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ABSTRACT

Vision-language models (VLMs) with dynamic resolution vision encoders achieve
strong performance, but face significant efficiency challenges due to long input
sequences. A common approach is to assess the importance of tokens and prune
those that are less informative. Recent methods utilizing a small VLM to pro-
vide the importance map of visual tokens have outperformed existing rule-based
and similarity-driven pruning approaches, particularly under high pruning ratios.
However, directly using the small VLM remains unreliable, as it aggregates cross-
attention weights between all the generated answer tokens of the small VLM and
the visual inputs to form an importance map, which can lead to noisy guidance
if the generated answer is incorrect. To address this, we invert the approach by
having it detect non-informative visual tokens according to the user’s input query.
By adding a learnable information bottleneck in the small VLM, we can approx-
imate the posterior distribution of non-important visual tokens. This enables the
small model to highlight broad informative regions, allowing the large VLM to
retain its reasoning capacity with improved efficiency. Extensive experiments on
eight benchmarks demonstrate the effectiveness of our approach. With only 5% of
visual tokens retained, the large VLM preserves 95% of its original performance,
outperforming the state of the art by 8%.

1 INTRODUCTION

Vision–language models (VLMs) have demonstrated remarkable progress across a wide range of
visual tasks, yet their deployment remains hindered by high computational costs. A key source of
inefficiency arises from the large number of visual tokens produced by dynamic resolution encoders,
which significantly increases sequence length and burdens downstream reasoning Bai et al. (2025).
However, the visual input has high redundancy and sparsity as a generation condition in VLM.
Therefore, token pruning (Ye et al., 2025; Ma et al., 2024; Li et al., 2024b; Yang et al., 2025;
Bolya et al., 2023) has emerged as a promising strategy for improving efficiency by discarding less
informative visual tokens.

Despite recent progress, existing pruning approaches suffer from fundamental limitations. For exam-
ple, FastV (Chen et al., 2024a) assumes that cross-attention from the first generated token provides a
reliable signal of token importance. In practice, however, this assumption often breaks down, lead-
ing to unstable pruning decisions. More recent work, SGP (Zhao et al., 2025) aggregates attention
scores across all generated tokens from a small-VLM to construct importance maps, which are then
used to guide pruning for a larger VLM with the same architecture. While this strategy yields im-
provements under high pruning ratios, its pruning guidance is heavily dependent on the answering
ability of the small model. This reliance restricts generalization to complex instructions that have
higher visual dependency. As shown in Fig. 1a, when the small-VLM lacks the prior knowledge to
answer a given query, the importance map it produces becomes ineffective, resulting in noisy token
retention and impairing the large-VLM’s reasoning capacity.

To address this, we invert the paradigm: rather than asking a small model with limited ability to
identify the most important visual tokens and forcing the large model to follow, we instead train the
small model to approximate the distribution of non-informative tokens. As shown in Fig. 1b, the
small-VLM learns to map low-informative visual tokens conditioned on the user input to a learn-
able prior via a bottleneck module. Implicitly, the tokens far from the prior are treated as important
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(a) Pruning guidance by SGP.
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Pruning
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Importance

Large-VLM

Importance Map

Information Bottleneck

(b) Inference pipeline of our proposed pruning method (PGP).

Figure 1: (a) SGP utilizes a pre-trained VLM for the importance map prediction, but failed to provide
helpful pruning guidance due to its answer-driven mechanism. (b) We fine-tuned an information
bottleneck module to map the output visual embeddings from a small-VLM to a latent variable,
which are used to compute the importance of each visual token given the provided text prompt. The
pruning guidance is more helpful than SGP after top-K% pruning for the large-VLM.

