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Abstract

Iterative refinement has emerged as an effective paradigm for enhancing the
capabilities of large language models (LLMs) on complex tasks. However, existing
approaches typically implement iterative refinement at the application or prompting
level, relying on autoregressive (AR) modeling. The sequential token generation in
AR models can lead to high inference latency. To overcome these challenges, we
propose Context-Wise Order-Agnostic Language Modeling (COrAL), which incor-
porates iterative refinement directly into the LLM architecture while maintaining
computational efficiency. Our approach models multiple token dependencies within
manageable context windows, enabling the model to perform iterative refinement
internally during the generation process. Leveraging the order-agnostic nature of
COrAL, we introduce sliding blockwise order-agnostic decoding, which performs
multi-token forward prediction and backward reconstruction within context win-
dows. This allows the model to iteratively refine its outputs in parallel in the sliding
block, effectively capturing diverse dependencies without the high inference cost
of sequential generation. Our findings reveal a quality–speed trade-off, elucidating
how COrAL effectively augments the self-enhancement capabilities of conventional
autoregressive models without necessitating additional architectural components
or extensive pre-training. This work underscores the promise of order-agnostic
modeling in advancing LLMs for more efficient and effective natural language
processing. Our code is publicly available at https://github.com/YuxiXie/COrAL.

1 Introduction

0 10 20 30 40 50 60
Minimum Refinement Times

68

70

72

74

76

Ac
cu

ra
cy

 (
%

)

64

128

Co
st

 (
#

 F
or

w
ar

d 
Pa

ss
es

)

Forward Only
Forward + Backward (k = 4)
Forward + Backward (k = 8)

Figure 1: Scaling of performance and inference
cost on GSM8K with increasing the minimum
refinement times for each output position. k
represents the backward context window size.
We set the decoding block size as b = 64.

Large language models (LLMs) have recently
achieved remarkable success across a wide range
of tasks.Strategies that enable LLMs to learn from
previous mistakes and iteratively refine their out-
puts have been particularly effective, achieving
human-level performance and transforming both
academic research and industrial applications (Pan
et al., 2024; OpenAI, 2024). These iterative re-
finement approaches incorporate feedback—either
external or internal—as supervision signals during
training (Lightman et al., 2024; Xie et al., 2024),
or by developing prompting frameworks that guide
the model toward improved generations through
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Figure 2: Sliding Blockwise Order-Agnostic Decoding. COrAL performs multi-token prediction
and refinement in the sliding block with context window size k =3 and block size b=6.

methods like guided search or self-refine (Yao et al., 2023; Madaan et al., 2023). Despite their
effectiveness, these approaches predominantly rely on autoregressive (AR) LLMs, which generate
text by predicting the next token in a fixed left-to-right order using causally masked Transform-
ers (Radford, 2018). This sequential generation process inherently limits the model’s ability to capture
dependencies spanning beyond the immediate next token, especially those that require backward
context (Hu et al., 2024). Moreover, the sequential nature of AR models leads to high inference
latency, resulting in computational inefficiency for long sequences (Cai et al., 2024).

To address these limitations, researchers have explored order-agnostic architectures that enhance
representation learning and accelerate inference. Previous studies mainly focus on two solutions:
permutation-based AR and non-autoregressive (NAR) modeling, but each has its own strengths and
limitations. For instance, permutation-based models propose diversity-enhanced pretraining objec-
tives that predict multiple subsequent tokens in various orders to capture richer dependencies (Yang
et al., 2019; Zhang et al., 2024). Similarly, NAR models generate tokens in parallel, significantly
reducing inference time (Gu et al., 2018). However, conventional NAR models often struggle with
tasks involving variable-length generation and complex token dependencies, leading to degraded
text quality. Given the trade-offs among different models2, a pivotal question arises: Can we unify
the strengths of denoising techniques with order-agnostic modeling to enhance the capabilities of
AR-LLMs while mitigating their respective limitations?

In this work, we propose Context-Wise Order-Agnostic Language Modeling (COrAL), which
combines the advantages of AR and order-agnostic modeling. COrAL models token dependencies
within manageable context windows, effectively balancing the capture of both local and long-range
dependencies with computational efficiency. Through context-wise modeling, COrAL overcomes
the limitations of fixed-order generation in AR models and the dependency modeling challenges in
NAR models. As shown in Figure 1, this strategy enables the model to perform iterative refinement
internally to scale up inference performance. We conduct preliminary experiments on reasoning and
code generation tasks to explore the effectiveness and breadth of COrAL.

