓ (2κ) | − 1)κ

 ,

where the max is over all the levels of the tree.
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Note that κ ≈ 1
εn min{log(1/δ), 1} so the dependence on ε and n in Theorem D.5 matches the

upper bound in Theorem D.13. The error rate RN ,n,ε does indeed adapt to easy instances as we
expected. The error decomposes into three components. The first component is the non-private
sampling error; the error that would occur even if privacy was not required. The second component
indicates that we can not estimate the value of nodes that have probability less than 1/(εn). The
third component is the error due to privacy on the active nodes. If P is highly concentrated then
we expect most nodes to either be 1

εn -active or have weight 0, so the first two terms in RN ,n,ε(P )
are small. There should also be few active nodes, making the last term smaller as well. Conversely,
if P has a large region of low density then we expect a large number of inactive nodes, as well as
non-zero inactive nodes that are at higher levels of the tree and hence contribute more to the final
term. Thus, in distributions with high dispersion we expect the right hand side to be large.

The proof of Theorem 4.1 will involve two main steps. First, we will reduce the lower bound on the
HST to a lower bound on a star metric, or equivalently estimation of a discrete distribution in TV
distance. We’ll then use a variant of Assouad’s inequality to prove the lower bounds on estimating
discrete distributions in TV distance.

D.2.1 Reduction to Estimation in TV distance of Discrete Distributions

The key observation is that in order to estimate the distribution well in Wasserstein distance, an
algorithm must estimate each level of the tree well in TV distance. Any estimate of P also induces
an estimate of Pℓ; let P̂ be an estimate of the distribution P and P̂ℓ be the induced estimate of the
distribution at level ℓ. Then for any distribution P

W(P, P̂ ) =
∑

ℓ∈[DT ]

rℓTV (Pℓ, P̂ℓ).

The following observation ensures that our notions of instance optimality in both the Wasserstein
metric and the per-level TV distance are compatible at every level ℓ.
Theorem D.6. For every level ℓ ∈ [DT ], define the neighborhood of Pℓ as Nℓ : ∆([Nℓ]) →
P(∆([Nℓ])) by Nℓ(Pℓ) = {Qℓ | D∞(Pℓ, Qℓ) ≤ ln 2}. Then,

RN ,n,ε(P ) ≥ max
ℓ∈[DT ]

rℓ · RNℓ,n,ε(Pℓ),

where the error of P is measured in the Wasserstein distance and Pℓ is measured in the TV distance.

Recall that RNℓ,n,ε(Pℓ) is the optimal estimation rate with respect to Nℓ where the error is measured
with respect to the total variation error. The proof of Theorem D.6 can be found in Appendix G.

D.2.2 Characterizing Target Estimation Rate for Discrete Distributions

In light of Theorem D.6, we will focus on characterizing the difficulty of estimating the distribution
at a single level of the tree for the remainder of this section. Since this is fundamentally a statement
about estimating discrete distributions in TV distance, we will state everything in this section in
terms of general discrete distributions. Let N ∈ N, and let P be a distribution on [N ]. Define
N (P ) = {Q | D∞(P,Q) ≤ ln 2}. Our goal is to give a lower bound for Rf,n,ε(P ), where the
metric is the TV distance.
Theorem D.7. Given ε > 0 and δ ∈ [0, 1], let κ = 1

10εn min{W
(
0.45ε

δ

)
, 0.6} where W (x) is the

Lambert W function so W (x)eW (x) = x. Given a distribution P ,

RN ,n,ε(P ) = Ω

 ∑
x∈[N ]

min

{
P (x)(1− P (x)),

√
P (x)(1− P (x))

n

}
+

∑
x/∈γP (2κ)

P (x) + (|γP (2κ) | − 1)κ


Theorem D.5 follows immediately from Theorem D.6 and Theorem D.7. The main tool we will use
is a differentially private version of Assouad’s method. This gives us a method for lower bounding
the error by constructing nets of distributions that are pairwise far in the relevant metric of interest,
which for us in the TV distance. The following is a slight variant on the differentially private variant
of Assouad’s lemma given in [ASZ21]. Rather than building a set of distributions indexed by a hy-
percube, we will build a set of distributions over a product of hypercubes. Since this is an extension
of the version that appears in [ASZ21], we include a proof in Appendix G for completeness.
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Lemma D.8. [A extension of (ε, δ)-DP Assouad’s method [ASZ21]] Let k0, k1, · · · be a sequence
of natural numbers such that

∑
s ks < ∞, ε > 0 and δ ∈ [0, 1]. Given a family of distributions

P ⊂ ∆(X ) on a space X , a parameter θ : P → M where M is a metric space with metric
d, suppose that there exists a set V ⊂ P of distributions indexed by the product of hypercubes
Ek0

× Ek1
× · · · where Ek := {±1}k such that for a sequence τ0, τ1, · · · ,

∀(u0, u1, · · · ), (v0, v1, · · · ) ∈ Ek0
× Ek1

× · · · , d(θ(pu), θ(pv)) ≥ 2
∑
s

τs

ks∑
j=1

χus
j ̸=vs

j
. (6)

For each coordinate s ∈ N, j ∈ [ks], consider the mixture distributions obtained by averaging over
all distributions with a fixed value at the (s, j)th coordinate:

p+(s,j) =
2

|Ek0 × Ek1 × · · · |
∑

u∈Ek0
×Ek1

×···:us
j=+1

pu, p−(s,j) =
2

|Ek0 × Ek1 × · · · |
∑

u∈Ek0
×Ek1

×···:us
j=−1

pu,

and let ϕs,j : Xn → {−1,+1} be a binary classifier. Then

min
A is (ε,δ)-DP

max
p∈V

RA,n(p) ≥
1

2

∑
s

τs

ks∑
j=1

min
ϕs,j is (ε,δ)-DP

( Pr
X∼pn

+(s,j)

(ϕs,j(X) ̸= 1)+ Pr
X∼pn

−(s,j)

(ϕs,j(X) ̸= −1)),

where the min on the LHS is over all (ε, δ)-DP mechanisms, and on the right hand side is over all
(ε, δ)-DP binary classifiers. Moreover, if for all s ∈ N, j ∈ [ks], there exists a coupling (X,Y )
between pn+(s,j) and pn−(s,j) with E[dHam(X,Y )] ≤ Ds, then

min
A is (ε,δ)-DP

max
p∈V

RA,n(p) ≥
∑
s

ksτs
2

(0.9e−10εDs − 10Dsδ)

Note that an upper bound on TV (Pi, Pj) ≤ γ implies there exists a coupling (X,Y ) between Pn
i

and Pn
j such that E[dHam(X,Y )] ≤ nγ.

We will separately prove that each of the three terms in Theorem D.7 belong in the lower bound.
Each proof will follow the same underlying structure. Given a distribution P , the main technical step
is carefully designing a family of distributions in N (P ) that satisfy the conditions of Lemma D.8.
Lemma D.9 and Lemma D.10 give lower bounds on the noise due to privacy. Lemma D.11 gives
lower bounds based on the error due to sampling.

Let

κ =
1

10ε
min{W

(
0.45ε

δ

)
, 0.6},

where W (x) ≈ lnx− (1− o(1)) ln lnx is the Lambert W function satisfying W (x)eW (x) = x. In
both lemma proofs we will use the inequality that if D ≤ κ, then

0.9e−10εD − 10Dδ ≥ e−10εD

(
0.9−W

(
0.45ε

δ

)
eW( 0.45ε

δ ) δ

ε

)
= e−10εD

(
0.9− 0.45ε

δ

δ

ε

)
≥ e−10εD0.45 ≥ 0.2

(7)

Lemma D.9. Given a distribution P , ε > 0, δ ∈ [0, 1] and n ∈ N,

RN ,n,ε(P ) ≥ 0.1

(∣∣∣∣γP (2κ

n

)∣∣∣∣− 1

)
κ

n
.

Proof. Let L = |γP (2κ/n) | be the number of active nodes. If L = 1 then the RHS is 0 and so we
are done. Otherwise, assume L > 1 and let k = ⌊L/2⌋ ≥ 1. Using the notation from Lemma D.8,
let k0 = k and ks = 0 for all s > 0. We will drop the reference to s in the notation since only s = 0
is significant.

Pair up the active nodes to form k pairs of active nodes denoted by (a+1 , a
−
1 ), · · · , (a

+
k , a

−
k ). Given

u ∈ Ek, define the distribution pu as follows: for all abj ∈ γP (2κ/n), Pu(a
+
j ) = P (a+j )+(κ/n) and

Pu(a
−
j ) = P (a−j )−(κ/n) if uj = +1 and Pu(a

+
j ) = P (a+j )−(κ/n) and Pu(a

−
j ) = P (a−j )+(κ/n)
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if uj = −1. For all other x, Pu(x) = P (x). It is immediate that for all u, Pu ∈ N (P ). For any
pair u, v, d(θ(pu), θ(pv)) = TV(pu, pv) = dHam(u, v)(κ/n), so that Equation (6) is satisfied with
τ = 1

2 (κ/n). Further, given j ∈ [k], p+j and p−j only differ on the probability of a+j and a−j , so
D/n = maxj TV(p+j , p−j) = κ/n and by Equation (7), 0.9e−10εD − 10Dδ ≥ 0.2. Noting that
k ≥ (1/2)(γP (2κ/n)− 1) completes the proof.

Lemma D.10. For all ε > 0, δ ∈ [0, 1], n ∈ N and distributions P on [N ], if κ < n/2, then

RN ,n,ε(P ) ≥ Ω

 ∑
x/∈γP (2κ)

P (x)

 .

Since κ ≤ 1
εn , the condition that κ < n/2 is a mild condition. For example, it is satisfied whenever

ε > 2/n2.

Similar to the proof of Lemma D.9, we are going to pair up the coordinates and move mass between
the coordinates to create the distributions indexed by the product of hypercubes. Since we want all
the distributions we create to be in N (P ), we will divide the space into scales such that all elements
in the same scale have approximately the same probability of occurring. We’ll then move mass
within these scales. For s ∈ N, let Ss = {x ∈ [N ] | P (x) ∈ (2−s−1, 2−s]}.

Proof. Given s ∈ N, let S ′
s = Ss ∩ {x | P (x) ≤ 2κ/n} and ds = |S ′

s|.
Let us first consider the case that there exists a scale s∗ with ds∗ = 1 and P (x∗) ≥
1
8

∑
x/∈γP (2κ) P (x) where x∗ is the element in S ′

s∗ . Define P ′ by P ′(x∗) = (1/2)P (x∗) and for

all x ̸= x∗, P ′(x) = 1−(1/2)P (x∗)
1−P (x∗) P (x). Since (1/2)P (x∗) ≤ 2κ/n ≤ 1/2, P ′ ∈ N (P ). In

this case we will use Lemma D.8 with k0 = 1, ks = 0 otherwise, and Ek0
corresponds to the

set of distributions {P, P ′}. Then noting that TV(P, P ′) = (1/2)P (x∗) and using eqn (7) we
have that τ = 1

4P (x∗) and D = (1/2)P (x∗)n ≤ κ so that RN ,n,ε(P ) ≥ (1/8)P (x∗)(0.2) =

Ω
(∑

x/∈γP (2κ) P (x)
)

and we are done.

Next suppose that for all scales s such that ds = 1 we have P (x∗) < 1
8

∑
x/∈γP (2κ) P (x). Let s∗ be

the smallest s such that ds = 1. Since the scales 2−s−1 are geometrically decreasing,∑
s:ds=1

∑
x∈Ss∩{x|P (x)≤2κ/n}

P (x) ≤ 2
∑

s:ds=1

2−s−1 ≤ 4 · 2−s∗−1 ≤ 1

2

∑
x/∈γP (2κ)

P (x).

It follows that
∑

s:ds>1

∑
x∈Ss∩{x|P (x)<2κ/n} P (x) ≥ (1/2)

∑
x/∈γP (2κ) P (x). Further,∑

x/∈γP (2κ)

P (x) ≤ 2
∑

s:ds>1

∑
x∈Ss∩{x|P (x)<2κ/n}

P (x) ≤ 4
∑

s:ds>1

2−s−1ds ≤ 16
∑

s:ds>1

2−s−1⌊ds/2⌋.

Thus we can (up to constants) ignore scales such that ds ≤ 1 and assume that ds is even for all
scales.

Let ks = ⌊ds/2⌋. Now, within each scale Ss, pair the elements to form ks distinct pairs (a+s,j , a
−
s,j).

Given (u0, u1, · · · ) ∈ Ek0
× Ek1

× · · · , define pu by pu(a
+
s,j) = p(as,j) + 2−s−2 and pu(a

−
s,j) =

p(as,j) − 2−s−2 if us
j = +1 and pu(a

+
s,j) = p(as,j) − 2−s−2 and pu(a

−
s,j) = p(as,j) + 2−s−2

if us
j = −1. For all other elements, pu(x) = p(x). Then, it is easy to see that for all u, pu ∈

N (P ). Further, using notation from Lemma D.8, Equation (6) is satisfied with τs = 1
22

−s−2 since
d(θ(pu), θ(pv)) = TV(pu, pv) = 2

∑
s τsdHam(us, vs) and Ds/n = maxj TV(p+(s,j), p−(s,j)) =

2−s−2, which is less than κ whenever ks > 0. By eqn (7), 0.9e−10εDs − 10Dsδ ≥ 0.2 whenever
ks > 0 so by Lemma D.8 we have

RN ,n,ε(P ) ≥
∑
s

1

2
2−s−2ks(0.2) =

0.2

4

∑
s:ds>1

2−s−1⌊ds/2⌋ ≥
0.2

4× 16

∑
x/∈γP (2κ)

P (x)

which completes the proof.
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Next we lower bound the statistical term.
Lemma D.11. For all n ∈ N, ε > 0, δ ∈ [0, 1] and distributions P , if n ≥ 2 and ε > 2/n, then

RN ,n,ε(P ) ≥ RN ,n(P ) ≥ Ω

 ∑
x∈[N ]

min

{
P (x)(1− P (x)),

√
P (x)(1− P (x)

n

} .

To streamline the notation, we will use L(x) to denote min

{
x(1− x),

√
x(1−x)

n

}
. In order to

prove Lemma D.11, we will need the following standard result from the statistics literature which
allows us to lower bound the performance of any simple classifier distinguishing two distributions P
and Q by the KL divergence between P and Q. We give a specific result for distinguishing Bernoulli
random variables since we’ll use this in the proof of Lemma D.11.
Lemma D.12. Given any pair of distributions P and Q on the same domain,

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼Qn
(ϕ(X) = −1)

)
≥ 1

2
(1−

√
nKL(P,Q)),

where the minimum is over all binary classifiers. In particular, if P = Bernoulli(p − α) and
Q = Bernoulli(p+ α) where 0 ≤ α ≤ 1

2L(p) then

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼Qn
(ϕ(X) = −1)

)
≥ 1/4,

where again the minimum is over all binary classifiers.

The proof of Lemma D.12 can be found in Appendix G

Proof of Lemma D.11. As in the proof of Lemma D.10, first suppose there exists a scale s∗ with
ds∗ = 1 and there exists x∗ ∈ Ss∗ such that

1

2
L(P (x∗)) ≥ 1

60

∑
x∈[N ]

L(P (x)).

Then define a distribution P ′ by P ′(x∗) = P (x∗) − 1
2L(P (x∗)) and for all x ̸= x∗, P ′(x) =

1−P (x∗)+ 1
2L(P (x∗))

1−P (x∗) P (x). Then P ′ ∈ N (P ) since 1
2L(P (x∗)) < 1

2 min{P (x∗), (1 − P (x∗))}.
Then we will use Lemma D.8 with k0 = 1 and ks = 0 for s > 0, and Ek0

corresponds to {P, P ′}.
Now,

KL(P ′, P ) = (P (x∗)− 1

2
L(P (x∗))) ln

P (x∗)− 1
2L(P (x∗))

P (x∗)
+ (1− P (x∗) +

1

2
L(P (x∗))) ln

1− P (x∗) + 1
2L(P (x∗))

1− P (x∗)

≤ 1

4n

(for more detail on the proof of this inequality see the proof of Lemma D.12) so

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼P ′n
(ϕ(X) = −1)

)
≥ 1

2
(1−

√
nKL(P, P ′)) ≥ 1/4

and τ0 = TV(P, P ′) = 1
2L(P (x∗)). Thus by Lemma D.8,

RN ,n,ε(P ) ≥ RN ,n(P ) ≥ 1

2
L(P (x∗))

1

4
≥ 1

480

∑
x∈[N ]

1

2
L(P (x)),

and we are done.

