
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Right Side Up? Disentangling Orientation Under-
standing in MLLMs with Fine-grained Multi-axis
Perception Tasks

Anonymous authors
Paper under double-blind review

Q: By how many degrees should Object A rotate 
to face the camera?

A:  Yes
Evaluates Frontal Alignment: View
Parallelism Perception

Q; By how many degrees should Object A
rotate to align with Object B?

Q; By how many degrees clockwise did I
rotate the image on the left to get the
image on
the right?

A:  90° clockwise
Evaluates Relative Orientation.: Viewer-
Scene. Direction Perception

This fan needs to face
everyone. So, let’s turn
it 135 ° clockwise!

Should make these
books stand tall and
face forward! 

New dishes need to
fit in the correct
positions in the shelf

I seem to have fallen
down! Need to figure
out the correct way
up! 

A:  90° clockwise
Evaluates Relative Orientation.: Inter-
object Direction Perception

Q; Is Object A facing the camera?

A: 45° clockwise 
Evaluates Rotational Transformation: Single-axis
Rotation Perception 

Q: What horizontal and vertical rotations would
align the left object with the right one?

A: 90 ° Vertical and 0 ° Horizontal
Evaluates Rotational Transformation: Compound
Rotation Perception 

A: Can not be determined
Evaluates Canonical Orientation Reasoning

Q: How much would I have to rotate the image 
so that it is right side up?

(1) FRONTAL
ALIGNMENT

(3) ROTATIONAL
TRANSFORMATION

(2) RELATIVE
ORIENTATION

(4) CANONICAL
ORIENTATION

DORI: Discriminative Orientation Reasoning Intelligence

Q: Which way is Object A's front surface
facing from the camera's view?

A: Leftwards from camera plane
Evaluates Frontal Alignment: 
Directional Facing Perception

Figure 1: DORI captures four core dimensions of orientation reasoning intelligence: (1) object’s
directional alignment, (2) its orientation relative to viewers, scenes, and other objects, (3) required
rotational transformation for different objectives, and (4) its natural/canonical orientation in the
world. Each dimension evaluates specific perceptual abilities through visual tasks in varying settings.
DORI provides a holistic understanding of object orientation reasoning.

Abstract
Object orientation understanding represents a fundamental challenge in visual
perception that underpins critical real-world applications like robotic manipulation
and augmented reality. However, current vision-language benchmarks fail to isolate
and evaluate this core capability, often conflating it with positional relationships
(such as above/below or proximity between objects) and general scene understand-
ing. To address this, we introduce DORI (Discriminative Orientation Reasoning
Intelligence), a comprehensive hierarchical benchmark that establishes object ori-
entation perception as a primary evaluation target. DORI rigorously assesses four
essential dimensions of object(s) orientation comprehension: frontal alignment,
rotational transformations, relative directional relationships, and canonical orienta-
tion understanding. DORI provides valuable insights on how existing multi-modal
systems process and understand object orientations through carefully curated tasks
from 14 sources that spans 67 object categories across synthetic and real-world
scenarios. Our evaluation of 18 state-of-the-art vision-language models using DORI
reveals critical limitations: even the best models achieve only 54.2% accuracy
on coarse tasks and 33.0% on granular orientation judgments, with performance
deteriorating substantially for tasks requiring reference frame shifts or compound
rotations. These findings demonstrate the urgent need for dedicated orientation
representation mechanisms in future architectures, as models show a systematic
inability to perform precise angular estimations, track orientation changes across
multiple viewpoints, and understand compound rotations—suggesting fundamental
limitations in their internal 3D spatial representations. As the first diagnostic
framework specifically designed for advancing orientation awareness in multimodal
systems, DORI offers immediate implications for improving robotic control, 3D
scene reconstruction, and human-AI interaction in physical environments
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1 Introduction

Object orientation understanding demands complex, multi-stage processing of intrinsic object
features, viewer perspective, angular relationships, and reference frame transformations (Harris, 2024;
Kallmayer et al., 2023; Viganò et al., 2023; Chavez et al., 2023). Humans master this fundamental
aspect of visual cognition (Cohn, 1997; Alomari et al., 2022) through various inherent sensory-motor
experiences, proprioceptive integration and neural formation (Tuthill & Azim, 2018). In the human
cognitive system, these mechanisms develop progressively from basic frontal orientation recognition
to complex rotational transformations (Tversky & Suwa, 2009; Mallot, 2023; Vasilyeva & Lourenco,
2012). This equips us with a crucial aptitude for real-world visual tasks that require precise spatial
interaction with the environment, such as tool manipulation and navigation. Many applications still
require human-like sophisticated orientation understanding capabilities. For example, autonomous
vehicles must determine which way objects are facing for effective navigation (Ganesan et al., 2024;
Janai et al., 2020). Similarly, augmented reality requires alignment of virtual objects with physical
ones (Mu et al., 2023; Pei et al., 2024; Wang et al., 2023a), and robotic grasping has to understand an
object’s orientation to determine approach angles (Cong et al., 2021; Chen et al., 2023).

Multimodal large language models (MLLMs) (Bi et al., 2024; Wang et al., 2024; Touvron et al., 2023)
are attractive for many of these applications as they perform well across many tasks (Guan et al.,
2024; Lin et al., 2024; Pei et al., 2024; Mu et al., 2023; Wei et al., 2024; Gao et al., 2024). Prior work
has found that MLLMs perform poorly on object orientation (Tong et al., 2024a; Li et al., 2024a;
Cheng et al., 2024; Chen et al., 2024; Liu et al., 2025; Lei et al., 2025). However, these benchmarks
consider a narrow understanding of orientation. For example, some focus on simple directional
judgments (Weston et al., 2016; Shi et al., 2022), use only synthetic data (Wang et al., 2025a; Li et al.,
2023), employ ambiguous question wording (Mirzaee et al., 2021; Mirzaee & Kordjamshidi, 2022),
test only egocentric viewpoints (Jung et al., 2025), or have very few samples (Fu et al., 2024a). These
limitations lead to an incomplete assessment of a model’s orientation reasoning abilities, potentially
resulting in a failure to identify critical weaknesses in real-world scenarios and inability to distinguish
between true geometric understanding versus memorized patterns or statistical shortcuts.

To address these shortcomings, we introduce DORI (Discriminative Orientation Reasoning
Intelligence), a human cognitive study-informed benchmark to evaluate object orientation un-
derstanding in multimodal language models. As summarized in Fig. 1, we decompose evaluation
of this critical ability into four fundamental dimensions with progressive complexity: (1) frontal
alignment perception, (2) rotational transformations, (3) ego and allocentric relative orientation
understanding, and (4) natural or canonical orientation of objects. Furthermore, for a holistic view
of a given model’s performance, we employ a two-tiered assessment framework – coarse-grained
questions to evaluate basic categorical understanding (e.g., “is the car facing toward or away from the
camera?") and fine-grained questions to probe precise metric relationships (e.g., “at what angle is the
car oriented relative to the camera?”). DORI leverages 13652 images from 14 sources to generate
33,656 multiple-choice questions, combining real-world images (37%) with simulated renders (63%)
to ensure we have a large dataset with varying levels of visual complexity.

We generate clear, unambiguous prompt-answer pairs through a rigorous three-step process: (1)
isolating objects with bounding boxes to tackle cluttered scenes, (2) employing standardized orientation
terminology (e.g., “frontal alignment”) with explicit spatial frames of reference (e.g., egocentric,
allocentric, and object-centric), examples, and task descriptions, and (3) ensuring difficulty progression
from simple categorical judgments to precise angular measurements across all orientation dimensions.
This systematic approach isolates orientation from scene perception skills, minimizes confounding
factors such as object recognition difficulty, scene clutter, linguistic ambiguity, and contextual
distractions that plague existing benchmarks (Cheng et al., 2025; Chen et al., 2024; Li et al., 2024b).
Our extensive experiments with 18 state-of-the-art MLLMs on DORI reveal several key findings:

• Models perform 30% worse on complex, dynamic rotational tasks that require mental tracking of
object rotations between images than simple, static orientation tasks (e.g., identifying object poses).

• Models particularly struggle on tasks requiring perspective shifts (e.g., adapting viewpoints different
from the camera, such as determining if two objects are facing each other when viewed from their
own frame of reference), showing a 25% drop in accuracy compared to egocentric frame tasks.

• Token-based integration (like Mantis-Idefics2-8B) consistently outperforms linear projection in
orientation tasks, indicating that architectural design significantly impacts orientation reasoning.
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Table 1: Characteristics of different datasets for orientation-reasoning. Asterisks (*) indicate that
we only counted the number of classes, sources, or samples refers specifically to orientation-related
tasks. DORI is larger and/or more diverse than similar datasets. N-Imgs = # Natural Images, S-Imgs
= # Simulated Images, A = Allocentric, E = Egocentric, C = Coarse, G = Granular

Dataset Objects Granularity View Sources N-Imgs S-Imgs VQA Pairs
Spatial-MM (Shiri et al., 2024) 342 C AE 1 537 – 695
ScanQA (Azuma et al., 2022) 20 C A 1 800 – ∼7445*
BLINK (Fu et al., 2024b) 71* C AE 2 552* – 552*
KiVA (Yiu et al., 2025) 62* G A 2* – 400* 600*
EgoOrientBench (Jung et al., 2025) 197 C E 5 5992 2373 33460
EmbSpatial-Bench (Du et al., 2024) 294 C E 3 1498* 683* 2435*
CLEVR-3D (Yan et al., 2023) 160 C A 2 1044 – 2320*
3DSRBench (Ma et al., 2025) 7* C A 1* 2073* – 6188*
PO3D-VQA (Wang et al., 2023b) 10 C A 1 – ∼30k ∼300k*
SR-Bench (Stogiannidis et al., 2025) 197 C E 2* 280* 520* 800*
Spatial457 (Wang et al., 2025b) 5* C A 1 – 992* 4555*
DORI (Ours) 67 CG AE 14 5051 8601 33656

• Model scale alone does not guarantee better orientation understanding; smaller, dialogue-tuned
variants (e.g., DeepSeek-1.3B-Chat) often outperform larger base models (e.g., DeepSeek-7B-Base).

• LoRA finetuning with our dataset can also boost performance by up to 27% on other benchmarks
like BLINK (Fu et al., 2024b), SAT (Ray et al., 2025), and 3DSRBench (Stogiannidis et al., 2025).

2 Related Work

Tab. 1 compares our proposed benchmark, DORI, to existing datasets for evaluating MLLMs with
orientation questions. These datasets only provide a limited evaluation of orientation with small
scales or only basic questions (e.g., “is the object facing left or right?”), with most of their questions
focusing on spatial reasoning tasks instead. In contrast, DORI introduces a comprehensive framework
that isolates orientation perception through carefully designed tasks spanning four core aspects. In
particular, DORI contains a larger number of samples from at least three times as many sources, and
has a large variety of objects, question granularity, and views.

For example, PO3D-VQA (Wang et al., 2023b) evaluates a MLLM’s ability to understand eight
cardinal directions with tolerance. EgoOrientBench’s (Jung et al., 2025) discrete orientation classes
discard crucial continuous rotational information, resulting in identical scoring for models with
significantly different error margins. DORI addresses this by introducing hierarchical evaluation
through coarse to granular QA pairs. Additionally, some benchmarks rely entirely on simulated
data (Wang et al., 2023b; Yiu et al., 2025), raising questions about generalization to the real-world.
Most datasets with natural images have fewer than 2100 samples, whereas our work has 2.5K more.
This puts DORI on par with EgoOrientBench, but with more diverse questions, sources, and views.

Our work has some relation to pose estimation (Deng et al., 2024; Du et al., 2021; Zheng et al., 2023;
Barroso-Laguna et al., 2024; Biggs et al., 2020), where models are often tasked with identifying a set
of keypoints to provide a detailed accounting of an object’s orientation. This format requires using
special techniques to evaluate MLLMs (Corsetti et al., 2024; Feng et al., 2024; Pulli et al., 2024), and
are expensive to annotate. Further, these keypoints are not easily human-interpretable format. For
example, the upper-left question of Fig. 1, where a model is asked if the object is facing the camera, a
keypoint estimation model would require a complex function to map the pose into the direction it
is facing as there are many poses that human annotators would consider is facing forward. Instead,
DORI evaluates a MLLM on its ability to understand orientation question from natural language.

3 DORI: Discriminative Orientation Reasoning Intelligence

Evaluating a model’s understanding of object orientation mandates a closer inspection of several
fundamental research questions including how well a MLLM matches human performance, if MLLMs
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and humans follow similar developmental patterns (Blades & Spencer, 1994; Vasilyeva & Lourenco,
2012; Spinelli et al., 1999), and what architectural or training components contribute to their reasoning
gaps. These critical questions guide the task structure, data sample selection, and evaluation probe
development in DORI to effectively dissect the orientation reasoning capabilities of MLLMs. In this
work, we aim to ascertain MLLMs’ understanding of object orientation across static scenarios and
dynamic manipulations in natural and simulated settings. This distinction is crucial as it mirrors the
progression from simple to complex spatial reasoning observed in human cognitive development. We
discuss the four aspects of object orientation comprehension that guide our benchmark creation below.

3.1 Core Capabilities

Drawing on the established frameworks in cognitive neuroscience (e.g., (Wang & Alais, 2024;
Harris et al., 2019; Harris, 2024)), DORI decomposes object orientation comprehension into four
fundamental dimensions that reflect distinct neural and cognitive processes humans employ when
reasoning about an object’s orientation.