2 Context-Wise Order-Agnostic Language Modeling

We present Context-Wise Order-Agnostic Language Modeling, a generalized AR framework that
captures conditional textual distributions based on various orders in context windows.

2.1 Objective: Context-Wise Order-Agnostic Autoregressive Modeling

To address the limitations in AR language modeling, we propose Context-Wise Order-Agnostic Lan-
guage Modeling (COrAL), unifying token-level dependency modeling and sequence-level denoising
to advance the capabilities of current LLMs. Previous order-agnostic modeling works attempt to
capture various factorization orders involving long dependencies that are difficult to fit. In contrast,
COrAL learns the orderless relationships within predetermined context windows. Built on the AR
foundation, COrAL leverages the superior capability of sequential language modeling in LLMs.

2We make conceptual comparison among different model architectures in Appendix A.
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COrAL tackles the problem of generative language modeling by combining forward multi-token
prediction with backward denoising in a context-wise and order-agnostic framework. Denoting the
context window size as k3, we model the conditional probability distribution of each target token by
considering an ensemble of dependencies over all possible positions in the context:

log pθ(y | x) ≥
T∑

t=1

Ei∈[t−k,t+k]El≥0 log pθ(yt | y(l)
≤i,x) (1)

where y(l) represents an intermediate state of the target output sequence y during iterative refinement.
The conventional AR modeling, in comparison, becomes a specific case where only the forward
prediction with k=1, conditioned on previous tokens in the target sequence y, is modeled.

Forward Prediction and Backward Reconstruction. We decompose the order-agnostic objective
into forward prediction and backward reconstruction. In forward prediction, COrAL learns to
predict multiple future tokens simultaneously given past tokens in the ground-truth sequence. For
backward reconstruction, we randomly corrupt tokens in the input sequence to create the intermediate
states y(l) in Eq. 1. Similar to BERT (Devlin et al., 2019), we compute the loss only on the
corrupted tokens. During training, we use the original data for prediction and the corrupted data
for reconstruction. This decomposition disentangles the self-refinement capability from forward
prediction, leveraging all data points to enhance sequence modeling.

Corruption Strategy. Our corruption and reconstruction process is a form of denoising autoencod-
ing (Vincent et al., 2008) in language modeling. However, instead of representation learning, we aim
to endow the model with the self-refinement capability to revise the generated content. Inspired by
masked autoencoders (He et al., 2022), we divide the output sequence into non-overlapping patches
and randomly sample a subset for corruption. Each patch is a fragment of text containing one or
multiple consecutive tokens in the sequence. Specifically, we corrupt a patch by either (i) replacing it
with a random patch sampled from the current sequence or (ii) repeating the first token to replace the
other tokens in the patch. This design draws on insight from Ye et al. (2024) that model performance
can be significantly improved by simply enhancing consistency across steps.

2.2 Architecture: Target-Aware Query Representation for Self-Attention

We build our framework by adapting the standard architecture of LLMs using decoder-only Trans-
formers (Brown et al., 2020). Unlike prior NAR works employing encoder–decoder architectures (Lee
et al., 2018; Kasai et al., 2020), the conventional AR foundation predicts the same distribution given
the current context regardless of the target token position. While this demonstrates advanced capabil-
ities of sequence modeling and generation, the typical parameterization of next-token distribution
constrains its generalizability to the order-agnostic objective in Eq. 1.

Previous works on order-agnostic modeling have explored various ways to incorporate positional
information, including scaling up the dimensionality of the final projection layer (Stern et al., 2018)
and adding look-ahead tokens (Monea et al., 2023) or extra decoding heads (Cai et al., 2024;
Gloeckle et al., 2024). Despite their promising performance, these methods introduce the overhead
of additional self-attention network calls and new parameters for multi-position prediction. Instead,
we propose a seamless adjustment without adding extra model parameters. Specifically, we apply a
generalized Rotary Position Embedding (RoPE) (Su et al., 2024) at the final layer of the decoder-only
Transformers to integrate target-aware information into the query representations.

