
TAIL: Task-specific Adapters for Imitation Learning
with Large Pretrained Models

Anonymous Author(s)
Affiliation
Address
email

Abstract: The full potential of large pretrained models remains largely untapped in1

control domains like robotics. This is mainly because of the scarcity of data and the2

computational challenges associated with training or fine-tuning these large models3

for such applications. Prior work mainly emphasizes effective pretraining of large4

models for decision-making, with little exploration into how to perform data-5

efficient continual adaptation of these models for new tasks. Recognizing these6

constraints, we introduce TAIL (Task-specific Adapters for Imitation Learning),7

a framework for efficient adaptation to new control tasks. Inspired by recent8

advancements in parameter-efficient fine-tuning in language domains, we explore9

efficient fine-tuning techniques—e.g., Bottleneck Adapters, P-Tuning, and Low-10

Rank Adaptation (LoRA)—in TAIL to adapt large pretrained models for new tasks11

with limited demonstration data. Our extensive experiments comparing prevalent12

parameter-efficient fine-tuning techniques and adaptation baselines suggest that13

TAIL with LoRA can achieve the best post-adaptation performance with only 1% of14

the trainable parameters of full fine-tuning, while avoiding catastrophic forgetting15

and preserving adaptation plasticity in continual learning settings.16

Keywords: Adaptation of Pretrained Model, Continual Imitation Learning17

1 Introduction18

A desired property of an autonomous agent is the ability to adapt efficiently to novel tasks. In vision19

and language domains, large pretrained models have demonstrated adaptation to new tasks with just20

a few examples through prior knowledge obtained from internet-scale datasets [1, 2, 3]. Similar21

methods have also been applied in decision-making and control applications [4, 5, 6]. However, new22

control tasks are more difficult to adapt to than the aforementioned vision and language domains23

due to (1) the lack of internet-scale control data and (2) how optimal actions can vary significantly24

from task-to-task, even under shared observation spaces. As such, these large-scale decision-making25

models still rely on a close alignment between training and testing tasks.26

In contrast, agents deployed in challenging environments need to adapt to major task variations—take,27

for example, a general household robot. Equipped with a factory-pretrained policy, the robot will be28

employed in unique ways by every household. Thus, the robot will need to continually adapt in order29

to best serve each one, e.g., by fine-tuning its capabilities on a few demonstrations. Because most prior30

decision-making papers adapt to new tasks by fine-tuning the entire model [7, 8, 9, 10, 11, 12, 6, 13],31

mastering each new skill requires great computational cost and often leads to catastrophic forgetting32

of old ones. An alternative approach would be to store a separate policy per new task, which leads to33

unreasonable storage spaces. What would be the best way for agents to efficiently adapt to a stream34

of novel tasks without having to trade off computation, storage, and performance on older tasks?35

To answer this question, we propose Task-specific Adapters for Imitation Learning, shown in Fig. 1,36

a framework for efficient adaptation to new control tasks. Through TAIL we (1) effectively incorpo-37

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

rate lightweight adapter modules into pretrained decision-making models and (2) comprehensively38

compare efficient adaptation techniques implemented in TAIL in a continual imitation learning39

setting. Notably, we examine parameter-efficient adaptation techniques (PEFT) used for large lan-40

guage models; we explore the potential of adapters [14], prefix tuning [15], and low-rank adaptation41

(LoRA) [16] in fostering efficient and continual adaptation in large pretrained decision-making42

models. These works stand out as they introduce a small number of new parameters which help:43

avoid catastrophic forgetting, maintain training plasticity for continual learning, avoid overfitting with44

limited adaptation data, and reduce computational and memory burden. Investigating these works in45

control and continual learning setup is important because, unlike in language domains, test losses are46

often not proportional to the task performance [17, 18]—efficient adaptation insights from language47

models may not transfer to decision-making ones. Thus, investigation of these adaptation techniques48

for decision-making is crucial for deploying continually adapting agents in the real world.49

We compare PEFT techniques implemented in TAIL against commonly used adaptation methods in50

the imitation learning literature. In our experiments, we discover that TAIL with LoRA leads to the51

best post-adaptation performance as it learns additional low-rank weight matrices for a specific task,52

allowing it to preserve the original pretrained representations while being resilient against overfitting53

in the limited-data regime. These capabilities are especially important for agents operating in new,54

challenging environments, such as the aforementioned general household robots. Our analysis also55

reveals important insights into the strengths and limitations of each adaptation strategy. Instead of56

performing full fine-tuning of the entire model, TAIL only introduces a small number of additional57

parameters and exclusively updates these new parameters without making changes to the original58

model. These additional parameters make up a mere 1.17% of the size of the original model.59

Importantly, this results in approximately 23% less GPU memory consumption, to achieve 22%60

higher forward adaptation success rate than full fine-tuning, while avoiding catastrophic forgetting.61

Notably, these results are contrary to many results from the vision and language model literature62

which show that full fine-tuning works better [19, 20, 21].63

In summary, this work bridges a crucial gap in research into efficient and continual adaptation for64

pretrained decision models by introducing a framework for continual imitation learning, TAIL, and65

thoroughly analyzing the effects of different efficient adaptation methods to inform future research.66

Our comprehensive results clearly show the effectiveness and practicality of our proposed approach.67

2 Related Work68

Pretrained Models for Control. Researchers have long studied the use of pretrained models for69

better downstream transfer to related tasks [22, 23, 24]. Recent works have examined using the70

representations learned by pretrained visual models for control [25, 26, 27, 28, 29]. These methods71

either do not attempt adaptation to new tasks, or perform expensive full-fine-tuning for adaptation. In72

contrast, our method, TAIL, is a framework for efficient adaptation of decision-making models.73

Parameter-Efficient Fine-Tuning (PEFT) Techniques. PEFT has gained traction as a way to adapt74

large pretrained models without significantly increasing parameters. Techniques such as adapters [14],75

LoRA [16], and prompt tuning [15] incorporate lightweight modules or continuous prompts optimized76

for downstream tasks, all while preserving the original model weights. Liang et al. [30], Sharma et al.77

[31] propose the use of adapters in robotics settings, but they do not examine other PEFT techniques78

and focus on adaptation to a single task suite. We instead examine the performance of various PEFT79

techniques implemented with TAIL in a realistic continual learning scenario and demonstrate in80

Sec. 5 that TAIL works better than RoboAdapter [31] in this setting.81

Continual Learning. Continual learning agents should be able to transfer knowledge (e.g., by82

continually fine-tuning) or experience (e.g., training data) from previously learned tasks to new83

tasks [32, 33, 34, 35]. However, with large pretrained models trained on large datasets, fine-tuning84

the entire model is computationally costly yet risks catastrophic forgetting, and transferring training85

data from other tasks is too memory inefficient in the face of a large stream of new tasks. Therefore,86

we present a study into efficient fine-tuning techniques which, when integrated with TAIL, can help87

inform future research of continual learning.88

2

Spatial
Encoder

Task description Observations

Adapter
Weights

Temporal Decoder
Input Fusion

Module

Open the drawer and

put the bowl in it.

Instruction
Encoder

Token
Sequence

...

Spatial
Encoder

...

Spatial
Encoder

...
𝒔𝟏 𝒔𝟐 𝒔𝟑

...Task
Embedding

𝒂𝟏 𝒂𝟐 𝒂𝟑

Pretrained
Weights

task head

Full Fine-Tuning

inputs

actions

Pretrained
Weights

task head

Frozen Pretrained
Features

inputs

actions

Pretrained
Weights

task head

Task-specific Adapters (TAIL)
inputs

actions

(a) (b)

Trainable

Frozen

Figure 1: (a): The multi-modal, transformer policy architecture we utilize for pretraining. We encode language
task descriptions with a pretrained CLIP instruction encoder and image observations with a pretrained CLIP
spatial encoder. We additionally encode state observations (not pictured) which, along with the observation
embeddings, are embedded into a sequence of tokens used by the temporal decoder transformer to predict
single-step action distributions. We include an input fusion module to explicitly combine the task embedding
with the observation token sequence for better instruction-following ability. (b): The three types of fine-tuning
paradigms we test, with TAIL at the bottom right. For further architecture details, see Appendix Sec. A.