1. Frontal Alignment evaluates the fundamental ability to perceive how an object’s front-facing
surface is oriented relative to the viewer—a prerequisite for any orientation-based reasoning. Humans
rapidly identify which way an object is facing (e.g., deciding if a vehicle is approaching or departing)
by recognizing structural and functional features such as faces, headlights, or entrances. However,
we require additional reasoning steps for orientation interpretation (Kourtzi & Nakayama, 2002),
such as assessing objects’ angular relationship with the viewing plane. For MLLMs, we assess this
frontal alignment capability through two complementary tasks: view parallelism analysis, which
quantifies the degree to which an object’s frontal surface deviates from being parallel to the image
plane, providing angular measurements (e.g., is a chair directly facing the camera or at a 45-degree
angle). Directional facing perception asks the cardinal direction an object’s front is oriented relative
to the camera position (e.g., whether a desk is facing toward, away, leftward, or rightward from the
viewer’s perspective). This dual assessment is supported by research that reports viewpoint-invariant
recognition of frontal features operates through different neural mechanisms than precise angular
estimation (Harris, 2024). Prior work also demonstrates MLLMs’ inability to perceive object frontality
(e.g., confusing left/right perspectives) even when provided with bounding boxes (Tong et al., 2024b;
Shiri et al., 2024), often being on par with random predictions (Yin et al., 2025).

2. Rotational Transformation examines the ability of an MLLM to comprehend orientation changes
through rotation, reflecting requirements such as embodied object manipulation (e.g., fitting a key into
a lock), and viewpoint-dependent navigation (e.g., reorienting a rotated map for wayfinding). Mental
rotation capabilities allow humans to predict how objects align when rotated (Muto, 2021), with
neuroimaging evidence showing premotor and parietal activation during both physical & imagined
rotations (Doganci et al., 2023; Muto, 2021). Both processes trigger similar neural activations (Xue
et al., 2017), highlighting the inherent complexity of spatial transformation tasks that MLLMs must
simulate. Inspired by this, we design the rotational tasks in our benchmark to progress from simple
to complex levels mirroring human cognitive processing demands (Li et al., 2019; Ter Horst et al.,
2010; Xue et al., 2017). Thus, the first subtask examines single-axis rotation & evaluates basic
angular transformations rotated along one spatial dimension (e.g., determining the shortest rotation to
face a chair toward the camera). This establishes baseline capabilities before progressing to more
cognitively demanding compound rotation (Ter Horst et al., 2010), involving multiple-axes rotation
(e.g., aligning objects through a sequence of horizontal/vertical rotations). These subtasks represent
common scenarios in assembling products through item manipulation and real-world scene planning
by embodied agents, where object orientation understanding directly impacts final task performance.

3. Relative Orientation examines the understanding of how objects are oriented in relation to
each other and with respect to the viewer. Humans navigate a complex visual world by seamlessly
tracking orientation changes across scenes and viewpoints, which is crucial for scene comprehension
and geometric coordination. The human brain contains a specific interconnected region facilitating
“mental orientation” -the ability to effectively spatially orient an object to different viewpoints and
perspectives (Peer et al., 2015; Loy & Demberg, 2023; Gramann et al., 2010; Zaehle et al., 2007).
In contrast, studies have shown that MLLMs struggle significantly with questions posed from non-
egocentric perspectives (Shiri et al., 2024; Wang et al., 2023a; Yeh et al., 2025) and with maintaining
consistent dimensional relationships between multiple objects across time and viewpoints (Yang et al.,
2025b) We systematically probe this aspect of object’s relative orientation via the following sub-tasks:
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DORI Prompt Structure
Expected Response Format
“answer”: “A”,
“reasoning”: "Object A appears to be a
personwhose face and front of the body are
clearlyvisible in the image. The person's eyes
arelooking toward the camera, indicating
thatObject A is facing toward the camera."

1. TASK: “Determine which way Object A's front is facing relative to the
camera.”

2. CONTEXT: “An object is considered 'front facing' when its inherent
structural features are visible from the camera.”

3. INSTRUCTIONS: "1. Identify Object A and its key structural features 2.
Determine the orientation of its front surface relative to the camera..."

4. MULTIPLE-CHOICE OPTIONS:  "A. Facing toward the camera B. Facing away
from the camera C. Facing L...."

5. EXAMPLES:  "A person whose body is directed towards the camera would
be 'facing toward the camera'

Figure 2: Structured Prompt Design in
DORI. The five key components are: task
description, contextual information, step-
by-step instructions, multiple-choice op-
tions, and examples. The structured for-
mat ensures consistent evaluation of ori-
entation perception abilities.

(1) inter-object directional relationships, to assess the relative facing directions of objects (e.g.,
determine if two cars are facing the same or opposite directions), and (2) image-pair rotational
relationships, to measure the ability to track orientation changes between two images (e.g., identify
the degree of rotation between two views of the same object).

4. Canonical Orientation Perception evaluates the ability to recognize when objects deviate
from their expected orientations, and to determine what transformations would restore them to
their canonical state (e.g., identifying that a flipped image of a building is upside-down and needs
180-degree rotation to appear normal). Humans possess an innate ability to predict and understand
the physical properties of objects and their interaction through specialized neural processing (Ballaz
et al., 2005; Mezuman & Weiss, 2012; Harris, 2024) and use functional cues for inferring canonical
orientation, such as gravity alignment (Fu et al., 2008), functional feature positioning, and ecological
validity (Bramley et al., 2018; Hamrick et al., 2011). Prior work shows that MLLMs struggle to
reason with intuitive physics (Buschoff et al., 2025; Jassim et al., 2024). In our benchmark, we break
this complex task into two sub-tasks: first, assess the ability to identify deviations from canonical
orientation across object categories, then evaluate a model’s ability to determine the specific geometric
operations (rotation, flipping, or combinations) required to restore the object to its canonical state.

3.2 Benchmark Creation Process

As illustrated in Fig. 1, DORI contains seven carefully designed orientation-reasoning tasks. Each
multiple-choice question has two assessment levels: coarse-grained questions for basic categorical
judgments and fine-grained questions for precise angular measurements. This hierarchical approach
enables systematic evaluation from fundamental perception to advanced orientation reasoning. Our
data was collected via two primary means: converting existing 3D information to orientation questions
(sampled from JTA (Fabbri et al., 2018), 3D-Future (Fu et al., 2021), Get3D (Gao et al., 2022),
ShapeNet (Guibas, 2017), OmniObject3D (Wu et al., 2023), NOCS REAL (Wang et al., 2019),
Objectron (Ahmadyan et al., 2021), a collection we refer to as SSFRB (unsplash, 2020; Gontier et al.,
2023; Liu et al., 2024c; Willett et al., 2013; neelgajare, 2022), the OminNOCS (Krishnan et al., 2024)
subsets of KITTI (Geiger et al., 2012) and Cityscapes (Cordts et al., 2016)) or manually annotating
samples (for COCO (Lin et al., 2014)). Each question type contains a subset of sources (discussed
further in Sec. 3.3). For example, Inter-object direction perception requires at least two objects in a
scene, so ShapeNet (Guibas, 2017), which contains single objects was not used, and instead created
questions with 3D-Future (Fu et al., 2021) and NOCS REAL (Wang et al., 2019). We provide a
detailed description of the process used to curate samples from each dataset in App. A.

We designed DORI’s evaluation prompts using a systematic, human-centered approach to isolate
orientation perception from confounding factors (e.g. object recognition difficulty, scene clutter,
linguistic ambiguity, and contextual distractions) (Castle, 2024). As highlighted in Fig. 2, the
prompts follow a carefully structured format with five key components: (1) a concise task description
specifying the orientation dimension being tested, (2) contextual information explaining relevant
orientation concepts (e.g., "An object is considered ’front facing’ when its inherent structural features
are visible from the camera"), (3) step-by-step analysis instructions (e.g. "1. Identify Object A
and its key structural features 2. Determine the orientation...")(4) multiple-choice options, and (5)
concrete examples illustrating expected reasoning (e.g. "A person whose body is directed towards
the camera would be ’facing toward the camera’"). This structured approach was inspired by
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Figure 3: (a) The DORI benchmark embodies seven distinct orientation tasks (inner circle) with
a balanced and systematic distribution of samples across both natural and simulated images. (b)
DORI captures diverse objects commonly encountered in day-to-day life, supporting a comprehensive
analysis of models’ orientation understanding capabilities.

effective instruction-tuning datasets like LLaVA’s, which demonstrate that explicit task framing and
example-driven guidance significantly improve model comprehension (Hewing & Leinhos, 2024).

We iteratively refine our prompts through multiple cycles of human feedback from non-expert
annotators to address ambiguities, clarify terminology, and improve the task specificity (Lin et al.,
2025). For example, early versions of rotational transformation prompts yielded inconsistent
interpretations of rotation axes, which required us to incorporate more precise language and visual
references (e.g., "like a ballerina spinning clockwise" to clearly illustrate vertical axis rotation versus
abstract directional descriptions). This process ensured that the MLLMs performance differences
genuinely reflect their object orientation understanding capabilities rather than prompt interpretation
challenges (see App. A for further details). Additionally, we standardized response formats (requiring
explicit answer responses and reasoning explanations) to facilitate consistent evaluation while
providing insight into models’ reasoning. See App. G for examples of our 14 question prompts.

To ensure a comprehensive coverage of object orientation reasoning, we developed a two-tiered
question framework across four orientation dimensions.

• Coarse-grained questions: These evaluate basic categorical understanding (e.g., "Has the object
rotated between the two images?" for rotational transformation, or "Are objects A and B facing
the same direction?" for relative orientation) and provide a foundation for assessing fundamental
orientation perception.

• Fine-grained questions: These probe precise quantitative estimations (e.g., "How many degrees
clockwise did the object rotate?" for rotational transformation, or "What specific transformations
would restore this image to its canonical orientation?" for canonical orientation perception), requiring
detailed metric understanding of angular relationships.

3.3 DORI Statistics

Collectively, DORI encompasses 13,652 images spanning both natural (37%) and simulated (63%)
environments, has 33,656 carefully constructed multiple-choice questions. The benchmark covers
67 object categories (31 household and 36 outdoor item categories) across 14 diverse computer
vision datasets including KITTI (Geiger et al., 2012), Cityscapes (Cordts et al., 2016), COCO (Lin
et al., 2014), JTA (Fabbri et al., 2018), 3D-FUTURE (Fu et al., 2021), Objectron (Ahmadyan et al.,
2021), ShapeNet (Guibas, 2017), and OmniObject3D (Wu et al., 2023), amoung others (full list in
Sec. 3.2). Fig. 3 illustrates the object category and dataset distribution. This multi-source approach
allows us to balance complex, real-world environments (37% of images) with controlled synthetic
environments (63%) where orientation parameters are precisely known. Knowing precise orientation
parameters in synthetic data is crucial as it provides ground truth angular measurements with known
accuracy, eliminating visual ambiguity or occlusion that might confound assessment. Meanwhile,
real-world images introduce natural complexity and diversity while maintaining clear ground truth
through expert annotation. Additional statistics on fine-grained categories across tasks are in App. B,
broad categories in App. C, and data composition in App. D. See App. G for examples.
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Table 2: Performance of several open-source MLLMs on DORI. Most models perform poorly,
particularly on granular questions. These experiments reveal a systemic gap in object orientation
understanding across all four dimensions studied in DORI. See App. I for results with model variance.
C: coarse, G: granular.

Frontal
Alignment

Rotational
Transformation

Relative
Orient. Canonical

View
Parallel.

Dir.
Facing

Single-
axis Rot.

Compo-
und Rot.

Inter-
Obj. Dir.

Viewer-
scene Dir. Orient. Avg.