Target-Aware RoPE. RoPE encodes positional information into query and key representations,
ensuring that their inner product inherently contains relative position information in self-attention:
f(qm,m)⊤f(kn, n) = g(qm,kn,m−n), where f is the positional encoding function applied to the
query and key embeddings at m-th and n-th positions, respectively. Conventional RoPE integrates
positional information of the current token to form the query representation. While this effectively
enhances the position-aware representation of the input token in intermediate hidden states, it
introduces inherent misalignment with the target token position when using the learned representation
for output prediction. To avoid this problem, we propose Target-Aware RoPE (Figure 4), which

3Without loss of generality, we can set different context window sizes for forward prediction and backward
reconstruction in practice. Here, we present the objective with the same hyperparameter k to avoid clutter.
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Table 1: Result comparison of performance (accuracy %) and speed (accepted tokens per second) on
arithmetic reasoning tasks. We compare against the conventional autoregressive greedy decoding
approach as our next-token prediction baseline (NT). “verifier” and “multi-forward” represent the
verification stage and multiple forward token prediction in inference.

Approach GSM8K MATH

Accu. Speed Speedup Accu. Speed Speedup

NT 74.1 39.7 1.0× 21.8 38.7 1.0×
Ours 75.3↑1.2 43.4 1.1× 22.7↑0.9 44.4 1.1×
Ours w/o verifier 72.4↓1.7 156.8 3.9× 20.0↓1.8 139.7 3.6×
Ours w/o multi-forward 78.7↑4.6 14.9 − 24.3↑2.5 11.5 −

modifies the positional encoding function at the final layer by considering the target token position in
the query representation:

f(qm, µ)⊤f(kn, n) = g(qm,kn, µ− n), µ ∈ [m− k,m+ k] (2)

Here, µ represents the position index of the target token within the context window to be predicted.
The rationale behind this modification is that the position encoding in RoPE can adapt the representa-
tion of the current token to be tailored for the target position. This simple yet effective adjustment
endows the model with the target-aware capability, allowing it to predict tokens at various positions
without the overhead of additional entire network calls.

2.3 Sliding Blockwise Order-Agnostic Decoding

Leveraging the order-agnostic capabilities of COrAL, we propose Sliding Blockwise Order-Agnostic
Decoding, a parallel decoding strategy to enable efficient iterative refinement.

High inference latency significantly hinders the broader application of AR-LLMs. Recent studies
have tackled this bottleneck from various angles to accelerate inference. For instance, speculative
decoding employs a smaller, faster draft model to propose multiple continuations, which the larger
target model then verifies and accepts (Leviathan et al., 2023; Miao et al., 2024). Blockwise parallel
decoding directly leverages the large model to generate multiple tokens simutaneously (Stern et al.,
2018; Cai et al., 2024). However, these studies increase memory consumption, which thus limits
the scalability and impedes distributional deployment. Another promising line of work breaks the
sequential dependency by adopting Jacobi decoding (Santilli et al., 2023; Fu et al., 2024) for iterative
refinement without architectural add-ons. Kou et al. (2024) propose consistency LLMs to further
improve the performance of Jacobi decoding inspired by consistency models (Song et al., 2023).

While these existing approaches improve inference efficiency, they rely on the conventional left-to-
right AR foundation with monotonic dependencies. In this work, we leverage the order-agnostic
nature of COrAL to perform backward sequence-level refinement and forward multi-token prediction
simultaneously, significantly accelerating inference. At each step, we ensemble the output distri-
butions based on multiple possible dependencies and construct a candidate set to fill a block of
the output sequence. Furthermore, this process facilitates self-refinement by modifying previous
generations at a higher-level horizon, enhancing output quality with advanced inference capabilities.
We detail the ensemble strategy for candidate construction and verification in Appendix B.2.

3 Experiments

In this section, we demonstrate the efficiency and breadth of COrAL regarding the quality–speed
trade-offs across arithmetic, logical reasoning, and code generation. Details of Experimental Setup
can be found in Appendx C.

Arithmetic Reasoning. As shown in Table 1, COrAL enhances the effectiveness and efficiency
through different mechanisms in order-agnostic generation. By ablating the employment of veri-
fication and multiple forward token prediction in decoding, COrAL surpasses the corresponding
next-token baseline with comparable inference-time cost. Furthermore, by trading inference speed
with iterative generation and verification through backward refinement, we observe a substantial
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Table 2: Result comparison of performance and speed on logical reasoning tasks.