3 Preliminaries89

3.1 Continual Imitation Learning90

The agent encounters a sequence of K tasks, denoted as {T1, . . . , TK}. Each task Tk = (µ0
k, gk)91

is characterized by an initial state distribution µ0
k and a goal predicate gk. Goals for tasks can92

be specified using language instructions, providing clear context [36, 12]. For every task Tk, the93

agent receives N demonstration trajectories Dk = {τ1k , . . . , τNk }. In this paper, we use the standard94

behavioral cloning loss to optimize the agent’s policy π over these demonstrations, however we note95

that TAIL can be used with other training objectives as well:96

θ̂ = min
θ

K∑
k=1

E
st,at∼Dk

[
lk∑
t=0

L
(
π(a|s≤t, Tk;θ), atk

)]
. (1)

Here, L is a supervised action prediction (e.g., mean squared error or negative log likelihood) loss, lk97

is the length of demonstrations for task Tk, and θ refers to the learnable parameters of the network.98

Notably, after learning task Tk, the agent cannot access additional data from preceding tasks. This99

presents a continual learning challenge, emphasizing the importance of transferring knowledge across100

tasks without the risk of catastrophic forgetting [37].101

3.2 Pretrained Decision-Making Models102

Here, we briefly describe common features of large pretrained decision-making model architectures103

used for embodied agents. We incorporate key components shared amongst these models into the104

architecture of the model that we pretrain to evaluate efficient adaptation, pictured in Fig. 1(a).105

Transformer Backbone. Most recent work training large-scale decision-making models [4, 38, 6]106

utilize a transformer backbone [39] that attends to tokenized observations from prior timesteps.107

We adopt a standard GPT-2 [40] transformer decoder (Fig. 1(a), temporal decoder) with separate108

encoders for each input modality and continuous action distribution outputs.109

Pretrained Input Encoders. Encoders pretrained on large, diverse datasets can produce rich, well-110

structured embeddings which make it easier to learn the downstream tasks [36, 4]. Therefore, we111

utilize pretrained CLIP image and textual encoders [2].112

Input Modality Fusion. The idea of explicitly “fusing” different input modalities has seen great113

success not only in domains like vision and language [41], but also in agent learning [36, 4]. Similarly,114

we utilize FiLM layers [41] (Fig. 1(a), input fusion module) to fuse language task specifications with115

observations.116

3

𝑟

Tokens

Frozen

Parallel

Multi-head Attention

Feed Forward Layer

Add & Layer Norm

Bottleneck

Add & Layer Norm

Bottleneck

Hidden States

𝑾𝒒 LoRA

+

...
𝑸

...

𝑾𝒌 LoRA

+

...
𝑲

𝑾𝒗 LoRA

+

...
𝑽

Attention

𝑾 LoRA

+

Transformer

Sequential

Prefix Token

𝑾𝒅𝒐𝒘𝒏

𝑾𝒖𝒑

Figure 2: Demonstration of three weight integration styles of TAIL for a Transformer block: sequential
(bottleneck adapter), parallel (LoRA), and prefix token (prefix/prompt-tuning).

3.3 Adapting pretrained models for new tasks117

One standard adaptation method in prior research is full fine-tuning (FFT) of all model parameters118

(Fig 1(b), top left). Though straightforward, it is resource-intensive and prone to overfitting with119

limited data [11]. There is also a risk of distorting pretrained features, resulting in the loss of prior120

tasks—a phenomenon known as catastrophic forgetting [37]. Evidence also suggests that extensive121

fine-tuning might undermine a model’s rapid adaptability to new tasks, an effect referred to as the122

loss of model plasticity and capacity [42, 43, 44]. Such issues become more prominent in continual123

learning contexts [32]. Another standard adaptation method is the use of frozen pretrained features124

(FPF, Fig 1(b) top right). FPF ensures the retention of knowledge acquired from previous tasks by125

tuning a task-specific head. However, as noted in Sharma et al. [31], it is not expressive enough for126

out-of-distribution or especially complex tasks. Given these challenges, there’s a clear need for a127

more advanced fine-tuning paradigm that addresses catastrophic forgetting while maintaining model128

plasticity for adapting to new tasks, all in a data and computationally resource-efficient manner.129

4 Task-specific adapters for imitation learning130

In this section, we outline how we perform efficient adaptation on pretrained models through our131

Task-specific Adapters for Imitation Learning framework, depicted in Fig 1(b). Different from the132

FPF approach which simply substitutes the policy head for every new task, TAIL introduces a small133

set of new weights, serving as a lightweight plugin to address specific tasks.134

4.1 Adapter Weights Integration135

The concept of an adapter can be best conceptualized as a modular plugin to the base model,136

customized for specific downstream tasks, that does not affect the model’s pretrained representations.137

We mainly explore three prevalent styles of integration for TAIL: Parallel [16], Sequential [14, 31],138

and Prefix Token [15, 45, 46], all of which are showcased with a Transformer block in Fig. 2. Parallel139

and sequential integration techniques are generally applicable to any model with feedforward layers,140

while the prefix token style method is especially tailored for Transformers.141

Given a pretrained model, let’s consider one layer weight matrix in it, denoted as W ∈ Rd×k. Its142

input and output hidden states are hin ∈ Rd and hout ∈ Rk, respectively. We have hout = W⊤hin.143

Next, we detail how to apply parallel and sequential insertions to the pretrained weight matrix.144

Parallel Integration (LoRA). This integration method, often associated with Low-Rank Adaptation145

(LoRA) [16], introduces trainable low-rank matrices Wdown ∈ Rd×r and Wup ∈ Rr×k. Here,146

r ≪ min(d, k) represents the rank and is usually much smaller than the dimensions of the original147

matrix. These matrices are typically integrated in parallel with the original weight matrix W through148

addition, as shown as LoRA in Fig. 2:149

hout = W⊤hin + αW⊤
upW

⊤
downhin, (2)

4

with α being a hyperparameter to modulate task-specific adjustments. The above equation can also150

be formulated as: hout = (W + αWdownWup)
⊤hin = (W + α∆W)⊤hin, where ∆W denotes151

the weight modifications for new tasks, and thus the columns of Wdown and Wup can be interpreted152

as a new basis that contains task-specific knowledge. As observed by Aghajanyan et al. [47], despite153

projecting to a condensed subspace with small “intrinsic dimensions,” pretrained models can still154

learn effectively. By introducing the two low-rank matrices, the original weight matrices W can be155

adeptly tailored with a minimal increase in parameters. Though LoRA was originally crafted for156

large language models—specifically for the query and value projections matrices WQ and WV in157

multi-head attention [16]—it is easily applied to other linear layers as well, such as the Transformer’s158

feedforward layers [21].159

Sequential Integration (Bottleneck Adapter). Renowned in the language model domain, the160

Bottleneck Adapter introduces bottleneck layers within the model [14, 31] by appending a trainable161

bottleneck layer after the feedforward network in each Transformer layer. Similar to LoRA, this162

bottleneck consists of down and up projections, Wdown and Wup, which first shrink then restore163

the dimensions of token hidden states. Formally, for the feedforward network’s input hin and a164

bottleneck size r, the output hout is:165

hout = W⊤
upϕ

(
W⊤

down(W
⊤hin)

)
, (3)

where ϕ denotes a nonlinear activation function. The Bottleneck Adapter (Fig. 2) acts as a filter,166

isolating relevant information for specific tasks. Yet, filtering often requires a larger bottleneck size167

compared to that of LoRA, leading to more parameters. Additionally, the sequential insertion can168

increase latency compared to the parallel nature of LoRA [16].169

Prefix Token Integration (Prefix & Prompt-Tuning). In this style, a set of learnable prefix tokens170

are appended or prepended to the input sequence [15, 45, 46]. Let’s consider an input sequence171

s ∈ Rn×d, where n is the sequence length and d is the embedding dimension. The prefix tokens can172

be represented as p ∈ Rm×d, where m denotes the number of prefix tokens. These vectors act like173

virtual tokens which the original tokens can attend to. They are initialized and learned during the174

task-specific adaptation phase. The modified input sequence, after appending the prefix tokens, can175

be expressed as S = [p; s] ∈ R(m+n)×d. The model then processes this extended sequence. These176

prefix tokens can be viewed as task descriptors that are designed to guide the model towards the177

desired task-specific behavior (see in Fig. 2).178

4.2 TAIL for continual imitation learning179

We consider the continual imitation learning problem as a typical application of the proposed TAIL180

adaptation paradigm. The goal of continual imitation learning is to ensure that the model performs181

effectively on the current task and without significant degradation of performance in past tasks.182