On the other hand, suppose that for all scales s such that ds = 1 we have

L(P (xs)) ≤ 1

30

∑
x∈[N ]

L(P (x)),
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where Ss = {xs}. As in the proof of Lemma D.10, we will argue that we can ignore any singleton
scales, and assume that ds is even for all scales. Let s∗ = min{s > 0 | ds = 1} so

∑
s:ds=1

L(P (xs)) ≤ χd0=1L(P (x0)) +
∑

s>0:ds=1

min

{
2−s,

√
2−s

n

}

≤ χd0=1L(P (x0)) + (2 +
√
2)min

{
2−s∗ ,

√
2−s∗

n

}

≤ χd0=1L(P (x0)) + 2(2 +
√
2)min

{
P (xs∗),

√
P (xs∗)

n

}
≤ χd0=1L(P (x0)) + 4(2 +

√
2)L(P (xs∗))

≤ 1 + 4(2 +
√
2)

30

∑
x∈[N ]

L(P (x)).

Therefore,
∑

s:ds>1

∑
x∈Ss

L(P (x)) ≥ (1/2)
∑

x∈[N ] L(P (x)) and so∑
s

L(2−s−1)⌊ds/2⌋ ≥
∑

s:ds>1

L(2−s−1)
1

3
ds

≥
∑

s:ds>1

∑
x∈Ss

L(2−s−1)
1

3

≥ 1

3
√
2

∑
x∈[N ]

L(P (x)) (8)

where the first inequality follows from ⌊ds/2⌋ ≥ (1/3)ds whenever ds > 1, and the second follows
because 2−s−1 ≤ P (x) ≤ 1/2 for all x ∈ Ss such that ds > 1.

Assume that ds is even for all s. Within each scale Ss, pair the elements to form ks = ds/2 distinct
pairs (a+s,j , a

−
s,j) per scale. For all s ∈ N, let αs = 1

2L(2
−s−1), and note that for all x ∈ Ss and

s > 0, αs ≤ 1
2L(P (x)). Given (u0, u1, · · · ) ∈ Ek0

×Ek1
×· · · , define pu by pu(a

+
s,j) = p(a+s,j)+αs

and pu(a
−
s,j) = p(a−s,j)− αs if us

j = +1 and pu(a
+
s,j) = p(a+s,j)− αs and pu(a

−
s,j) = p(a−s,j) + αs

if us
j = −1. For all other elements, pu(x) = p(x). Then, for all u, pu ∈ N (P ). Further, using

notation from Lemma D.8, we have τs = αs. Also, for any (s, j), p+(s,j) and p−(s,j) only differ on
a+s,j and a−s,j where p+(s,j)(a

+
s,j) = P (a+s,j) + αs and p−(s,j)(a

+
s,j) = P (a+s,j)− αs. Therefore, by

Lemma D.12, and the post-processing inequality,

min
ϕ

(
Pr

X∼p+(s,j
n
(ϕ(X) = 1) + Pr

X∼p−(s,j
n
(ϕ(X) = −1)

)
≥ 1/4.

Lemma D.8 then implies the result.

Theorem D.7 follows immediately from Lemma D.9, Lemma D.10 and Lemma D.11.

D.3 An ε-DP Distribution Estimation Algorithm

Now, let us return to HSTs and designing an estimation algorithm that achieves the target estimation
rate, up to logarithmic factors. As in the one-dimensional setting, we want to restrict to only privately
estimating the density at a small number (≈ εn) of points. While we could try to mimic the one-
dimensional solution by privately estimating a solution to the εn-median problem, it’s not clear
how to prove that such an approach is instance-optimal. It turns out that a simpler solution more
amenable to analysis will suffice. Our algorithm has two stages; first we attempt to find the set of
log(1/δ)

εn -active nodes, then we estimate the weight of these active nodes. Since these nodes have
weight greater than log(1/δ)

εn , we can privately estimate them to within constant multiplicative error.
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Let X be the underlying metric space so P ∈ ∆(X ). For any set S of nodes and a function F defined
on the nodes, define the function F |S as F |S(ν) = F (ν) if ν ∈ S and F |S(ν) = 0 otherwise. Given
two functions F and G defined on the nodes, we define

W(F,G) =
∑
ν

rν |F (ν)−G(ν)|,

where rν is the length of the edge connecting ν to its parent, and the sum is over all nodes in the
tree. So by Lemma D.4, W(P,Q) = W(GP ,GQ). Note that W satisfies the triangle inequality.

Algorithm 1 PrivDensityEstTree

1: Input: D ∈ Xn, ε

2: ĜP = EmpDist(D) ▷ Compute empirical distribution.
3: γ̂ε = LocateActiveNodes(ĜP ; ε) ▷ Privately approximate set of active nodes.

4: Define G̃P̂n,γ̂ε
by G̃P̂n,γ̂ε

(x) =

{
0 if x /∈ γ̂ε

ĜP (x) + Lap( 1
εn )) otherwise.

▷ Approximate densities.

5: P̂n,ε = Projection(G̃P̂n,γ̂ε
) ▷ Project noisy densities onto space of distributions.

6: return P̂n,ε

A high-level outline of the proposed algorithm is given in Algorithm 1. Now, we state the main
theorem of this section.

Theorem D.13. Given any ε > 0, PrivDensityEstTree is
(DT + 1)ε-DP. Given a distribution P , with probability 1− (DT log n+ 4DT εn)β,

W(P, P̂ε) = O

( ∑
ℓ∈[DT ]

∑
x∈[Nℓ]

min

{
Pℓ(x), 1− Pℓ(x)

√
Pℓ(x) log(n/β)

n

}

+
∑

ν /∈γP (max{ 2
εn+2

log(2/β)
εn ,

192 log(n/β)
εn })

GP (ν) +
|γPℓ

(
1

2εn

)
− 1| log(1/β)
εn

)

This bound has the same three terms as our lower bound on RN ,n,ε in Theorem D.5 corresponding
again to the empirical error (the error inherent even in the absence of a privacy requirement), the
error from the private algorithm not being able to estimate the probability of events that occur with
probability less than ≈ log(1/δ)/εn, and the error due to the noise added to the active nodes. The
maximum over the levels that appeared in the lower bound is replaced with a sum over the levels in
the upper bound, so, up to logarithmic factors, the upper bound is within a factor of DT of the lower
bound. Since we can not hope to locate the set of log(1/δ)/(εn)-active nodes exactly with a private
algorithm, we find a set γ̂n that is guaranteed to satisfy

γP

(
max

{
2

εn
+ 2

log(2/β)

n
,
192 log(n/β)

n

})
⊂ γ̂ε ⊂ γP

(
1

2εn

)
.

Note that max
{

2
εn + 2 log(2/β)

n , 192 log(n/β)
n

}
≤ C log(n/β)

εn so the error introduced here by not

estimating γP
(

1
εn

)
perfectly is at most a logarithmic multiplicative factor.

The first step of our algorithm is to estimate the empirical distribution. We use a truncated
version of the standard empirical distribution. This allows us to achieve an error rate of
min{P (x),

√
P (x)/n} even when P (x) is small.

The proof of the following lemma is contained in Appendix G.

Lemma D.14. For any distribution P , if log(n/β) > 1 then with probability 1− 3DTβ,

W(ĜP ,GP ) ≤
∑

ℓ∈[DT ]

∑
x∈[Nℓ]

min

{
Pℓ(x)(1− Pℓ(x)), 4

√
3
Pℓ(x)(1− Pℓ(x)) log(n/β)

n

}
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Algorithm 2 EmpDist

1: Input: D ∈ Xn, A

2: Let P̂n be the empirical distribution.
3: for all node ν do

4: ĜP (ν) =


0 GP̂n

(ν) <

√
log(n/β)

n

1 GP̂n
(ν) > 1−

√
logn/β)

n

GP̂n
(ν) otherwise

Algorithm 3 LocateActiveNodes

1: Input: ĜP , ε
2: Let ℓ = 0 and γ̂ε,0 = {ν} where ν is the root node.
3: while γ̂ε,ℓ ̸= ∅ and ℓ < DT do
4: γ̂ε,ℓ+1 = ∅
5: for all ν ∈ γ̂ε,ℓ do
6: for all children ν′ of ν do
7: if ĜP (ν

′) + Lap( 1
εn ) > 2κ+ log(2/β)

εn then
8: γ̂ε,ℓ+1 = γ̂ε,ℓ+1 + {ν′}
9: ℓ = ℓ+ 1

10: return ∪γ̂ε,ℓ

The goal of Algorithm 3 is to estimate the set of 1/(εn)-active nodes.

The next lemma allows us to bound how close to the goal we get. The proof is contained in Ap-
pendix G.
Lemma D.15. Let γ̂ε be the set of active nodes found in Algorithm 1. Then with probability 1 −
DT (log n+ 4εn)β,

γP

(
max

{
2

εn
+ 4

log(2/β)

εn
,
192 log(n/β)

n

})
⊂ γ̂ε ⊂ γP

(
1

2εn

)
.

We also prove the following lemma relating the error due to estimating the active nodes to a quantity
depending on the true active nodes.

Lemma D.16. If γP
(
max{ 2

εn + 4 log(2/β)
εn , 192 log(n/β)

n }
)
⊂ γ̂ε then

W(ĜP , ĜP |γ̂ε
) ≤ W(GP , ĜP ) +W(GP ,GP |γP (max{ 2

εn+4
log(2/β)

εn ,
192 log(n/β)

n }))

The key component of this proof is that any discrepancy between the weight of the nodes on P and
that assigned by ĜP was already paid for in W(P, ĜP ). The final step in Algorithm 1 is to project
the noisy function G̃P̂n,γ̂ε

into the space of distributions on the underlying metric space. We’d like

to do this in a way that preserves, up to a constant, the W distance between P and G̃P̂n,γ̂ε
. We

will do this iteratively starting from the root node, by ensuring that the sum of each node’s children
add up to it’s assigned value. Since we know the root node has value 1, this results in a valid
distribution. We start from the top of the tree since errors in higher nodes of the contribute more to
the Wasserstein distance. While errors in higher nodes of the tree propagate can propagate to lower
levels, the predominant influence on the overall error is retained at the top level due to the geometric
nature of the edge weights.
Lemma D.17. For any real-valued function G on the nodes of the HST such that G(ν0) = 1 where
ν0 is the root node and given any distribution P ,

W(P, Projection(G)) ≤ 4W(GP ,G).

Combining the above lemmas appropriately gives the proof of Theorem D.13 (see Appendix G).
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Algorithm 4 Projection

1: Input: G, a real-valued function on the nodes of the HST such that G(ν0) = 1 where ν0 is the
root node.

2: Ḡ = G
3: for ℓ = 0 : DT − 1 do
4: for all nodes ν at level ℓ do
5: Let Aν =

∑
G(ν′) where the sum is over the children of ν.

6: Let dν be the number of children of ν
7: if Aν = 0 then
8: for all children ν′ of ν do
9: Ḡ(ν′) = 1

dν
Ḡ(ν)

10: else
11: for all children ν′ of ν do
12: Ḡ(ν′) = Ḡ(ν)

Aν
G(ν′)

13: return Ḡ

Proof of Theorem D.13. The privacy follows from the fact that each user contributes to at most DT

queries in LocateActiveNodes and at most one coordinate in the computation of G̃P̂n,γ̂n
in line 4

in PrivDensityEstTree.

For the utility, we will consider each level ℓ individually. First suppose that |γPℓ
(1/(2εn)) | > 1.

W(Pℓ, (P̂ε)ℓ) ≤ 2W((GP )ℓ, (G̃P̂n,γ̂ε
)ℓ)

≤ 2
(
W((GP )ℓ, (ĜP )ℓ) +W((ĜP )ℓ, (ĜP |γ̂ε)ℓ) +W((ĜP |γ̂ε)ℓ, (G̃P̂n,γ̂ε

)ℓ)
)

(9)

≤ 2
(
2W((GP )ℓ, (ĜP )ℓ) +W((GP )ℓ, (GP |γP (max{ 2

εn+2
log(2/β)

n ,
log(n/β)

n }))ℓ) +W((ĜP |γ̂ε)ℓ, (G̃P̂n,γ̂ε
)ℓ)
)

where the first inequality follow from Lemma D.17, the second inequality follows from the triangle
inequality and Lemma D.4, and the third follows from Lemma D.16 and Lemma D.15. Finally,

W(ĜP |γ̂ε)ℓ, (G̃P̂n,γ̂ε
)ℓ) ≤

∑
ν∈γP ( 1

2εn )

rν |Lap(
1

εn
)| ≤ 1

2

∑
ν∈γP ( 1

2εn )

rν |Lap(
1

εn
)|

The final statement then follows from Lemma D.14 and basic concentration bounds on the Laplacian
distribution.

If |γPℓ
(1/(2εn)) | = 1, then the proof goes through for all except the final term related to the noise

due to privacy. We consider two cases. Let x ∈ γPℓ
(1/(2εn)). First suppose that Pℓ(x) > 1− 1

2εn
then no node that is in a level above x, but is not a direct ancestor of x is in γPℓ

(1/(2εn)). Therefore,
since the projection algorithm is top-down, (P̂n,ε)ℓ will be concentrated on x. Therefore, the error
of level ℓ is simply (1− P (x)), which can be charged to the first term plus the sum of the weight of
the inactive nodes, which is in the second term. Next, suppose that Pℓ(x) < 1 − 1

2εn then sum of
the inactive nodes (in term two) dominates the error due to adding noise to P (x)

E Instance Optimal Density Estimation on R in Wasserstein distance

Let us now consider the setting of estimating distributions P on X = R. In this setting, the target
estimation rate is that of an algorithm that knows that the distribution is either P or QP for a dis-
tribution QP such that D∞(P,QP ) ≤ ln 2. This definition of instance-optimality strengthens that
corresponding to the so-called hardest-one dimensional subproblem [DL91], since this is a harder
estimation rate to achieve. A formal description of the target estimation rate is given in Appendix B.1
and Appendix B.3. In Appendix E.1, we lower bound this estimation rate using hypothesis testing
techniques. Then, in Appendix E.2, we give an algorithm that up to polylogarithmic factors, uni-
formly achieves the lower bound, and hence approximately achieves the instance-optimal estimation
rate. Our instance optimality results apply to all continuous distributions in a bounded interval with
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density functions (though it is likely that they apply more generally). All omitted proofs can be
found in Appendix J.

E.1 General Lower Bound

To state the main theorem in this section, we will introduce some notation. We start by defining the
restriction of a distribution.
Definition E.1. For any distribution P over R with a density function, the restriction P |u,v of P
with respect to u ≤ v ∈ R is defined as the distribution with the following CDF function F’:

F ′
Pu,v

(t) =


0 t < u

FP (x) u ≤ t < v

1 t ≥ v

If u = v, then F ′ is a step function that goes to 1 at that point and is 0 prior to that point.

Also recall the following definition of quantiles.
Definition E.2. For 0 < α ≤ 1, the α-quantile of a distribution P over R is defined as follows:

qα(P ) = argmin
t
{ Pr
y∼P

(y ≤ t) ≥ α}.

When the distribution P is clear from context, we will sometimes abuse notation and use qα when
we mean qα(P ). The main theorem we will prove in this section is the following:
Theorem E.3. There exists a constant C such that given a continuous distribution P on R with
bounded expectation and ε ∈ (0, 1], n ∈ N,

Rloc,n,ε(P ) = Ω

(
1

εn

(
q1− 1

Cεn
− q 1

Cεn

)
+W(P, P |q 1

Cεn
,q

1− 1
Cεn

)

+
1√
log n

E
[
W(P |q 1

Cεn
,q

1− 1
Cεn

, P̂n|q 1
Cεn

,q
1− 1

Cεn

)
])

,

where P̂n is the empirical distribution on n samples drawn independently from P .

The same result can be extended to (ε, δ)-DP algorithms as well for δ = o( 1n )

We discuss each of the terms in turn. Note that the final term is related to the expected Wasserstein
distance between the empirical distribution and the true distribution. There is now a long line of
work characterizing this quantity in terms of the distribution (See Section C), but essentially, if the
distribution is more concentrated, this term is smaller. The first term is a very particular inter-quantile
distance that is also much smaller for concentrated distributions, and can be large for relatively
dispersed distributions. The second term characterizes the length of the tails of the distribution—
longer tails make this Wasserstein distance larger. Overall, this rate is significantly lower for more
concentrated distributions with small support, and relatively large for more dispersed distributions.
We prove this theorem over the following couple of sections; in Section E.1.1 we characterize the
cost of private instance optimality, and in Section E.1.2 we characterize the cost of achieving instance
optimality without privacy (this non-private characterization is also new to our work, to the best of
our knowledge). Combining the theorems in those sections gives the above result.