Approach LogiQA ReClor

Accu. Speed Speedup Accu. Speed Speedup

NT 55.1 33.6 1.0× 63.2 33.2 1.0×
Ours 58.2↑3.1 62.1 1.8× 62.7↓0.5 38.2 1.2×
Ours w/o verifier 55.7↑0.6 99.1 2.9× 61.6↓1.6 72.0 2.2×
Ours w/o multi-forward 59.1↑4.0 8.9 − 64.7↑1.5 11.3 −

Table 3: Result comparison of pass rates and
speed on code generation.

Approach HumanEval

Pass@1 Speed Speedup

NT 64.6 42.2 1.0×
Ours 13.0↓51.6 45.8 1.1×
Ours w/o verifier 6.5↓58.1 119.0 2.8×
Ours w/o multi-forward 61.6↓3.0 28.8 −
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Figure 3: Meso-analysis of error cases in code
generation (Ours w/o verifier) on HumanEval. The
primary failure cases come from syntax errors.

improvement in accuracy from 74.1% and 21.8% to 78.7% and 24.3% on GSM8K and MATH,
respectively. When skipping the verification stage for quality control, our approach significantly
speeds up the decoding process up to 3.9×. This demonstrates the flexibility of COrAL in enhancing
both the generation quality and inference speed in mathematical reasoning.

Logical Reasoning. Table 2 compares the performance and generation speed of model outputs under
different decoding settings on logical reasoning tasks. Similarly, COrAL improves the reasoning
performance by augmenting next-token prediction exclusively with backward refinement. However,
we observe a discrepancy in the performance improvements on LogiQA and ReClor with absolute
increases of 4.0% and 1.5% in corresponding accuracies. We attribute this gap to the imbalanced
proportions of the two tasks in our SFT data from LogiCoT (Liu et al., 2023b). This also implies
the importance of high-quality data selection to boost the effect of order-agnostic training to model
different dependencies related to the target tasks.

Code Generation. Results on code generation, however, show an opposite effect of order-agnostic
modeling on performance. In Table 3, we observe substantial performance drops across different
decoding settings using COrAL. For example, without verification, the pass rate on HumanEval
decreases to 6.5% from 64.6% of next-token prediction. This gap remains to be large when applying
verification for quality control. Error analysis in Figure 3 indicates that the major cause of this drop
comes from the erroneous syntax, where the primary error type, Invalid Syntax, accounts for 70.1%
of the failure cases. To mitigate this issue, we can turn off the mechanism of forward multi-token
prediction and increase the threshold ϵ in Eq. 6 to reject tokens with low confidence scores. For
example, with ϵ = 0.5, COrAL achieves a comparable pass rate of 61.6% compared to 64.6% of the
baseline. The absolute decrease of 3.0% indicates the deficiency of COrAL in producing incoherent
content, showing the importance of specific designs for tasks requiring strict textual formats.

4 Discussion and Conclusion

By unifying denoising with context-wise order-agnostic language modeling and introducing target-
aware positional encoding, COrAL incorporates iterative refinement directly into the language
generation process while keeping inference costs low. This approach offers a promising direction for
developing more efficient and capable large language models by effectively capturing local depen-
dencies within context windows and reducing inference latency. The effectiveness and efficiency of
COrAL underscores the promise of order-agnostic strategies as a generalized architecture to facilitate
generative language modeling and text generation. Specifically, it suggests new opportunities to unify:
(i) the sequence modeling and varying-length generation abilities of autoregressive modeling, (ii) the
multi-dependency modeling and multi-token prediction mechanisms in order-agnostic modeling, and
(iii) the efficient way of iterative refinement in denoising techniques.
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Figure 4: Context-Wise Order-Agnostic Language Modeling. We visualize the order-agnostic
dependencies within a context window size k = 2. For target-aware position encoding, we show how
COrAL obtains query representations for multiple positions within a context window size k = 2.

Limitations

Order-agnostic language modeling can struggle with tasks that demand specific output formats or
syntax due to inconsistencies in the multi-token predictions. On the one hand, this indicates the
importance of task-specific design of the acceptance scheme in order-agnostic decoding. Future work
can further explore the potential of incorporating different evaluation heuristics to guide the inference
process.

Due to the computation constraint, we explore the model capabilities of order-agnostic modeling
with fixed context window sizes at the SFT stage only. For future work, we may explore the effect
of scaling context window sizes in both forward and backward directions. Moreover, the increase
in the context window sizes can also enlarge the discrepancy between autoregressive pre-training
and order-agnostic fine-tuning. We thus anticipate future work to extend COrAL at the pre-training
stage to boost model capabilities. We extensively discuss the effect of the two-stage training strategy
adopted in our setting in Appendix D.