ones, which will be passed to the large-VLM for reasoning and final answering. In this way, the
small-VLM can highlight broader regions of informative content than the attention-based guidance,
making the pruning guidance less deterministic but more inspirational and auxiliary, and enabling
the large-VLM to retain its full reasoning capability with better efficiency. Overall, we posit that
effective pruning requires moving beyond answer-driven heuristics and instead estimating token im-
portance through a principled probabilistic framework. To this end, we introduce Posterior-Guided
token Pruning (PGP), which formulates token importance estimation as an amortized variational
inference problem. Specifically, we fine-tune a small-VLM to act as a latent variable sampler, and
we can approximate the distribution over each visual token’s contribution to the downstream task
by parameterizing each latent visual token as a channel-wise Gaussian. Intuitively, this posterior-
driven formulation yields pruning guidance that is both query- and answer-aware, ensuring that the
retained visual tokens are more informative for reasoning. By computing the KL-divergence be-
tween the predicted posterior and the prior distribution as an importance score, PGP leverages the
small-VLM to provide a robust and transferable estimate of visual relevance.

PGP is also practical for inference. Prior methods compute importance inside the large VLM’s
decoder or require full decoding to an end-of-sequence token, incurring significant overhead. In
contrast, PGP produces guidance in a single forward pass of the small VLM, substantially reducing
the large model’s FLOPs and memory without sacrificing accuracy. Furthermore, our method works
well with optimized libraries, such as FlashAttention (Dao, 2023), since it does not require explicitly
outputting all the attention weights, unlike SGP and FastV. Extensive experiments demonstrate that
PGP achieves state-of-the-art trade-offs between efficiency and performance. Specifically, PGP
retains up to 95% of the original accuracy while utilizing only 5% of the visual tokens, resulting in a
40% reduction in computational cost, and consistently outperforms previous SOTA methods by 7%
across eight benchmarks.

2 PRELIMINARIES

Vision–Language Models. General-purpose vision–language models (VLMs) are typically instan-
tiated as causal large language models (LLMs) conditioned on visual inputs. To strengthen visual
understanding, recent families such as LLaVA (Li et al., 2024a; Sun et al., 2024), QwenVL (Bai
et al., 2025; Wang et al., 2024), and InternVL (Chen et al., 2024d;e) adopt dynamic visual encoders.
A high-resolution image is tiled into multiple crops; each crop is passed through a ViT to pro-
duce a fixed-length sequence of patch embeddings. Let X ∈ Rn×d denote textual embeddings and
V ∈ Rm×d denote visual embeddings, both projected into the LLM’s d-dimensional space, and let
N = m+ n. The LLM consumes the concatenated sequence [V ;X] ∈ RN×d and outputs contex-
tualized hidden states [V ′,X ′], in which visual representations mutually inform text information.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

At inference time (pre-fill), the VLM forms a single causal sequence over visual and textual tokens.
With an appropriate attention mask, each visual token can attend to previously seen text (e.g., user
instructions and system prompts), allowing the visual features to be shaped by the query context.

Small-VLM–Guided Visual Token Pruning. While longer visual-token sequences can improve
fine-grained perception, many tokens are empirically redundant. Selecting only the most informative
tokens trades off efficiency and accuracy (Zhang et al., 2024b; Alvar et al., 2025; Chen et al., 2024a).
Small-VLM–Guided Pruning (SGP) (Zhao et al., 2025) addresses this by deriving a token-level
importance map s ∈ Rm from a compact VLM. Given s, the top-k% visual tokens are retained and
the remainder are hard-pruned before the visual input is forwarded to the answer predictor (i.e., the
large VLM).

3 POSTERIOR-GUIDED VISUAL TOKEN PRUNING VIA VARIATIONAL
INFERENCE

3.1 VARIATIONAL INFORMATION BOTTLENECK IN VLMS

A central challenge in visual token pruning is determining the relative importance of each token
without introducing significant computational overhead. We propose a token-wise variational in-
formation bottleneck framework, which treats each visual token as a stochastic latent variable and
leverages a Kullback–Leibler (KL) divergence to quantify its information contribution.