E.1.1 The Privacy Term

The main theorem we will prove in this section is the following.
Theorem E.4. Fix ε ∈ (0, 1], n ∈ N. For all distributions P over R that have a density function
and finite expectation, there exists another distribution Q′′ such that D∞(P,Q) ≤ 2, that is indis-
tinguishable from P given O(n) samples such that for all ε-DP algorithms A : Rn → ∆(R), with
probability at least 0.25 over the draws x ∼ Pn, x′ ∼ Q′′n, the following holds for some constant
C.

max(W(P,A(x)),W(Q′′, A(x′))) ≥ 1

4Cεn

(
q1− 1

Cεn
− q 1

Cεn

)
+

1

4
W(P, P |q 1

Cεn
,q

1− 1
Cεn

).
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We start with some notation. For any distribution P with a density, let fP denote its density function.
Throughout this section, we will use qα to represent the α-quantile of distribution P . Let L(P ) be
the ‘starting point’ of distribution P (defined as inft∈R{t : FP (t) > 0} if the infimum exists, and
−∞ otherwise.

Next, we describe some results on differentially private testing that we will use. We say that a testing
algorithm Atest distinguishes two distributions P and Q with n samples, if given the promise that
a dataset of size n is drawn from either Pn or Qn, with probability at least 2

3 , it outputs P if the
dataset was drawn from Pn and Q if it was drawn from Qn. We now state a theorem lower bounding
the sample complexity of differentially private hypothesis testing.

Theorem E.5 ([CKM+19, Theorem 1.2]). Fix n ∈ N, ε > 0. For every pair of distributions P,Q
over R, if there exists an ε-DP testing algorithm4 Atest that distinguishes P and Q with n samples,
then

n = Ω

(
1

ετ(P,Q) + (1− τ(P,Q))H2(P ′, Q′)

)
,

where

τ(P,Q) = max
{∫

R
max{eεfP (t)− fQ(t), 0}dt,

∫
R
max{eεfQ(t)− fP (t), 0}dt

}
,

and H2(·, ·) is the squared Hellinger distance between P ′ = min(eεQ,P )
1−τ(P,Q) , and Q′ = min(eε

′
P,Q)

1−τ(P,Q) ,
where 0 ≤ ε′ ≤ ε is such that if τ(P,Q) =

∫
R max{fP (t)− eεfQ(t), 0}dt, then ε′ is the maximum

value such that

τ(P,Q) =

∫
R
max{fQ(t)− eε

′
fP (t), 0}dt,

else ε′ is the maximum value such that

τ(P,Q) =

∫
R
max{fP (t)− eε

′
fQ(t), 0}dt.

We now are ready to start proving our main theorem.

Proof. (of Theorem E.4) The idea is to construct Q from P by moving mass from the leftmost quan-
tiles to the rightmost quantile. We do this such that Q is statistically close enough to P such that
the two distributions can not be distinguished with n samples, but is also far from P in Wasserstein
distance. This produces a lower bound of (1/2)W(P,Q) on how well an algorithm can simulta-
neously estimate P and Q since if there was an algorithm that produced good estimates of P and
Q in Wasserstein distance with n samples, then we could tell them apart, and this would give a
contradiction.

Let k be a quantity to be set later. Formally, we define Q as the distribution with the following
density function.

fQ(t) =


1
2fP (t), for t < q1/k
fP (t), for q1/k ≤ t < q1− 1

k
3
2fP (t) for q1− 1

k
≤ t


Note that by the definition of Q, we have that D∞(P,Q) ≤ 2.

We will prove that the sample complexity of telling apart P and Q under (ε, δ)-DP is Ω(k/ε), using
known results on hypothesis testing. Then, we will argue that the Wasserstein distance between P
and Q is sufficiently large. Setting k appropriately will complete the proof.

Define SCε,δ(P,Q) to be the smallest n such that there exists an (ε, δ)-DP testing algorithm that
distinguishes P and Q; called the sample complexity of privately distinguishing P and Q.

Lemma E.6. SCε,δ(P,Q) = Ω(k/ε).

4The same bounds (and hence all our results in this subsection) can be extended to (ε, δ)-DP (with δ ≤ ε)
by using an equivalence of pure and approximate DP for identity and closeness testing [ASZ17, Lemma 5].
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The proof of this lemma is in Appendix J. We next argue that P and Q are sufficiently far away in
Wasserstein distance.

Lemma E.7. W(P,Q) ≥ 1
2k (q1− 1

k
− q1/k) +

1
2W(P, P |q 1

k
,q

1− 1
k

).

The proof of this lemma is also in Appendix J.

Finally, we are ready to prove the theorem. Assume that with probability larger than 0.75 over the
draw of two datasets x ∼ Pn, x′ ∼ Qn, and the randomness used by invocations of algorithm A we
have that max(W(P,A(x)),W(Q,A(x′)) < 1

2W(P,Q). Then, given a dataset x′′ of size n, we
can perform the following test: run the differentially private algorithm A on the dataset x′′ and com-
pute W(P,A(x′′)) and W(Q,A(x′′)) and output the distribution with lower distance. Then, note
that W(P,Q) ≤ W(P,A(x′′)) + W(Q,A(x′′)) which implies that with probability at least 0.75,
W(Q,A(x′′)) > 1

2W(P,Q) if the dataset x′′ was sampled from Pn (by the accuracy guarantee).
A similar argument shows that with probability at least 0.75, W(P,A(x′′)) > 1

2W(P,Q) if the
dataset x′′ was sampled from Qn. Hence, with n samples we have defined a test that distinguishes
P and Q. However, for k = Cεn for some constant C, by Lemma E.6 we get that any differen-
tially private test distinguishing P and Q requires more than n samples, which is a contradiction.
Hence, with probability at least 0.25 over the draw of two datasets x ∼ Pn, x′ ∼ Qn, and the
randomness used by invocations of algorithm A we have that max(W(P,A(x)),W(Q,A(x′)) ≥
1
2W(P,Q) ≥ 1

4Cεn (q1− 1
Cεn

− q1/Cεn) +
1
4W(P, P |q 1

Cεn
,q

1− 1
Cεn

) ,where the last inequality is by
invoking Lemma E.7 with k = Cεn.

E.1.2 Empirical Term

In this section, we prove the following result.
Theorem E.8. Fix sufficiently large natural numbers n, k > 0 and let C,C ′ > 0 be sufficiently small
constants. For all algorithms A : Rn → ∆R, the following holds. For all continuous distributions
P over R with a density and with bounded expectation, there exists another distribution Q (with
D∞(P,Q) ≤ ln 2), that is indistinguishable from P given O(n) samples, such that with probability
at least 0.25 over the draws x ∼ Pn, x′ ∼ Qn, the following holds.

max(W(P,A(x)),W(Q,A(x′))) ≥ C ′
√
log n

Ex′′∼Pn

[
W
(
P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)]
,

where qα is the α-quantile of P .

Before going into the proof, we state the following result on the sample complexity of testing. This
is a folklore result but for a proof of the lower bound see [BY02] and the upper bound see [Can17].
Theorem E.9. Fix n ∈ N, ε > 0. For every pair of distributions P,Q over R, if there exists a testing
algorithm Atest that distinguishes P and Q with n samples, then

n = Ω

(
1

H2(P,Q)

)
,

wherer H2(·, ·) represents the squared Hellinger distance between P and Q.

Throughout the proof, we will use qα to represent the α-quantile of distribution P .

Proof of Theorem E.8. Q is constructed by adding progressively more mass to P up until q1/2 and
subtracting proportionate amounts of mass from P afterwards. Intuitively, this is done in such a way
that to ‘change’ P to Q, for all i ≥ 2 one has to move roughly min{ 1√

2in
, 1
2i } mass from q1/2i to

q1−1/2i . This ensures that the Wasserstein distance between P and Q is larger than the expected
Wasserstein distance between P and its empirical distribution on n samples P̂n. This is carefully
done to ensure that P is indistinguishable from Q.

Formally, consider i in the range [2, log n − 1). For all x ∈ (q1/2i , q1/2i−1 ], we set fQ(t) =

fP (t)

[
1 +

√
2i

n

]
. For all t ∈ (q1−1/2i−1 , q1−1/2i ], we set fQ(t) = fP (t)

[
1−

√
2i

n

]
. Next,
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consider i in the range [log n,∞). For all t ∈ (q1/2i , q1/2i−1 ], we set fQ(t) = fP (t)
[
1 + 1

2

]
. For

all t ∈ (q1−1/2i−1 , q1−1/2i ], we set fQ(t) = fP (t)
[
1− 1

2

]
. Note that P has bounded expectation

by assumption, and hence, so does Q. Additionally, note that D∞(P,Q) ≤ ln 2.

There are two key considerations balanced in the design of Q. On one hand, we need Q to be in-
distinguishable from P given Õ(n) samples. On the other hand, we need Q to be sufficiently far
away from P in Wasserstein distance. This ensures that given an accurate algorithm for estimat-
ing the density of the distribution (in Wasserstein distance) given access to Õ(n) samples from it,
we can design a test distinguishing P and Q with that many samples, thereby contradicting their
indistinguishability.

Detailed proofs of claims below can be found in Appendix J. First, we show that P is indistinguish-
able from Q.

Lemma E.10.
KL(P,Q) = O(log n/n).

Next, we establish a lower bound on the Wasserstein distance between P and Q.

Lemma E.11.

W(P,Q) ≥ 1

4

logn−1∑
j=2

1√
2jn

[
q1−1/2j − q1/2j

]
+

∞∑
j=logn

1

2j
[
q1−1/2j − q1/2j

] .

Next, we upper bound the expected Wasserstein distance between the distribution P and its empirical
distribution on n samples.

Lemma E.12.

E[W(P, P̂n)] ≤ 8

logn−1∑
i=2

1√
2in

[
q1−1/2i − q1/2i

]
+

∞∑
i=logn

1

2i
[
q1−1/2i − q1/2i

]
We now prove a simple claim regarding restrictions.

Claim E.13 (Restrictions preserve Wasserstein distance). For all datasets x, and any natural num-
ber k > 1 we have that

W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

) ≤ W(P, P̂n).

Finally, we are ready to put the above lemmas together to prove Theorem E.8. Fix n′ = n
C logn .

Assume, for sake of contradiction, that with probability larger than 0.75 over the draw of two
datasets x ∼ Pn′

, x′ ∼ Qn′
, and the randomness used by invocations of algorithm A we have

that max(W(P,A(x)),W(Q,A(x′)) ≤ 1
2W1(P,Q). Then, given a dataset x′′ of size n′, we

perform the following test: run the differentially private algorithm A on the dataset x′′ and com-
pute W(P,A(x′′)) and W(Q,A(x′′)) and output the distribution with lower distance. Then, note
that W(P,Q) ≤ W(P,A(x′′)) + W(Q,A(x′′)) which implies that with probability at least 0.75,
W(Q,A(x′′)) ≥ 1

2W(P,Q) if x′′ ∼ Pn′
(by the accuracy guarantee). A similar argument shows

that with probability at least 0.75, W(P,A(x′′)) ≥ 1
2W(P,Q) if x′′ ∼ Qn′

. Hence, with n′ sam-
ples we have defined a test that distinguishes P and Q. However, by Lemma E.10 bounding the
KL divergence between P and Q, Theorem E.9 on sample complexity lower bounds for testing,
and Lemma A.7 on the relationship between KL and Hellinger distance, we get that any statistical
test distinguishing P and Q requires more than n′ samples, which is a contradiction. Hence, with
probability at least 0.25 over the draw of two datasets x ∼ Pn′

, x′ ∼ Qn′
, and the randomness used

by invocations of algorithm A we must have that

max(W(P,A(x)),W(Q,A(x′)) ≥ 1

2
W(P,Q). (10)
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Next, note that by Lemma E.12 (with value n′), we have that

E[W(P, P̂n′)] ≤ 8

logn′−1∑
i=2

1√
2in′

[
q1−1/2i − q1/2i

]
+

∞∑
i=logn′

1

2i
[
q1−1/2i − q1/2i

]
= 8

log n
C log n−1∑
i=2

√
C log n√
2in

[
q1−1/2i − q1/2i

]
+

∞∑
i=log n

C log n

1

2i
[
q1−1/2i − q1/2i

]
= 8

[√
C log n

logn−log(C logn)−1∑
i=2

1√
2in

[
q1−1/2i − q1/2i

]
+

logn−1∑
i=logn−log(C logn)

1

2i
[
q1−1/2i − q1/2i

]
+

∞∑
i=logn

1

2i
[
q1−1/2i − q1/2i

] ]
Analyzing the middle term in the above sum, we have that

logn−1∑
i=logn−log(C logn)

1

2i
[
q1−1/2i − q1/2i

]
≤

logn−1∑
i=logn−log(C logn)

1√
2i

1√
2logn−log(C logn)

[
q1−1/2i − q1/2i

]
≤

logn−1∑
i=logn−log(C logn)

1√
2i

√
C log n√

n

[
q1−1/2i − q1/2i

]
=
√
C log n

logn−1∑
i=logn−log(C logn)

1√
2in

[
q1−1/2i − q1/2i

]
Substituting this back in the previous sum, we have that

E[W(P, P̂n′)] ≤ 8

[√
C log n

logn−log(C logn)−1∑
i=2

1√
2in

[
q1−1/2i − q1/2i

]
+
√

C log n

logn−1∑
i=logn−log(C logn)

1√
2in

[
q1−1/2i − q1/2i

]
+

∞∑
i=logn

1

2i
[
q1−1/2i − q1/2i

] ]

≤ 8
√
C log n

[
logn−1∑
i=2

1√
2in

[
q1−1/2i − q1/2i

]
+

∞∑
i=logn

1

2i
[
q1−1/2i − q1/2i

] ]

≤ 16
√
C log n′

[
logn−1∑
i=2

1√
2in

[
q1−1/2i − q1/2i

]
+

∞∑
i=logn

1

2i
[
q1−1/2i − q1/2i

] ]
where in the last inequality we use the fact that n′ ≥

√
n. Hence, by Lemma E.11 (which gives

a lower bound on W(P,Q)) in conjunction with the above equation, we have that W(P,Q) ≥
C′

√
logn′E[P, P̂n′ ] for some sufficiently small constant C ′. Substituting back in Equation 10, we have

that with probability at least 0.25 over the draw of two datasets x ∼ Pn′
, x′ ∼ Qn′

, and the
randomness used by invocations of algorithm A we have that

max(W(P,A(x)),W(Q,A(x′)) ≥ 1

2

C ′
√
log n′E[W(P, P̂n′)] ≥ 1

2

C ′
√
log n′E

[
W(P |q 1

k
,q

1− 1
k

, P̂n′ |q 1
k
,q

1− 1
k

)
]
,

as required.

E.2 Upper Bound

In this section, we describe an algorithm that achieves the instance optimal rate described in the
previous section (up to polylogarithmic factors in some of the terms).

41



We will be looking at distributions P supported on a discrete, ordered interval {a, a+γ, . . . , b−γ, b}.
Note that by a simple coupling argument, any continuous distribution P cont on [a, b] is at most γ
away in Wasserstein distance from a distribution on this grid. The dependence on γ in our bounds for
discrete distributions will be inverse polylogarithmic (or better), and so our algorithms for estimating
distributions P in the interval {a, a+γ, . . . , b−γ, b} also work to give similar bounds for continuous
distributions on [a, b], up to a small additive factor of γ, which can be set to any inverse polynomial
in the dataset size without significantly affecting our bounds.

Formally, we will prove the following theorem (See Theorem E.15 for a more detailed statement).

Theorem E.14. Fix ε, β ∈ (0, 1], a, b ∈ R, and γ < b − a ∈ R such that b−a
γ is an integer. Let

n ∈ N > c2
log4 b−a

βγ

ε for some sufficiently large constant c2. There exists an ε-DP algorithm A that
for any distribution P on {a, a + γ, a + 2γ, . . . , b − γ, b} satisfies the following. When run with
input a random sample x ∼ Pn, A outputs a distribution PDP such that with probability at least
1− β over the randomness of x and the algorithm,

W(P, PDP ) = O

(
1

k

(
q1− 1

k
− q 1

k

)
+W(P, P |q 1

k
,q

1− 1
k

) +

√
log

n

β
E
[
W
(
P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)])
,

where P̂n is the empirical distribution on n samples drawn independently from P , qα represents the
α-quantile of distribution P , and k = ⌈ εn

4c3 log3 b−a
βγ log n

β

⌉ for a sufficiently large constant c3.