C G C G C G C G C G C G C G C G
Random 35.7 25.5 20.2 19.8 20.7 17.4 20.4 6.6 15.0 10.1 33.1 20.3 34.8 16.0 25.7 16.5
LLaVA-v1.6-13B 55.9 26.8 22.6 19.8 23.4 16.5 32.8 10.6 7.2 12.4 46.6 20.1 16.7 11.3 22.1 16.7
LLaVA-v1.6-34B 52.8 35.3 32.6 26.4 22.1 26.2 13.0 4.3 16.2 14.8 34.8 25.4 9.9 11.6 25.9 20.5
LLava-Next-8B 33.2 25.2 21.3 21.0 20.5 17.9 40.6 6.3 10.3 12.0 61.5 25.2 10.5 9.2 28.3 14.4
Yi-VL-6B 38.9 31.0 25.0 25.2 28.5 14.7 29.6 3.0 15.2 12.3 41.4 10.8 30.3 14.4 29.8 15.9
Yi-VL-34B 53.1 35.1 23.3 24.0 28.1 21.2 32.5 4.4 13.4 14.5 61.1 19.7 11.3 12.5 31.8 18.7
Mantis-CLIP 60.1 24.3 26.1 16.3 15.4 20.9 9.1 5.8 13.2 10.1 37.7 17.9 23.7 34.5 23.8 15.0
Mantis-Idfs-8B 57.8 33.0 22.5 12.7 25.7 23.4 25.9 6.6 17.6 9.0 55.4 24.5 48.8 41.0 34.5 17.5
DS-1.3B-Base 58.1 24.8 15.0 19.4 21.1 15.2 17.0 5.3 17.0 11.9 61.3 26.0 2.5 2.3 29.3 14.7
DS-1.3B-Chat 58.1 24.8 22.6 22.0 21.2 15.5 33.9 5.8 15.3 10.5 47.6 18.0 29.2 17.3 33.0 14.1
DS-7B-Base 26.3 31.1 14.6 16.4 18.3 14.3 35.5 2.8 3.6 4.1 35.7 6.8 31.3 10.7 24.7 9.6
DS-7B-Chat 59.4 31.3 31.3 24.5 28.2 17.8 35.8 6.0 20.2 14.9 18.5 32.2 15.2 32.2 29.4 18.6
Qwen2.5-3B-Inst. 56.3 29.3 23.4 2.5 18.2 17.7 25.4 0.21 16.3 14.2 62.8 16.9 7.5 11.4 29.9 13.1
Magma-8B 51.5 21.4 25.4 20.9 20.6 18.7 32.0 5.4 16.3 11.5 32.6 21.0 15.6 16.1 27.7 16.4
RP-v1-13B 45.7 20.5 24.7 22.3 24.9 14.7 37.6 5.6 12.9 12.7 61.2 20.9 11.2 10.6 31.1 15.3

4 Experiments

We evaluate 18 state-of-the-art multimodal models spanning diverse architectures, parameter scales,
and pretraining methodologies across both open-source and proprietary systems. The models are
as follows: LLaVA-v1.6-13B (Liu et al., 2024a), LLaVA-v1.6-34B (Liu et al., 2024a), LLava-Next-
8B (Liu et al., 2024b), Yi-VL-6B (AI et al., 2024), Yi-VL-34B (AI et al., 2024), Mantis-CLIP (Jiang
et al., 2024), Mantis-Idfs-8B (Jiang et al., 2024), DS-1.3B-Base (Bi et al., 2024), DS-1.3B-Chat (Bi
et al., 2024), DS-7B-Base (Bi et al., 2024), DS-7B-Chat (Bi et al., 2024), Qwen2.5-3B-Inst. (Team,
2024), Magma-8B (Yang et al., 2025a) and RP-v1-13B (Yuan et al., 2025). We evaluate the proprietary
models via their official APIs and most open-source models on a single NVIDIA RTX A6000 GPU,
with the 34B parameter models being evaluated on a single NVIDIA A100-80G. We use answer
accuracy across both coarse and granular question types to measure performance.

4.1 Results

Tab. 2 report accuracy on open-source MLLMs on DORI. Notably, many models obtain around
random performance. As expected, more models struggle with the challenging granular questions than
with coarse ones. This indicates that current models cannot perform precise angular reasoning, instead
relying on coarse categorical judgments. This is also true for Magma-8B and RP-V1-13B, which
were both trained for robotics applications. Larger models of each model family generally perform
better on average, particularly on coarse questions. Closed-source models in Tab. 3 obtain 13-26%
better performance than the best open-source models. However, all closed-source models continue
to struggle, especially on rotational transformation and relative orientation questions, highlighting
substantial room for improvement even in state-of-the-art commercial systems. See App. J for a
detailed error analysis.

We hypothesize the poor performance stems from how MLLMs are pretrained - most models being
evaluated use CLIP-style contrastive objectives that optimize for high-level image-text semantic
alignment rather than core geometric understanding (Zhong et al., 2022). Tong et al. (2024b) similarly
noted that pretraining creates a “dimensional collapse” in the embedding space, where continuous
orientation variations become compressed into discrete semantic clusters (e.g., treating “left” and
“right” as opposing categorical concepts rather than points along a continuous angular spectrum).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance of proprietary vs. open-source MLLMs on 100 randomly sampled questions
across all four dimensions and granularities. Commercial models also struggle with complex
orientation tasks, particularly with angular precision and reference shifts. C: coarse, G: granular.

Frontal
Alignment

Rotational
Transformation

Relative
Orient. Canonical

View
Parallel.

Dir.
Facing

Single-
axis Rot.

Compo-
und Rot.

Inter-
Obj. Dir.

Viewer-
scene Dir. Orient. Avg.

C G C G C G C G C G C G C G C G
LLaVA-v1.6-34B 45.5 30.0 22.5 23.5 15.0 15.5 19.3 7.6 15.0 10.5 37.3 34.3 17.0 19.0 24.5 20.0
LLava-Next-8B 34.0 13.0 18.0 19.0 12.5 17.5 40.3 7.0 12.0 13.5 64.0 25.0 17.0 16.0 28.2 15.8
DS-7B-Chat 52.5 28.0 24.5 24.5 21.0 15.0 35.3 5.0 24.0 14.0 23.6 32.0 16.0 2.0 28.1 19.7
Gemini 1.5 Pro 68.5 53.0 43.5 39.0 24.0 37.5 65.3 12.3 25.0 14.5 91.0 47.3 22.0 28.0 54.2 33.0
Gemini 2.0 Flash 67.0 35.0 37.5 33.5 28.5 27.0 52.0 14.3 23.0 17.0 92.0 43.6 5.0 29.0 49.9 28.5
GPT-4 O 44.5 45.0 30.5 35.5 29.5 34.0 39.3 15.3 23.5 13.5 88.3 53.3 19.0 45.0 19.0 45.0
GPT-4-1 48.5 41.0 39.0 40.5 32.5 42.0 31.6 14.0 22.5 8.5 87.6 44.6 20.0 46.0 40.2 33.8
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Figure 4: Performance of MLLMs by source cate-
gory (additional models in App. F). Although for
many categories the relative ranking of methods
is relatively stable, in a few cases, like the food
category, most models perform quite poorly.
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Figure 5: Performance of MLLMs by source
dataset (additional models in App. F). Models
perform better on simulated datasets and coarse
questions, revealing a gap in generalizing to
natural images and more fine-grained questions.

This explains why models can often distinguish between categorical extremes but fail on tasks that
require precise angular discrimination. While this may be slightly mitigated by using generative
objectives (Li et al., 2025), MLLMs lack the necessary equivalent neural inductive biases utilized
by humans (Ramakrishnan et al., 2025; Ling et al., 2009; Delhaye et al., 2018; Goble et al., 2012).
Instead, MLLMs approximate neural mechanisms through suboptimal attention patterns leading to
hallucinations (Huang et al., 2024; Yamada et al., 2024; Deng et al., 2020; Yang et al., 2024).

Architecture impact. Among open-source systems in Tab. 2, a clear architectural pattern emerges:
token-based approaches like Mantis-Idefics2-8B outperform linear projection methods, suggesting
that token-level integration preserves richer dimensional information. Notably, DeepSeek-1.3B-Chat
(33.0% average accuracy across all coarse tasks) significantly outperforms DeepSeek-7B-Base (24.7%
average coarse accuracy) despite having fewer parameters. We also find dialogue-tuned variants con-
sistently outperform base counterparts (e.g., DeepSeek-7B-Chat vs. DeepSeek-7B-Base), suggesting
that instruction tuning, which emphasizes structured, logical reasoning—enhances models’ ability to
follow multi-step orientation reasoning instructions and produce coherent judgments (Ranasinghe
et al., 2024). These findings also indicate that improving orientation reasoning requires a careful
consideration of how to combine information from multiple modalities, instead of just scaling models.

Performance across data sources and object categories. Fig. 4 reveals that models generally
perform better on orientation tasks involving people and animals, presumably because these categories
have a clear front/back distinctions through faces compared to more ambiguous objects like furniture
or containers. This pattern may also suggest that current models rely heavily on semantic features
(e.g., recognizing faces) rather than a fundamental geometric understanding when determining object
orientation. Fig. 5 provides a performance breakdown by source, where we find that models generally

8
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Table 4: Comparison of a base Qwen2.5-VL-3B to a version tuned on DORI with LoRA. We report
zero-shot transfer to three datasets: 3DSRBench (Ma et al., 2025), Blink (Fu et al., 2024a), and
SAT (Ray et al., 2025). Finetuning on our dataset reports up to a 27% gain on other benchmarks.

Blink 3DSRBench SAT

Multi-View
Reasoning

Visual-
Corresp.

Relative-
Depth Orient. Multi-Obj.

View To. Obj.
Multi-Obj.

Parallel
Multi-Obj.
Same Dir.

Base Model 42.9 25.3 64.1 32.5 11.4 11.4 46.8 51.3
+Finetuning 45.1 26.5 65.3 38.6 14.0 38.1 50.3 63.3

Table 5: Comparison of Human performance vs. MLLMs on 30 randomly sampled questions of
each type. We find a significant performance gap exists between our expert annotators and MLLMs

Frontal
Alignment

Rotational
Transformation

Relative
Orient. Canonical

View
Parallel.

Dir.
Facing

Single-
axis Rot.

Compo-
und Rot.

Inter-
Obj. Dir.

Viewer-
scene Dir. Orient. Avg.

C G C G C G C G C G C G C G C G
GPT-4 O 43.3 56.6 46.6 26.6 33.3 23.3 69.9 46.6 36.6 43.3 89.9 70.0 20.0 46.6 48.5 44.7
Gemini 1.5 Pro 73.7 70.0 73.0 86.5 49.9 60.0 96.6 53.0 56.6 33.3 100.0 63.3 26.6 66.6 68.0 61.8
HUMAN 83.3 86.6 93.3 76.6 70.0 70.0 76.6 83.3 83.3 70.0 100.0 93.3 100.0 86.7 86.6 80.9

struggle the most on natural images with complex scenes. However, the models do generally well on
some datasets, like COCO, but this also raises a potential risk that these large models with privately
held models may have used some of these samples during pretraining. To address this concern, in
App. L we used the approach from Teterwak et al. (2025) to separate into (likely) in-pretraining and
out-of-pretraining sets, and find that models generally perform similarly on both sets. Thus, the effect
of any potential contamination on our dataset is negligible.

Generalization performance. Tab. 4 reports the effect of finetuning Qwen2.5-VL-3B on 27K
real + synthetic samples from our dataset using LoRA (Hu et al., 2022) on SAT (Ray et al., 2025),
3DSRBench (Ma et al., 2025), and BLINK (Fu et al., 2024a). We find that training on DORI boosts
performance by up to 27%, demonstrating the benefit of our dataset. In App. K we also report that
this results in a 37-46% boost over the base model on 7K held-out DORI samples.

Human evaluation. We recruited seven experts with experience in complex annotation procedures
to assess orientation perception abilities. Each participant evaluated 30 examples for both coarse
and granular tasks using identical images, with three answer options per example (correct answer,
"Cannot be determined," and incorrect answer). See App. M for example instructions. Tab. 5 shows
that humans achieved 80-87% accuracy, with the best closed-source model is almost 30% lower. This
highlights both the quality of our annotations and the amount of potential growth of MLLMs.

5 Conclusion

DORI reveals critical limitations in current MLLMs’ orientation understanding capabilities, with
even state-of-the-art models achieving only 54.2% accuracy on coarse tasks and 33.0% on granular
orientation judgments and perform significantly below human performance. Our comprehensive
evaluation demonstrates that MLLMs systematically falter when tasks require precise angular
estimations, multi-axis rotational transformations, or perspective shifts beyond egocentric frames.
These deficiencies likely stem from fundamental architectural constraints that compress continuous
geometric information into discrete semantic categories rather than developing true geometric
representations. As the first diagnostic framework specifically targeting orientation awareness,
DORI provides clear metrics for measuring progress and establishes specific pathways for advancing
multimodal systems toward the robust orientation reasoning capabilities essential for real-world
applications in robotics, autonomous navigation, augmented reality, and embodied AI. The results
strongly suggest that future architectures must develop specialized mechanisms for continuous
geometric representation to bridge this critical gap in machine perception.
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Ethics Statement

While our work on evaluating orientation reasoning in multimodal large language models aims to
advance AI capabilities in spatial understanding, we acknowledge several ethical considerations. First,
our human evaluation component involved recruiting annotators to assess orientation perception
abilities, and we ensured informed consent and fair compensation for their participation. The bench-
mark’s applications in robotics, autonomous navigation, and augmented reality could significantly
benefit society by improving human-AI interaction and enabling more capable assistive technologies.
However, we recognize that enhanced spatial reasoning capabilities could potentially be misused
in surveillance applications that infringe on privacy rights or in autonomous systems that make
consequential decisions without adequate human oversight. Additionally, our evaluation reveals
systematic biases in current models’ performance across different object categories and visual contexts,
which could perpetuate unfair outcomes if deployed without consideration of these limitations. The
benchmark combines real-world and synthetic data from multiple computer vision datasets, and we
have ensured proper licensing and ethical use of all source materials. We emphasize the importance of
responsible development and deployment of spatially-aware AI systems, particularly in safety-critical
applications, and encourage ongoing dialogue about the ethical implications of advancing machine
spatial reasoning capabilities.

Reproducibility

To ensure the reproducibility of our work, we have taken comprehensive steps to document all aspects
of our experimental methodology. The complete implementation of DORI, including the systematic
question generation process, structured prompt design, and evaluation metrics, is described in detail in
the main text and appendix. We provide full specifications of our annotation methodology, including
the human evaluation protocols used with expert annotators, the soft accuracy calculation methods, and
the systematic error analysis framework. All hyperparameters, model configurations, and evaluation
procedures are explicitly documented, with specific details about the prompting strategies used for
each of the 18 evaluated models. The benchmark construction process, including the conversion of 3D
pose information to orientation questions and the manual annotation procedures for datasets lacking
orientation metadata, is thoroughly described with examples provided in the appendix. We include
comprehensive statistics about dataset composition, object category distributions, and the mapping
between fine-grained object labels and broader semantic classes. While some evaluated models are
proprietary, we provide detailed API specifications and prompting protocols to enable consistent
evaluation. Our error analysis methodology, including the systematic failure pattern identification and
component-wise error decomposition for compound rotations, is fully specified with clear criteria and
thresholds. All preprocessing steps, evaluation scripts, and analysis code will be made available to
facilitate accurate replication of our results and enable future research building upon this benchmark.
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A Task-wise Dataset Creation

View parallelism perception task evaluates a model’s ability to determine whether an object’s
front-facing surface is oriented toward, away from, or perpendicular to the camera plane. We
constructed this dataset using images from the JTA (Fabbri et al., 2018) and KITTI(Geiger et al., 2012)
datasets (specifically the subset used in OmniNOCS (Krishnan et al., 2024)). For JTA, which contains
3D human pose annotations, we calculated orientation by analyzing shoulder positions relative to
the camera and head angle to precisely determine facing direction. For KITTI, we leveraged the
available rotation matrices to categorize vehicles and pedestrians based on their orientation relative
to the camera. This task is critical for fundamental scene understanding, where determining which
objects are facing an agent is essential for interaction and navigation decisions.