Given pretrained model weights, denoted as θ, and a new task Tk with demonstrations Dk =183

{τ1k , . . . , τNk }, we initialize the task-specific adapter weight ωk with far less parameters than the base184

model: |ωk| ≪ |θ|. The adapter weights are inserted into the model through the integration methods185

introduced in Sec. 4.1. By optimizing the behavior cloning loss in Eq. 1 w.r.t ωk while keeping the186

pretrained weights frozen, the policy adapts to Tk without interfering with previous tasks.187

To execute a task, the corresponding lightweight adapters are loaded as a plugin of the pretrained188

network weights. For example, when revisiting a prior task Tj , where j ≤ k, the model is configured189

to solely activate the j-th adapter ωj . This entire procedure can be streamlined as follows:190

1. For an incoming task Tk, acquire the training set Dk, initialize a task-specific adapter ωk.191

2. Combine adapter ωk with the base model θ using either parallel, sequential, or prefix token.192

3. Train the adapter on Dk to optimize Eq. 1 for ωk, keeping pretrained parameters θ frozen.193

In essence, TAIL ensures task-specific knowledge is contained within the adapters, thereby enabling194

efficient adaptation without catastrophic forgetting. It’s also worth noting that the TAIL framework is195

flexible. The choice of integration method or the specific architecture of the adapter can be tailored196

based on the complexity of the task or the available computational resources.197

5

Kitchen Spatial Goal Object Living Room Study Room

Figure 3: Our task suites for continual imitation learning (excluding LIBERO-10). The robot, placed in a
tabletop environment, is equipped with a 6-DOF arm and a parallel gripper. It receives RGB images from two
views, joint states, and language instructions, and is tasked with producing continuous actions to control its arm.

5 Experiments198

5.1 Datasets and Benchmark Suites199

We utilize the LIBERO robotic manipulation continual learning benchmark [48], which features a200

diverse range of tasks that mirror human daily activities. Each task is specified via natural language201

instructions. We craft a pretraining task suite, named Kitchen, involving 40 diverse tasks sourced202

from the LIBERO-90 dataset’s kitchen scenes. We then evaluate adaptation to 5 separate task suites.203

The Spatial task contains the same objects in each scene but with different spatial layouts; each204

task in the Goal suite has distinct goals while keeping the objects and layout fixed; the Object suite205

contains pick-and-place tasks for different objects in the scene but with the same layout. We also206

create 2 additional task suites (from LIBERO-90): Living Room, and Study Room. We adopt 8207

tasks from each of the 5 adaptation task suites, respectively. Finally, we separately evaluate each task208

sequentially in LIBERO-10, a benchmark with 10 challenging long-horizon tasks. See Fig. 3 for209

task suite examples and Appendix Sec. D for more details.210

5.2 Experiment setup211

Evaluation metrics. The primary metric we report is average per-task suite success rate, measured212

by checking if current state aligns with pre-defined goal states. For continual learning, we also213

assess Forward Transfer (FWT) and Backward Transfer (BWT) across the curriculum of suites.214

Following the metric proposed in LIBERO [48], FWT is computed by the maximum success rate one215

algorithm can achieve when adapting to a new task. We denote FWT at task k as Fk. Meanwhile,216

BWT measures the success rate increase on previous tasks. Namely, when adapting to the k-th task,217

we first record the best FWT model on this task and then evaluate this model on all previous k − 1218

tasks, obtaining success rate Si, 1 ≤ i ≤ k−1. Then we compute the success rate difference between219

the new model and the best FWT of the previous k − 1 tasks and then average among them to obtain220

the BWT metric: B = 1
k−1

∑k−1
i=i (Si − Fi). For both metrics, higher is better.221

Continual Learning Baselines. We adopt four baselines: Full Fine-Tuning (FFT), Frozen Pretrained222

Feature (FPF), Experience Replay (ER) [49], and Elastic Weight Consolidation (EWC) [50]. FPF223

mirrors the linear probing method [42] but also tunes both the policy head and the fusion module224

per task. ER employs a buffer for prior task datasets, using a 50-50 data split between new and225

previous tasks during new task training [51]. EWC, a regularization technique, restricts the update of226

parameters from earlier tasks based on the Fisher information. Baseline details are in Appendix B.1.227

TAIL Adapters. We use LoRA [16], Bottleneck Adapter [14], and Prefix Tuning [15] to represent228

parallel, sequential, and prefix integration styles. RoboAdapter [31], a specific implementation for229

decision-making, stands as another sequential integration style. Configuration specifics for these230

adapters are available in Appendix B.2. Model architectural details can be found in Appendix A.231

Training, Adaptation, and Evaluation. Each task provides 50 high-quality human demonstrations.232

These are divided into 40 training trajectories and 10 for validation. We report success rates over233

the validation scenes (unseen in training). We train on and evaluate adaptation performance on all234

tasks within a task suite simultaneously.1 We pretrain on Kitchen until performance convergence235

(100 epochs). Subsequent adaptations follow two setups: (1) sequential adaptation across the Spatial,236

Goal, Object, Living Room, and Study Room task suites for 100 epochs each, and (2) adaptation237

to each long-horizon task within the LIBERO-10 benchmark over 50 epochs. Each experiment is238

conducted with 3 different random seeds.239

1LIBERO [48] originally evaluated on a per-task basis.

6

0 100
0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

Ra
te

Pretraining: Kitchen

100 200

S1: Spatial Tasks

200 300

S2: Goal Tasks

300 400

S3: Object Tasks

400 500

S4: Living Room

500 600

S5: Study Room

0.0 0.2 0.4 0.6 0.8 1.0
Continual Training Epoch

0.0

0.2

0.4

0.6

0.8

1.0

TAIL (LoRA) TAIL (RoboAdapter) TAIL (Bottleneck Adapter) TAIL (Prefix Tuning)

Figure 4: Success rates for different types of adapters under our TAIL framework. None of these methods
suffer from catastrophic forgetting, so backward evaluation results are not presented here. LoRA performs best
across all tasks, underscoring the benefits of the parallel integration approach.

In the pretraining phase, adapters are added only for the spatial and instruction encoders with CLIP240

weight. The GPT2 temporal encoder, fusion module, and policy head are fully tuned. During241

adaptation, adapters are incorporated for all encoders. Hyperparameters are presented in Appendix B.242

5.3 Results and analysis243

Comparison of TAIL Integration Styles. Fig. 4 showcases the continual adaptation success rates244

for different TAIL methods. The efficacy of LoRA suggests that a well-pretrained model has a245

surprisingly low intrinsic dimension for imitation learning tasks [47]. This implies the existence246

of a low-rank reparameterization that is just as adept for fine-tuning as the full parameter space.247

Further, the prefix tuning method outperforms the bottleneck-based approach [14], indicating that248

the sequential integration style may not be the optimal choice for continual learning, potentially due249

to its inherent "filtering" mechanism. Surprisingly, RoboAdapter [31] generally performs the worst,250

potentially due to only introducing weights after the feedforward layer as opposed to after [14] or251

within [15, 16] the attention layer. Due to LoRA’s pronounced effectiveness, it is predominantly252

employed as our TAIL integration method in subsequent experiments.253

Table 1: Adaptation results on 10 long horizon tasks. The ↑ symbol means the higher, the better. The BWT ↑
for TAIL methods are all 0 (no catastrophic forgetting). We highlight the best method (highest FWT ↑) in bold.
FPF results were omitted due to its near-zero performance.