Incorporating corrupted data may also introduce discrepancies between training- and inference-time
objectives. For example, our experiment only explores rule-based context-wise corruption strategies
to create noisy data. Future work may scale the difficulty level and proportion of corruption to
understand its impact on model capabilities better.

Potential Broader Impact

Compared to conventional autoregressive modeling, COrAL leverages multi-token prediction and
reconstruction to backtrack past generations and refine them iteratively. This strategy mimics
humans’ decision-making process in real-world task completion. We anticipate COrAL to motivate
the community to design more efficient and effective frameworks to enhance interpretability and
alignment with humans.

A Conceptual Comparison among Model Architectures

We consider the properties an ideal architecture should have as follows:

• VL: varying-length generation

• BT: backtrack / look-ahead

• MV: multi-variable generation

• MD: multi-dependency (inter-sample connection) modeling

• FS: fitting feasibility

• EF: inference efficiency
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• IT: mechanism of iterative refinement

Table 4: Conceptual comparison regarding desired features across different architectures.

Architectures VL BT MV MD FS EF IT
Next-Token AR (Uria et al., 2016) ✓ ✗ ✗ ✗ ✓ ✗ ✗
Permutation-Based AR (Uria et al., 2014) ✗ ✓ ✓ ✓ ✗ ✓ ✗
NAR (Gu et al., 2018) ✗ ✓ ✓ ✓ ✓ ✓ ✓
Diffusion (Ho et al., 2020) ✗ ✓ ✓ ✓ ✓ ✗ ✓
Consistency Model (Song et al., 2023) ✗ ✓ ✓ ✓ ✓ ✓ ✓

COrAL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

B Sliding Blockwise Order-Agnostic Decoding

B.1 Two-Stage Prediction–Verification Inference

Prediction. Given a set of possible distributions {pθ(yt | y≤i,x)}t+k
i=t−k for the t-th token in the

output sequence, we obtain the ensemble distribution via model arithmetic (Dekoninck et al., 2024).
Specifically, we apply different weights to the distributions to prioritize the more accurate dependen-
cies, with distributions based on more qualified content generally leading to better generations:

πθ(yt) = softmax

(
1∑t+k

i=t−k ωt−i(y≤i,x)

t+k∑
i=t−k

ωt−i(y≤i,x) log pθ(yt | y≤i,x)

)
(3)

The weight function ωt−i(y≤i,x) = λt−i · c(y≤i | x) is determined by the relative distance and
direction of the dependency, as well as the confidence of the generated context y≤i. Here, the
factor λt−i ∈ [0, 1] only depends on the relative position of the target token, decaying for longer
dependencies. Using order-agnostic modeling, we calculate the confidence score c by gathering the
predicted probabilities based on different dependencies, which we obtain in the verification stage.
Generally, backward reconstruction and next-token prediction based on iteratively refined content
will be associated with higher weights. See Appendix D for a detailed comparison among different
dependencies. In practice, some of the distributions in Eq. 3 may not be available for all tokens at
each step. We calculate the ensemble utilizing available dependencies within the context window.

Verification. Following Cai et al. (2024), we employ tree attention4 to select from multiple candi-
dates sampled from the ensemble distribution πθ. Each candidate is a combination of tokens used to
fill the sliding block. Unlike previous works that only adopt the original next-token probability for
verification, we also incorporate the backward reconstruction probabilities to leverage the refinement
ability of COrAL. The verification score can thereby be formulated as follows:

vθ(yt) =
1∑t+k

i=t−1 λt−i

t+k∑
i=t−1

λt−i log pθ(yt | y≤i,x) (4)

Here, we only consider the next-token and backward predictions for the verification score calculation.
This scheme can be further enhanced by introducing a contrastive objective (Li et al., 2023) that
penalizes the possible failure cases in forward multi-token prediction:

vCD
θ (yt) = max

(
0, log pθ(yt | y≤t−1,x)−

1∑t−2
i=t−k λ

′
t−i

λ′
t−i log pθ(yt | y≤i,x)

)
(5)

where λ′
t−i = 1/λt−i to apply more penalization to predictions based on longer dependencies.