Frontal alignment perception task extends orientation assessment to cardinal directions, requiring
models to identify if objects are facing toward, away, leftward, or rightward relative to the camera. We
developed this dataset using images from COCO (Lin et al., 2014) and Cityscapes (Cordts et al., 2016)
(from the OmniNOCS (Krishnan et al., 2024) subset). For COCO images, which lack orientation
annotations, we conducted expert manual labeling of object orientations. For Cityscapes, we utilized
rotational matrices to precisely determine directional orientation, limiting images to contain at most
three objects to ensure assessment clarity. This directional understanding is vital for spatial navigation
and object manipulation tasks where agents must understand not just if objects face them, but their
specific directional orientation.

Single-axis rotation task assesses understanding of rotational transformations around a vertical
axis by asking models to determine the optimal rotation direction and precise angular adjustment
needed for objects to face the camera. We constructed this dataset using 3D-Future (Fu et al.,
2021), which provides high-resolution 3D furniture models with known 6-DoF parameters. We
focused primarily on chair variants with distinctive front/back features, calculating the exact rotational
adjustment needed for the object to face the camera directly. This capability forms the foundation for
computational manipulation planning and scene reconfiguration understanding. Furthermore, we
utilized the Objectron (Ahmadyan et al., 2021) subset of the OmniNOCS (Krishnan et al., 2024)
dataset. This also included 6 DoF information which we used to determine the angle of the object
with respect to the camera, for this dataset we utilized bikes, chairs and bottles.

Compound rotation task evaluates comprehension of complex rotations involving sequential
transformations around multiple axes, where the rotation order impacts the final orientation. We
developed this dataset using 3D-rendered objects from Get3D (Gao et al., 2022), ShapeNet (Guibas,
2017), and OmniObject3D, (Wu et al., 2023) implementing a controlled rendering pipeline in Blender.
For each object, we rendered an initial third-person view, then applied precise rotations along
horizontal and vertical axes in varying sequences, rendering the transformed state. This task assesses
the sophisticated mental rotation capabilities required for complex object manipulation and orientation
reasoning across multiple dimensions.

Inter-object direction perception task evaluates understanding of relative orientation between
multiple objects from their own perspectives rather than the camera view. Using the 3D Future
(Fu et al., 2021) and NOCS REAL (Wang et al., 2019) datasets, we leveraged 6 DoF parameters to
calculate precise angular relationships between object pairs. The task requires models to determine if
objects face the same direction, opposite directions, or have perpendicular orientations, progressing
to granular assessment of the exact rotation needed for objects to align. This capability is essential
for understanding agent-object and object-object relationships in complex scenes, particularly for
collaborative robotic tasks or scene arrangement planning.

Viewer-scene direction perception task evaluates perception of rotational changes between two
images of the same object. Using Get3D (Gao et al., 2022), ShapeNet (Guibas, 2017), and
OmniObject3D (Wu et al., 2023) datasets, we rendered objects with a ground plane reference, then
created corresponding images with the object rotated by specific angles around a vertical axis. Models
must determine whether rotation occurred and, at the granular level, specify the exact degree of
rotation. This assessment examines the ability to track orientation changes across views—a crucial
capability for video understanding, temporal reasoning, and object tracking applications.

Canonical orientation reasoning task evaluates models’ understanding of normal object orientations
and their ability to identify when objects appear in non-canonical positions. Using a subset of COCO
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images with clear orientation expectations (e.g., people standing upright, vehicles with wheels on
the ground), we created variations with systematic flips and rotations. Models must first identify
whether images appear in their canonical orientation, then determine the specific transformations
(rotation, flipping, or both) needed to restore proper orientation. This capability assesses world
knowledge about typical object positioning, which is critical for anomaly detection, image correction,
and understanding intentional vs. unintentional orientation deviations.

Prompt Iteration Effect

To demonstrate this effect, we modified prompts to remove structuring elements(Fig 3.a), answer exam-
ples, detailed task conceptualizations, and step-by-step reasoning requests. Across 140 comparisons (7
tasks × 2 granularly levels × 10 models), structured prompts improved 38/70 (54%) granular-level and
33/70 (47%) coarse-level scores. Rotation Transformation tasks showed improvements in 8/10 models
with gains up to +34.8 points, indicating structured prompts successfully disambiguate multi-step
complex reasoning tasks. While some models showed drops on coarse tasks, structured prompts
consistently improved fine-grained orientation reasoning performance. The Canonical Orientation
tasks proved most challenging across models, as they require implicit world knowledge that is difficult
to specify explicitly in structured prompts.
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Figure 6: Sample category distribution of top 25 object categories showing their associated orientation
tasks

B Category Distribution Across Orientation Tasks

Fig. 6 presents the distribution of the top 25 most frequent object categories in DORI, annotated with
their corresponding orientation task types. This visualization highlights not only which categories are
most prevalent, but also how they are utilized across the various tasks in DORI.

While commonly occurring objects such as chair, car, and sofa span several task types, others are
more narrowly concentrated. This overlap and separation across tasks reflect the intentional diversity
of DORI, designed to evaluate model capabilities across both general-purpose and category-specific
orientation challenges. The distribution also underscores the need for models to generalize effectively
across unevenly represented categories and task combinations.

C Mapping Object Categories to Broad Classes

To enable category-level analysis, we group the fine-grained object labels in DORI into a smaller set
of semantically meaningful broad classes. This abstraction facilitates more interpretable evaluation
across heterogeneous datasets and reduces sparsity in underrepresented categories. The mapping spans
common categories such as Vehicle, Person, Animals, Food, Containers, Furniture,
Electronics, and Miscellaneous, and is illustrated in Tab. 6 and Fig. 7.
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Table 6: Mapping from object categories to broad semantic classes.

Object Category Broad Class
car, truck, tram, van, bus, train, airplane, boat, Vehicle
motorcycle, bicycle, coach, bike, motorbike, trailer Vehicle
pedestrian, cyclist, person Person
zebra, dog, elephant, giraffe, cat, horse, sheep, Animals
bird, cow, bear, starfish Animals
pizza, broccoli, donut, orange, apple, tomato, potato Food
cake, egg, wine glass, bowl, bottle, onion Food
bottle, cup, wine glass, bowl, medicine_bottle, box Containers
chair, sofa, table, lamp, bench, sofa-chair, soft-sofa Furniture
laptop, tv, display, camera, laptop-camera Electronics
clock, vase, toilet, umbrella, teddy bear, rifle Miscellaneous
stop sign, toy_train, toy_bus, house, ball Miscellaneous
scene, pattern Miscellaneous

0 2 4 6 8 10 12 14
Number of Object Categories

Vehicle

Miscellaneous

Animals

Food

Furniture

Containers

Electronics

Person

B
ro

ad
 C

la
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Distribution of Object Categories Across Broad Classes

Figure 7: Distribution of fine-grained object categories mapped to broader semantic classes. Most
categories fall under Vehicle, Miscellaneous, and Animals, reflecting common object types in the
evaluated datasets.
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Figure 8: Representative image samples drawn from each constituent dataset. Natural datasets include
Kitti, Cityscapes, Coco, SSFRB, Nocs-real, and Objectron. In the figure, we also show simulated
dataset samples including: JTA, 3D-Future, Get-3D, Omniobject3D, and Shapenet.

D Dataset Composition and Visual Diversity

To support a comprehensive evaluation of Multimodal Large Language Models (MLLMs) on
orientation reasoning and object-centric understanding, we construct our dataset by curating and
aligning images from diverse computer vision sources. Specifically, DORI incorporates scenes
from diverse computer vision datasets including KITTI (Geiger et al., 2012), Cityscapes (Cordts
et al., 2016), COCO (Lin et al., 2014), JTA (Fabbri et al., 2018), 3D-FUTURE (Fu et al., 2021),
Objectron (Ahmadyan et al., 2021), ShapeNet (Guibas, 2017), OmniObject3D (Wu et al., 2023),
and SSFRB (unsplash, 2020; Gontier et al., 2023; Liu et al., 2024c; Willett et al., 2013; neelgajare,
2022). These datasets span various natural and simulated domains, capturing varied object instances,
backgrounds, occlusion levels, lighting conditions, and viewpoints.

Fig. 8 showcases representative image samples from each source, illustrating the diversity of
environments, object types, and scene structures. This breadth of distribution ensures that the
evaluation probes both the generalization ability of MLLMs and their robustness to contextual, visual,
and category shifts across domains.

Fig. 9 further complements this by presenting the distribution of the top 25 most frequent object
categories across the datasets. While a few object classes, such as car, person, camera, and chair
dominate in frequency, the distribution spans a broad range of object types and source domains.
This heterogeneity plays a critical role in evaluating the performance of models not only on popular
categories but also on long-tail classes, thereby encouraging more balanced and comprehensive
assessment.
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Figure 9: Sample category distribution of top 25 object categories showing their sources
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E Task Complexity Hierarchy

Our multi-dimensional analysis reveals a clear hierarchy of difficulty in orientation reasoning tasks that
closely mirrors human cognitive development. Infants first master basic frontal orientation recognition
before developing the neural machinery for complex mental rotation operations (Tversky & Suwa,
2009; Mallot, 2023; Vasilyeva & Lourenco, 2012). Similarly, models perform most competently on
frontal alignment tasks (particularly view parallelism), where the top model (Gemini 1.5 Pro in Table
3 in the main paper) achieves 68.5% coarse accuracy. Performance systematically deteriorates as tasks
require more complex transformations, with compound rotation proving exceptionally challenging
(best granular performance of only 15.3% achieved by GPT-4 O in Table 3 in the main paper). The
models’ difficulty with compound rotations strongly suggests they lack the neural inductive biases
that allow humans to mentally simulate and track objects through complex transformations. The most
striking performance gap appears in tasks requiring perspective shifts—specifically, i.e. viewer-scene
direction perception and inter-object direction perception in Tables 2 and 3 in the main paper. While
viewer-scene direction perception shows relatively strong performance (Gemini models reaching
91-92% coarse accuracy), inter-object direction tasks reveal a fundamental weakness across all models
(best performance of only 25% coarse). This disparity demonstrates that current MLLMs struggle
to mentally adopt perspectives different from the allocentric viewpoint—a cognitive ability that
humans develop through perspective-taking experiences. This limitation is particularly concerning
for embodied AI applications like robotics and navigation, which require reasoning about object
relationships from multiple viewpoints. Canonical orientation understanding (determining if objects
appear in their “natural” orientation) shows highly variable performance across models (Tab. 2 in the
main paper). Some systems perform exceptionally poorly (DeepSeek-1.3B-base at 2.5% coarse) while
others demonstrate relatively robust capabilities (GPT-4 O at 45% and GPT-4-1 at 46% granular,
as shown in Table 3 in the main paper). This variability suggests that recognizing natural object
orientations depends on world knowledge that is inconsistently encoded across different architectural
approaches and training regimes.

F Additional Analyses of Model Performance

To deepen our understanding of current Multimodal Large Language Models (MLLMs) on DORI, we
present a series of additional analyses that dissect performance across key axes of task structure and
model behavior.

Fig. 10 examines the relationship between answer set size and model accuracy. We observe a peak
in performance at 3-option questions (42.5%), with accuracy declining markedly as the number of
candidate answers increases. At 5 and 6 options, performance drops to 26% and 19%, respectively,
with a further decline to 13% at 9 options, and a minimum of 6% at 16 options. This degradation
illustrates the difficulty MLLMs face when navigating more complex decision spaces, suggesting that
increasing output space size strains their orientation reasoning capabilities.

In Fig. 11, we break down model performance across simulated vs. natural imagery and annotation
granularity levels. Gemini and GPT variants dominate across the board. Yet, all models exhibit
significantly higher accuracy on simulated datasets and coarse-type questions, revealing a persistent
challenge in transferring orientation understanding to more fine-grained and realistic visual contexts.

Performance by Common Categories

We can see in Fig 12 we look at the performance for each of the models based on common categories.
We see a similar trend for each model across each of the different categories with Food being the
one that appears to standout. In this instance it seems that only the GPT variants perform better with
GPT-4 O performing the best. In terms of datasets that contain food in them, this would be attributed
to the COCO images for the Directional Facing question and OmniObject-3D images for Compound
Rotation and View-scene direction questions. Where some of these questions tend to have "Cannot
be determined" since it involves items like Pizza or Cake, GPT-4 O appears to be able to determine
these sort of questions. This could be attributed to the training data that was used for the GPT family
of models since GPT-4-1 also is shown to do well for the Food category. For the person category,
however, most models tend to perform best as is expected as most models would have been exposed
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Figure 10: Model accuracy as a function of answer set size. Accuracy peaks at 42.5% for 3-option
questions, then declines steadily, dropping to about 25% at 5 options, 19% at 6, about 13% at 9
options, and reaching a low of about 6% at 16 options, indicating increasing difficulty with larger
candidate sets.
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Figure 11: Performance of 18 leading Multimodal Large Language Models (MLLMs) across data
types (a) and annotation granularity levels (b). Gemini and GPT models lead overall. Models perform
noticeably better on simulated datasets and coarse-type questions, revealing a gap in generalizing to
natural images and more fine-grained questions.

to persons in their training data, for instance if we look at the most popular category in COCO (Lin
et al., 2014) it is persons.