Formally, given a set of visual embeddings V ′ = {V ′
1 , . . . ,V

′
m} after the small-VLM forward pass,

we map them into latent variables Z = {Z1, . . . ,Zm}, where each Zi ∼ Qθ(Zi | V ′
i ) is the latent

representation of the ith visual token. The token-wise latent variable is represented by a Gaussian
distribution as:

Qθ(Zi | V ′
i ) = N

(
µθ(V

′
i ), σ

2
θ(V

′
i )
)
, (1)

where µθ(V
′
i ) , σ

2
θ(V

′
i ) ∈ Rd are predicted by a projection layer parameterized by θ. Specifically, in

sequence-to-sequence LLM with causal attention, V ′ can naturally fuse the prior query information
by cross-attention over X as shown in Fig. 2. In this way, by conditioning on V ′, the latent variable
prediction is implicitly conditioned on both query and visual information.

To encourage disentanglement across channels, we adopt a learnable prior distribution P (z) =
N (µp, σ

2
p), where µp, σ

2
p ∈ Rd are per-channel learnable mean and variance that are shared over the

whole training data space. This design allows certain latent dimensions to carry more informative
content while encouraging redundancy reduction in less important dimensions.

To this end, the KL divergence between the approximate posterior and prior,

DKL(Qθ(Zi | V ′
i )∥P (z)) :=

1

d

d∑
j=1

DKL(Qθ(Z
(j)
i | V

′(j)
i )∥P (z(j))) , (2)

representing the average amount of channel-wise information the ith visual token contributes beyond
the prior belief with d dimension. Intuitively, tokens that deviate strongly from the prior carry
higher task-relevant information, while tokens with near-prior distributions contribute little. Thus,
the KL divergence naturally serves as a token-wise importance score, forming the basis for pruning
guidance at inference time.

Instead of directly predicting the posterior mean of the ith visual token (i.e., µθ(V
′
i )) using a pro-

jection layer, we introduce a channel-wise gating mechanism to enhance the expressivity of the
posterior mean as:

µθ(V
′
i ) = σ

(
Iθ(V

′
i )
)
⊙ (V ′

i − µp) + µp, (3)

where Iθ(V ′
i ) is a learned channel-wise importance gate, σ(∗) is a sigmoid function, and ⊙ denotes

element-wise multiplication. This mechanism enables the model to independently modulate how
much information each channel contributes to the posterior within a bound, since 0 < σ(∗) < 1.
So the gate upper-bounds how far the posterior mean can wander from the prior, directly capping
the KL explosion and stabilizing optimization. However, a free mean projection can push µθ(V

′
i )

arbitrarily far, making the KL term volatile.

3
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Figure 2: The overview of our training pipeline. For each data sample X,V ,Y ∼ D, we call small-
VLM (i.e., πϕ) twice. 1st forward: Input X and V , and the output V ′ are mapped to latent space
using Qθ(*), computing KL divergence with a shared prior. 2n forward: compute the cross-entropy
between the predicted answer πθ(Y |X,Z) and the ground truth Y .

3.2 RECONSTRUCTION OBJECTIVE

Our training objective extends the classical variational information bottleneck (Alemi et al., 2016;
Tishby et al., 2000) to the token level, which can be easily applied to token prediction within LLM.
Overall, the goal of our objective function is twofold: ❶ to ensure the accurate reconstruction of the
target output conditioned on both the query and the latent visual tokens, and ❷ to penalize redundant
tokens by compressing their representations towards the prior.

While representing each visual token by a continuous Gaussian distribution makes the optimization
gradient intractable. Following the reparameterization trick, we “reparameterize” the distribution
Qθ(Zi | V ′

i ) as,

Zi ∼ Qθ(Zi | V ′
i ) = N

(
µθ(V

′
i ), σ

2
θ(V

′
i )
)
⇒ Zi = µθ(V

′
i ) + σθ(V

′
i ) · ϵ , (4)

where ϵ ∈ N (0, I) is an auxiliary noise variable. Conditioning on the original query X and the
reparameterized latent visual tokens Z = {Z1, · · · , Zm}, the reconstruction loss aims to maximize
the expectation of the log-likelihood of the final answer Y . To this end, the overall loss is:

L = EX,Y ∼D,Z

[
log πϕ(Y | X,Z)

]︸ ︷︷ ︸
Reconstruction loss

− β

m

m∑
i=1

DKL (Qθ(Zi | V ′
i )∥P (z))︸ ︷︷ ︸

Token-wise KL penalty

, (5)

where πϕ is the conditional likelihood modeled by the VLM with parameters ϕ, and β is a trade-off
hyperparameter.