Task
Conventional Fine-Tuning Methods TAIL-based Methods (Ours)

Full Fine-Tuning Experience Replay EWC LoRA Prefix Bottleneck RoboAdapter
FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ BWT ↑ FWT ↑ FWT ↑ FWT ↑ FWT ↑

Task 1 0.42 ± 0.07 - 0.25 ± 0.12 - 0.38 ± 0.12 - 0.62 ± 0.00 0.38 ± 0.12 0.21 ± 0.14 0.12 ± 0.00

Task 2 0.58 ± 0.07 -0.42 ± 0.06 0.58 ± 0.07 -0.25 ± 0.10 0.54 ± 0.07 -0.38 ± 0.10 0.75 ± 0.00 0.58 ± 0.19 0.75 ± 0.12 0.50 ± 0.12

Task 3 0.71 ± 0.07 -0.50 ± 0.10 0.67 ± 0.07 -0.42 ± 0.19 0.38 ± 0.12 -0.46 ± 0.12 0.96 ± 0.07 0.88 ± 0.22 0.71 ± 0.19 0.50 ± 0.25

Task 4 0.96 ± 0.07 -0.57 ± 0.13 0.92 ± 0.07 -0.50 ± 0.20 0.75 ± 0.25 -0.43 ± 0.12 0.88 ± 0.00 0.71 ± 0.07 0.71 ± 0.19 0.58 ± 0.14

Task 5 0.21 ± 0.07 -0.67 ± 0.21 0.33 ± 0.14 -0.60 ± 0.25 0.17 ± 0.19 -0.50 ± 0.18 0.62 ± 0.12 0.17 ± 0.07 0.25 ± 0.00 0.29 ± 0.07

Task 6 0.83 ± 0.19 -0.57 ± 0.26 0.71 ± 0.19 -0.55 ± 0.25 0.50 ± 0.43 -0.42 ± 0.19 0.75 ± 0.12 0.79 ± 0.14 0.75 ± 0.00 0.75 ± 0.25

Task 7 0.17 ± 0.07 -0.62 ± 0.27 0.12 ± 0.00 -0.58 ± 0.25 0.04 ± 0.07 -0.44 ± 0.24 0.54 ± 0.26 0.38 ± 0.12 0.31 ± 0.09 0.33 ± 0.07

Task 8 0.42 ± 0.07 -0.55 ± 0.29 0.29 ± 0.07 -0.51 ± 0.28 0.12 ± 0.18 -0.46 ± 0.28 0.75 ± 0.25 0.67 ± 0.19 0.25 ± 0.18 0.50 ± 0.22

Task 9 0.17 ± 0.07 -0.54 ± 0.28 0.12 ± 0.05 -0.50 ± 0.28 0.00 ± 0.00 -0.41 ± 0.29 0.38 ± 0.12 0.08 ± 0.07 0.19 ± 0.09 0.21 ± 0.07

Task 10 0.33 ± 0.19 -0.50 ± 0.29 0.50 ± 0.02 -0.46 ± 0.29 0.12 ± 0.18 -0.38 ± 0.31 0.79 ± 0.07 0.50 ± 0.33 0.44 ± 0.09 0.42 ± 0.07

Average 0.48 ± 0.10 -0.55 ± 0.21 0.45 ± 0.09 -0.49 ± 0.23 0.30 ± 0.16 -0.43 ± 0.20 0.70 ± 0.10 0.51 ± 0.15 0.46 ± 0.11 0.42 ± 0.13

Shortcomings of Conventional Fine-Tuning. Across all evaluations, TAIL vastly outperforms254

all baselines in both forward and backward transfer, demonstrating that conventional fine-tuning255

methods are weak in data-scarce continual learning. In Fig. 5 we plot continual learning success rates256

over 6 task suites, where TAIL outperforms the best baselines by over 3x in some comparisons and257

generally achieves the best success rates. We display additional results on LIBERO-10, long-horizon258

tasks, in Table 1. Here, TAIL again performs best, with perfect backward transfer and forward259

transfer capabilities significantly better than the baselines: FFT not only exhibits marked catastrophic260

forgetting of earlier tasks—evidenced by the decline in success rates upon transitioning to new261

stages—but also compromises the model’s adaptability to new tasks. This decline in forward transfer262

is characterized by a steady descent in success rates as training progresses. Such deterioration in263

flexibility has been recognized in other studies as well [43, 44].264

7

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

Su
cc

es
s

Ra
te

Pretraining Stage: Kitchen

100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8
Adapting Stage 1: Spatial Tasks

200 250 300 350 400 450 500 550 600

0.0

0.2

0.4

0.6

0.8
Adapting Stage 2: Goal Tasks

300 350 400 450 500 550 600
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

Ra
te

Adapting Stage 3: Object Tasks

400 425 450 475 500 525 550 575 600
Epoch

0.0

0.2

0.4

0.6

0.8
Adapting Stage 4: Living Room

500 520 540 560 580 600
Epoch

0.0

0.2

0.4

0.6

Adapting Stage 5: Study Room

TAIL (LoRA) FFT FPF Experience Replay EWC Out-of-Stage

Figure 5: Success rates across 1 pretraining on 40 tasks in the Kitchen scene, and 5 adaptation stages, each with
8 tasks and 100 epochs, and will be continuously evaluated in the subsequent stages (shaded area). The start
epoch for each stage is based on the order.

Table 3: Comparison of trainable parameters and memory usage for TAIL and FFT. We use (·%) and ↓ (·%) to
denote the percentage of trainable parameter and the decrease of GPU memory w.r.t FFT.

Method Conventional TAIL-based Methods (Ours)

Full Fine-Tuning LoRA RoboAdapter Bottleneck Adapter Prefix Tuning
CLIP (Spatial & Task Encoder) 149.62M 0.49M 1.29M 1.31M 0.58M
GPT2 (Temporal Encoder) 21.78M 0.69M 0.40M 0.40M 0.24M
Fusion module and policy head 0.84M 0.84M 0.84M 0.84M 0.84M
Total Parameters 172.24M 2.02M (1.17%) 2.53M (1.47%) 2.55M (1.48%) 1.66M (0.93%)
GPU Memory (Batch 14) 20.1G 15.5G (↓ 23%) 14.0G (↓ 30%) 14.9G (↓ 26%) 15.8G (↓ 21%)

Furthermore, exhaustive fine-tuning on specialized domains has been found to distort pretrained265

features [42], undermining the model’s adaptability. Our circle-back experiments in Table 2, wherein266

a model fine-tuned up to Stage 5 re-trained on prior task suites, further accentuate these concerns.267

The adaptability of FFT markedly diminishes when re-encountering prior tasks.268

Table 2: The success rate of initial training and
revisiting previous tasks with FFT. FFT suffers
from catastrophic forgetting and performs worse
on re-visits despite re-training on the same data.

Type LIBERO Task Suite

Spatial Goal Object
Initial 0.79 0.42 0.42
Re-visit 0.53 (↓ 0.26) 0.20 (↓0.22) 0.27 (↓0.15)

The training and validation losses, detailed in Appendix269

C and Fig. 7, highlight FFT’s propensity for overfitting.270

This translates to a notable decline in success rates, rein-271

forcing the challenges FFT faces in balancing retention272

of prior tasks with the assimilation of new ones.273

While ER and the regularization-based method EWC274

exhibit some potential in mitigating catastrophic forget-275

ting, they were detrimental to forward transfer perfor-276

mance. Their downsides are also reflected in storage277

and computing costs: ER requires more storage for previous data than TAIL LoRA adapter weights278

(e.g., Kitchen dataset at 28GB vs 7.8MB for TAIL’s LoRA adapter). Furthermore, EWC presents279

significant challenges for larger models because of the increased GPU memory consumption from280

maintaining a copy of the entire weights of the old model in memory. We also found it to exhibit281

unstable training due to the regularization loss. More discussions are presented in Appendix B.1.282

Conclusion. In this study, we examined the challenges of efficiently adapting large pretrained models283

for decision-making and robotics applications. We proposed TAIL, an efficient adaptation framework284

for pretrained decision-making models. Through a comprehensive exploration of parameter-efficient285

fine-tuning (PEFT) techniques in TAIL, especially Low-Rank Adaptation (LoRA), we demonstrated286

their potential in enhancing adaptation efficiency, mitigating catastrophic forgetting, and ensuring287

robust performance across diverse tasks. TAIL offers a promising avenue for the efficient adaptation of288

large decision-making models. Despite the fact that our method requires significantly less computation289

and memory (and storage), our experiments show that it consistently outperforms all prior approaches290

in the continual imitation learning setting. As the demand for adaptive, intelligent agents grows291

across various domains, the insights from this research offer a promising direction for the future of292

efficient model adaptation in decision-making contexts.293

8

References294

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,295

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,296

A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,297

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.298

Language models are few-shot learners, 2020.299

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,300

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.301

In International conference on machine learning, pages 8748–8763. PMLR, 2021.302

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,303

E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and304

efficient foundation language models, 2023.305

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-306

man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv307

preprint arXiv:2212.06817, 2022.308

[5] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,309

Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,310

K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e: An311

embodied multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.312

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,313

A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,314

A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,315

L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,316

K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,317

H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao,318

P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-2: Vision-language-action models transfer web319

knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.320

[7] Y. Chebotar, K. Hausman, Y. Lu, T. Xiao, D. Kalashnikov, J. Varley, A. Irpan, B. Eysenbach,321