Performance by Data-Source

When looking at Fig 13 we see the main data-sources present in our dataset. We see that for more
simple synthetic data models tended to perform better like in JTA, ShapeNet and Get3D; however
for natural datasets like Objectron and NOCS_Real, both the open and closed source models tended
to have a drop in performance. This could be first attributed to the dense nature of the number of
objects found in the NOCS_Real dataset which includes a number of objects like cars and persons,
the same can be said for Cityscapes which is also densely populated. For Objectron which can look
at an object at different angles this can also prove difficult for most open-source models, with the
closed source models tending to performing better which could be attributed to the pretraining data as
these closed-source models are exposed to a large set of data with object potentially at different views
making it more robust to object rotational views.
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Figure 12: Model accuracy for the 18 models across the broad categories described in Section C
with most categories tending to performing similarly except for Food which tends to have lower
performances except for GPT-4 O. Which highlights a gap for orientation related questions related to
food.
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Figure 13: Model accuracy for the 18 models across the data-sources present in DORI. We see that
overall the closed source models tend to perform better than the open source models. With more real
and smaller datasets like NOCS_Real and Objectron proving to be challenging for most of the models.
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(a) Performance per model across the four core dimen-
sions of orientation.
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Figure 14: Performance of 18 leading Multimodal Large Language Models (MLLMs) different levels
of our questions hierachy with (left) being the being the four core dimensions of orientation and
(right) being the different questions present in DORI
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Prompt: 
TASK: Determine which way Object A's front is facing relative to the 
camera.

CONTEXT: Object A is marked with a bounding box in the image. An object 
is considered 'front facing' when its inherent structural features (e.g., a 
person's face, car headlights, TV screen) are visible from the camera.

Please analyze this image using these steps:
1. Identify Object A and its key structural features 2. Determine the 
orientation of its front surface relative to the camera 3. Compare with the 
provided options 4. Select the most appropriate answer 5. Explain your 
reasoning with specific visual evidence

OPTIONS:
A. Not visible enough to determine B. Directly facing the camera 
C. Facing away from the camera

FORMAT YOUR RESPONSE AS:
"answer": "Letter/number of chosen option",
 "reasoning": "Step-by-step explanation citing specific visual evidence"

EXAMPLES:
- A person whose body is directed towards the camera would be "facing 
toward the camera"

Ground Truth:

C: Facing away from the camera

Gemini_1.5_pro Answer: 

"answer": "B",

"reasoning": "Object A is a person. The key 
structural feature for a person is their face. We 
can see her face clearly and we can tell her body 
is oriented towards the camera, therefore Object 
A is facing directly towards the camera."

Figure 15: An example VQA from the View Parallelism orientation task illustrating a failure case
on a coarse-level question in DORI, with a prediction from Gemini 1.5 Pro. Many models failed
this question, highlighting a common challenge among MLLMs in understanding fundamental scene
geometry—specifically, in reasoning whether an object’s front-facing surface is oriented toward, away
from, or perpendicular to the camera plane.

G VQA Examples in DORI

To further contextualize model behavior, we present a curated selection of Visual Question Answering
(VQA) examples drawn from the DORI benchmark, covering each of the seven distinct orientation
reasoning tasks. These qualitative illustrations shed light on the nuanced challenges faced by
state-of-the-art Multimodal Large Language Models (MLLMs), beyond aggregate metrics.

Each example is carefully chosen to represent either a canonical failure or, in rarer cases, a surprising
success. The samples span both coarse-level and granular-level questions, reflecting the dual axes
of abstraction and visual complexity within DORI. Despite confident language in many model
predictions, we observe frequent dissonance between answer correctness and the underlying rationale,
especially for tasks requiring precise spatial alignment or inter-object reasoning.

For instance, in the View Parallelism and Directional Facing tasks, models often misjudge subtle
orientation cues, such as limb articulation or gaze direction as we show in Figures 15, 16, 17, and 18,
leading to confidently incorrect predictions. Likewise, for Single-Axis and Compound Rotation
scenarios, we show in Figures 19, 20, 21, and 22, that even top-performing models struggle with
mentally simulating object motion, resulting in angular miscalculations or overly generic justifications.

Notably, Inter-object Direction and Viewer-Scene Direction tasks as we show in Figures 23, 24, 25,
and 26, expose limitations in relational orientation reasoning, with models frequently underestimating
angular disparities or misrepresenting the directional frame of reference. The final task, Canonical
Orientation as seen in Fig. 27, underscores a broader epistemic gap: models often assert certainty in
inherently ambiguous scenarios, revealing an overconfidence not grounded in the visual evidence.

Together, these examples highlight persistent limitations in visual-spatial grounding, even among the
most capable contemporary MLLMs. They underscore the need for further architectural innovations
and training strategies to imbue models with a deeper, more structured understanding of object
orientation dynamics.
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Prompt: 

TASK: Determine how much Object A's front surface deviates 
from being parallel to the camera plane. 

CONTEXT: Object A is marked with a bounding box in the 
image. You'll be assessing the angle between Object A's front 
surface and the camera plane (the camera taking this photo). 
Please analyze this image using these steps: 1. Identify 
Object A and establish its front-facing surface 2. Estimate the 
angular deviation between this surface and the camera plane 
3. Compare with the provided options 4. Select the most 
appropriate answer 5. Explain your reasoning with specific 
visual evidence 

OPTIONS: A. 135 degrees to 180 degrees B. 0 degrees to 15 
degrees C. Cannot be determined D. 65 degrees to 95 degrees 

FORMAT YOUR RESPONSE AS: "answer": "Letter/number of 
chosen option", "reasoning": "Step-by-step explanation citing 
specific visual evidence" EXAMPLES: - A person looking 
directly at the camera: 0-15 degrees - A person is 
perpendicular to the camera: 65-95 degrees - A car with its 
rear-end to the camera: 135-180 degrees

Ground Truth:

A : 135 degrees to 180 degrees

Gemini-2.0-Flash Answer: 

"Answer": "B", 

"Reasoning": "Object A's back is to the camera. Therefore, the 
deviation from the camera plane is between 0 degrees and 15 
degrees."

Figure 16: An example VQA from the View Parallelism orientation task highlighting a failure case
on a granular-level question in DORI, with a response from Gemini 2.0 Flash. Although the model
confidently selects an answer, its reasoning reflects a fundamental misunderstanding of the object’s
orientation relative to the camera. While the ground truth indicates the object is turned between 135°
and 180° away, the model incorrectly infers a near-parallel alignment, underscoring limitations in
fine-grained spatial perception among current MLLMs.

Prompt: 
TASK: Determine which direction Object A's front-facing surface is oriented from the 
camera's viewpoint.

CONTEXT: Object A is marked with a bounding box in the image. You will identify its 
front-facing surface orientation based on inherent structural features.Please analyze this 
image using these steps:1. Identify Object A and establish its front-facing surface 2. 
Determine the direction this surface is oriented relative to the camera3. Compare with the 
provided options 4. Select the most appropriate answer 5. Explain your reasoning with 
specific visual evidence

OPTIONS:{'A': 'Toward the camera' 'B': "Can't be determined" 'C': 'Away from the camera' 'D': 
'Rightward relative to the camera plane' 'E': 'Leftward relative to the camera plane'}

FORMAT YOUR RESPONSE AS:  "answer": "Letter/number of chosen option"  "reasoning": 
"Step-by-step explanation citing specific visual evidence"

EXAMPLES:- If you see a car with its headlights directly pointing toward the camera select 
"Toward the camera"- If you see a person with their back to the camera select "Away from 
the camera"

Gpt_4_1 Answer: 

Answer: "B"

"reasoning": "The person inside the bounding box (Object A) is facing away from the 
camera. This is evident because the back of their head and body are visible while their face 
is not. The orientation of the shoulders and the direction of the arms also indicate that the 
front-facing surface (the person's face and torso) is directed away from the camera."

Ground Truth:

E: Leftward relative to the camera 
plane

Figure 17: A coarse-level VQA from the Directional Facing task in DORI, illustrating a failure
case by GPT-4-1. While the ground truth indicates a leftward orientation, the model predicts ‘away,’
misreading body posture and head direction. Notably, 13 out of 15 models failed this question,
underscoring a widespread struggle with coarse directional inference.
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Prompt: 
TASK: Determine which direction Object A's front-facing surface is oriented from the camera's 
viewpoint. 

CONTEXT: Object A is marked with a bounding box in the image. You will identify its 
front-facing surface orientation based on inherent structural features. Please analyze this 
image using these steps: 1. Identify Object A and establish its front-facing surface 2. Determine 
the direction this surface is oriented relative to the camera 3. Compare with the provided 
options 4. Select the most appropriate answer 5. Explain your reasoning with specific visual 
evidence 

OPTIONS: A. Can't be determined B. Rightward relative to the camera plane C. Away from the 
camera D. Toward the camera E. Leftward relative to the camera plane FORMAT YOUR 
RESPONSE AS: "answer": "Letter/number of chosen option", "reasoning": "Step-by-step 
explanation citing specific visual evidence" 

EXAMPLES: - If you see a car with its headlights directly pointing toward the camera, select 
"Toward the camera" - If you see a person with their back to the camera, select "Away from the 
camera"

Ground Truth:

B : Rightward relative to the 
camera plane

Gemini-2.0-Flash Answer: 

"Answer": "E", 

"Reasoning": "The giraffe in the image (Object A) is oriented so that its front-facing surface (as 
indicated by its face, neck, and body) is primarily directed leftward relative to the camera's 
perspective. This is because the giraffe is largely facing towards the left side of the image."

Figure 18: A coarse-level VQA from the Directional Facing task in DORI, showing a failure case by
Gemini-2.0-Flash. While the ground truth identifies the giraffe’s orientation as rightward, the model
incorrectly infers a leftward direction. This highlights the difficulty in interpreting animal pose and
orientation cues, a challenge shared by the majority of models in this example.

Prompt: 
TASK: Determine the closest clockwise rotation needed for Object A to face the 
camera.

CONTEXT: Object A is marked with a bounding box in the image. Objects can 
rotate clockwise or counterclockwise around a vertical axis (running from top to 
bottom).Please analyze this image using these steps: 1. Identify Object A and 
establish its front-facing surface 2. Determine its current orientation relative to 
the camera3. Calculate how many degrees of clockwise rotation would be needed 
to make it face the camera4. Compare with the provided options 5. Select the 
most appropriate answer 6. Explain your reasoning with specific visual evidence

OPTIONS:{'A': '0 degrees' 'B': '90 degrees' 'C': '45 degrees' 'D': '135 degrees' 'E': '180 
degrees' 'F': 'Cannot be determined'} FORMAT YOUR RESPONSE AS:"answer": 
"Letter/number of chosen option"  "reasoning": "Step-by-step explanation citing 
specific visual evidence"

EXAMPLES:- If the object is already facing the camera the answer is "0 degrees"- 
If the object's front is facing to your right a "90 degrees" clockwise rotation 
would make it face the camera- If the object's front is at a 45-degree angle to 
your right a "45 degrees" clockwise rotation would make it face the camera- If 
the object's front is at a 135-degree angle to your right a "135 degrees" clockwise 
rotation would make it face the camera- If the object's front is facing away from 
the camera a "180 degrees" clockwise rotation would make it face the camera- If 
the object has no clear front or its orientation cannot be determined select 
"Cannot be determined"

Ground Truth:

E: 180 degrees

GPT-4O Answer: 

“Answer": "E"  
"reasoning": "The object marked as 'A' is a chair 
and it does not have a clear front-facing surface 
that can be definitively identified. Without a clear 
indication of its front orientation it is impossible to 
determine how many degrees of clockwise 
rotation would be needed for it to face the 
camera. Therefore the correct answer is 'Cannot 
be determined.”

Figure 19: A granular-level VQA from the Single-Axis Rotation task in DORI, featuring a case where
GPT-4o selects the correct answer (180° rotation) but provides flawed reasoning. While the model
concludes with the correct choice, its explanation suggests uncertainty due to perceived ambiguity
in object orientation. This mismatch between prediction and rationale underscores gaps in visual
reasoning, with only 2 out of 15 models answering correctly.
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Prompt: 
TASK: Determine the closest clockwise rotation needed for Object A to face the 
camera. 