Combining vθ with vCD
θ , we keep the candidate of the highest average score. We allow several

4To balance exploitation and exploration in tree construction, we select nodes according to the estimated
accuracy of each token. Detailed considerations of candidate selection can be found in Appendix B.2.
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Algorithm 1 Sliding Blockwise Order-Agnostic Decoding

1: Input: Order-agnostic generator πθ and verifiers vθ and vCD
θ based on OA-LLM pθ , prompt x, decoding

context window size k, decoding block size b, maximum output sequence length T .
2: ▷ Initialize the current length of the output sequence
3: Initialize t← 0, y ← ∅.
4: ▷ Initialize the start and end position indices of the block to predict and refine
5: Initialize ts ← 1, te ← min (k, b).
6: while ts < T do
7: ▷ Collect candidates through tree construction
8: Construct Yts:te ←

{
{ỹi}tei=ts

, ỹi ∼ πθ(yi | y,x)
}

.
9: ▷ Verify and select

10: Select yts:te ← argmaxỹts:te∼Yts:te

1
te−ts+1

∑te
i=ts

(
vθ(ỹi | y,x) + vCD

θ (ỹi | y,x)
)
.

11: Update y ← concat(y<ts ,yts:te).
12: Set t← te.
13: ▷ Slide the decoding block based on rejection sampling
14: for i = ts to te do
15: Sample r ∼ U [0, 1] from a uniform distribution
16: if r < c(yi | y,x) then
17: Set ts ← ts + 1.
18: if yi == [EOS] then
19: Exit while loop.
20: end if
21: else
22: Exit for loop.
23: end if
24: end for
25: Set te ← min (ts + b− 1, t+ k).
26: end while
27: Output: y

refinement iterations for each position within a sliding block to enhance the generation quality.
Specifically, we propose an ensemble rejection sampling scheme to determine the sliding step
size through majority voting across multiple dependencies, where we accept each token with the
probability:

c(yt | y≤t+k,x) =
1

k + 2

t+k∑
i=t−1

1pθ(yt|y≤i,x)>min(ϵ,ϵ exp(−H(pθ(·|y≤i,x)))) (6)

where H(·) is the entropy and ϵ is a fixed threshold to reject low-probability predictions. This
acceptance scheme is inspired by truncation sampling (Hewitt et al., 2022; Cai et al., 2024) to choose
candidates that are more likely to be sampled from the reference distributions. The sliding step size
for each step is set to the length of the longest accepted prefix of the current block. We detail the
sliding decoding procedure in Algorithm 1.

B.2 Candidate Tree Construction in Order-Agnostic Decoding

Our specific design of tree construction aims to explore promising combinations of multi-position
predictions with a fixed budget for the number of total nodes in the tree. Unlike selecting promising
nodes based on the accuracies of the top predictions of different heads in Cai et al. (2024), we forego
the need of a validation set for accuracy calculation by leveraging the model confidence of each
prediction with a dedicated scaling factor. Let p(i)t denote the model-predicted probability of the i-th
top candidate for the t-th token. For a candidate sequence composed by the top [its , its+1, · · · , ite ]
predictions of tokens at different positions, we estimate its accuracy as:

te∏
j=ts

(
p
(ij)
j /γj

)
(7)

where γi is a scaling factor to up weight the predictions based on nonconsecutive forward dependen-
cies. As shown in Figure 5, this process benefits from the fact that COrAL obtains higher accuracies
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Figure 5: Token-wise losses and accuracies corresponding to different dependencies.

on non-first predictions on such dependencies. Empirically, we set these factors to be 1.1, 1.2, 1.3 for
the second, the third, and the fourth tokens to predict, respectively.

Following Eq. 7, we construct the tree in a greedy manner, adding the node with the highest confidence
to the tree one by one. This process considers the token-wise confidence as the expected contribution
of each prediction to the tree. We repeat the node-adding process until the total number of nodes
reaches the desired number to accommodate the maximum sequence length the model can deal with.

C Experimental Details

Datasets. For arithmetic reasoning, we train COrAL on MetaMathQA (395K) (Yu et al., 2024)
and evaluate it using GSM8K (Cobbe et al., 2021) on grade school math word problems and
MATH (Hendrycks et al., 2021) of challenging competition mathematics problems. For logical
reasoning, we filter LogiCoT (Liu et al., 2023b) with deduplication and reformulation, obtaining
313K training samples. We assess logical reasoning performance with multiple-choice reading
comprehension tasks that test interpretation and decision-making skills: LogiQA (Liu et al., 2023a),
based on the Chinese Civil Service Examination, and ReClor (Yu et al., 2020), sourced from Law
School Admission Council exams. For code generation, we train on Magicoder-Eval-Instruct-
110K (Wei et al., 2023) and evaluate using programming tasks from HumanEval (Chen et al., 2021).