R. Julian, C. Finn, and S. Levine. Actionable models: Unsupervised offline reinforcement322

learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.323

[8] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari,324

D. Kalashnikov, and S. Levine. Aw-opt: Learning robotic skills with imitation andreinforcement325

at scale. In 5th Annual Conference on Robot Learning, 2021.326

[9] D. Kalashnkov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and327

K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv,328

2021.329

[10] A. Gupta, C. Lynch, B. Kinman, G. Peake, S. Levine, and K. Hausman. Demonstration-330

bootstrapped autonomous practicing via multi-task reinforcement learning. arXiv, 2022.331

[11] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza, T. Davchev, Y. Zhou,332

A. Gupta, A. Raju, et al. Robocat: A self-improving foundation agent for robotic manipulation.333

arXiv preprint arXiv:2306.11706, 2023.334

[12] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim. Sprint: Scalable policy pre-training via language335

instruction relabeling. arXiv preprint arXiv:2306.11886, 2023.336

[13] J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun, and J. J. Lim. Bootstrap337

your own skills: Learning to solve new tasks with large language model guidance. In 7th Annual338

Conference on Robot Learning, 2023.339

9

[14] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-340

tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International Conference341

on Machine Learning, pages 2790–2799. PMLR, 2019.342

[15] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv343

preprint arXiv:2101.00190, 2021.344

[16] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:345

Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.346

[17] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction347

to no-regret online learning. In Proceedings of the Fourteenth International Conference on348

Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research,349

pages 627–635. PMLR, 11–13 Apr 2011.350

[18] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation learning as351

f -divergence minimization. arXiv preprint 1905.12888, 2020.352

[19] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig. Towards a unified view of353

parameter-efficient transfer learning. In International Conference on Learning Representations,354

2022.355

[20] Y. Mao, L. Mathias, R. Hou, A. Almahairi, H. Ma, J. Han, W.-t. Yih, and M. Khabsa. Unipelt:356

A unified framework for parameter-efficient language model tuning. 2022.357

[21] S. Chen, C. Ge, Z. Tong, J. Wang, Y. Song, J. Wang, and P. Luo. Adaptformer: Adapting358

vision transformers for scalable visual recognition. Advances in Neural Information Processing359

Systems, 35:16664–16678, 2022.360

[22] S. Bozinovski and A. Fulgosi. The influence of pattern similarity and transfer learning upon361

training of a base perceptron b2. In Proceedings of Symposium Informatica, volume 3, pages362

121–126, 1976.363

[23] J. Schmidhuber. Learning complex, extended sequences using the principle of history compres-364

sion. Neural Computation, 4(2):234–242, 1992. doi:10.1162/neco.1992.4.2.234.365

[24] T. G. Dietterich, L. Pratt, and S. Thrun. Special issue on inductive transfer. Machine Learning,366

28(1), 1997.367

[25] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-368

tion. In Conference on Robot Learning, pages 894–906. PMLR, 2022.369

[26] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation370

for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.371

[27] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards372

universal visual reward and representation via value-implicit pre-training. arXiv preprint373

arXiv:2210.00030, 2022.374

[28] Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and D. Jayaraman. Liv: Language-375

image representations and rewards for robotic control. arXiv preprint arXiv:2306.00958, 2023.376

[29] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges, P. Abbeel,377

J. Malik, D. Batra, Y. Lin, O. Maksymets, A. Rajeswaran, and F. Meier. Where are we in the378

search for an artificial visual cortex for embodied intelligence? 2023.379

[30] A. Liang, I. Singh, K. Pertsch, and J. Thomason. Transformer adapters for robot learning. In380

CoRL 2022 Workshop on Pre-training Robot Learning, 2022.381

10

http://dx.doi.org/10.1162/neco.1992.4.2.234

[31] M. Sharma, C. Fantacci, Y. Zhou, S. Koppula, N. Heess, J. Scholz, and Y. Aytar. Lossless adap-382

tation of pretrained vision models for robotic manipulation. arXiv preprint arXiv:2304.06600,383

2023.384

[32] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In Advances385

in Neural Information Processing Systems (NIPS), 2017.386

[33] R. Traoré, H. Caselles-Dupré, T. Lesort, T. Sun, G. Cai, N. D. Rodríguez, and D. Filliat. Discorl:387

Continual reinforcement learning via policy distillation. CoRR, abs/1907.05855, 2019.388

[34] R. Fakoor, P. Chaudhari, S. Soatto, and A. J. Smola. Meta-q-learning. In International389

Conference on Learning Representations, 2020.390

[35] M. Caccia, J. Mueller, T. Kim, L. Charlin, and R. Fakoor. Task-agnostic continual reinforcement391

learning: Gaining insights and overcoming challenges. In Conference on Lifelong Learning392

Agents, 2023.393

[36] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:394

Zero-shot task generalization with robotic imitation learning. In 5th Annual Conference on395

Robot Learning, 2021.396

[37] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The397

sequential learning problem. In Psychology of learning and motivation, volume 24, pages398

109–165. Elsevier, 1989.399

[38] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k400

modes with one stone. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in401

Neural Information Processing Systems, 2022.402

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and403

I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,404

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing405

Systems, volume 30. Curran Associates, Inc., 2017.406

[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are407

unsupervised multitask learners. 2019.408

[41] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a409

general conditioning layer, 2017.410

[42] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang. Fine-tuning can distort pre-411

trained features and underperform out-of-distribution. In International Conference on Learning412

Representations, 2022.413

[43] C. Lyle, M. Rowland, and W. Dabney. Understanding and preventing capacity loss in reinforce-414

ment learning. In International Conference on Learning Representations, 2022.415

[44] S. Kumar, H. Marklund, and B. Van Roy. Maintaining plasticity via regenerative regularization.416

arXiv preprint arXiv:2308.11958, 2023.417

[45] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt418

tuning. arXiv preprint arXiv:2104.08691, 2021.419

[46] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands, too. AI420

Open, 2023.421

[47] A. Aghajanyan, L. Zettlemoyer, and S. Gupta. Intrinsic dimensionality explains the effectiveness422

of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.423

11

[48] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge424

transfer for lifelong robot learning. arXiv preprint arXiv:2306.03310, 2023.425

[49] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-426

zato. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486,427

2019.428

[50] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,429

J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in430

neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.431

[51] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual432

learning. Advances in Neural Information Processing Systems, 32, 2019.433

[52] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,434

Y. Zhu, and R. Martín-Martín. What matters in learning from offline human demonstrations for435

robot manipulation. arXiv preprint arXiv:2108.03298, 2021.436

[53] C. M. Bishop. Mixture density networks. 1994.437

[54] J. Pfeiffer, A. Rücklé, C. Poth, A. Kamath, I. Vulić, S. Ruder, K. Cho, and I. Gurevych.438

Adapterhub: A framework for adapting transformers. arXiv preprint arXiv:2007.07779, 2020.439

[55] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare. Reincarnating440

reinforcement learning: Reusing prior computation to accelerate progress. Advances in Neural441

Information Processing Systems, 35:28955–28971, 2022.442

[56] Y. Lee, A. S. Chen, F. Tajwar, A. Kumar, H. Yao, P. Liang, and C. Finn. Surgical fine-tuning im-443

proves adaptation to distribution shifts. International Conference on Learning Representations,444

2023.445

[57] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive446

task composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.447

[58] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges,448

P. Abbeel, J. Malik, et al. Where are we in the search for an artificial visual cortex for embodied449

intelligence? arXiv preprint arXiv:2303.18240, 2023.450

12

Appendix: TAIL: Task-specific adapters for imitation451

learning with large pretrained models452

A Model Architecture Details453

Spatial
Encoder

(CLIP ViT)

Language task
description

Agent-view
image (t-2)

Task token

image
token

Temporal Decoder (GPT2)

GMM
distribution

…

Eye-in-hand
image (t-2)

Input Fusion Module (FiLM layer)

image
token

Instruction
Encoder

(CLIP)

Open the top drawer

of the cabinet and

put the bowl in it.