CONTEXT: Object A is marked with a bounding box in the image. Objects can rotate 
clockwise or counterclockwise around a vertical axis (running from top to bottom). 
Please analyze this image using these steps: 1. Identify Object A and establish its 
front-facing surface 2. Determine its current orientation relative to the camera 3. 
Calculate how many degrees of clockwise rotation would be needed to make it face 
the camera 4. Compare with the provided options 5. Select the most appropriate 
answer 6. Explain your reasoning with specific visual evidence 

OPTIONS: A. 0 degrees B. 90 degrees C. 45 degrees D. Cannot be determined E. 180 
degrees F. 135 degrees FORMAT YOUR RESPONSE AS: "answer": "Letter/number of 
chosen option", "reasoning": "Step-by-step explanation citing specific visual 
evidence" 

EXAMPLES: - If the object is already facing the camera, the answer is "0 degrees" - 
If the object's front is facing to your right, a "90 degrees" clockwise rotation would 
make it face the camera - If the object's front is at a 45-degree angle to your right, 
a "45 degrees" clockwise rotation would make it face the camera - If the object's 
front is at a 135-degree angle to your right, a "135 degrees" clockwise rotation would 
make it face the camera - If the object's front is facing away from the camera, a 
"180 degrees" clockwise rotation would make it face the camera - If the object has 
no clear front or its orientation cannot be determined, select "Cannot be 
determined"

Ground Truth:

E: 180 degrees

Gemini-2.0-Flash Answer: 

"Answer": "B", 

"Reasoning": "Object A is currently oriented 
approximately 90 degrees clockwise from 
facing the camera. A clockwise rotation of 90 
degrees would be needed to make it directly 
face the camera."

Figure 20: A granular-level VQA from the Single-Axis Rotation in DORI, showing a failure case
with a prediction from Gemini 2.0 Flash. While the correct answer is a 180° rotation, the model
incorrectly selects 90° (option B), suggesting a misjudgment of the object’s current orientation relative
to the camera. This highlights challenges models face in reasoning about precise rotational alignment.

Prompt: 
TASK: Determine what type of rotation the object has undergone between the two images. 

CONTEXT: Two images of the same object are shown side by side. The object can rotate around two axes: Horizontal (like a cartwheel 
coming out of the screen) and Vertical (like a ballerina spinning clockwise). Please analyze these images using these steps: 1. Identify 
the object in both images and establish its key features 2. Compare the object's orientation in both images 3. Determine which axes 
the object has rotated around 4. Compare with the provided options 5. Select the most appropriate answer 6. Explain your reasoning 
with specific visual evidence 

OPTIONS: A. Cannot be determined B. Only Vertical C. Only Horizontal D. Both Horizontal and Vertical E. No Change FORMAT YOUR 
RESPONSE AS: "answer": "Letter/number of chosen option", "reasoning": "Step-by-step explanation citing specific visual evidence" 

EXAMPLES: - If an object appears to have moved to face left or right between images, select "Only Vertical" - If an object appears to 
have moved up or down (like nodding), select "Only Horizontal" - If an object has rotated both horizontally and vertically, select 
"Both Horizontal and Vertical" - If the object appears identical in both images with no rotation, select "No Change" - If you cannot 
clearly determine the type of rotation, select "Cannot be determined"

Gemini-2.0-Flash Answer: 

"Answer": "C", 

"Reasoning": "The car in the first image is upright 
with the wheels on the bottom. In the second 
image, the car is upside down with the 
undercarriage showing. This indicates a rotation 
around a horizontal axis."

Figure 21: A coarse-level VQA from the Compound Rotation task in DORI, with a correct prediction
from Gemini 2.0 Flash. The model identifies a horizontal axis rotation, but its reasoning overstates
the change, describing the car as ‘upside down’ when it is only partially inverted.
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Prompt: 
TASK: Determine the exact rotation angles the object has undergone between the two images. 

CONTEXT: Two images of the same object are shown side by side. The object can rotate around two axes: Horizontal (like a cartwheel coming out of the 
screen) and Vertical (like a ballerina spinning clockwise). Please analyze these images using these steps: 1. Identify the object in both images and establish 
its key features 2. Compare the object's orientation in both images 3. Determine the horizontal rotation angle first, then the vertical rotation angle 4. 
Compare with the provided options 5. Select the most appropriate answer 6. Explain your reasoning with specific visual evidence 

OPTIONS: A. 270 degrees Horizontal then 180 degrees Vertical B. 180 degrees Horizontal then 0 degrees Vertical C. Cannot be determined D. 180 degrees 
Horizontal then 90 degrees Vertical E. 90 degrees Horizontal then 180 degrees Vertical F. 0 degrees Horizontal then 0 degrees Vertical G. 270 degrees 
Horizontal then 90 degrees Vertical H. 270 degrees Horizontal then 270 degrees Vertical I. 0 degrees Horizontal then 90 degrees Vertical J. 180 degrees 
Horizontal then 270 degrees Vertical K. 0 degrees Horizontal then 180 degrees Vertical L. 0 degrees Horizontal then 270 degrees Vertical M. 90 degrees 
Horizontal then 0 degrees Vertical N. 90 degrees Horizontal then 270 degrees Vertical O. 90 degrees Horizontal then 90 degrees Vertical P. 180 degrees 
Horizontal then 180 degrees Vertical Q. 270 degrees Horizontal then 0 degrees Vertical 

FORMAT YOUR RESPONSE AS: "answer": "Letter/number of chosen option", "reasoning": "Step-by-step explanation citing specific visual evidence" 

EXAMPLES: - If an upright cup in the first image appears upside-down in the second image, this might be "180 degrees Horizontal then 0 degrees Vertical" 
- If a car facing left in the first image appears to be tilted upward and facing the camera in the second image, this might be "90 degrees Horizontal then 90 
degrees Vertical" - If you cannot clearly determine the type of rotation, select "Cannot be determined"

Ground Truth: 
E: 90 Degrees Horizontal, 90 Degrees Vertical

Gemini-2.0-Flash Answer: 

"Answer": "E", 

"Reasoning": "The motorcycle in the first image is upright. 
In the second image, the motorcycle is rotated 90 degrees 
horizontally, leaning to the right. Additionally, it has been 
rotated 180 degrees vertically, as evidenced by the seat and 
rear tire now facing upward."

Figure 22: A granular-level VQA from the Compound Rotation task in DORI showing a failure
case from Gemini 2.0 Flash. While the model selects the correct option, its reasoning misidentifies
the vertical rotation, describing a 180° flip when the ground truth indicates a 90° transformation.

Prompt: 
TASK: Determine if objects A and B are facing each other from their own 
perspectives.

CONTEXT: Objects A and B are marked with red dots in the image. You will 
analyze their relationship from the objects' perspectives not from the 
camera view.Please analyze this image using these steps: 1. Identify objects 
A and B and establish their front-facing surfaces 2. Mentally position 
yourself at each object's location 3. Determine the relative directional 
orientation between the objects 4. Compare with the provided options 5. 
Select the most appropriate answer 6. Explain your reasoning with specific 
visual evidence

OPTIONS:{'A': 'Cannot be determined' 'B': 'Partially facing the same 
direction' 'C': 'Partially facing the opposite directions' 'D': 'They are facing 
opposite directions' 'E': 'They are facing perpendicular to each other' 'F': 
'They are facing the same direction'}

FORMAT YOUR RESPONSE AS:"answer": "Letter/number of chosen option"  
"reasoning": "Step-by-step explanation citing specific visual evidence"

EXAMPLES:- Two people looking at each other would be "facing opposite 
directions" (as their faces point toward each other)- Two cars with 
headlights pointing the same way would be "facing the same direction"- A 
car and a person where the car's side faces the person's front would be 
"facing perpendicular to each other"- Two objects with front surfaces 
angled slightly toward each other would be "partially facing opposite 
directions"- Two objects with front surfaces angled slightly away from each 
other would be "partially facing the same direction"

Ground Truth: 
B: Partially facing the same direction

Gpt-4-1 Answer: 

Answer: "C"

"reasoning": "...the most appropriate answer is 
'Partially facing the opposite directions' as their 
front surfaces are somewhat oriented toward each 
other but not directly..."

Figure 23: A coarse-level VQA from the Inter-object Direction task in DORI showing a failure
case with GPT-4-1. Although the correct answer is ’Partially facing the same direction,’ the model
incorrectly selects ’Partially facing opposite directions,’ misjudging the relative orientations. Notably,
13 out of 15 models failed this example, highlighting a shared difficulty in reasoning about partially
aligned object directions.
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Prompt: 
TASK: Determine how much Object B would need to rotate to face Object A.

CONTEXT: Objects A and B are marked with red dots in the image. You will 
analyze their relationship from the objects' perspectives, not from the 
camera view. Please analyze this image using these steps:
1. Identify objects A and B and establish their front-facing surfaces
2. Mentally position yourself at each object's location
3. Determine how much and in which direction Object B would need to rotate 
to face Object A
4. Compare with the provided options
5. Select the most appropriate answer
6. Explain your reasoning with specific visual evidence

OPTIONS:
A. Cannot be determined B. No rotation C. 180 degrees in either direction
D. 46 to 90 degrees clockwise E. 46 to 90 degrees counterclockwise
F. 0 to 45 degrees clockwise G. 91 to 135 degrees clockwise
H. 0 to 45 degrees counterclockwise I. 91 to 135 degrees counterclockwise

FORMAT YOUR RESPONSE AS:
"answer": "Letter/number of chosen option",
  "reasoning": "Step-by-step explanation citing specific visual evidence"

EXAMPLES:
- If Object B needs to turn slightly right to match Object A's direction, select 
"0 to 45 degrees clockwise"
- If Object B is already facing the same direction as Object A, select "0 
degrees or no rotation"
- If Object B needs to turn completely around to match Object A, select "180 
degrees in either direction"

Ground Truth: 
D: 46 to 90 degrees clockwise

Gemini_1.5_pro Answer: 

"Answer": "F",
"reasoning": "Object A (the black chair) is facing the 
coffee table in the center of the room. Object B (the 
sofa) is currently facing the wall with the two black 
canvases.  To face the coffee table and therefore 
object A, object B needs to rotate clockwise a small 
amount, placing it between 0 and 45 degrees. "

Figure 24: A granular-level VQA from the Inter-object Direction task in DORI illustrating a failure
case with Gemini 1.5 Pro. While the ground truth indicates a required clockwise rotation between 46°
and 90° for alignment, the model underestimates this angle. Its reasoning misinterprets the spatial
alignment between the chair and sofa. All 15 models failed this example, underscoring the challenge
of inter-object directional understanding.

Prompt: 
TASK: Determine how many degrees clockwise the object has rotated between the two images. 

CONTEXT: Two images of the same object are shown side by side. Assume the camera remains stationary, and the object can 
rotate around a vertical axis. Please analyze these images using these steps: 1. Identify the object in both images and establish 
its key features 2. Compare the object's orientation in both images 3. Determine the precise clockwise rotation angle around the 
vertical axis 4. Compare with the provided options 5. Select the most appropriate answer 6. Explain your reasoning with 
specific visual evidence 

OPTIONS: A. Cannot be determined B. 180 degrees C. 90 degrees D. 270 degrees E. 0 degrees 

FORMAT YOUR RESPONSE AS: "answer": "Letter/number of chosen option", "reasoning": "Step-by-step explanation citing 
specific visual evidence" EXAMPLES: - Objects that are symmetrical like a ball or a box would be considered "Cannot be 
determined

Gemini-2.0-Flash Answer: 

"Answer": "C", 

"Reasoning": "The airplane rotates 90 
degrees clockwise. In the first picture, the 
plane's nose points towards the right, in 
the second picture, it points to the 
bottom."

Figure 25: Viewer-Scene Direction – Example success case on a granular-level DORI question with
Gemini-2.0-Flash. While the model correctly selects the 90-degree rotation, it inaccurately describes
the directional shift as ’right’ to ’bottom’ instead of the more precise ’bottom-right’ to ’bottom-left,’
reflecting a partial misunderstanding of fine-grained orientation.
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Prompt: 
TASK: Determine how many degrees clockwise the object has rotated between the two images.

CONTEXT: Two images of the same object are shown side by side. Assume the camera remains stationary and the object can 
rotate around a vertical axis.Please analyze these images using these steps: 1. Identify the object in both images and establish 
its key features 2. Compare the object's orientation in both images3. Determine the precise clockwise rotation angle around the 
vertical axis 4. Compare with the provided options 5. Select the most appropriate answer 6. Explain your reasoning with specific 
visual evidence

OPTIONS:{'A': '180 degrees' 'B': '0 degrees' 'C': '270 degrees' 'D': '90 degrees' 'E': 'Cannot be determined'}

FORMAT YOUR RESPONSE AS:"answer": "Letter/number of chosen option"  "reasoning": "Step-by-step explanation citing 
specific visual evidence" EXAMPLES:- Objects that are symmetrical like a ball or a box would be considered "Cannot be 
determined"

Ground Truth: 

A: 180 degrees

Gpt-4-1 Answer: 

Answer: "A"  

"reasoning": "...Comparing the two images 
the chair has rotated 90 degrees clockwise 
around the vertical axis: the backrest moves 
from facing upper left to facing right …"

Figure 26: Viewer-Scene Direction – Example failure case on a granular-level DORI question with
GPT-4-1. Although the model selects the correct answer of 180 degrees, its reasoning mistakenly
describes a 90-degree rotation, highlighting a disconnect between answer selection and spatial
understanding. Notably, 13 out of 15 models failed this case.

Prompt: 
TASK: Determine if the image is in its canonical orientation. 

CONTEXT: The image may be flipped or rotated or both. 
Canonical orientation refers to the standard way objects are 
typically viewed (e.g., people standing upright, cars with 
wheels on the ground, text reading left to right).An image that 
has been mirrored horizontally or vertically is considered 
flipped. An image that has been turned from its normal 
viewing angle is considered rotated. Please analyze this 
image using these steps: 1. Identify the main 
objects/elements in the image 2. Determine their expected 
canonical orientation 3. Compare with their current 
orientation in the image 4. Compare with the provided 
options 5. Select the most appropriate answer 6. Explain your 
reasoning with specific visual evidence 

OPTIONS: A. Yes, the image is in the canonical orientation B. 
Cannot be determined C. No, the image is not in the canonical 
orientation 

FORMAT YOUR RESPONSE AS: "answer": "Letter/number of 
chosen option", "reasoning": "Step-by-step explanation citing 
specific visual evidence"

Ground Truth: 

B. Cannot be determined

Gemini-2.0-Flash Answer: 

"Answer": "A", 

"Reasoning": "The image depicts a nebula. There is no 
single canonical orientation for nebulae as they are 
typically viewed from various angles. Therefore, the image 
is most likely in its canonical orientation."