Experimental Protocol. To address the discrepancy between the pre-trained model based on next-
token dependency and the target order-agnostic model, we adopt a two-stage training strategy (Kumar
et al., 2022) to progressively enhance order-agnostic modeling. We begin with a domain-specific
supervised fine-tuned (SFT) model for each target task. In the first stage, we perform order-agnostic
training exclusively on the last target-aware layer, while freezing the other layers to preserve the
output quality. In the second stage, following Cai et al. (2024), we train the entire model by focusing
on the previously frozen layers first and then unlocking the last layer to train together. We use Mistral-
7B-v0.3 and DeepSeek-Coder-6.7B-base as the base models for reasoning and code generation tasks,
respectively. During inference, we explore the effect of the verification stage and ablate the values of
decoding context window size and block size.

D Further Analysis

We analyze COrAL’s capability to model different dependencies, and the potential computation
overhead from order-agnostic modeling. We also extensively discuss the training protocol we design
to endow AR-LLMs with order-agnostic ability without pretraining. Lastly, we illustrate how COrAL
efficiently corrects mistakes in previous generations in qualitative analysis.

How does COrAL models order-agnostic dependencies? We compare the model capabilities
across different positions using token-wise losses and accuracies in Figure 5. Generally, COrAL
performs better on backward reconstruction than forward prediction, as shown in the lower losses and
higher accuracies on backward dependencies. Notably, we see better generalizability of backward
reconstruction. For example, given the backward context window size k = 8 and forward context
window size k = 4, we find that the loss and accuracy of backward reconstruction with dependencies
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longer than the training context window size, such as positions |−9|> |−8|, are also at the same
level as other backward dependencies. Differently, we observe a dramatic increase in loss and a
drop in accuracy from positions 4 to 5 on longer dependencies in forward prediction. This explains
how backward refinement benefits from more information in sequence-level generation to improve
performance. We observe decreased performance for forward prediction as the dependency gets
longer, especially when it exceeds the forward context window size in training. However, we can
mitigate this issue by aggregating multiple predictions for each position. As shown in Figure 5b,
while forward positions with longer dependencies obtain lower accuracies on tghe first prediction,
the accumulated accuracies of their non-first predictions are generally higher than those from other
dependencies. This illustrates how COrAL can benefit from the tree construction and verification
stage in decoding (Section 2.3) by considering multiple candidates for each position.

Computation Overhead. One concern regarding order-agnostic modeling is the potential computa-
tion overhead to accommodate more dependencies in the context windows. As target-aware RoPE
is only applied on the last layer, this overhead scales relatively slower as we increase the number
of positions to predict. For example, with forward and backward context window sizes each set as
k = 4, each forward pass of COrAL costs 5.48 TFLOPS, compared with 2.81 TFLOPS of next-token
prediction. In other words, COrAL predicts 8× number of tokens with less than 2× overhead in
computational cost. This indicates the efficiency of COrAL in leveraging available computation
resources to accelerate and enhance inference. Furthermore, we can adjust the forward and backward
context window sizes to determine the number of tokens to predict in parallel, demonstrating the
flexibility and generalizability of COrAL with target-aware RoPE.

Effect of Two-Stage Training. Empirically, we find that a high corruption ratio can cause a collapse
in model performance as the noisy data contains corrupted information in a format that the model has
not seen in pretraining. Furthermore, we are also faced with the order-agnostic training tax to endow
an AR-based LLM with denoising and multi-token prediction abilities. In this section, we elaborate
on the two-stage training we designed to mitigate this issue. Following Cai et al. (2024), we first
tune the last layer where we apply target-aware RoPE. This adapts the previous parameterization on
next-token prediction to target-aware multi-position prediction. Due to the discrepancy of training
objectives in pretraining and fine-tuning, full fine-tuning is still essential to ensure better performance
on multi-token prediction. To stabilize the training process, we then freeze the last layer and gradually
unlock it through the second training stage of full fine-tuning. Empirically, we find this strategy
effective for stabilizing the autoregressive loss changes in forward prediction. However, we observe
an order-agnostic training tax where the next-token prediction performance drops from 77.0% to
76.5% and then 74.1% after the first and second stages, respectively. This performance degradation
possibly comes from two aspects: the difference in training objectives and the incorporation of
corrupted data in fine-tuning. We leave it to future work to further explore the effect of applying our
order-agnostic framework to the pretraining stage.