State
encoder

Low-dim states (t-2)

state
token

Spatial
Encoder

(CLIP ViT)

Agent-view
image (t-1)

image
token

Eye-in-hand
image (t-1)

Input Fusion Module (FiLM layer)

image
token

State
encoder

Low-dim states (t-1)

state
token

Spatial
Encoder

(CLIP ViT)

Agent-view
image (t)

image
token

Eye-in-hand
image (t)

Input Fusion Module (FiLM layer)

image
token

State
encoder

Low-dim states (t)

state
token

GMM
distribution

GMM
distribution

action
t-2

action
t-1

action
t

Figure 6: A detailed view of the multi-modal, transformer policy architecture we utilize for pretrain-
ing. We encode language task descriptions with a pretrained CLIP instruction encoder and image
observations with a pretrained CLIP spatial encoder. We additionally encode robot state observations
which, along with the observation embeddings, are embedded into a sequence of tokens used by
the temporal decoder transformer to predict single-step action distributions. We include an input
fusion module (FiLM [41]) to explicitly combine the task embedding with the observation and state
embeddings for better instruction-following ability.

A.1 Pretrained Input Encoders454

We utilize pretrained CLIP image and textual encoders [2] to encode image observations and language455

goal descriptions, respectively. Note that we do not use a pre-trained encoder for the low-dimensional456

state; the state encoder is learned from scratch.457

A.2 Input Modality Fusion458

We utilize Feature-wise Linear Modulation (FiLM) layers [41] (Fig. 1(a), input fusion module) to459

fuse language task specifications with image observations. FiLM is a technique in multi-modal460

deep learning which modulates the intermediate activations of a neural network based on external461

information. Rather than explicitly designing architectures for conditional computation, FiLM layers462

simply use the features from one network to modulate the features of another.463

Let’s consider a neural network f with intermediate activations x and an external network g which464

outputs modulation parameters γ and β. The modulated features x′ are given by:465

γ, β = g(z) (4)
x′ = γ ⊙ x+ β, (5)

13

where z is the input to the external network g; ⊙ represents element-wise multiplication; γ and β are466

vectors having the same size as x, with each element modulating a corresponding feature in x.467

Thus, FiLM layers allow for a dynamic and feature-wise conditional computation without needing468

explicit architectural changes. As such, task token (language) embeddings are given as input to a469

fully connected feedforward network, which outputs scale and translation parameters for the image470

and state embeddings. These parameters modulate the image and state embeddings before they are471

passed to the transformer backbone.472

A.3 Temporal Transformer Backbone473

We utilize a standard GPT-2 [40] transformer backbone for our policy. Its input is a sequence of image474

and low-dim state encodings (robot joint states in LIBERO) and it outputs an action distribution.475

Following the literature [52, 48], we adopt a stochastic policy parametrization based on a Gaussian-476

Mixture-Model (GMM) [53]. Therefore, for every decision-making step, the transformer produces a477

latent vector of Gaussian means and variances, one for each of the GMM modes. We optimize the478

parameters of the model with the negative log-likelihood loss on the ground truth actions based on479

the parameters of the GMM distribution. At evaluation time, we deterministically select the next480

action parameterized by the mean of the Gaussian model with the highest density.481

The environment configuration and the temporal decoder (GPT-2) hyperparameters are presented in482

Table 4.483

Table 4: Environment configuration and GPT-2 model hyperparameters
Environment Configuration GPT2 Temporal Encoder Configuration

Action Dim. 7 Max Seq Length 8 Activation Gelu New
Raw State Dim. 9 Number of Heads 8 Number of Layers 6

Max Episode Length 500 GMM Min Std 0.0001 GMM Modes 5
Image Resolution 128 x 128 FiLM Layers 2 Dropout 0.15

Image Views Agent Front, Eye-in-Hand

B Implementation and Training Details484

B.1 Baseline Details485

Experience Replay (ER). ER [49, 51] is a rehearsal-based approach that retains a buffer of samples486

from previous tasks to facilitate the learning of new tasks. After completing the learning process for a487

task, a subset of the data is saved into this buffer. During the training of subsequent tasks, ER draws488

samples from this buffer and mixes them with current task data. This process ensures that the training489

data closely resembles the distribution of data across all tasks. In our setup, we store all the previous490

trajectories in a replay buffer. For each training iteration on a new task, we uniformly sample 50%491

trajectories from this buffer and 50% from the new task’s training data, respectively.492

Elastic Weight Consolidation (EWC). EWC [50] is a regularization method that adds a term to the493

standard single-task learning objective to constrain the updates of the neural network. This constraint494

uses the Fisher information matrix to gauge the significance of each network parameter. The loss495

function for task k is represented as:496

LEWCk
(θ) = LBCK

(θ) +
∑
i

λ

2
Fi(θi − θ∗k−1,i)

2

Here, λ is a hyperparameter penalty, and Fi is the diagonal of the Fisher information matrix given by:497

Fk = Es∼Dk,a∼pθ(·|s) (∇θk log pθk(a|s))
2

For our experiments, we adopt the online version of EWC. It updates the Fisher information matrix498

using an exponential moving average throughout the lifelong learning process. The actual Fisher499

Information Matrix estimate used is:500

F̃k = γFk−1 + (1− γ)Fk

14

with Fk = E(s,a)∼Dk
(∇θk log pθk(a|s))

2 and k representing the task number. Following the bench-501

mark implementation [48], the hyperparameters are set as γ = 0.9 and λ = 5× 104.502

Discussions. Both Experience Replay (ER) and Elastic Weight Consolidation (EWC) demonstrate503

potential in mitigating catastrophic forgetting. However, they each come with notable limitations,504

particularly with respect to forward transfer performance, storage, and computational efficiency.505

Storage Overhead: ER demands significant storage space to maintain samples from prior tasks. This506

becomes particularly evident when comparing the storage needs of ER for larger datasets, such as the507

Kitchen dataset which requires 28GB, with the lightweight LoRA adapter occupies only 7.8MB. The508

vast difference in storage demands underscores the inefficiency of the ER approach.509

Computational Challenges: EWC, by design, necessitates the maintenance of a copy of the weights510

of the previous model in GPU memory. This leads to escalated GPU memory consumption, making511

EWC tends to reduce the training batch size, subsequently slowing down the training process.512

Training Instability: The regularization approach of EWC can introduce instability during training,513

owing to the regularization loss. This is also reflected by the poor forward transfer capability, as514

shown in Table 1.515

Scalability Concerns: While EWC might be manageable for smaller networks, it is ill-suited for the516

fine-tuning of larger decision models due to its computational and storage challenges.517

Given these outlined limitations, we advocate TAIL for alternative approaches that are both storage-518

efficient and computationally scalable, especially for large pretrained model adaptation.519

B.2 TAIL Adapter Configurations520

To establish our TAIL adapter configurations, we primarily draw from the AdapterHub implementa-521

tion, setup and hyperparameters [54].522

We utilize the default hyperparameters for LoRA, with the rank r = 8 and scaling factor α = 8.523

These low-rank matrices are applied in parallel to the Transformer’s query and value matrices [16].524

We also adopt the default for prefix token length of 30 for the prefix tuning [15] method across all525

tasks. To improve the training stability, Low-rank matrices (r = 16) are employed during training526

to represent the prefix tokens. The Bottleneck Adapter [14] employs the bottleneck size of 32, and527

is applied to both the output layer of the attention and the intermediate feedforward layers. The528