Figure 27: Canonical Orientation – Example failure case on a coarse-level DORI question with
Gemini-2.0-Flash. While the ground truth is ’Cannot be determined,’ the model incorrectly selects a
definitive orientation. Its reasoning contradicts the inherent ambiguity it acknowledges, exposing
uncertainty in handling objects with no fixed canonical pose.
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H Enumerated List of Questions

Coarse Questions
• Q1 - View Parallelism: Determine which way Object A’s front is facing relative to the camera.
• Q2 - Directional Facing: Determine which direction Object A’s front-facing surface is oriented

from the camera’s viewpoint.
• Q3 - Single-axis Rotation: Determine the shortest direction of rotation for Object A to face the

camera.
• Q4 - Compound Rotation: Determine what type of rotation the object has undergone between the

two images.
• Q5 - Inter-object Direction: Determine if objects A and B are facing each other from their own

perspectives.
• Q6 - Viewer-Scene Direction: Determine if the object has rotated between the two images.
• Q7 - Canonical Orientation: Determine if the image is in its canonical orientation.

Fine-grained/Granular Questions
• Q1 - View Parallelism: Determine how much Object A’s front surface deviates from being parallel

to the camera plane.
• Q2 - Directional Facing: Identify the precise orientation of Object A’s front-facing surface from

the camera’s viewpoint
• Q3 - Single-axis Rotation: Determine the closest clockwise rotation needed for Object A to face

the camera.
• Q4 - Compound Rotation: Determine the exact rotation angles the object has undergone between

the two images.
• Q5 - Inter-object Direction: Determine how much Object B would need to rotate to face Object A.
• Q6 - Viewer-Scene Direction: Determine how many degrees clockwise the object has rotated

between the two images.
• Q7 - Canonical Orientation: Determine how the image can be restored to its canonical orientation.
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I Performance Error Bars

The error bars in Figs. 28, 29, 30, 31, 32, 33, and 34 report the mean and standard deviation of various
models on DORI questions. For each model and question type combination, the formula error =
std_accuracy/sqrt(seed_count) was applied. We used 3 different seeds: [42, 1998, 107983].

Looking at the View Parallelism task (Fig. 28), we observe relatively narrow error bars for most
models, indicating consistent performance across different seeds. However, both DeepSeek base
models and the LLaVa-13 B-base models display wider error bars on coarse questions (approximately
±3−4%), suggesting that their performance comes with greater variability. Despite LLaVa-13B-base
demonstrating better performance than the other 2 base models, it’s clear that all three base models’
performance is more sensitive to initialization conditions. Qwen2.5-3B-instruct model demonstrates
notable initialization variability for both coarse and granular questions.

The Directional Facing task (Fig. 29) reveals generally smaller error bars across all models, with
most variations under ±2%, indicating that performance on cardinal direction assessment remains
relatively stable regardless of initialization. However, all models perform notably worse on this task
compared to View Parallelism, with even the best model (DeepSeek-7B-Chat) achieving only 32.5%
accuracy on coarse questions. LLaVA-Next-8B shows consistent but lower performance (22.0%
coarse, 21..1% granular), while Qwen2.5-3B-Instruct has low performance (23.4% coarse, 2.5%
granular) with tight error bars.

The Single-axis Rotation task (Fig. 30) is more uniform across models, with most showing variations
of ±2−3%. The comparable error bar sizes across models suggest that this task presents similar levels
of difficulty for all architectures, with no model demonstrating significantly more stable performance
than others. This uniformity in variability indicates that improvements in this task may require
fundamental architectural innovations rather than just parameter tuning.

The Compound Rotation task (Fig. 31) exhibits the most dramatic performance gap between coarse
and granular questions, with granular accuracy dropping below 10% for all models. LLaVA-Next-8B
shows the highest coarse performance (43.0%) but extremely low granular performance (5.1%). The
error bars for granular questions are relatively tight (except in LLaVa-13B-base), suggesting that
models consistently struggle with this task rather than showing initialization-dependent variability.
The narrow error bands on poor performance indicate a systematic limitation in the models’ ability to
track complex multi-axis rotations. Overall, this plot demonstrates noticeable variability in the error
bands across both coarse and granular questions.

For Inter-object Direction (Fig. 32), we observe slightly asymmetric performance patterns between
coarse and granular questions. While DeepSeek-7B-Chat achieves the highest coarse accuracy
(39.2%), all models show substantially lower performance on granular questions (generally below
15%). The error bars appear to be tight for coarse and granular questions, indicating consistent
performance across different trials. The performance gap between coarse and granular questions
suggests that while models can sometimes succeed at basic relational orientation tasks (determining if
objects face the same/opposite directions), they systematically fail when asked to make precise angular
judgments about inter-object relationships. Interestingly, for LLaVA-13B-base model, the granular
performance (14.0%) slightly exceeds its coarse performance (11.1%), running counter to the typical
pattern observed in other tasks and models. This anomaly may indicate that LLaVA’s training regime
potentially encodes some specific features that assist with fine-grained angular estimations between
objects, though its overall performance remains well below human capabilities on these tasks.

Similarly, the Viewer-Scene Direction task (Fig. 33) reveals intriguing performance inversions
between coarse and granular questions for certain models. Qwen-3B-Instruct shows the highest coarse
accuracy (62.8%) with poor granular performance (16.9%), while DeepSeek-7B-Chat demonstrates
the opposite pattern (17.0% coarse, 29.9% granular). These inversions, coupled with wide error
bars, indicate that different model architectures encode rotation perception in fundamentally different
ways. This task exposes fundamental inconsistencies in how current MLLMs process orientation
changes, suggesting that rotation tracking may rely on different computational mechanisms than static
orientation perception, with these mechanisms developing unevenly across model architectures and
training regimes.

The Canonical Orientation task (Fig. 34) doesn’t exhibit any high variability among the error bars
across coarse and granular performance. The error bars remain relatively narrow for most models
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(±1− 3%), indicating that performance limitations on this task are consistent across initialization
seeds rather than highly variable. This consistency, coupled with generally poor performance, suggests
that canonical orientation understanding, which requires both world knowledge about natural object
positions and spatial transformation reasoning, represents a fundamental capability gap in current
MLLMs. The results indicate that models lack robust internal representations of how objects "should"
appear in the world, a crucial component for embodied navigation and manipulation tasks where
recognizing and correcting non-canonical orientations is essential.

Cross-Task Insights Across all tasks, our error bar analysis reveals several critical insights about
MLLMs’ orientation reasoning capabilities. First, model performance stability varies substantially
across tasks, with simpler perception tasks (View Parallelism, Directional Facing) showing more
consistent performance across initializations compared to complex reasoning tasks (Compound
Rotation, Viewer-scene direction, Canonical Orientation). Moreover, the consistently tight error
bars on poor-performing granular questions, particularly for rotational tasks, indicate systematic
limitations rather than chance variability, suggesting architectural rather than parametric constraints.
We also observe that Chat-tuned models generally demonstrate more stable performance than their
base counterparts, suggesting that instruction tuning not only improves accuracy but also reduces
initialization sensitivity. Finally, the performance inversions observed between coarse and granular
questions for some models highlight the disconnect between categorical and precise metric orientation
understanding, a fundamental challenge that persists across all model families and architectures
evaluated.
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Figure 28: Mean and Standard Deviation of various models on View Parallelism task
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Figure 29: Mean and Standard Deviation of various models on Directional Facing task
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Figure 30: Mean and Standard Deviation of various models on Single-axis Rotation task
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Figure 31: Mean and Standard Deviation of various models on Compound Rotation task
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Figure 32: Mean and Standard Deviation of various models on Inter-object direction.
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Figure 33: Mean and Standard Deviation of various models on Viewer-Scene direction task.
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Figure 34: Mean and Standard Deviation of various models on the Canonical Orientation task.
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J Detailed Error Analysis

We employ a systematic approach to identify consistent failure patterns rather than random prediction
mistakes by analyzing the geometric relationship between predicted and ground truth orientations.
Our methodology focuses on identifying repeatable, model-agnostic spatial reasoning deficits that
indicate fundamental architectural limitations.

Systematic Error Pattern Identification

We define systematic failure patterns as specific “Ground Truth → Predicted Answer” confusion pairs
that satisfy following criteria: (1) occur in more than 5% of a model’s incorrect predictions, and (2)
are observed across at least 3 different model architectures. This threshold-based approach filters out
infrequent, stochastic mistakes to focus on consistent failure modes that indicate underlying spatial
reasoning deficits rather than random prediction errors. We categorize confusion patterns by their
geometric and cognitive properties:

• Perpendicular Confusion: Systematic misclassification between parallel (0°–15°) and
perpendicular (65°–95°) orientations, indicating categorical spatial representation

• Directional Reversal: Confusion between opposite directions (e.g., left↔right,
toward↔away), suggesting directional processing failures

• Angle Compression: Tendency to predict intermediate angles when extreme angles are
correct, indicating quantization of continuous spatial information

• Frontal Bias: Over-prediction of frontal/canonical orientations regardless of true orientation,
likely reflecting training data distribution bias

• Rotational Symmetry Confusion: Systematic confusion between rotational equivalents
(e.g., 90°↔270°, quarter vs. three-quarter turns)

• Uncertainty Cascade: Inappropriate uncertainty responses when spatial ambiguity should
trigger systematic reasoning attempts

Below, Table 7 presents the complete systematic error analysis across all spatial reasoning dimensions
evaluated in DORI. The patterns reveal fundamental limitations in how current MLLMs process and
represent spatial information.

Table 7: Systematic Error Patterns Across All DORI Questions

Question Type True Answer Predicted Answer Error (%) Pattern Type
View Parallelism 0°–15° 65°–95° 20.5 Perpendicular Confusion
View Parallelism 65°–95° 0°–15° 10.3 Perpendicular Confusion
Directional Facing 30° left 30° right 8.3 Directional Reversal
Directional Facing 180° (away) 0° (facing camera) 14.7 Directional Reversal
Inter-object Direction 46–90° CCW 46–90° CW 5.7 Directional Reversal
View Parallelism 135°–180° 65°–95° 15.8 Angle Compression
Single-axis Rotation 90° 45° 7.6 Angle Compression
Directional Facing 30° left 0° (facing camera) 15.6 Frontal Bias
Directional Facing 30° right 0° (facing camera) 13.7 Frontal Bias
Canonical Orientation Cannot determine No change needed 19.5 Frontal Bias
Viewer-scene Rotation 270° 90° 13.1 Rot. Symmetry Confusion
Viewer-scene Rotation 180° 90° 11.6 Rot. Symmetry Confusion
Single-axis Rotation 0° 90° 9.2 Rot. Symmetry Confusion
View Parallelism 0°–15° Cannot determine 12.3 Uncertainty Cascade
Canonical Orientation Cannot determine UNKNOWN 23.5 Uncertainty Cascade
Viewer-scene Rotation 270° Cannot determine 12.0 Uncertainty Cascade

Results: Our analysis reveals six systematic error categories affecting all evaluated models. The
most severe is perpendicular confusion, where models systematically misclassify parallel (0°–15°)
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Table 8: Component-wise Error Decomposition for Compound Rotations (Q4)

Model Order Swap Horizontal Acc. Vertical Acc. Both Wrong
(%) (%) (%) (%)

Qwen-3B-instr 0.2 ± 0.1 22.7 ± 2.1 21.4 ± 1.9 55.9 ± 3.2
LLaVA-13B-base 3.8 ± 0.7 21.3 ± 1.8 19.5 ± 1.6 59.2 ± 2.9
DeepSeek-7B-chat 4.6 ± 0.8 20.4 ± 1.7 20.5 ± 1.7 59.1 ± 2.8
DeepSeek-1.3B-chat 4.2 ± 0.7 20.4 ± 1.6 19.7 ± 1.5 59.9 ± 2.7
LLaVA-Next-8B 4.9 ± 0.9 20.7 ± 1.8 19.6 ± 1.6 59.6 ± 2.9
Magma-8B 4.6 ± 0.8 20.1 ± 1.6 20.0 ± 1.6 59.9 ± 2.8
DeepSeek-1.3B-base 4.7 ± 0.8 19.9 ± 1.5 20.0 ± 1.6 60.1 ± 2.8
DeepSeek-7B-base 1.2 ± 0.3 19.7 ± 1.5 20.1 ± 1.6 60.3 ± 2.8
Average 3.5 ± 1.7 20.6 ± 0.9 20.1 ± 0.6 59.3 ± 1.4

and perpendicular (65°–95°) orientations with 20.5% and 10.3% error rates respectively, indicating
coarse categorical rather than continuous angular encoding. Models also demonstrate consistent
directional processing failures including left-right confusion (8.3%), front-back reversal (14.7%), and
clockwise-counterclockwise errors (5.7%), suggesting fundamental directional encoding limitations.
Additional patterns include angle compression where extreme positions are systematically predicted
as intermediate values (7.6–15.8% error rates), frontal bias reflecting training data distribution effects
(13.7–19.5% over-prediction of frontal orientations), rotational symmetry confusions particularly
between quarter and three-quarter turns (9.2–13.1% error rates), and uncertainty cascade failures
where models inappropriately handle spatial ambiguity (12.0–23.5% error rates). These systematic
patterns across diverse architectures indicate fundamental limitations in current MLLM spatial
processing mechanisms rather than model-specific deficits.