Since k ≈ εn/ log(n), this upper bound matches the lower bound in Theorem E.3 in its dependence
on ε and its dependence on n (up to logarithmic factors in n). The algorithm that we will analyze
proceeds by estimating sufficiently many quantiles from the empirical distribution and distributing
mass evenly between the chosen quantiles. The number of quantiles is chosen carefully to ensure
that the estimated α-quantiles are also approximately α-quantiles for the empirical distribution (and
hence also approximately for the true distribution), and to ensure that the CDF of the output distri-
bution closely tracks the CDF of the empirical distribution. Through a careful analysis, we are able
to leverage these properties to give instance optimality guarantees for the accuracy of the algorithm.

E.2.1 Algorithm for density estimation

Algorithm 5 is our algorithm for density estimation, and proceeds by differentially privately estimat-
ing sufficiently many quantiles of the distribution and placing equal mass on each of them. We argue
that a simple CDF based differentially private quantiles estimator Aquant satisfies a specific guaran-
tee that will be key to our analysis. See Appendix I for more details about the quantiles algorithm
and formal statements and proofs therein.

Algorithm 5 Algorithm A for estimating a distribution on R
Input: x = (x1, . . . , xn) ∼ Pn, privacy parameter ε, interval end-points a, b, granularity γ,
access to algorithm Aquant

Output: Distribution PDP on R.
1: Let k be set to ⌈ εn

4c3 log3 b−a
βγ log n

β

⌉ for a sufficiently large constant c3.

2: Use Algorithm Aquant referenced in Theorem I.2 with inputs interval end points a, b, gran-
ularity γ, x = (x1, . . . , xn) ∈ {a, a + γ, . . . , b − γ, b}n, and desired quantile values α =
{1/2k, 3/2k, 5/2k, . . . , (2k − 1)/2k}, and let the outputs be q̃1 . . . , q̃k.

3: for j ∈ [k] do
4: Set PDP (q̃j) =

1
k .

5: Output PDP .

Observe that Algorithm 5 inherits the privacy of Aquant, since it simply postprocesses the quantiles
it receives from that subroutine, and hence is also ε-DP.

Now, we are in a position to state our main theorem, which bounds the Wasserstein distance between
the distribution output by our algorithm, and the underlying probability distribution P .
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Theorem E.15. Fix ε, β ∈ (0, 1], a, b ∈ R, and γ < b − a ∈ R such that b−a
γ is an integer. Let

n ∈ N > c2
log4 b−a

γβε

ε for some sufficiently large constant c2. Let P be any distribution supported on
{a, a+ γ, a+ 2γ, . . . , b− γ, b}, and x ∼ Pn.

Then, Algorithm 5, when given inputs x, privacy parameter ε, interval end points a, b, and granular-
ity γ, outputs a distribution PDP such that with probability at least 1−O(β) over the randomness
of x and the algorithm,

W(P, PDP ) ≤
√

c log n·E
[
W(P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

]
+C ′′W(P, P |q 1

k
,q

1− 1
k

)+
2

k

(
q1−1/k − q1/k

)
,

where P̂n is the uniform distribution on x, qα represents the α-quantile of distribution P , c, C ′′ are
sufficiently large constants, and k = ⌈ εn

4c3 log3 b−a
βγ log n

β

⌉, where c3 is a sufficiently large constant.

We note that using more sophisticated differentially private CDF estimators to estimate quantiles
(such as ones in [BNSV15, CLN+23]), we can also obtain a version of the same theorem for approx-
imate differential privacy, with a better dependence on the size of the domain b−a

γ (only log∗( b−a
γ )

as opposed to poly log
(

b−a
γ

)
, where log∗ t is the number of times log has to be applied to t to get it

to be ≤ 1). 5

To prove Theorem E.15, we first relate the Wasserstein distance of interest (between the true dis-
tribution P and the algorithm’s output distribution PDP to a quantity related to an appropriately
chosen restriction. Let qα represent the α-quantile of P and q̂α represent the α-quantile of P̂n and
q̃α represent the α-quantiles of PDP . We also note that all these distributions (and others that will
come up in the proof) are bounded distributions over the real line and so we can freely apply the
triangle inequality for Wasserstein distance, and the cumulative distribution formula for Wasserstein
distance (Lemma A.3). The proof of the main theorem will follow from the following lemmas (all
proved in Appendix J).

Lemma E.16. Let C ′′ > 0 be a sufficiently large constant, and let n > 0 be sufficiently large. With
probability at least 1−O(β) over the randomness in data samples and Algorithm 5,

W(P, PDP ) ≤ W(P |q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) + C ′′W(P, P |q 1
k
,q

1− 1
k

).

Lemma E.17 (Wasserstein in terms of quantiles). For all datasets x (with data entries in [a, b]),
with probability at least 1− β over the randomness of Algorithm 5, we have that

W(P̂n|q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) ≤ 2

k

(
q1−1/k − q1/k

)
,

where P̂n is the uniform distribution over x.

Now, we argue about the concentration of the Wasserstein distance between restrictions of the em-
pirical distribution and restrictions of the true distribution.

Claim E.18. Fix β ∈ (0, 1) and sufficiently large constants c3, c6. Let n > 0 be sufficiently large
such that n > log n/β (as in Theorem E.15). For all k such that 1

k > c3
log n

β

n , with probability at
least 1−O(β) over the randomness in the data,

W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

) ≤
√
c6 log

n

β
· E[W(P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)].

Now, we give the proof of our main theorem.

5The theorem would be of the same form as Theorem E.15, except that Algorithm 5 would be (ε, δ)-DP,

with the lower bound on n instead being n = Ω

(
polylog∗ b−a

γεδ

√
log 1/δ log(1/β)

ε

)
, and k being set instead to

O

(
εn

log∗ b−a
γ

polylog n
β

)
.

43



Theorem E.15. Using Lemma E.16, Claim E.18 and the triangle inequality, we have that with prob-
ability at least 1−O(β) over the randomness of the data and the algorithm,

W(P, PDP ) ≤ W(P |q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) + C ′′W(P, P |q 1
k
,q

1− 1
k

)

≤ W(P̂n|q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) +W(P̂n|q 1
k
,q

1− 1
k

, P |q 1
k
,q

1− 1
k

) + C ′′W(P, P |q 1
k
,q

1− 1
k

)

≤ W(P̂n|q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) +

√
c6 log

n

β
E
[
W(P̂n|q 1

k
,q

1− 1
k

, P |q 1
k
,q

1− 1
k

)
]
+ C ′′W(P, P |q 1

k
,q

1− 1
k

)

Finally, applying Lemma E.17 and taking a union bound over failure probabilities, we get that with
probability at least 1−O(β) over the randomness of the data and the algorithm,

W(P, PDP ) ≤ 2

k

(
q1−1/k − q1/k

)
+

√
c6 log

n

β
E
[
W(P̂n|q 1

k
,q

1− 1
k

, P |q 1
k
,q

1− 1
k

)
]
+ C ′′W(P, P |q 1

k
,q

1− 1
k

)

as required.

F Experiment Details

Below we describe the experiment referenced in the introduction.

The distribution: We have taken a distribution on [0, 999], which is concentrated on two points 430
and 440, with p430 = 1

3 and p440 = 2
3 . These algorithms have been run with n = 1600 samples

from this distribution.

Minimax Optimal Algorithm: The minimax-optimal algorithm here is the algorithm PSMM from
[HVZ23] that considers a fixed partitioning of the interval into Ω(m

1
d ) equal intervals and places

the empirical mass in each interval on an arbitrary point in each interval. Here we consider this
algorithm with ε = ∞, so that no noise is added. We have run it here with K = 40 buckets.

Instance-optimal Algorithm: The instance-optimal algorithm finds k quantiles as in Algorithm 5.
In this particular implementation, we used the recursive exponential mechanism of [KSS22], but
we expect other quantile algorithms would work similarly. In this particular case, we use k = 10
quantiles with ε = 1.

G Proofs for Section D

Theorem D.6. For every level ℓ ∈ [DT ], define the neighborhood of Pℓ as Nℓ : ∆([Nℓ]) →
P(∆([Nℓ])) by Nℓ(Pℓ) = {Qℓ | D∞(Pℓ, Qℓ) ≤ ln 2}. Then,

RN ,n,ε(P ) ≥ max
ℓ∈[DT ]

rℓ · RNℓ,n,ε(Pℓ),

where the error of P is measured in the Wasserstein distance and Pℓ is measured in the TV distance.

Proof of Theorem D.6. Given a distribution P , let

A∗
P = arg min

A is ε-DP
max

Q∈N (P )
ED∼Pn [W(P,A(D))]

so RN ,n,ε(P ) = maxQ∈N (P ) ED∼Qn [W(P,A∗
P (D))]. Let ℓ ∈ [DT ]. We want to define an algo-

rithm A∗
Pℓ

on the distributions in Nℓ(Pℓ) that achieves maximum error rate 1
rℓ
RN ,n,ε(P ). Define a

randomised function gP which given a node νℓ at level ℓ, gP (νℓ) is sampled from the distribution P
restricted to the leaf nodes that are children of νℓ. Given a set of nodes at level ℓ, define gP (D) to be
the set where gD is applied to each set element individually. Then define A∗

Pℓ
(D) = (A∗

P (gP (D)))ℓ.
Since gP is applied individually to each element in D, A∗

Pℓ
is ε-DP.

Given a distribution Qℓ ∈ Nℓ(Pℓ), define a distribution Q on the leaves of the tree as follows:

Q(ν) =
Qℓ(νℓ)

Pℓ(νℓ)
∗ P (ν),
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where νℓ is the parent node of ν at level ℓ. Note Q ∈ N (P ), gP (Qℓ) = Q and Qℓ = Qℓ. Now,

TV (Qℓ,A∗
Pℓ
(D)) = TV (Qℓ, (A∗

P (gP (D))ℓ)

≤ 1

rℓ

∑
ℓ′∈[DT ]

rℓ′TV (Qℓ′ , (A∗
P (gP (D))ℓ′)

=
1

rℓ
W(Q,A∗

P (gP (D)))

where the first inequality follows by definition of A∗
Pℓ

and the fact Qℓ = Qℓ. Since gP (Q
ℓ) = Q,

this implies that for all distributions in Nℓ(Pℓ),

ED∼Qℓ

[
TV (Qℓ,A∗

Pℓ
(D))

]
≤ ED∼Q

[
1

rℓ
W(Q,A∗

P (D))

]
≤ 1

rℓ
RN ,n,ε(P ),

which implies for all levels ℓ, RNℓ,n,ε(Pℓ) ≤ 1
rℓ
RN ,n,ε(P ) and so we are done.

Lemma G.1. [A extension of (ε, δ)-DP Assouad’s method [ASZ21]] Let k0, k1, · · · be a sequence
of natural numbers such that

∑
s ks < ∞, ε > 0 and δ ∈ [0, 1]. Given a family of distributions

P ⊂ ∆(X ) on a space X , a parameter θ : P → M where M is a metric space with metric
d, suppose that there exists a set V ⊂ P of distributions indexed by the product of hypercubes
Ek0 × Ek1 × · · · where Ek := {±1}k such that for a sequence τ0, τ1, · · · ,

∀(u0, u1, · · · ), (v0, v1, · · · ) ∈ Ek0
× Ek1

× · · · , d(θ(pu), θ(pv)) ≥ 2
∑
s

τs

ks∑
j=1

χus
j ̸=vs

j
. (6)

For each coordinate s ∈ N, j ∈ [ks], consider the mixture distributions obtained by averaging over
all distributions with a fixed value at the (s, j)th coordinate:

p+(s,j) =
2

|Ek0
× Ek1

× · · · |
∑

u∈Ek0
×Ek1

×···:us
j=+1

pu, p−(s,j) =
2

|Ek0
× Ek1

× · · · |
∑

u∈Ek0
×Ek1

×···:us
j=−1

pu,

and let ϕs,j : Xn → {−1,+1} be a binary classifier. Then

min
A is (ε,δ)-DP

max
p∈V

RA,n(p) ≥
1

2

∑
s

τs

ks∑
j=1

min
ϕs,j is (ε,δ)-DP

( Pr
X∼pn

+(s,j)

(ϕs,j(X) ̸= 1)+ Pr
X∼pn

−(s,j)

(ϕs,j(X) ̸= −1)),

where the min on the LHS is over all (ε, δ)-DP mechanisms, and on the right hand side is over all
(ε, δ)-DP binary classifiers. Moreover, if for all s ∈ N, j ∈ [ks], there exists a coupling (X,Y )
between pn+(s,j) and pn−(s,j) with E[dHam(X,Y )] ≤ Ds, then

min
A is (ε,δ)-DP

max
p∈V

RA,n(p) ≥
∑
s

ksτs
2

(0.9e−10εDs − 10Dsδ)

Proof of Lemma D.8. We will follow the proof of Theorem 3 in [ASZ21]. Given an estimator A,
define a classifier A∗ by projecting on the product of hypercubes so

A∗(X) = arg min
u∈(Ek0

×Ek1
×··· )

d(A(X), θ(pu)).

By the triangle inequality and the definition of A∗, for any p ∈ V ,

d(θ(pA∗(X)), θ(p)) ≤ d(A(X), θ(pA∗(X))) + d(A(X), θ(p)) ≤ 2d(A(X), θ(p)).

Therefore, we can restrict to a lower bound on the performance of DP classifiers:

min
A is (ε,δ)-DP

max
p∈V

RA,n(p) ≥
1

2
min

A∗ is (ε,δ)-DP
max
p∈V

EX∼pn [d(θ(pA∗(X)), θ(p))]. (11)
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Also, for any (ε, δ)-DP classifier A∗,

max
p∈V

EX∼pn [d(θ(pA∗(X)), θ(p))] ≥
1

|V|
∑

u∈(Ek0
×Ek1

×··· )

EX∼pn
u
[d(θ(pA∗(X)), θ(pu))]

≥ 2

|V|
∑
s

τs

ks∑
j=1

∑
u∈Ek0

×Ek1
×···

Pr
X

∑
pn
u

(A∗(X)sj ̸= us
j),

where the first inequality follows from the fact that the max is greater than the average, and the
second follows from assumption (6). For each (s, j) pair, we divide Ek0

× Ek1
× · · · into two

groups;

max
p∈V

EX∼pn [d(θ(pA∗(X)), θ(p))]

≥ 2

|V|
∑
s

τs

ks∑
j=1

 ∑
u∈(Ek0

×Ek1
×··· ) | us

j=+1

Pr
X

∑
pn
u

(A∗(X)sj ̸= us
j) +

∑
u∈(Ek0

×Ek1
×··· ) | us

j=−1

Pr
X∼p∗

u

(A∗(X)sj ̸= us
j)


≥ 2

|V|
∑
s

τs

ks∑
j=1

 ∑
u∈(Ek0

×Ek1
×··· ) | us

j=+1

Pr
X∼pn

u

(A∗(X)sj ̸= us
j) +

∑
u∈(Ek0

×Ek1
×··· ) | us

j=−1

Pr
X∼pn

u

(A∗(X)sj ̸= us
j)


≥
∑
s

τs

ks∑
j=1

( Pr
X∼pn

+(s,j)

(A∗(X) ̸= +1) + Pr
X∼pn

−(s,j)

(A∗(X) ̸= −1))

≥
∑
s

τs

ks∑
j=1

( Pr
X∼pn

+(s,j)

(ϕs,j(X) ̸= +1) + Pr
X∼pn

−(s,j)

(ϕs,j(X) ̸= −1)).

Combining with eqn 11 we have the first statement. Next, since for each pair (s, j), there exists a
coupling (X,Y ) between p+(s,j) and p−(s,j) such that E[dHam(X,Y )] ≤ Ds, we can use the DP
version of Le Cam’s method from [ASZ21] to give for any classifier ϕs,j ,

Pr
X∼pn

+(s,j)

(ϕs,j(X) ̸= +1) + Pr
X∼pn

−(s,j)

(ϕs,j(X) ̸= −1) ≥ 1

2
(0.9e−10εDs − 10Dsδ),

which implies the final result.