RoboAdapter method [31], as the closest work to us, also applies the sequential adapters to the529

decision-making domain. It differs from the Bottleneck Adapter in that they adopt a special insertion530

of weights to specific layers of the Transformer, namely, layers 0, 1, 5, 6, 10, 11. They selectively531

skip certain layers, aiming to increase the bottleneck size on the remaining layers. Therefore, the532

bottleneck size is doubled to 64 for this approach, such that all methods share similar amount of533

parameters.534

In order to maintain balanced adapter parameters number between the two CLIP-based (spatial535

and instruction) encoders, and the temporal transformer GPT2 decoder, the rank size for the GPT2536

decoder is doubled across all methodologies. This adjustment compensates for the GPT2 decoder’s537

fewer layers relative to the encoders.538

For the continual learning setup, we use the previous stage’s adapter weight (if any) plus a small539

random Gaussian noise with standard deviation 0.001 as an initialization of the current stage. The540

goal for adding a minor random noise aims to improve the adapter weight capacity [42, 55, 43],541

preventing the weights from being trapped into local optimum. There is a potential to better utilize542

the trained adapter weights on preceding tasks. We outline several promising exploration directions543

in Appendix Section B.4.544

15

B.3 Training Hyperparameters and Experiment Configurations545

Following similar setup as in the LIBERO benchmark [48], we perform data augmentation for the546

image observation data for all methods. We adopt the color, affine, and random erase augmentations547

to improve the robustness. The hyperparameters are presented in Table 5.548

Table 5: Image data augmentation and training hyperparameters
Image Augmentation Training and Optimizer Configuration

Brightness 0.3 Contrast 0.3 Training Epochs 100/50 Batch Size (per device) 10/14/18
Saturation 0.3 Hue 0.3 Training Epochs per Eval 5 Eval Episodes/Task 8

Color Aug Prob. 0.9 Affine Degrees 15 Warm-up Steps 500 Weight Decay 0.1
Affine Translate 0.1 Affine Prob. 0.6 Learning Rate (LR) 1e-4 LR Scheduler Linear

Random Erase Prob. 0.1 Training Demo Num 40 Validation Demo Num 40

For our training process, we employed the AdamW optimizer combined with a linear learning rate549

scheduler. The majority of our task suites—Kitchen, Spatial, Goal, Object, Living Room, and Study550

Room—underwent training for 100 epochs. Notably, each suite encompasses multiple tasks, with551

Kitchen having 40 and the others containing 8 each. In contrast, the 10 long-horizon adaptation tasks,552

termed LIBERO-10, were trained for 50 epochs, with each task trained sequentially. We performed553

evaluations after every 5 training epochs over 8 episodes (unseen in training) for each task.554

Computing machine. Our experimental platform was powered by an AMD EPYC 7R32 CPU555

running Ubuntu 20.04.06. All trainings utilized 8 NVIDIA A10G GPUs, each with a memory556

of 22731 MiB, equipped with driver version 470.199.02 and CUDA version 11.4. We employ557

Distributed Data Parallel (DDP) for parallel training across 8 GPUs, and utilize the 16-bit floating558

point precision (FP16) training mode to accelerate the training process. To ensure reproducibility, we559

adopted 3 distinct random seeds: 0, 21, and 42.560

Training time. For a holistic perspective on training duration: FFT and ER methods demanded561

between 120 ∼ 140 hours per experiment (1.5 ∼ 1.75 hours per task) for the 6 task suites shown562

in Fig. 5, including the evaluation time. In stark contrast, TAIL-based techniques slashed this to563

60 ∼ 66 hours (0.75 ∼ 0.825 hours per task). Hence, TAIL would also be much cheaper to train,564

considering its significantly shorter training time under identical computing machines.565

Batch sizes varied by training method. EWC employed a batch size of 10, given its added memory566

demands to store a distinct full parameter set. FFT and ER utilized batch sizes of 14. Owing to567

TAIL’s more efficient memory utilization—detailed in Table 3—a larger batch size of 18 was feasible,568

which can maximize GPU resource usage on our machine, reducing training duration and cost.569

B.4 More Discussion and Future Directions570

The TAIL framework paves the way for a myriad of research opportunities:571

1. Better Weight Allocation Method Across Layers: An interesting question within this framework572

is discerning which layers, early or later, derive the most benefit from weight modifications. This573

can offer insights into the adaptability of neural architectures [56].574

2. Enhanced Reusability of Trained Adapters: Exploring methods to efficiently reuse adapters575

from prior tasks, especially in scenarios with limited data, is a promising direction. AdapterFusion576

techniques [57] can be potentially useful, enabling the composition of knowledge from multiple577

pre-existing adapters.578

3. Building on Knowledge with Parallel Integration: The parallel integration method, particularly579

with LoRA weights, offers the capability to merge trained weights back into the main model. This580

iterative buildup of knowledge makes the approach valuable for continual learning, allowing new581

adapters to capitalize on the expertise of their predecessors.582

4. Combining with Established Continual Learning Strategies: The potential to merge the TAIL583

framework with existing continual learning methods, like Experience Replay and EWC, can be584

16

a beneficial avenue. Such integrations can accommodate the strengths of each method, crafting585

models that are both efficient in memory and robust against forgetting.586

5. Extension beyond the Imitation Learning Domain: Taking the TAILframework into other587

decision-making domains, such as reinforcement learning (RL), is also promising. TAIL has the588

potential to address the model capacity loss issue in RL [55, 43]. Leveraging the TAIL framework589

can also aid in multitask learning, meta-learning, and efficiently adapting offline-trained RL590

models to new tasks without the necessity of vast amounts of data or extensive fine-tuning, thereby591

potentially accelerating convergence to optimal policies.592

The avenues above elucidate the adaptability and potential of the TAIL framework, setting the stage593

for future research in this domain.594

17

C More Experiment Results595

In this section, we provide additional results from our experiments. For each task, we used 40596

demonstrations for training and 10 for validation. We are interested in the following question: In597

scenarios where data is limited, how resilient is TAIL against overfitting compared to traditional598

fine-tuning methods? To answer this, we present the training and validation loss cross the Kitchen,599

Spatial, Goal, Object, Living Room and Study Room task suites, each with 100 epochs, in Fig. 7.600

0 100 200 300 400 500 600
Epoch

4000

2000

0

Training Loss

0 100 200 300 400 500 600
Epoch

Validation Loss
TAIL (LoRA) TAIL (Bottleneck Adapter) TAIL (Prefix Tuning) FFT

Figure 7: Adaptation loss trends: Training versus validation. The graph shows that the TAIL model
consistently has more stable validation losses, which means that it is more robust to contexts with
limited data. On the other hand, the full fine-tuning model (FFT) has larger validation losses, which
means that it is more likely to overfit to the training data.

A noteworthy observation from Fig. 7 is the behavior of FFT. Despite achieving the lowest training601

loss across all stages, its validation loss spikes significantly after just a few epochs. This pattern602

suggests severe overfitting when FFT is applied to the entire parameter space using limited data.603

Intriguingly, this overfitting intensifies in the later adaptation phases, potentially signifying a distortion604

of pretrained features as alluded to by Kumar et al. [42]. Such distortion could be a contributor to605

the suboptimal success rate observed in Fig. 5, and the loss of learning capacity when revisiting a606

previous task, as presented in Table 2.607

In constrast, TAIL-based methods shows strong resilience against overfitting. Drawing from the608

Occam’s razor principle, TAIL leverages fewer trainable parameters, inherently reducing its potential609

to overfit with scarce data. Additional, different integration styles provide the flexibility to effectively610

utilize the features from pretrained models while preserving them across all the adaptation stages.611

This observation underscores the disparities between our decision-making problem, characterized by612

its limited data, and the traditional language or vision domains, which have data in abundance. Prior613

studies utilizing parameter-efficient fine-tuning techniques for language or vision tasks often reported614

superior performance with full fine-tuning due to its low training loss [19, 20, 21, 31]. However, as615

our results demonstrate, a lower training loss does not invariably translate to superior performance,616

especially in the context of a data-scarce sequential decision-making tasks.617

VC-1 CLIP Random
Spatial Encoder Init Weights

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

Pretrain on Kitchen via FFT

Figure 8: Training on the Kitchen task with differ-
ent pretrained CLIP-ViT encoder weight. Random
means using random initialization weight.