Qualitative Analysis. Our qualitative analysis on GSM8K and LogiQA showcases how COrAL
corrects previously generated mistakes through the iterative internal process. In Figure 6, COrAL
obtained a wrong calculated result 72 at the 48-th step. However, the backward refinement mechanism
enables it to backtrack and refine the result to the correct number, 74, as shown at the 49-th step. In
contrast, the next-token baseline cannot correct the erroneous 72, leading to the wrong final result.
On the other hand, we observe the incoherence in COrAL’s generation where COrAL can fail in
correcting the mistakes when it happens to skip some positions during generation. For example, at the
1-st step, COrAL outputs “bakeraked” instead of “baker baked”. This error incurs a chain reaction
where the subsequent outputs all omit the correct token “ b” right after “baker”, indicating the need
for further enhancement on the generation fluency of order-agnostic methods.

On LogiQA, interestingly, we observe a higher frequency of the inconsistencies in COrAL’s genera-
tion. We attribute this scenario to the relatively low proportion of LogiQA-related training data in
LogiCoT, where there are only 5K samples out of the 313K data points. As shown in Figure 7, while
the COrAL produces several grammatical errors in a generation, it still achieves the correct result.
This indicates the advanced ability of COrAL to sematically escape from paths that may lead to dead
ends through iterative refinement.
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The Kennel house keeps 3 German Shepherds and 2 Bulldogs. 
If a German Shepherd consumes 5 kilograms of dog food and a bulldog consumes 3 kilograms of dog food per day. 
How many kilograms of dog food will they need in a week?

Prompt

Responses

1

2

3

6

7

8

38

39

40

47

48

49

59

Sliding Blockwise Order-Agnostic Decoding Next-Token Based Greedy Decoding

The1

The b2

The bery3

The bery b had 26

The bery b had 207

The bery b had 2008

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold

38

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a

39

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total

40

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 3

47

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39

48

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 =

49

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They also

59

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They also returned 6 unsold loaves, 
so they had 200 - 132 + 6 = 72 loaves of bread left.
#### 72
The answer is: 72

106

The bakeraked

The bakeraked 200

The bakeraked 200 loaves of bread

The bakeraked 200 loaves of bread.
They sold 93 loaves the in3

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning morning and  

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and  39 loaves in

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 1226 loaves

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves. left...

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they266

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 

......
The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 74 loaves of bread left.
#### 74
The answer is: 74 

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 72

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 74 loaves of bread

......

......

......

......

......

......

......

......

Figure 6: Qualitative result comparison on GSM8K.
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Passage: 
Youth phase refers to how adolescents perceive their level of youth development to be earlier, 
more timely or later than their peers.

Question: According to the above definition, which of the followings is timely in the phase of youth activation is?

A. Junior high school student A is the shortest boy in the class, but his parents think it is normal
B. Junior high student B had several zits on his face, 
     while other students did not, which made him feel uncomfortable
C. Junior high school students C in the physical health class and other students like the opposite sex of the 
     physiological structure is full of curiosity
D. Junior high school students in the adolescent physical health development self-assessment scale carefully 
     tick the normal option

Prompt

Responses

1

2

3

6

7

8

38

39

48

49

74
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1

2

3

6

8

38

39

Junior high high

48

49

73

......

......

...... ......

......

......

......

Junior high school students C in the

Junior high school students C in the physical health class class

Junior high school students C in the physical health class and
other students like the opposite of of the physi

Junior high school students C in the physical health class and
other students like the opposite of of the physiological

Junior high school students C in the physical health class and
other students like the opposite of of the physiological structure
is curious ......
Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it

Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it

Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it does not indicate
that the student is earlier or

Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it does not indicate
that the student is earlier or later than their

Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it does not indicate
that the student is earlier than their peers or perceive their
development, so thefore, the the correct answer is C.

J

Jun

Junior

Junior high school students

7 Junior high school students in

Junior high school students in the

Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development

 Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development compared

 Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development compared to their peers, as they they they normal

 Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development compared to their peers, as they they they normal
option

 Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development compared to their peers, as they they they normal
option indicating that they feel their development is timely to their
peers.
Therefore, the correct answer is D.

Figure 7: Qualitative result comparison on LogiQA.
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