Lemma G.2. Given any pair of distributions P and Q on the same domain,

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼Qn
(ϕ(X) = −1)

)
≥ 1

2
(1−

√
nKL(P,Q)),

where the minimum is over all binary classifiers. In particular, if P = Bernoulli(p − α) and
Q = Bernoulli(p+ α) where 0 ≤ α ≤ 1

2L(p) then

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼Qn
(ϕ(X) = −1)

)
≥ 1/4,

where again the minimum is over all binary classifiers.

Proof of Lemma D.12. A standard result in the statistics literature states that for any pair of distri-
butions P and Q,

min
ϕ

(
Pr

X∼Pn
(ϕ(X) = 1) + Pr

X∼Qn
(ϕ(X) = −1)

)
=

1

2
(1−TV(Pn, Qn)) ≥ 1

2
(1−

√
nKL(P,Q)),
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where the minimum is over all binary classifiers. If P = Bernoulli(p − α) and Q =
Bernoulli(p+ α) where 0 ≤ α ≤ 1

2L(p) then

KL(Q,P ) = (p+ α) ln
p+ α

p− α
+ (1− p− α) ln

1− p− α

1− p+ α

= (p+ α) ln

(
1 +

2α

p− α

)
+ (1− p− α) ln

(
1− 2α

1− p+ α

)
≤ (p+ α)

2α

p− α
− (1− p− α)

2α

1− p+ α

=
4α2

p− α
+

4α2

1− p+ α

=
α2

(p− α)(1− p+ α)

≤ 1

4n
.

where the first inequality holds since ln(1 + x) < x for x ∈ [−1, 1] and by assumption 2α/(p −
α), 2α/(1− p+ α) ∈ [0, 1] and the second follows again because of the constraint on α.

Lemma G.3. For any distribution P , if log(n/β) > 1 then with probability 1− 3DTβ,

W(ĜP ,GP ) ≤
∑

ℓ∈[DT ]

∑
x∈[Nℓ]

min

{
Pℓ(x)(1− Pℓ(x)), 4

√
3
Pℓ(x)(1− Pℓ(x)) log(n/β)

n

}

Lemma D.14 is an immediate corollary of the following lemma.
Lemma G.4. For any distribution P , if log(n/β) > 1 then with probability 1− 3DTβ,

W(ĜP ,GP ) ≤
∑

ℓ∈[DT ]

∑
x∈[Nℓ]

min

{
Pℓ(x), 1− Pℓ(x), 4

√
3
Pℓ(x) log(n/β)

n
, 4

√
3
(1− Pℓ(x)) log(n/β)

n

}

Proof of Lemma D.14. We’ll consider each level of the tree individually then use a union bound over
all the levels to obtain our final bound. Let (P̂ℓ)n be the empirical distribution without truncation.
The following conditions are sufficient to ensure that the bounds hold for a single level ℓ:

sup
ν s.t. Pℓ(ν)≤ 3 ln(n/β)

n

ˆ(Pℓ)n(ν) ≤
7 ln(n/β)

n

sup
ν s.t. Pℓ(ν)≥1− 3 ln(n/β)

n

ˆ(Pℓ)n(ν) ≥ 1− 7 ln(n/β)

n

∀
(
ν s.t. Pℓ(ν) ∈

[
3 ln(n/β)

n
, 1− 3 ln(n/β)

n

])
,

| ˆ(Pℓ)n(x)− Pℓ(ν)| ≤ min

{√
3Pℓ(ν) ln(n/β)

n
,

√
3(1− Pℓ(x)) ln(n/β)

n

}

We will begin by showing these conditions are sufficient. If Pℓ(ν) /∈ [ 3 ln(n/β)
n , 1 − 3 ln(n/β)

n ] then
these conditions imply that the empirical density for node ν is truncated, and hence the error that
that node is either Pℓ(ν) or 1 − Pℓ(ν) (when Pℓ(ν) < 1/2 and Pℓ(ν) > 1/2, respectively), as
required. If Pℓ(ν) ∈ [ 3 ln(n/β)

n , 1 − 3 ln(n/β)
n ] then either the estimate is not truncated and the error

is less than min

{√
3Pℓ(ν) ln(2n/β)

n ,
√

3(1−Pℓ(x)) ln(2n/β)
n

}
≤ min{Pℓ(ν), 1− Pℓ(ν)}, as required.

Or the estimate is truncated and the error is min{Pℓ(ν), 1− Pℓ(ν)}. Under the above conditions, if
Pℓ(ν) ≤ 1/2 then truncation will only occur if

Pℓ(ν)−
√

3p ln(2n/β)

n
≤ 7 ln(n/β)

n
≤
√

7 ln(n/β)

n

7

3

3 ln(n/β)

n
≤
√

7 ln(n/β)

n

7

3
p =

7

3

√
3 ln(n/β)

n
p,
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in which case Pℓ(nu) ≤ 4
√

3Pℓ(ν) ln(n/β)
n , as required. Similarly, if Pℓ(ν) > 1/2 then truncation

will only occur if 1− Pℓ(ν) ≤ 4
√

3(1−Pℓ(ν)) ln(n/β)
n , as required.

We will now show that these conditions hold simultaneously with probability at least 1− 3β for all
the nodes at level ℓ. If Pℓ(ν) ≤ 1

en then using the multiplicative form of Chernoff bound,

Pr

(
(P̂ℓ)n(ν) ≥

3 ln(n/β)

n

)
= Pr

(
(P̂ℓ)n(ν) ≥

(
1 +

3 ln(n/β)

Pℓ(ν)n
− 1

)
Pℓ(ν)

)

≤

 e
3 ln(n/β)
nPℓ(ν)

−1

( 3 ln(n/β)
nPℓ(ν)

)
3 ln(n/β)
nPℓ(ν)

Pℓ(ν)n

≤
(

enPℓ(ν)

3 ln(n/β)

)3 ln(n/β)

≤ Pℓ(ν)n

(
e

3 ln(n/β)

)3 ln(n/β)

(nPℓ(ν))
3 ln(n/β)−1

Firstly, since ln(n/β) ≥ 1,
(

e
3 ln(n/β)

)3 ln(n/β)

≤ 1. Further, nPℓ(ν) ≤ 1/e and 3 ln(n/β) − 1 ≥
ln(n/β) so (nPℓ(ν))

3 ln(n/β)−1 ≤ (1/e)ln(n/β) = β/n. Therefore,

Pr

(
(P̂ℓ)n(ν) ≥

3 ln(n/β)

n

)
≤ Pℓ(ν)β. (12)

Let S = {x ∈ [Nℓ] | Pℓ(x) < 1/(en)} then using a union bound and Eqn (12) we have

Pr

(
∃x ∈ S s.t. ˆ(Pℓ)n(x) ≥

2
√
2 log(n/β)

n

)
≤
∑
x∈S

Pℓ(ν)β ≤ β

There exist at most n elements in [Nℓ] that do not belong in S. We will prove that, independently,
each of these elements satisfy the required condition with probability ≤ 2β/n then a union bound
proves the final result. If Pℓ(ν) ∈ [ 3 ln(n/β)

n , 1 − 3 ln(n/β)
n ] then using the multiplicative form of

Chernoff bound (If Xi are all i.i.d. and 0 < δ < 1, then Pr(|
∑n

i=1 Xi − nE[X1]| ≥ δnE[X1]) ≤
2e−δ2nE[X1]/3),

Pr

(
| ˆ(Pℓ)n(x)− Pℓ(x)| ≥

√
3Pℓ(x) log(n/β)

n

)
= Pr

(
| ˆ(Pℓ)n(x)− Pℓ(x)| ≥

√
3 log(n/β)

Pℓ(x)n
Pℓ(x)

)

≤ 2e
−

(
3 log(n/β)
Pℓ(x)n

)
Pℓ(x)n

3

= 2β/n.

Next, if Pℓ(ν) ≤ 3 ln(n/β)
n then using the additive form of Chernoff bound (If Xi are all i.i.d. and

ε ≥ 0, then Pr
(
1
n

∑n
i=1 Xi ≥ E[X1] + ε

)
≤ e−ε2n/(2(p+ε)))

Pr

(
(P̂ℓ)n(ν) ≥

7 ln(n/β)

n

)
≤ Pr

(
(P̂ℓ)n(ν) ≥ p+ (7

ln(n/β)

n
− p)

)

≤ e
−

(7
ln(n/β)

n
−p)2n

14
ln(n/β)

n

≤ e
−

(4
ln(n/β)

n
)2n

14
ln(n/β)

n

≤ e− ln(n/β)

= β/n.
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By symmetry, if Pℓ(ν) ≥ 1− 3 ln(n/β)
n then

Pr

(
(P̂ℓ)n(ν) ≤ 1− 7 ln(n/β)

n

)
≤ β/n.

Lemma G.5. Let γ̂ε be the set of active nodes found in Algorithm 1. Then with probability 1 −
DT (log n+ 4εn)β,

γP

(
max

{
2

εn
+ 4

log(2/β)

εn
,
192 log(n/β)

n

})
⊂ γ̂ε ⊂ γP

(
1

2εn

)
.

Proof of Lemma D.15. First notice that if a node ν is an α-active node, then all of it’s ancestor nodes
are also α-active. So, it suffices to show that (with high probability) if at any stage a node makes
to it Line 7 of Algorithm 3, then if ν /∈ γP (2κ) then ĜP (ν) + Lap( 1

εn ) ≤ 2κ + log(2/β)
εn and if

ν ∈ γP

(
max

{
2
εn + 4 log(2/β)

εn , log(n/β)
n

})
then ĜP (ν) + Lap( 1

εn )) > 2κ+ log(2/β)
εn .

By Lemma D.14, with probability 1− 3DTβ, all nodes ν satisfy

|ĜP (ν)−GP (ν)| ≤ min

{
GP (ν)(1−GP (ν)), 4

√
3GP (ν)(1−GP (ν)) log(n/β)

n

}

Further, if one samples X independent samples from Lap( 1
εn ) then with probability 1−Xβ,

sup |Lap( 1

εn
)| ≤ ln(2/β)

εn
.

So conditioning on both these events if x /∈ γP
(

1
2εn

)
,

ĜP (ν) + Lap(
1

εn
) ≤ GP (ν) +

ln(2/β)

εn
≤ 1

2εn
+

ln(2/β)

εn
,

so they will not survive Line 7 of Algorithm 3. If x ∈ γP

(
max{ 2

εn + 4 log(2/β)
εn , 192 log(n/β)

n }
)

then

ĜP (ν) + Lap(
1

εn
) ≥ GP (ν)− 4

√
3
GP (ν) log(n/β)

n
− ln(2/β)

εn

≥ 1

2
GP (ν)−

log(2/β)

εn

≥ 1

εn
+

log(2/β)

n

Each level has at most 2εn in γP
(

1
2εn

)
so we query at most 4εn nodes in the tree when running

LocateActiveNodes since each node has at most 2 children. Therefore, we can set X = 4εnDT .

Lemma G.6. If γP
(
max{ 2

εn + 4 log(2/β)
εn , 192 log(n/β)

n }
)
⊂ γ̂ε then

W(ĜP , ĜP |γ̂ε
) ≤ W(GP , ĜP ) +W(GP ,GP |γP (max{ 2

εn+4
log(2/β)

εn ,
192 log(n/β)

n }))
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Proof of Lemma D.16. The key component of this proof is that any discrepancy between the weight
of the nodes on P and that assigned by ĜP was already paid for in W(P, ĜP ).

W(ĜP , ĜP |γ̂ε
) =

∑
ν /∈γ̂ε

rν |ĜP (ν)|

≤
∑

ν /∈γP (max{ 2
εn+4

log(2/β)
εn ,

192 log(n/β)
n })

rν |ĜP (ν)|

=
∑

ν /∈γP (max{ 2
εn+4

log(2/β)
εn ,

192 log(n/β)
n })

rν |ĜP (ν)−GP (ν) +GP (ν)|

≤
∑

ν /∈γP (max{ 2
εn+4

log(2/β)
εn ,

192 log(n/β)
n })

rν |ĜP (ν)−GP (ν)|

+
∑

ν /∈γP (max{ 2
εn+2

log(2/β)
n ,

192 log(n/β)
n })

rν |GP (ν)|

≤ W(GP , ĜP ) +W(GP ,GP |γP (max{ 2
εn+4

log(2/β)
εn ,

192 log(n/β)
n }))

as required.

Lemma G.7. For any real-valued function G on the nodes of the HST such that G(ν0) = 1 where
ν0 is the root node and given any distribution P ,

W(P, Projection(G)) ≤ 4W(GP ,G).

Proof of Lemma D.17. We first note that for any pair of sequences of real values a1, · · · , ak and
b1, · · · , bk, and constant A such that

∑
i ai ̸= 0,∑

| A∑
ai
ai−bi| ≤

∑
| A∑

ai
ai−ai|+|ai−bi| = |A−

∑
ai|+

∑
|ai−bi| ≤ |A−

∑
bi|+2

∑
|ai−bi|.

Also if
∑

ai = 0 then∑
|A
k
−bi| ≤

∑
|A
k
−
∑

i bi
k

|+|
∑

i bi
k

−bi| = |A−
∑

bi|+2
∑

|bi| = |A−
∑

bi|+2
∑

|ai−bi|

Let Ḡℓ be the function Ḡ after only levels 0, · · · , ℓ have been updated. So Ḡℓ matches Ḡℓ−1 on
all levels except ℓ. Let ν be a node in the ℓth level of the HST. If we suppose the sum is over the
normalised children of a node ν, A = Ḡℓ−1(ν), and for all the children ν′ of ν, ai = G(ν′) and
bi = GP (ν

′), we can see that the contribution to the Wasserstein distance by the children increases
by an additive factor of |Gℓ−1(ν)−GP (ν)|. Iterating, we can see that

W(P, Projection(G)) ≤ 2

DT∑
ℓ=0

∑
ν at level ℓ

(rℓ+rℓ+1 · · · rDT
)|G(ν)−GP (ν)| ≤ 4

DT∑
ℓ=0

∑
ν at level ℓ

rℓ|G(ν)−GP (ν)|,

which is 4 times the wasserstein distance.

H Local Minimality in the High Dimensional Setting

Theorem H.1. Given any ε > 0, and a distribution P , and let n′ = 5
4min{W ( 0.45ε

δ ),0.6}n, then

for all (ε, δ)-DP algorithms A′, there exists a distribution Q ∈ N (P ) such that with probability
1− (DT log n+ 4DT εn)β,

W(Q, ˆQε,n′) ≤ Õ(EX∼Qn,A′(W(A′(X), Q))),

where ˆQε,n′ is the output of PrivDensityEstTree(Q) with n′ samples.
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Proof. First, let us obtain a slightly simpler upper bound on W(P, P̂ε). From eqn (9) in the proof
of Theorem D.13 we have that for each level ℓ,

W(Pℓ, (P̂ε)ℓ) ≤ 2
(
W((GP )ℓ, (ĜP )ℓ) +W((ĜP )ℓ, (ĜP |γ̂ε)ℓ) +W((ĜP |γ̂ε)ℓ, (G̃P̂n,γ̂ε

)ℓ)
)
,

from Lemma D.15 we have that with probability 1−DT (log n+ 4εn)β,

γP

(
max

{
2

εn
+ 4

log(2/β)

εn
,
192 log(n/β)

n

})
⊂ γ̂ε ⊂ γP

(
1

2εn

)
,

and if one samples 4εnDT independent samples from Lap( 1
εn ) then we have that with probability

1− 4εnDTβ,

sup |Lap( 1

εn
)| ≤ ln(2/β)

εn
.

Therefore, for all ν /∈ γ̂ε we have Pℓ(ν) ≤ max
{

2
εn + 4 log(2/β)

εn , 192 log(n/β)
n

}
≤ C ln(n/β)

εn for
some constant C therefore,

W((ĜP )ℓ, (ĜP |γ̂ε)ℓ) +W((ĜP |γ̂ε)ℓ, (G̃P̂n,γ̂ε
)ℓ) ≤

∑
ν /∈γ̂ε

Pℓ(ν) +
∑
ν∈γ̂ε

ln(2/β)

εn

≤
∑

ν /∈γP ( 1
2εn )

Pℓ(ν) +
∑

ν∈γP ( 1
2εn )\γ̂ε

C
ln(n/β)

εn
+
∑
ν∈γ̂ε

ln(2/β)

εn

≤
∑

ν /∈γP ( 1
2εn )

Pℓ(ν) + C ln(n/β)
∑

ν∈γP ( 1
2εn )

1

εn
.