Analysis of pretrained weights’ influence. We618

aim to answer the following question: how does619

the underlying pretrained base model influence620

the performance of TAIL, and are certain pre-621

trained weights more conducive to this kind of622

adaptation? We initiated our investigation by623

analyzing the success rates of 40 Kitchen tasks624

using different pretrained weights for the spatial625

encoder. Apart from the CLIP-ViT pretrained626

encodings as we adopted in our main results, two627

other initialization of weights were considered:628

one sourced from the Visual Cortex 1 (VC-1)629

[58], recognized for being a leading pretrained630

18

model for embodied agent tasks, and another631

using randomly initialized weights. The language instruction encoder consistently utilized the CLIP632

text model. From the results in Fig. 8, the VC-1 pretrained weights delivered performance on par633

with the CLIP-ViT encodings. Both considerably outperformed the randomly initialized weights,634

suggesting that large-scale pretraining can indeed enhance downstream fine-tuning. We then study635

how does the pretrained base model influence the performance of TAIL.636

Further Evaluations on TAIL with Different Base Models. To understand the influence of the base637

model’s features on the performance of TAIL, we conducted additional evaluations. In Table 6, the638

methods column showcases different configurations:639

• LoRA (CLIP): The main setup we adopted in the experiment section 5, which keeps the640

pretrained CLIP encodings frozen across all the adaptation stages.641

• LoRA (CLIP with FFT): Starting with the CLIP model, we applied FFT pretraining on the642

Kitchen task before using LoRA for subsequent adaptations.643

• LoRA (VC-1 with FFT): The VC-1 model, after FFT pretraining on the Kitchen task, was644

adapted using LoRA.645

• LoRA (Random with FFT): A model with randomly initialized weights underwent FFT646

pretraining on the Kitchen task, followed by adaptation with LoRA.647

All the pretrained encodings implemented in the same model architecture as described in Appendix648

Section A.649

Observations from Table 6 highlight several findings:650

• Dominance of Original CLIP: The pure CLIP base model, when combined with LoRA,651

yielded the highest success rates across all task suites, suggesting the inherent quality and652

robustness of the original CLIP features for these tasks.653

• FFT’s Mixed Impact: While FFT pretraining aids in task-specific fine-tuning, when654

combined with CLIP, it leads to a degradation in performance. This could be attributed to655

FFT potentially diluting the comprehensive and rich features within CLIP [42], especially656

when exposed to a more constrained domain with limited data.657

• VC-1’s Comparable Performance: The VC-1 model, though renowned in the domain of658

embodied agent tasks, delivered results that were only marginally better than the randomly659

initialized weights when both were subjected to FFT pretraining and then adapted with660

LoRA. This emphasizes the unique advantages of the original CLIP features.661

Interestingly, it is observed that CLIP is pretrained on the most comprehensive dataset, followed by662

VC-1. In contrast, the model with random weights only underwent pretraining on the 40 Kitchen663

tasks. The success rates mirror this order, underscoring the idea that the efficacy of TAIL is closely664

tied to a base model pretrained with rich features on extensive datasets. So in summary, the choice665

of base model significantly affects the performance of TAIL, with CLIP’s original features showing666

remarkable compatibility and resilience across various task suites667

Table 6: Evaluation results of FWT for LoRA with different pretrained model weights. The higher, the better.
We highlight the best method with highest FWT as bold.

Method Spatial Goal Object Living Room Study Room Average
LoRA (CLIP) 0.76 ± 0.02 0.79 ± 0.02 0.73 ± 0.14 0.73 ± 0.07 0.55 ± 0.11 0.71 ± 0.07

LoRA (CLIP with FFT) 0.62 ± 0.04 0.67 ± 0.13 0.38 ± 0.08 0.32 ± 0.08 0.32 ± 0.01 0.46 ± 0.07

LoRA (Random with FFT) 0.38 ± 0.19 0.60 ± 0.06 0.37 ± 0.03 0.23 ± 0.01 0.47 ± nan 0.41 ± 0.07

LoRA (VC-1 with FFT) 0.56 ± 0.07 0.66 ± 0.08 0.25 ± 0.00 0.20 ± 0.06 0.48 ± 0.07 0.43 ± 0.05

19

D Evaluation Task Details668

We list all the language instruction describing the tasks we adopted in our experiments as follows669

[48].670

Task Suite Instructions
close the top drawer of the cabinet
close the top drawer of the cabinet and put the black bowl on top of it

Kitchen put the black bowl in the top drawer of the cabinet
put the butter at the back in the top drawer of the cabinet and close it
put the butter at the front in the top drawer of the cabinet and close it
put the chocolate pudding in the top drawer of the cabinet and close it
open the bottom drawer of the cabinet
open the top drawer of the cabinet
open the top drawer of the cabinet and put the bowl in it
put the black bowl on the plate
put the black bowl on top of the cabinet
open the top drawer of the cabinet
put the black bowl at the back on the plate
put the black bowl at the front on the plate
put the middle black bowl on the plate
put the middle black bowl on top of the cabinet
stack the black bowl at the front on the black bowl in the middle
stack the middle black bowl on the back black bowl
put the frying pan on the stove
put the moka pot on the stove
turn on the stove
turn on the stove and put the frying pan on it
close the bottom drawer of the cabinet
close the bottom drawer of the cabinet and open the top drawer
put the black bowl in the bottom drawer of the cabinet
put the black bowl on top of the cabinet
put the wine bottle in the bottom drawer of the cabinet
put the wine bottle on the wine rack
close the top drawer of the cabinet
put the black bowl in the top drawer of the cabinet
put the black bowl on the plate
put the black bowl on top of the cabinet
put the ketchup in the top drawer of the cabinet
close the microwave
put the yellow and white mug to the front of the white mug
open the microwave
put the white bowl on the plate
put the white bowl to the right of the plate
put the right moka pot on the stove
turn off the stove

Table 7: 40 Kitchen scene pretraining tasks

20

Task Suite Instructions
put both the alphabet soup and the tomato sauce in the basket

Long-horizon put both the cream cheese box and the butter in the basket
(LIBERO 10) turn on the stove and put the moka pot on it

put the black bowl in the bottom drawer of the cabinet and close it
put the white mug on the left plate and put the yellow and white mug on the right
plate
pick up the book and place it in the back compartment of the caddy
put the white mug on the plate and put the chocolate pudding to the right of the
plate
put both the alphabet soup and the cream cheese box in the basket
put both moka pots on the stove
put the yellow and white mug in the microwave and close it
pick up the black bowl between the plate and the ramekin and place it on the
plate

Spatial pick up the black bowl next to the ramekin and place it on the plate
pick up the black bowl from table center and place it on the plate
pick up the black bowl on the cookie box and place it on the plate
pick up the black bowl in the top drawer of the wooden cabinet and place it on
the plate
pick up the black bowl on the ramekin and place it on the plate
pick up the black bowl next to the cookie box and place it on the plate
pick up the black bowl on the stove and place it on the plate
open the middle drawer of the cabinet

Goal put the bowl on the stove
put the wine bottle on top of the cabinet
open the top drawer and put the bowl inside
put the bowl on top of the cabinet
push the plate to the front of the stove
put the cream cheese in the bowl
turn on the stove
pick up the alphabet soup and place it in the basket

Object pick up the cream cheese and place it in the basket
pick up the salad dressing and place it in the basket
pick up the bbq sauce and place it in the basket
pick up the ketchup and place it in the basket
pick up the tomato sauce and place it in the basket
pick up the butter and place it in the basket
pick up the milk and place it in the basket
pick up the alphabet soup and put it in the basket

Living Room pick up the butter and put it in the basket
pick up the milk and put it in the basket
pick up the orange juice and put it in the basket
pick up the tomato sauce and put it in the basket
pick up the alphabet soup and put it in the tray
pick up the butter and put it in the tray
pick up the cream cheese and put it in the tray
pick up the book and place it in the right compartment of the caddy

Study Room pick up the book and place it in the front compartment of the caddy
pick up the book and place it in the left compartment of the caddy
pick up the book and place it in the right compartment of the caddy
pick up the red mug and place it to the right of the caddy
pick up the white mug and place it to the right of the caddy
pick up the book in the middle and place it on the cabinet shelf
pick up the book on the left and place it on top of the shelf

Table 8: Adaptation task suites

21

	Introduction
	Related Work
	Preliminaries
	Continual Imitation Learning
	Pretrained Decision-Making Models
	Adapting pretrained models for new tasks

	Task-specific adapters for imitation learning
	Adapter Weights Integration
	TAIL for continual imitation learning

	Experiments
	Datasets and Benchmark Suites
	Experiment setup
	Results and analysis

	Model Architecture Details
	Pretrained Input Encoders
	Input Modality Fusion
	Temporal Transformer Backbone

	Implementation and Training Details
	Baseline Details
	TAIL Adapter Configurations
	Training Hyperparameters and Experiment Configurations
	More Discussion and Future Directions

	More Experiment Results
	Evaluation Task Details