The reconstruction loss ensures the latent tokens preserve sufficient information for accurate answer
prediction, while the KL term regularizes each token against the prior. By applying this penalty at
the token level rather than the sequence level, we achieve two key benefits: 1. Granular importance
estimation. Each token’s KL divergence reflects its marginal utility for the downstream task, en-
abling fine-grained pruning decisions. 2. Adaptive compression. The learnable per-channel prior
allows the model to automatically retain highly informative latent dimensions while suppressing
redundancy.

In summary, Eq. 5 enforces a principled token-wise trade-off between predictive sufficiency and
compression. The resulting KL-based importance scores can be directly employed as a pruning
criterion, yielding both interpretability and computational efficiency.

3.3 POSTERIOR-GUIDED VISUAL TOKEN PRUNING

At inference time, we first pass the concatenated sequence of text and visual tokens (i.e., XV ) to
a small-VLM (S-VLM). Then, we extract V ′ from the last hidden-states of the output sequence
(X ′V ′), where V ′ are new visual embeddings containing query information. Next, we approximate
the latent variable of each visual token (i.e., Zi ∼ Qθ(Zi | V ′

i )), then compute the importance score
for each visual token (i.e., s ∈ Rm), which are used to guide the token pruning in large-VLM (i.e., L-
VLM). This work computes importance map s = {DKL(Qθ(Z1 | V ′

1 )∥P (z)), · · · , DKL(Qθ(Zm |

4
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V ′
m)∥P (z))}, where the posterior prediction layers parameterized by θ and the priors P (z) were

optimized in the training process. To be noticed, S-VLM should share the same model architecture
as the L-VLM for consistent visual encoding. Following SGP (Zhao et al., 2025), we retain the
top-k% of visual tokens by the ranked vs. Then, we perform hard pruning on V and the pre-
computed position embeddings. In this way, the remaining visual tokens still contain the original
spatial information from the whole visual input.

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION

Training recipe. This work utilizes the InternVL family models for experiments, since the model ar-
chitecture was designed to take the full visual sequence without compression, which clearly demon-
strates the effectiveness of our method. For the small-VLM (i.e., πϕ(∗)), we initialize and fix the
model parameters from the pretrained InternVL2.5-1B (Chen et al., 2024e), followed by a learnable
light-weight projection module (i.e., Qθ(∗)), which consists of two MLP layers, and two learnable
embeddings (prior mean µp and variance σ2

p). To alleviate the domain shift between πϕ(Y |X,V )
and πϕ(Y |X,Z) during training, we fine-tune the small-VLM using Eq. 5 with LoRA for one
epoch. Please refer to the supplementary material for our detailed hyperparameters. For better
generalizability, we follow the training data used in InternVL, which is a mixture of single-image
instruction data proposed by ShareGPT-4V (Chen et al., 2024b), LLaVA‘(Li et al., 2024a), and
DVQA (Kafle et al., 2018), etc.

Benchmarks and baseline pruning methods. We consider the pruning guidance as a general-
purpose assistant, and this work focuses on single-image tasks. For OCR and chart understanding,
we utilize TextVQA (Singh et al., 2019) and ChartQA (Masry et al., 2022). To validate the capabili-
ties in real-world scenarios with open-form instructions, we utilize MMStar (Chen et al., 2024c) and
RealWorldQA. Besides general visual understanding, visual perception evaluates the model’s rea-
soning ability, so we adopt MME (Fu et al., 2023), MMBench (Liu et al., 2024), MM-Vet (Yu et al.,
2024), and GQA (Hudson & Manning, 2019). For a fair comparison with other pruning methods,
we primarily report the baseline results of our own implementation and utilize lmms-eval (Zhang
et al., 2024a) for consistency in the test setting. All our results are reported with greedy sampling
and zero-shot prediction. We carefully choose four pruning methods to compare with ours, where
ToME (Bolya et al., 2023) solely focuses on reducing visual redundancy in the vision encoder,
FastV (Chen et al., 2024a) progressively reduces the number of visual tokens in the LLM forward
process based on attention weights, and SGP (Zhao et al., 2025) utilizes a small-VLM to provide
pruning guidance, which is similar to our approach.