For the same reason as in the proof of Theorem D.13, we can upper bound
∑

ν∈γP ( 1
2εn )

1
εn by

(|γP
(

1
2εn

)
| − 1) 1

εn by dealing with the |γP
(

1
2εn

)
| = 1 case separately. Therefore,

W(P, P̂ε)

≤ 2C ln(n/β)

∑
ν

min

{
GP (ν)(1−GP (ν)),

√
GP (ν)(1−GP (ν))

n

}
+

∑
ν /∈γP ( 1

2εn )

GP (ν) + (|γP
(

1

2εn

)
| − 1)

1

εn

 ,

Further, by Theorem D.7 and Theorem D.6, given ε > 0 and δ ∈ [0, 1], let κ =
1

10εn min{W
(
0.45ε

δ

)
, 0.6} where W (x) is the Lambert W function so W (x)eW (x) = x. Given

a distribution P , there exists a constant C ′ such that

RN ,n,ε(P ) ≥ C ′

DT

∑
ν

min

{
GP (ν)(1−GP (ν)),

√
GP (ν)(1−GP (ν))

n

}
+

∑
ν /∈γP (2κ)

GP (ν) + (|γP (2κ) | − 1)κ


Let Q ∈ N (P ), then γP

(
1
εn

)
⊂ γQ

(
1

2εn

)
⊂ γP

(
1

4εn

)
so∑

ν /∈γQ( 1
2εn )

GQ(ν) + (|γQ
(

1

2εn

)
| − 1)

1

εn
=

∑
ν /∈γP ( 1

4εn )

GQ(ν) +
∑

ν∈γP ( 1
4εn )\γQ( 1

2εn )

GQ(ν) + (|γQ
(

1

2εn

)
| − 1)

1

εn

≤
∑

ν /∈γP ( 1
4εn )

2GP (ν) +
∑

ν∈γP ( 1
4εn )\γQ( 1

2εn )

1

εn
+ (|γQ

(
1

2εn

)
| − 1)

1

εn

≤
∑

ν /∈γP ( 1
4εn )

2GP (ν) + (|γP
(

1

4εn

)
| − 1)

1

εn
.
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Now, let n′ = 5
4min{W ( 0.45ε

δ ),0.6}n ≥ n so for all Q ∈ N (P ),

W(Q, ˆQε,n′)

≤ Õ

∑
ν

min

{
GQ(ν)(1−GQ(ν)),

√
GQ(ν)(1−GQ(ν))

n′

}
+

∑
ν /∈γQ( 1

2εn′ )

GQ(ν) + (|γQ
(

1

2εn′

)
| − 1)

1

εn′


≤ Õ

∑
ν

2min

{
GP (ν)(1−GP (ν)),

√
GP (ν)(1−GP (ν))

n′

}
+

∑
ν /∈γP ( 1

4εn′ )

2GP (ν) + (|γP
(

1

4εn′

)
| − 1)

1

εn′


= Õ

∑
ν

2min

{
GP (ν)(1−GP (ν)),

√
GP (ν)(1−GP (ν))

n

}
+

∑
ν /∈γP (2κ)

2GP (ν) + (|γP (2κ) | − 1)
1

εn


≤ Õ

(
min
A′

max
Q′∈N (P )

EX∼Q′n,A′(W(A′(X), Q′))

)
.

As in Proposition B.5, since N (P ) is compact, for all A′, there exists a specific Q∗ ∈ N (P ) such
that

W(Q∗, ˆQ∗
ε,n′) ≤ Õ(EX∼(Q∗)n,A′(W(A′(X), Q∗)))

I Differentially Private Quantiles

Estimating appropriately chosen quantiles is the main part of our algorithm for approximating the
distribution over R in Wasserstein distance, and so in this section, we describe some known differ-
entially private algorithms for this task and derive some corollaries that we use extensively in our
application. We will use F to represent CDF functions, with FP representing the CDF of distribu-
tion P . We start by stating an important theorem on private CDF estimation. This follows from a
use of the binary tree mechanism [CSS11, DNPR10]. A version of this theorem for approximate
differential privacy is described in a survey by Kamath and Ullman [KU20, Theorem 4.1]. The ver-
sion presented here for pure differential privacy follows from a very similar argument, except using
Laplace Noise instead of Gaussian noise (and basic composition instead of advanced composition
to analyze privacy). Their accuracy was also in expectation, but a similar analysis yields a high
probability bound, as in the theorem below.

Theorem I.1. [KU20, Theorem 4.1]

Let ε, β ∈ (0, 1], let D be an ordered, finite domain, and let x ∈ Dn be a dataset. Let P̂n be the
uniform distribution on x. Then, there exists an ε-DP algorithm ACDF that on input x and the
domain D outputs a vector G over D such that with probability at least 1− β over the randomness
of ACDF :

∥G− FP̂n
∥∞ = O

(
log3 |D|

β

εn

)
.

CDF estimation is intimately related to quantile estimation, and we use the following quantitative
statement that will follow from a simple application of Theorem I.1.

Theorem I.2. Fix any n > 0, ε, β ∈ (0, 1], a, b ∈ R, and γ < b − a ∈ R such that b−a
γ is an

integer. Let C be a sufficiently large constant. Then, there exists an ε-DP algorithm Aquant, that
on input interval end points a, b, granularity γ, x = (x1, . . . , xn) ∈ {a, a+ γ, . . . , b− γ, b}n, and
desired quantile values α ∈ (0, 1)k, outputs quantiles q̃ ∈ {a, a + γ, . . . , b − γ, b}k such that with
probability at least 1− β over the randomness of Aquant, for all r ∈ [k],

αr − FP̂n
(q̃r) ≤ C

log3 b−a
βγ

εn
,
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and

Pr
y∼P̂n

(y < q̃r) < αr + C
log3 b−a

βγ

εn
,

where P̂n is the uniform distribution on the entries of x.

Proof. Algorithm Aquant operates by running the algorithm ACDF referenced in Theorem I.1 on
x and domain {a, a + γ, . . . , b − γ, b}, and postprocessing its outputs to get quantile estimates as
follows. For every quantile αr that we are asked to estimate, Aquant simply scans the vector G
output by algorithm ACDF in order, and outputs the first domain element whose CDF estimate in
G crosses αr. Conditioned on the accuracy of the CDF estimation algorithm G, we have that this
output q̃r satisfies

αr − FP̂n
(q̃r) ≤ C

log3 b−a
βγ

εn
.

Additionally, since q̃r is the first domain element whose estimate in G crosses αr, we also have that

Pry∼P̂n
(y < q̃r) < αr + C

log3 b−a
βγ

εn
.

Hence, with probability at least 1− β, we have this property for all r ∈ [k].

We now state a corollary of this theorem that we will use extensively in our presentation.

Corollary I.3. Fix any ε, β ∈ (0, 1], a, b ∈ R, and γ < b − a ∈ R such that b−a
γ is an integer. Let

n ∈ N >
4c2 log4( b−a

βγε )

ε , such that k set to ⌈ εn
4c3log3 b−a

βγ log n
β

⌉ is an integer greater than or equal to 1,

where c2 and c3 are sufficiently large constants. 6

Then, there exists an ε-DP algorithm Aquant (the same one referenced in Theorem I.2), that on input
interval end points a, b, granularity γ, x = (x1, . . . , xn) ∈ {a, a + γ, . . . , b − γ, b}n, and desired
quantile values α = {1/2k, 3/2k, 5/2k, . . . , (2k−1)/2k}, outputs quantiles q̃ ∈ {a, a+γ, . . . , b−
γ, b}k such that with probability at least 1− β, for all r ∈ [k],

q̂ 2r−1
2k − 1

4k
≤ q̃r ≤ q̂ 2r−1

2k + 1
4k
,

where P̂n is the uniform distribution on the entries of x and for all p ∈ (0, 1), q̂p is the p-quantile of
P̂n.

Proof. First, note that k is set such that 1
4k ≥ C

log3 b−a
βγ

εn .

Hence, by Theorem I.2, we have that with probability at least 0.99,

for all r ∈ [k],
2r − 1

2k
− FP̂n

(q̃r) ≤
1

4k
,

and

Pr
y∼P̂n

(y < q̃r) <
2r − 1

2k
+

1

4k
.

Condition the event above for the rest of the proof. Note that the first equation implies that for all
r ∈ [k],

Pr
y∼P̂n

(y ≤ q̃r) ≥
2r − 1

2k
− 1

4k
,

which implies that q̃r ≥ q̂ 2r−1
2k − 1

4k
.

6k is set to be sufficiently small in order to relate the accuracy of the quantiles algorithm to a parameter
depending on k, and n is set sufficiently large that k is not less than 1. The dependence on β comes up in the
proof of Claim E.18.

53



Next, note that we also have that for all r ∈ [k],

Pr
y∼P̂n

(y < q̃r) <
2r − 1

2k
+

1

4k
.

This implies that for all r ∈ [k], q̃r ≤ q̂ 2r−1
2k + 1

4k
.

J Proofs in Section E

J.1 Omitted Proofs in Section E.1.1

Proof of Lemma E.6. We evaluate the various terms in Theorem E.5.

We start by evaluating τ(P,Q) = max{
∫
R max(fP (t) − eεfQ(t), 0)dt,

∫
R max(fQ(t) −

eεfP (t), 0)dt }. Consider the first term in the outer maximum. For all t ∈ [L(P ), q1/k), we have
that fQ(t) = 1

2fP (t). For all other t, one can see that the value of the integrand is 0. Hence, the
value of the first term is

∫ q1/k
L(P ) max(fP (t) − eε

2 fP (t), 0)dt = max{
(
1− eε

2

)
1
k , 0} ≤ 1

2k . Now,
consider the second term in the outer maximum. For all t < q1− 1

k
, the value of the integrand is 0.

For all q1− 1
k
≤ t ≤ q1, the value of the integrand is max{

(
3
2 − eε

)
fP (t), 0}. Hence, the second

term is max{
(
3
2 − eε

)
1
k , 0} ≤ 1

2k . Put together, we get that τ(P,Q) ≤ 1
2k .

When ε ≥ ln 2, we have that 1 − eε

2 ≤ 0, and so we have that the largest value of ε′ ∈ [0, ε] that
makes

∫
R max(fQ(t) − eε

′
fP (t), 0)dt = τ(P,Q) = 0, is ε′ = ε. When ε < ln 2, we have that

the value of ε′ that makes
∫
R max(fQ(t)− eε

′
fP (t), 0)dt = max{

(
3
2 − eε

)
1
k , 0} =

(
1− eε

2

)
1
k , is

ε′ = ln
(
1+eε

2

)
.

Finally, we describe the distributions P ′ and Q′ and compute the squared Hellinger distance between
them. There are two cases, based on the range of ε. First, consider ε ≥ ln 2. First, we calculate
P̃ ≡ min{eεQ,P}. This value is equal to min{eε/2, 1}fP (t) = fP (t) for t < q 1

k
(P ), and is

also equal to fP (t) for q 1
k
≤ t ≤ q1. Similarly, consider Q̃ ≡ min{eε′P,Q} = min{eεP,Q};

it is equal to fP (t)
2 for t < q 1

k
(P ), and is equal to fP (t) for q 1

k
≤ t ≤ q1− 1

k
. It is also equal to

min(eε, 3
2 )fP (t) =

3
2fP (t) for q 1

k
≤ t ≤ q1. Since τ(P,Q) = 0, and by the above calculations, we

have that P ′ = P , and Q′ = Q. Upper bounding the squared Hellinger distance between P ′ and Q′

by the TV distance (See Lemma A.7), we get that H2(P ′, Q′) = H2(P,Q) ≤ TV (P,Q) = 1
2k ≤

ε
2(ln 2)k (where we have used that ε ≥ ln 2).

Next, consider ε < ln 2. First, consider P̃ ≡ min{eεQ,P}. This value is equal to
min{eε/2, 1}fP (t) = eε

2 fP (t) for t < q 1
k
(P ), and is also equal to fP (t) for q 1

k
≤ t ≤ q1.

Similarly, consider Q̃ ≡ min{eε′P,Q} = min{ 1+eε

2 P,Q}; it is equal to 1
2fP (t) for t < q 1

k
(P ),

and is equal to fP (t) at q 1
k

≤ t ≤ q1− 1
k

. It is also equal to min{ 1+eε

2 , 3
2}fP (t) = 1+eε

2 fP (t)

at q1− 1
k

≤ t ≤ q1. Note that τ(P,Q) =
(
1− eε

2

)
1
k . P ′ and Q′ are the distributions created

by normalizing P̃ and Q̃ by dividing by a factor of 1 − τ(P,Q). Now, we upper bound the
squared Hellinger distance between P ′ and Q′ by the TV distance (See Lemma A.7), to get that
H2(P ′, Q′) ≤ TV (P ′, Q′) = O( εk ).

Substituting into the lower bound for sample complexity of distinguishing P and Q, this tells us that
for all ε ∈ (0, 1], SCε(P,Q) = Ω

(
1

ε· 1k

)
= Ω(k/ε).

Proof of Lemma E.7. Note that P has bounded expectation (and hence, so does Q). Hence, we can
use the following form of the Wasserstein distance:

W(P,Q) =

∫
R
|FP (t)− FQ(t)|dt.
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Now, given the settings of P and Q, we can precisely write the forms of their cumulative distribution
function as follows. Note that for L(P ) ≤ t < q1/k(P ), we have that |FP (t) − FQ(t)| = 1

2Fp(t).
For q1/k ≤ t ≤ q1− 1

k
, we have |FP (t) − FQ(t)| = 1

2k . Finally, for q1− 1
k
≤ t ≤ q1, we have that

FP (t) = 1 − 1
k +

∫ t

q1−1/k
fP (t)dt and FQ(t) = 1 − 3

2k + 3
2

∫ t

q1−1/k
fP (t)dt, which gives us that

FP (t)− FQ(t) =
1
2k − 1

2

∫ t

q1−1/k
fP (t)dt =

1
2 [1− FP (t)].

Hence, we have that

W(P,Q) =

∫
R
|FP (t)− FQ(t)|dt

=
1

2

∫ q1/k

L(P )

FP (t)dt+

∫ q
1− 1

k

q1/k

|FP (t)− FQ(t)|dt+
∫ q1

q
1− 1

k

|FP (t)− FQ(t)|dt

≥ 1

2

∫ q1/k

L(P )

FP (t)dt+
1

2

∫ q1

q
1− 1

k

[1− FP (t)]dt+
1

2k
(q1− 1

k
− q 1

k
)

=
1

2

∫ q1

q
1− 1

k

∣∣∣FP (t)− FP |q 1
k

,q
1− 1

k

(t)
∣∣∣dt+ 1

2

∫ q1/k

L(P )

∣∣∣FP (t)− FP |q 1
k

,q
1− 1

k

(t)
∣∣∣dt+ 1

2k
(q1− 1

k
− q 1

k
)

=
1

2k
(q1− 1

k
− q1/k) +

1

2
W(P, P |q 1

k
,q

1− 1
k

)

J.2 Omitted proofs in Section E.1.2

Proof of Lemma E.10. The KL divergence is defined as
∫
t:fQ(t)>0

fP (t) log fP (t)/fQ(t)dt. This
can be broken up into a sum over the dyadic quantiles as:

KL(P,Q) =

logn−1∑
i=2

∫ q1/2i−1

q1/2i

fP (t) log
fP (t)

fQ(t)
dt+

∫ q1−1/2i

q1−1/2i−1

fP (t) log
fP (t)

fQ(t)
dt

+

∞∑
i=logn

∫ q1/2i−1

q1/2i

fP (t) log
fP (t)

fQ(t)
dt+

∫ q1−1/2i

q1−1/2i−1

fP (t) log
fP (t)

fQ(t)
dt

=

logn−1∑
i=2

∫ q1/2i−1

q1/2i

fP (t) log
1

1 +
√

2i

n

dt+

∫ q1−1/2i

q1−1/2i−1

fP (t) log
1

1−
√

2i

n

dt

+

∞∑
i=logn

∫ q1/2i−1

q1/2i

fP (t) log
1

1 + 1
2

dt+

∫ q1−1/2i

q1−1/2i−1

fP (t) log
1

1− 1
2

dt

=

log 4n∑
i=2

1

2i

log 1

1 +
√

2i

n

+ log
1

1−
√

2i

n

+

∞∑
i=logn

1

2i

[
log

1

1 + 1
2

+ log
1

1− 1
2

]

≤
logn−1∑
i=2

1

2i
log

1

1− 2i

n

+O

(
1

n

)

≤
logn−1∑
i=2

1

2i
2
2i

n
+O

(
1

n

)
= O

(
log n

n

)
,

where the third inequality from last is by the fact that the geometric series
∑∞

i=logn
1
2i converges to

O( 1n ), the second inequality from last is from the fact that 2i

n < 1/2, and log(1/(1− y)) < 2y for
0 < y < 1/2.
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Proof of Lemma E.11. First, we recall the definition of the 1-Wasserstein distance in terms of the
cumulative distribution function.