Component-wise Error Decomposition

Compound rotation tasks (Q4 in DORI) present the most cognitively demanding spatial reasoning
challenge, requiring models to track sequential 3D transformations around multiple axes. To
understand the specific failure modes, we decompose compound rotation errors into orthogonal
components that isolate different aspects of spatial transformation understanding.We analyze three
distinct error categories that provide insight into different failure modes:

1. Order Swap Errors: Models correctly identify both rotation components but reverse their
sequence (e.g., ground truth “90° Horizontal then 180° Vertical” predicted as “180° Horizontal
then 90° Vertical”). This isolates sequence understanding from content understanding.

2. Component Accuracy: Percentage of predictions where individual rotation components
(horizontal or vertical) are correctly identified regardless of the accuracy of the other
component. This measures partial understanding capabilities.

3. Complete Joint Failure: Percentage of predictions where both rotation components are
incorrectly predicted, indicating total breakdown of 3D spatial reasoning.

Table 8 presents the complete component-wise error decomposition across all evaluated models,
revealing distinct failure patterns and architectural effects.

Results: The component-wise decomposition reveals a fundamental dissociation between sequence
processing and spatial reasoning in MLLMs. While order swap errors remain low across all models
(mean: 3.5%), indicating competent instruction following, approximately 60% of predictions fail on
both rotation components, representing near-complete breakdown of 3D spatial processing. . Models
demonstrate axis-agnostic processing (horizontal vs. vertical accuracy differential: 0.7%), unlike
human embodied cognition, suggesting identical mechanisms for all rotational transformations rather
than specialized processing pathways. Notably, instruction-tuned models significantly outperform
larger base models—Qwen-3B-instr achieves superior performance across all metrics despite smaller
parameter count, and DeepSeek-1.3B-chat outperforms DeepSeek-7B-base with 5.4x fewer parameters.
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These findings indicate three critical limitations: (1) models can manipulate rotation symbols but
lack geometric transformation mechanisms, (2) the consistent 60% joint failure rate across diverse
architectures suggests fundamental rather than model-specific deficits, and (3) training methodology
appears more crucial than parameter scaling for spatial reasoning capabilities, suggesting targeted
training approaches may be more effective than architectural scaling.

Soft Accuracy Calculation

Soft accuracy metrics were introduced to provide a more nuanced evaluation of models’ orientation
understanding capabilities and help distinguish between models that are completely wrong versus
those that have an approximate understanding of orientation concepts. Unlike standard binary accuracy
that only awards points for exact matches, soft accuracy awards half points (0.5) for answers that are
partially correct or adjacent to the ground truth. To calculate such accuracies, we implement carefully
designed spatial tolerance thresholds and logical equivalences. Soft accuracy is only calculated for
the fine-grained questions that typically demand a precise metric response.

• For View Parallelism, Predictions within ±45◦ of the ground truth angle receive partial credit.
This threshold captures predictions in adjacent sectors while excluding opposed orientations.

• For Directional Facing, half points are awarded exclusively for mirror-image confusions between
"30 degrees left" and "30 degrees right". We intentionally do not extend partial credit to other
angular errors, preserving the specificity of directional understanding assessment.

• For Single-axis Rotatoin, a 45◦ tolerance window applies to predicted rotations
(0◦, 45◦, 90◦, 135◦, 180◦). This allows credit for adjacent discrete positions while maintain-
ing distinction between major orientation categories. For instance, predicting 45◦ when the correct
answer is 90◦ would not qualify, but a 135◦ prediction for 180◦ ground truth would receive partial
credit.

• In Compound Rotation, partial credit is awarded if either the horizontal or vertical rotation
component is correct in multi-axis transformations. In this "X then Y" rotation sequence response,
we parse both components separately. For example, prediction of "90◦ horizontal then 0◦ vertical"
would receive 0.5 points for either correct component when compared to the ground truth "90◦
horizontal then 180◦ vertical"

• For Inter-object Direction, half points are given for adjacent magnitude ranges, but only if the
direction (clockwise vs. counterclockwise) matches. For instance, if the ground truth was "0 to
45 degrees clockwise" and the prediction was "46 to 90 degrees clockwise", we award 0.5 points.
However, if the prediction was "46 to 90 degrees counterclockwise," it would earn 0 points despite
similar magnitude

• For Viewer-scene direction, the soft accuracy specifically addresses confusion between opposite
rotational directions. For example, if an object has rotated 90◦ clockwise between images, but the
model reports 270◦ clockwise (which is equivalent to 90◦ counterclockwise), it receives 0.5 points.
No partial credit is given for other angle confusions.

• For Canonical Orientation, the soft accuracy addresses confusion in the order of operations. For
example, if an image requires rotation followed by flipping to restore its canonical orientation, but
the model suggests flipping followed by rotation, it receives 0.5 points.

Results. Figs. 35, 36, 37, 38, 39, 40, 41, compares standard (hard) vs. soft accuracy on DORI
questions.

Figures 35 and 36 reveal that for View Parallelism and Directional Facing tasks, soft accuracy
provides no benefit over standard accuracy, with identical performance metrics across all models. This
indicates that when models err on these fundamental orientation tasks, they tend to make categorical
mistakes rather than near-miss approximations. The lack of improvement suggests that errors in these
tasks stem from fundamental misunderstandings rather than subtle misjudgments.

In contrast, the Single-axis Rotation task (Figure 37) shows the most substantial gains under soft
accuracy metrics, with improvements ranging from 8.6% to 17.7% across models. eepSeek-7B-Chat
achieves the most dramatic improvement, with accuracy increasing from 18.6% (standard) to 36.3%
(soft)—a remarkable 17.7% gain. LLaVA-Next-8B improves from 17.8% to 29.3% (+11.5%), while
Qwen-3B-Instruct shows improvement from 17.7% to 34.1% (+16.4%).These substantial gains suggest
that while models often fail to identify the exact rotational angle, they frequently select adjacent
angular categories, demonstrating partial understanding of rotational relationships.
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For Compound Rotation (Figure 38), all models except Qwe2.5-3B-Instruct (0.5% improvement)
show notable improvements under soft accuracy metrics. Both LLaVA-7B-Chat and LLava-Next-8B
improves from by 14.6% indicating that models often correctly identify one of the two rotation
components (horizontal or vertical) while missing the other. This partial success highlights both
the inherent complexity of multi-axis rotations and the models’ fragmentary grasp of compound
transformations.

The Inter-object Direction task (Figure 39) shows similar amount of soft accuracy gains across
all models, with improvements ranging from 7.7% to 17.1%. DeepSeek-7B-Chat improves from
12.7% to 29.8%, more than doubling its effective performance. This suggests that models often
select directionally appropriate answers that fall into adjacent angular ranges, indicating a coarse
understanding of relative orientations despite lacking precise angular discrimination.

For Viewer-scene Direction (Figure 40), soft accuracy provides moderate improvements (1.2% to
5.9%), with DeepSeek-7B-Chat showing the largest gain. The comparatively smaller improvements
here suggest that models correctly identify rotational changes, with fewer "near miss" responses than
in other tasks.

Canonical Orientation (Figure 41) shows minimal improvement under soft accuracy metrics (0.7%
to 3.3%). The small gains observed suggest that models are rarely confused in the order of
operations. When they fail on canonical orientation tasks, they typically misidentify the necessary
operations entirely rather than simply reversing their order. This indicates a more fundamental gap in
understanding canonical object positioning rather than mere sequencing errors.
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Figure 35: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on View
Parallelism task. See discussion Sec. J.

Fig. 42 summarizes the relative gains of soft accuracy across all tasks and models. Notably, this more
lenient metric only helps some questions (Fig. 37 to 41). The heatmap reveals that Single-axis
Rotation, Compound Rotation, and Inter-object Direction tasks benefit most from soft accuracy
metrics, with improvements frequently exceeding 10%. This pattern suggests that rotational and
relational orientation understanding in current MLLMs exists on a spectrum rather than in binary
states of correctness. In addition, the highest gain reported was for Single-axis Rotation, but is
significantly below human performance using standard accuracy (18% vs. avg of about 30%). This
shows that even when given an advantage, these models still fall significantly below human ability.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

deep-7B-chat
llava-next-8B

llava-13B-base
deep-1.3B-chat

deep-1.3B-base
deep-7B-base

qwen-3B-instr

Model

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

22.1 21.1 20.8 20.1 19.8 18.0

2.5

22.1 21.1 20.8 20.1 19.8 18.0

2.5

Question q2 Granular Performance: Standard vs Soft Accuracy

Standard Accuracy
Soft Accuracy

Figure 36: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Directional Facing task. See discussion Sec. J.
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Figure 37: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Single-axis Rotation task. See discussion Sec. J.
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Figure 38: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Compound Rotation task. See discussion Sec. J.
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Figure 39: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Inter-object Direction task. See discussion Sec. J.
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Figure 40: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Viewer-scene Direction task. See discussion Sec. J.
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Figure 41: Comparing the mean and standard deviation of soft vs. standard (hard) accuracy on
Inter-object Direction task. See discussion Sec. J.
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Table 9: Performance of Base and Fine-tuned Models across DORI Question Types with C being
Coarse and G being Granular

Frontal
Alignment

Rotational
Transformation

Relative
Orient. Canonical

View
Parallel.

Dir.
Facing

Single-
axis Rot.

Compo-
und Rot.

Inter-
Obj. Dir.

Viewer-
scene Dir. Orient. Avg.

C G C G C G C G C G C G C G C G
Base Model 57.7 34.8 27.2 0.0 22.9 20.4 37.7 5.6 7.3 13.7 77.7 22.0 0.0 0.0 32.9 13.7
+ Finetuned w/DORI 87.8 72.8 81.9 2.6 76.8 76.1 64.5 17.3 79.2 60.6 99.0 84.9 42.9 37.1 76.0 50.2

K LoRA Finetuning

We create a finetuning dataset with 27K real + synthetic random samples from our dataset and
the remaining 7K for evaluation. We utilize the Qwen2.5-VL-3B with LoRA (Hu et al., 2022) to
highlight the performance improvement when using our dataset, this can be seen in Table 9. As
shown, finetuning via LoRA results in a 37-46% gain, demonstrating that better alignment to the
capabilities measured in our task can result in greatly improved performance.

L Out-Of-Pretraining Analysis

Most MLLMs have closed pretraining datasets, i.e., it is not possible to be completely sure what they
were trained on. However, to provide insight into what the MLLM model might have learned (i.e., if
it saw similar images in the pretraining dataset) we use the approach described in (Teterwak et al.,
2025) to filter images in COCO and Cityscapes into those that were likely seen during pretraining.
Specifically, we measured the cosine similarity between text features representing the object our
question referred to (e.g., "a photo of a person" for a question asking about the orientation of a person)
and the image using LLaVa-13B. Those with high similarity (using a 0.19 threshold for COCO and
0.18 for Cityscapes) were removed, leaving only images that were not learned well by the model
during pretraining. On COCO we evaluated performance on person images, which accounted for
547 images in the Directional Facing questions, of which 253 were removing (leaving 294 images).
On Cityscapes Directional Facing, we filtered based on car questions, resulting in removing 122 of
342 car images, leaving 220 images. Cars and person categories were selected as they were common
objects in their respective datasets. We refer to these splits as ALL, which includes questions that
have every car or person image, and Out-Of-Pretraining (OOP) for the images that remained after our
filtering process. We then compare the performance on a number of models armed with these splits,
as seen in Table 10.

Armed with these splits, we compared performance on LLava-13B, LLava-34B, Yi-VL-6B and
Deepseek-7B, shown below. Interestingly, the OOP results are generally better than ALL, which
seems counterintuitive at first glance. However, we suspect that this is an effect of being pretrained
with a different objective than one focused on orientation. For example, if a model was pretrained to
align images to alt-text, which give a high level description of the image that often does not include
orientation information, then when the model saw similar images, it naturally assumes that the goal is
to match to a high-level description and extracts features accordingly, essentially overfitting to that
task. That said, there are many confounding factors that could provide alternative explanations, and is
an interesting avenue for exploration in future work.
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Table 10: Out-Of-Pretraining (OOP) performance when evaluated on the COCO and Cityscapes
dataset.

COCO All OOP All OOP
Category (Person) Coarse Coarse Granular Granular
LLava-v1.6-13B 23.0 25.1 20.8 21.0
LLava-v1.6-34B 42.6 41.3 39.6 39.6
Yi-VL-6B 30.3 28.6 33.5 33.1
Deepseek-Base-7B 17.7 17.5 17.7 17.9
Cityscapes All OOP All OOP
Category (Car) Coarse Coarse Granular Granular
LLava-v1.6-13B 22.6 25.7 16.7 18.1
LLava-v1.6-34B 36.5 41.1 21.6 21.7
Yi-VL-6B 25.6 29.1 21.6 22.1
Deepseek-Base-7B 17.5 18.5 16.9 17.1
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Figure 43: An example of the high level instructions shown for the Human Evaluation

Figure 44: An example of a sample for the coarse-level VQA for the Directional Facing task in DORI
shown for the Human Evaluation

M Human Evaluation Instructions

An example of the high level instructions shown for this task can be seen in Fig. 43, examples of
questions are shown in Fig. 44 and Fig. 45
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Figure 45: An example of a sample for the coarse-level VQA for the Viewer-Scenen Direction task in
DORI shown for the Human Evaluation
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