W(P,Q) =

∫
R
|FP (t)− FQ(t)|dt

Fix any 2 ≤ i < log n − 1. Observe that by construction, for all t ∈ [q1/2i , q1−1/2i) and for all
t ∈ [q1−1/2i−1 , q1−1/2i), |FP (t) − FQ(t)| ≥

∑logn−1
j=i+1

1√
2jn

+ 1
2

∑∞
j=logn

1
2j . Similarly, fix any

log n − 1 ≤ i < ∞. Observe that for all t ∈ [q1/2i , q1−1/2i), and for all t ∈ [q1−1/2i−1 , q1−1/2i),
we have that |FP (t)−FQ(t)| ≥ 1

2

∑∞
j=i+1

1
2j . Substituting the above bounds in the formula for the

Wasserstein distance, we get that

W(P,Q) ≥
logn−2∑
i=2

∫ q1/2i−1

q1/2i

logn−2∑
j=i+1

1√
2jn

+
1

2

∞∑
j=logn−1

1

2j

 dt+

∫ q1−1/2i

q1−1/2i−1

logn−2∑
j=i+1

1√
2jn

+
1

2

∞∑
j=logn−1

1

2j

 dt

+

∞∑
i=logn−1

∫ q1/2i−1

q1/2i

1

2

∞∑
j=i+1

1

2j
dt+

∫ q1−1/2i

q1−1/2i−1

1

2

∞∑
j=i+1

1

2j
dt

Pulling the summation over j outside the integral and grouping terms,

W(P,Q) ≥
logn−2∑
i=2

[
logn−2∑
j=i+1

∫ q1/2i−1

q1/2i

1√
2jn

dt+

∫ q1−1/2i

q1−1/2i−1

1√
2jn

dt+
1

2

∞∑
j=logn−1

∫ q1/2i−1

q1/2i

1

2j
dt+

∫ q1−1/2i

q1−1/2i−1

1

2j
dt

]

+
1

2

∞∑
i=logn−1

∞∑
j=i+1

[∫ q1/2i−1

q1/2i

1

2j
dt+

∫ q1−1/2i

q1−1/2i−1

1

2j
dt

]

=

logn−2∑
i=2

[
(q1/2i−1 − q1/2i) + (q1−1/2i − q1−1/2i−1)

] logn−2∑
j=i+1

1√
2jn

+
1

2

∞∑
j=logn−1

1

2j


+

∞∑
i=logn−1

[
(q1/2i−1 − q1/2i) + (q1−1/2i − q1−1/2i−1)

] 1
2

∞∑
j=i+1

1

2j

Switching the order of summation (summing over j first), and grouping terms, we get

W(P,Q) ≥
logn−2∑
j=3

1√
2jn

j−1∑
i=2

[
(q1/2i−1 − q1/2i + (q1−1/2i − q1−1/2i−1)

]
+

1

2

∞∑
j=logn−1

1

2j

j−1∑
i=2

[
(q1/2i−1 − q1/2i + (q1−1/2i − q1−1/2i−1)

]

Telescoping the inner sums over i we get that

W(P,Q) ≥
logn−2∑
j=3

1√
2jn

[
q1−1/2j−1 − q1/2j−1

]
+

1

2

∞∑
j=logn−1

1

2j
[
q1−1/2j−1 − q1/2j−1

]
A change of variables (where we now set j to j − 1) then gives

W(P,Q) ≥ 1√
2

logn−3∑
j=2

1√
2jn

[
q1−1/2j − q1/2j

]
+

1

4

∞∑
j=logn−2

1

2j
[
q1−1/2j − q1/2j

]
≥ 1

4

logn−1∑
j=2

1√
2jn

[
q1−1/2j − q1/2j

]
+

1

4

∞∑
j=logn

1

2j
[
q1−1/2j − q1/2j

]
,
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where the last inequality is by pulling the first two terms from the summation in second term to the
summation in the first term, and using the fact that for j = log n − 2, j = log n − 1, we have that
1

4·2j ≥ 1
2
√
2

1√
2jn

Proof of Lemma E.12. We first state a theorem of Bobkov and Ledoux [BL19].

Theorem J.1 (Theorem 3.5, [BL19]). There is an absolute constant c > 0, such that for all distri-
butions P over R, for every n ≥ 1,

c(An +Bn) ≤ E[W(P, P̂n] ≤ An +Bn.

where
An = 2

∫
F (t)[1−F (t)]≤ 1

4n

F (t)[1− F (t)]dt,

and
Bn =

1√
n

∫
F (t)[1−F (t)]≥ 1

4n

√
F (t)[1− F (t)]dt.

Now, we are ready to prove the main theorem. Fix natural number i ≥ 2. Restricted to t ≤
q1/2, FP (t)(1 − FP (t)) is an increasing function, and hence for t ∈ [q1/2i , q1/2i−1 ], we have that
FP (t)(1− FP (t)) ≤ 1

2i−1 [1− 1
2i−1 ].

Similarly, restricted to t > q1/2, FP (t)(1 − FP (t)) is a decreasing function, and hence for t ∈
[1− q1/2i−1 , q1−1/2i ], we have that FP (t)(1− FP (t)) ≤ 1

2i−1 [1− 1
2i−1 ].

Using this, we can now upper bound the expected Wasserstein distance between P and its empirical
distribution using Theorem J.1. Hence, we upper bound the terms Bn and An. We start by upper
bounding Bn. Note that for all t ̸∈ [q 1

4n
, q1− 1

4n
], we have that FP (t)(1− FP (t)) ≤ 1

4n . Hence,

Bn =
1√
n

∫
FP (t)[1−FP (t)]≥ 1

4n

√
FP (t)[1− FP (t)]dt

≤ 1√
n

∫ q
1− 1

4n

q 1
4n

√
FP (t)[1− FP (t)]dt

≤
log 4n∑
i=2

1√
n

[∫ q1/2i−1

q1/2i

√
FP (t)[1− FP (t)]dt+

∫ q1−1/2i

q1−1/2i−1

√
FP (t)[1− FP (t)]dt

]

≤
log 4n∑
i=2

1√
n

∫ q1/2i−1

q1/2i

√
1

2i−1

[
1− 1

2i−1

]
dt+

∫ q1−1/2i

q1−1/2i−1

√
1

2i−1

[
1− 1

2i−1

]
dt

=

log 4n∑
i=2

1√
n

√
1

2i−1

[
1− 1

2i−1

] [
q1/2i−1 − q1/2i + q1−1/2i − q1−1/2i−1

]
≤

log 4n∑
i=2

2√
2in

[
q1−1/2i − q1/2i

]
=

logn−1∑
i=2

2√
2in

[
q1−1/2i − q1/2i

]
+

log 4n∑
i=logn

2√
2in

[
q1−1/2i − q1/2i

]
≤

logn−1∑
i=2

2√
2in

[
q1−1/2i − q1/2i

]
+

log 4n∑
i=logn

4

2i
[
q1−1/2i − q1/2i

]
,

where the last inequality is because for i ≤ log(4n), we have that 1
n ≤ 4

2i .

Next, we bound An. Note that for all t ≥ q1/2n and for all t ≤ q1− 1
2n

, we have that FP (t)(1 −
FP (t)) ̸≤ 1

4n . Hence,
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An = 2

∫
FP (t)[1−FP (t)]≤ 1

4n

FP (t)[1− FP (t)]dt

≤ 2

∫ q 1
2n

−∞
FP (t)[1− FP (t)]dt+

∫ ∞

q
1− 1

2n

FP (t)[1− FP (t)]dt


=

∞∑
i=1+log 2n

2

[∫ q1/2i−1

q1/2i

FP (t)[1− FP (t)]dt+

∫ q1−1/2i

q1−1/2i−1

FP (t)[1− FP (t)]dt

]

≤
∞∑

i=1+log 2n

2

[∫ q1/2i−1

q1/2i

1

2i−1

[
1− 1

2i−1

]
dt+

∫ q1−1/2i

q1−1/2i−1

1

2i−1

[
1− 1

2i−1

]
dt

]

=

∞∑
i=1+log 2n

2

2i−1

[
1− 1

2i−1

] [
q1/2i−1 − q1/2i + q1−1/2i − q1−1/2i−1

]
≤

∞∑
i=1+log 2n

4

2i
[
q1−1/2i − q1/2i

]
Then, using the upper bound in Theorem J.1, substituting in the bounds for An and Bn, and simpli-
fying, we get the claim.

Proof of Claim E.13. By the definition of Wasserstein distance and restrictions of distributions, we
have that

W(P̂n|q 1
k
,q

1− 1
k

, P |q 1
k
,q

1− 1
k

) =

∫ b

a

∣∣∣∣FP̂n|q 1
k

,q
1− 1

k

(t)− FP |q 1
k

,q
1− 1

k

(t)

∣∣∣∣ dt
=

∫ q
1− 1

k

q 1
k

∣∣∣∣FP̂n|q 1
k

,q
1− 1

k

(t)− FP |q 1
k

,q
1− 1

k

(t)

∣∣∣∣ dt
=

∫ q
1− 1

k

q 1
k

∣∣∣FP̂n
(t)− FP (t)

∣∣∣ dt ≤ W(P, P̂n)

J.3 Omitted Proofs in Section E.2

Before going into the proofs, we state the standard Chernoff concentration bound that we will use
multiple times.

Theorem J.2 (Binomial Concentration). Let X ∼ Bin(n, p) with expectation µ = np, and 0 <
δ < 1. Then,

Pr(|X − µ| ≥ δµ) ≤ 2e
−δ2µ

3 .

Proof of Lemma E.16.

W(P, PDP ) =

∫
t

|FP (t)− FPDP (t)|dt (13)

≤
∫ q1/k

t=a

|FP (t)− FPDP (t)|dt+
∫ q1−1/k

t=q1/k

|FP (t)− FPDP (t)|dt+
∫ b

t=q1−1/k

|FP (t)− FPDP (t)|dt

(14)

Note that for all t ∈ [q1/k, q1−1/k], we have that the cumulative distribution functions of P and its
restricted version are identical and likewise for PDP . Additionally, the cumulative density functions
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for the restricted versions of the two distributions are identical to each other outside of this interval.
Hence, we can simplify the middle term in the RHS of the inequality above as follows:∫ q1−1/k(P )

t=q1/k

|FP (t)− FPDP (t)|dt = W(P |q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

)

Next, we reason about the remaining terms.

Consider the term
∫ q1/k
t=a

|FP (t)− FPDP (t)|dt. First, condition on the event in Theorem I.3 (on the
accuracy of the private quantiles for the empirical distribution), which tells us that with probability
at least 1− β, we have for all r ∈ [k], that

q̂ 2r−1
2k − 1

4k
≤ q̃ 2r−1

2k
≤ q̂ 2r−1

2k + 1
4k
, (15)

which implies in particular that q̂1/4k ≤ q̃1/2k ≤ q̂3/4k.

Next, we argue that q̂1/4k ≥ q1/8k with high probability. By the definition of quantiles, we have
that Pry∼P (y < q1/8k) < 1

8k . The number of entries in the dataset x less than q1/8k is hence a
Binomial with mean less than n

8k , and hence, we have by Theorem J.2 (with δ set to 0.9) that with
probability at least 1− β, the number of entries in the dataset less than q1/8k is at most 1.9 n

8k < n
4k ,

which means the total mass less than q 1
8k

in the empirical distribution is less than 1
4k . This implies

that q̂1/4k ≥ q1/8k by the definition of quantiles.

Additionally, note that for all t < q1/k, FP (t) < 1
k . The number of entries in the dataset x that

are less than q1/k is hence a Binomial with success probability less than 1
k . By Theorem J.2, we

can again argue that with probability at least 1 − β, there is a constant c′ such that the total mass
of the empirical distribution on values less than q1/k is less than c′

k . Hence, q1/k ≤ q̂c′/k. This
implies by Equation 15, that q1/k ≤ q̃c/k for some constant c. Hence, for all t < q1/k, we have that
FPDP (t) ≤ c

k .

Hence, taking a union bound, with probability at least 1−O(β),∫ q1/k

t=a

|FP (t)− FPDP (t)|dt =
∫ q̃1/2k

t=a

|FP (t)− FPDP (t)|dt+
∫ q1/k

q̃1/2k

|FP (t)− FPDP (t)|dt

≤
∫ q̃1/2k

t=a

|FP (t)− FP |q 1
k

,q
1− 1

k

(t)|dt+
∫ q1/k

q1/8k

|FP (t)−
c

k
|dt

≤
∫ q̃1/2k

t=a

|FP (x)− FP |q 1
k

,q
1− 1

k

(t)|dt+
∫ q1/k

q1/8k

|FP (t)− 8cFP (t)|dt

≤ (1− 8c)

[∫ q̃1/2k

t=a

|FP (t)− FP |q 1
k

,q
1− 1

k

(t)|dt+
∫ q1/k

q1/8k

|FP (t)|dt

]

≤ (1− 8c)

[∫ q̃1/2k

t=a

|FP (t)− FP |q 1
k

,q
1− 1

k

(t)|dt+
∫ q1/k

q1/8k

|FP (t)− FP |q 1
k

,q
1− 1

k

(t)|dt

]
≤ 2(1− 8c)W(P, P |q 1

k
,q

1− 1
k

)

By a symmetric argument, we also have that with probability at least 1−O(β),∫ b

t=q1−1/k

|FP (t)− FPDP (t)|dt ≤ 2(1− 8c)W(P, P |q 1
k
,q

1− 1
k

).

Taking a union bound to ensure that all terms in Equation 14 are bounded as required, the proof is
complete.

Proof of Lemma E.17. First, we condition on the event in Corollary I.3 (on the accuracy of differ-
entially private quantile estimates) that for all r ∈ [k],

q̂ 2r−1
2k − 1

4k
≤ q̃r ≤ q̂ 2r−1

2k + 1
4k
,
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note that this event happens with probability at least 1− β over the randomness of the algorithm.

Observe that this implies that FDP increases by 1
k somewhere in the range [q̂ 2r−1

2k − 1
4k
, q̂ 2r−1

2k + 1
4k
]

(for all r ∈ [k]) and remains constant outside these intervals.

Now, we show that for all t ∈ [a, b], we have that |FPDP (t)− FP̂n
(t)| ≤ 2

k .

If there exists t ∈ [a, q̂ 1
4k
), we have that FPDP

(t) = 0, and FP̂n
(t) ≤ 1

4k , which implies that
|FDP (t)−FP̂n

(t)| ≤ 1
4k . If there exists no such t, then we have that a = q̂ 1

4k
, and the corresponding

interval collapses to a single point (which will fall in another interval considered below).

Next, fix any r ∈ [k − 1]. Note that if there exists t ∈ [q̂ 2r−1
2k − 1

4k
, q̂ 2r+1

2k − 1
4k
), we have for all such

t that r−1
k ≤ FDP (t) <

r
k , and 2r−1

2k − 1
4k ≤ FP̂n

(t) ≤ 2r+1
2k + 1

4k . This implies that for all such
t, |FDP (t) − FP̂n

(t)| ≤ 2
k . If there exists no such t, then we have that q̂ 2r−1

2k − 1
4k

= q̂ 2r+1
2k − 1

4k
, and

this r is not relevant since the corresponding interval collapses to a single point (that is considered
in another interval).

Finally, for t ∈ [q̂ 2k−1
2k

, b], we have that FPDP
(t) ≥ 1 − 1

k , and FP̂n
(t) ≥ 1 − 1

2k , so we have that
|FDP (t)− FP̂n

(t)| ≤ 1
k .

Note that every t ∈ [a, b] is considered in some interval above and hence we have shown that for all
t ∈ [a, b], we have that |FPDP (t)− FP̂n

(t)| ≤ 2
k .

Finally, using the formula for Wasserstein distance (and the definition of a restriction), we have that

W(P̂n|q 1
k
,q

1− 1
k

, PDP |q 1
k
,q

1− 1
k

) =

∫ b

a

∣∣∣∣FP̂n|q 1
k

,q
1− 1

k

(t)− FPDP |q 1
k

,q
1− 1

k

(t)

∣∣∣∣ dt (16)

=

∫ q
1− 1

k

q 1
k

|FP (t)− FPDP (t)| dt (17)

≤
∫ q

1− 1
k

q 1
k

2

k
dt (18)

≤ 2

k

(
q1−1/k − q1/k

)
(19)

Before the proof of Claim E.18, we state the following variance-dependent version of the DKW
inequality that uniformly bounds the absolute difference in CDFs between the true and empirical
distribution.
Theorem J.3 (See for example Theorem 1.2 in [BM23]). Fix n > 0. There are absolute constants
c0, c1 such that for all ∆ ≥ c0 log logn

n ,

Pr

[
sup

t:FP (t)(1−FP (t))≥∆

∣∣∣FP (t)− FP̂n
(t)
∣∣∣ ≥√∆ · F (t)(1− F (t)

]
≤ 2e−c1∆n

We also state the following lemma on Binomial random variables, which is a simple consequence
of a Lemma by Bobkov and Ledoux [BL19].
Lemma J.4 (Lemma 3.8 in [BL19]). Let Sn =

∑n
i=1 ηi be the sum of n independent Bernoulli

random variables with Pr[ηi = 1] = p and Pr[ηi = 0] = q = 1 − p (for all i). Also assume
p ∈ [ 1n , 1−

1
n ]. Then, for some sufficiently small constant c,

c
√
npq ≤ E[|Sn − np|] ≤ √

npq

Proof of Claim E.18. Now, by the formula for Wasserstein distance, the definition of restriction, and
Fubini’s theorem, we have that

E[W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)] = E
[ ∫ q

1− 1
k

q 1
k

∣∣∣FP (t)− FP̂n
(t)
∣∣∣dt] = ∫ q

1− 1
k

q 1
k

E
[∣∣∣FP (t)− FP̂n

(t)
∣∣∣]dt
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By Lemma J.4, using the fact that FP̂n
(t) =

∑n
i=1 1[xi ≤ t], where each term in the sum is an

independent Bernoulli random variable with expectation FP (t), with q 1
k
≤ t < q1− 1

k
(ensuring that

the conditions of the lemma are met), we get that E
[∣∣∣FP (t)−FP̂n

(t)
∣∣∣] ≥ c

√
FP (t)[1−FP (t)]

n , which
gives

E[W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)] ≥ c

∫ q
1− 1

k

q 1
k

√
FP (t)[1− FP (t)]

n
dt

Now, consider the random variable W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

). Note that 1
k ≥ c3 log n

β

n (for an
appropriately chosen c3), and so we are in the regime where we can apply Theorem J.3 for an
appropriately chosen ∆.

In particular, we have that for t ∈ [q 1
k
, q1− 1

k
), FP (t) ∈ [ 1k , 1−

1
k ).

Setting ∆ =
log n

β

c1n
, we have that ∆ ≥ c0

log logn
n , and ∆ ≤ 1

2k (the second inequality for sufficiently
large c3). In particular, this implies for t ∈ [q 1

k
, q1− 1

k
), FP (t) ∈ [2∆, 1 − 2∆), which implies that

FP (t)(1− FP (t)) ≥ ∆, as long as n > c4 log
n
β for some sufficiently large constant c4.

Now, using Theorem J.3, we have that with probability at least 1− 2e−c1
log n

β
c1n n ≥ 1−O(β),

sup
t∈[q 1

k
,q

1− 1
k
)

∣∣∣FP (t)− FP̂n
(t)
∣∣∣ ≤

√
log n

β

c1n
FP (t)(1− FP (t))

Condition on this for the rest of the proof. Then, we can write the following set of equations.

W(P |q 1
k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

) =

∫ q
1− 1

k

q 1
k

|FP (t)− FP̂n
(t)|dt

≤
∫ q

1− 1
k

q 1
k

√
log n

β

c1n
FP (t)(1− FP (t))dt

≤
√
c5 log

n

β

∫ q
1− 1

k

q 1
k

√
FP (t)(1− FP (t))

n
dt

≤
√
c6 log

n

β
E[W(P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

)]

as required.

J.4 Local Minimality in the One-Dimensional Setting

In this subsection, we argue that the instance-optimal algorithm discussed in Section E.2 is also
locally-minimal (See Appendix B.2 for a discussion of local minimality).

First, we state a corollary of our upper bound for continuous distributions, Theorem E.14. This
corollary follows by discretizing the distribution and applying the previous upper bound to the dis-
cretized distribution. The parameters of the discretized distribution are related to that of the original
distribution via simple coupling arguments.
Corollary J.5. Fix ε, β ∈ (0, 1], a, b ∈ R, n ∈ N. Let P be any continuous distribution supported

on [a, b]. Consider any γ < b − a ∈ R (such that γ divides b − a), and let n > c2
log4 b−a

γβε

ε for
some sufficiently large constant c2. Then, there exists an algorithm, that when given inputs x ∼ Pn,
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privacy parameter ε, interval end points a, b, granularity γ, and access to algorithm Aquant, outputs
a distribution PDP such that with probability at least 1 − O(β) over the randomness of x and the
algorithm,

W(P, PDP ) = O

(√
log nE

[
W(P |q 1

k
,q

1− 1
k

, P̂n|q 1
k
,q

1− 1
k

]
+W(P, P |q 1

k
,q

1− 1
k

) +
1

k

(
q1−1/k − q1/k

))
+γ

where P̂n is the uniform distribution on x, qα represents the α-quantile of distribution P , and
k = ⌈ εn

4c3 log3 b−a
βγ log n

β

⌉, where c3 is a sufficiently large constant.

We state a lemma of Ledoux and Bobkov that we will use in the main proof of this section.

Lemma J.6 (Lemma 3.8 in [BL19]). Let Sn =
∑n

i=1 ηi be the sum of n independent Bernoulli
random variables with Pr[ηi = 1] = p and Pr[ηi = 0] = q = 1 − p (for all i). Then, for some
sufficiently small constant c,

cmin{2npq,√npq} ≤ E[|Sn − np|] ≤ min{2npq,√npq}

Now, we are ready to state and prove the local minimality result. Note that the statement will
reference the rates defined by Equation 1 in the introduction.

Theorem J.7. Let a, b ∈ R, γ ∈ R. For any continuous distribution P over [a, b] with a density,

let N(P ) = {Q : D∞(P,Q) ≤ log 2}. Fix β, γ, ε ∈ (0, 1], and let n = Ω

(
log4 b−a

γε

ε

)
, with

n′ = n
c7 logn log3 b−a

γε

for some constant c7. There exists an algorithm A such that for all continuous

distributions P , for all algorithms A′, there exists a distribution Q ∈ N(P ) such that

RA,n(Q) ≤ O(polylog n) ·max{RA′,⌈n′⌉(Q), RA′,⌊n′/4⌋(Q)}+ γ,

Proof. Let k = ⌈ εn
4c3 log3 b−a

βγ log n
β

⌉, and set n′ = 2n
c4 log3 b−a

βγ log n
β

for a sufficiently large constant c4.

Then, by Corollary J.5 with appropriately chosen β we have that with probability at least 0.95, for
any distribution Q (and hence particularly any distribution Q ∈ N(P ),

W(Q,A(Q̂n) = O

(
1

εn′

(
q1− 2

Cεn′
(Q)− q 2

Cεn′
(Q)
)
+W(Q,Q|q 2

Cεn′ (Q)
,q

1− 2
Cεn′

(Q))

+
√
log nE

[
W
(
Q|q 2

Cεn′
(Q),q

1− 2
Cεn′

(Q), Q̂n|q 2
Cεn′

(Q),q
1− 2

Cεn′
(Q)

)])
+ γ,

where C is the constant referenced in Theorem E.3. We will show that for distribution P , each of
the corresponding distribution-dependent terms is closely related to the terms for Q.

First, consider 1
εn′

(
q1− 2

Cεn′
(Q)− q 2

Cεn′
(Q)
)

. Firstly, note that for all α ∈ (0, 1), qα(P ) ≥
qα/2(Q), and qα(P ) ≤ q2α(Q), since D∞(P,Q) ≤ ln 2, which implies that 1

2FQ(t) ≤ FP (t) ≤
2FQ(t) for all t ∈ R. Similarly, note that for all α ∈ (0, 1), q1−α(P ) ≥ q1−2α(Q), and
q1−α(P ) ≤ q1− 1

2 ·α
(Q). Hence, we have that

1

εn′

(
q1− 2

Cεn′
(Q)− q 2

Cεn′
(Q)
)
≤ 1

εn′

(
q1− 1

Cεn′
(P )− q 1

Cεn′
(P )
)
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Next, consider W(P, P |q 1
Cεn

(P ),q
1− 1

Cεn
(P )). Recall that q 1

Cεn
(P ) ≤ q 2

Cεn
(Q), and q1− 1

Cεn
(P ) ≥

q1− 2
Cεn

(Q). Then, (noting that L(P ) = L(Q) and q1(P ) = q1(Q)), we have that

W(Q,Q|q 2
Cεn′

(Q),q
1− 2

Cεn′
(Q)) =

∫ q 2
Cεn′

(Q)

L(Q)

FQ(t)dt+

∫ q1(Q)

q
1− 2

Cεn′
(Q)

|1− FQ(t)|dt

≤ 2

∫ q 2
Cεn′

(Q)

L(Q)

FP (t)dt+ 2

∫ q1(Q)

q
1− 1

Cεn′
(Q)

|1− FP (t)|dt

≤ 2

∫ q 4
Cεn′

(P )

L(P )

FP (t)dt+ 2

∫ q1(P )

q
1− 1

4Cεn′
(P )

|1− FP (t)|dt

= 2W(P, P |q 4
Cεn′

(P ),q
1− 4

Cεn
(P ))

Finally, consider 1√
logn

E
[
W(P |q 1

Cεn
(P )

,q
1− 1

Cεn
(P ), P̂n|q 1

Cεn
(P )

,q
1− 1

Cεn
(P ))

]
. By Fubini’s theorem

and applying both inequalities in Lemma J.6, we have that

E
[
W(Q|q 2

Cεn′ (Q)
,q

1− 2
Cεn′

(Q), Q̂n|q 2
Cεn′ (Q)

,q
1− 2

Cεn′
(Q))

]
=

∫ q
1− 2

Cεn′
(Q)

q 2
Cεn′ (Q)

E[|FQ(t)− FQ̂n
(t)|]dt

≤
∫ q

1− 1
Cεn′

(P )

q 1
Cεn′ (P )

E[|FQ(t)− FQ̂n
(t)|]dt

≤
∫ q

1− 1
Cεn′

(P )

q 1
Cεn′ (P )

min

{
2FQ(t)[1− FQ(t)],

√
FQ(t)[1− FQ(t)]

n

}
dt

≤
∫ q

1− 1
Cεn′
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q 1
Cεn′ (P )
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{
8FP (t)[1− FP (t)], 2

√
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n

}
dt

≤
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dt
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∫ q
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E[|FP (t)− FP̂⌈n′⌉
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[
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,

where c5 is a sufficiently large constant and the fourth inequality holds since ⌈n′⌉ ≤ n.

By the above observations connecting the distribution-dependent terms with the corresponding terms
for P , we have that for all Q, with probability at least 0.95,

W(Q,A(Q̂n) = O

(
1

εn′

(
q1− 1

Cεn′
(P )− q 1

Cεn′
(P )
)
+W(P, P |q 4

Cεn′ (P )
,q

1− 4
Cεn′

(P ))

+
√
log nE

[
W
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(P ),q
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Cεn′
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Cεn′
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)])
+ γ

= O(log n)

(
1

ε⌈n′⌉

(
q1− 1

Cε⌈n′⌉
(P )− q 1

Cε⌈n′⌉
(P )
)
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(20)

+
1√
log n
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W
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+ γ
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Now, we proceed with the analysis in two cases. Firstly, consider the case when the first and third
terms inside the bracket on the RHS of equation 20 are larger than the second term inside the bracket.
Then, we have that for all Q, with probability at least 0.95,

W(Q,A(Q̂n) = O(log n)

(
1

ε⌈n′⌉

(
q1− 1

Cε⌈n′⌉
(P )− q 1

Cε⌈n′⌉
(P )
)

+
1√
log n

E
[
W
(
P |q 1

Cε⌈n′⌉
(P ),q

1− 1
Cε⌈n′⌉

(P ), P̂⌈n′⌉|q 1
Cε⌈n′⌉

(P ),q
1− 1

Cε⌈n′⌉
(P )

)])
+ γ

By Theorem E.3 and the fact that n′ < n, for all algorithms A′, there exists a distribution Q ∈ N(P )
such that ,

RQ(A′, ⌈n′⌉) = Ω

(
1

ε⌈n′⌉

(
q1− 1

Cε⌈n′⌉
(P )− q 1

Cε⌈n′⌉
(P )
)

+
1√
log n

E
[
W
(
P |q 1

Cε⌈n′⌉
(P ),q

1− 1
Cε⌈n′⌉

(P ), P̂⌈n′⌉|q 1
Cε⌈n′⌉

(P ),q
1− 1

Cε⌈n′⌉
(P )

)])
.

Hence, for all algorithms A′ and the corresponding distribution Q, with probability at least 0.95,

W(Q,A(Q̂n) ≤ O(log n)RQ(A
′, ⌈n′⌉) + γ.

Next, consider the case where the first and third terms inside the bracket on the RHS of equation 20
are smaller than the second term inside the bracket. Then, we have that for all Q, with probability at
least 0.95,

W(Q,A(Q̂n) = O(log n)W(P, P |q 1
Cε⌊n′/4⌋ (P )

,q
1− 1

Cε⌊n′/4⌋
(P )) + γ.

By Theorem E.3, for all algorithms A′, there exists a distribution Q ∈ N(P ) such that

RQ(A′, ⌊n′/4⌋) = Ω

(
W(P, P |q 1

Cε⌊n′/4⌋ (P )
,q

1− 1
Cε⌊n′/4⌋

(P ))

)
.

Hence, we have that for all algorithms A′ and for the corresponding distribution Q, with probability
at least 0.95,

W(Q,A(Q̂n) = O(log n)RQ(A′, ⌊n′/4⌋) + γ,

as required. This completes the proof.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [TODO]The abstract and introduction clearly explain the main claims of the
paper; the informal theorems provided in ‘Our Results’ section of the introduction make
these explicit.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]We explain where our bounds are suboptimal, for example in the
case of high dimensional distributions over Rd, we explain how our bounds improve over
previous work but still involve significant overhead. As we indicate in both our theorem
statements and the discussion in the introduction, we achieve instance optimality upto poly-
logarithmic factors, and getting rid of these is an open question we leave for future work.)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [TODO]The informal theorems provided in the introduction give simplified
versions of our main results (and explain the high level techniques used to obtain them). In
the supplementary material, we discuss these results in more generality and give complete
proofs of these results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [TODO]Experimental contributions are not a main focus of this work since
they have been extensively addressed in previous work, as discussed in the introduction
and related work sections. For the experiment we do, we give a detailed description of
the distribution used, the methods we compare to and appropriate parameters (along with
citations)- the experiment can be reproduced with this information.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: [TODO]Our experiment is not a main contribution of our work (we are fo-
cused on theoretical bounds) and simply shows how different instance optimal and worst-
case bounds can be. We provide the distribution we use precisely, which corresponds to the
exact data we use. We also explain the method and hyperparameters we use, but don’t re-
lease the code- however, the complete descriptions of the algorithms are publicly available
in previous work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [TODO]As described in the experiment details section in the appendix, we
give all the details necessary to understand the experiment and its results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: [TODO] The experiment is not the focus of our paper (rather, we are focused
on theoretical analysis) and is just used to demonstrate one drawback of worst case bounds
(which we also discuss theoretically) - hence, we don’t comment on statistical significance
in detail.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]We do not explicitly address this since the experiment can be per-
formed on essentially any laptop since it is simple (both time and memory efficient) and
does not require any significant compute.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]We have reviewed the code of ethics in detail- both societal impact
guidelines and impact-mitigation measures and are confident that our paper conforms to
the code of ethics in every respect.
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: [TODO]Our paper is motivated by theoretically explaining the performance
of differentially private algorithms. As touched upon in the introduction, differential pri-
vacy is important because estimation is frequently done on sensitive data and so developing
methods to better understand the privacy-utility tradeoff is societally valuable. We don’t
anticipate any negative societal effects from this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

69



• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: [TODO]In the experiment conducted, we cite the subroutine we use in an-
other paper, as well as the method from another paper we compare to. We however imple-
ment them ourselves and so official licenses are not needed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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