4.2 PGP PROVIDES RELIABLE PRUNING GUIDANCE

Question: what is the brand of this camera? 

Question: what does the small white text spell? 

PGP (ours)SGP

PGP (ours)SGP

Figure 3: Visualization of visual token impor-
tance map proposed by SGP and PGP (ours).

PGP works as a soft visual cue detector with
reasoning capability, rather than providing only
direct, point-wise pruning guidance. Exist-
ing approaches, such as FastV and SGP, adopt
answer-driven pruning strategies, where the re-
tained visual tokens are either directly tied to
the predicted answer or consist largely of irrel-
evant noise. This strong reliance on a VLM’s
prior knowledge inherently limits both gener-
alization and robustness. In contrast, by as-
signing higher importance scores to a broader
set of potentially informative visual tokens (see
Fig. 3), PGP preserves contextual cues that are
critical for downstream reasoning. This enables
the large VLM to perform more precise and
fine-grained inference, ensuring both reliability
and trustworthiness in pruning decisions. As il-
lustrated in Fig. 4, PGP consistently identifies

5
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Table 1: Comparison of InternVL2-26B with different visual token pruning methods. After ob-
taining the importance map using different methods, including FastV, SGP, and PGP, we retain the
top-k% (i.e., token ratio) of all input visual tokens and execute hard pruning at the Lth decoder layer
of InternVL2-26B. † are results based on our reproduced experiments. The best results are bold.

Method Token
ratio

L TextVQA ChartQA GQA MMStar MMBench MM-Vet MME RealWorldQA Score
ratio ↑val All test-dev test en-dev test test test

InternVL2-26B 100% - 82.45 84.92 64.89 60.08 83.46 64.00 2270 67.58 100.00%

ToMe 20% 9 75.74 62.44 63.61 - 81.82 52.50 2178 - 94.88%
FastV† 20% 9 75.62 71.68 61.20 53.01 78.31 45.00 2140 63.27 93.18%
SGP† 20% 9 81.97 81.68 64.62 56.77 80.76 62.34 2258 67.50 99.15%
PGP (ours) 20% 9 81.48 82.60 64.56 57.46 80.58 61.01 2271 66.14 99.55%

FastV† 20% 0 73.42 67.32 60.68 50.55 78.26 52.66 2110 60.26 90.03%
SGP† 20% 0 81.14 80.92 64.70 56.97 80.50 61.33 2252 67.90 98.49%
PGP (ours) 20% 0 81.28 82.36 64.86 56.45 79.98 60.32 2263 66.54 99.19%

ToMe 5% 2 51.69 28.60 57.52 - 73.09 37.70 1933 - 82.33%
FastV† 5% 2 43.84 26.10 44.90 32.65 62.33 31.60 1799 44.05 75.05%
SGP† 5% 2 78.70 71.08 62.04 50.92 73.71 49.82 2007 64.84 88.50%
PGP (ours) 5% 2 79.24 71.12 63.52 53.10 77.58 50.83 2189 65.62 95.41%

FastV† 5% 0 20.06 24.64 43.41 32.65 36.94 21.74 1418 44.05 59.10%
SGP† 5% 0 78.77 70.68 62.08 50.62 73.28 50.23 2028 65.10 89.25%
PGP (ours) 5% 0 79.04 70.96 63.53 52.49 77.23 51.42 2190 66.01 95.44%

semantically meaningful and question-related visual cues, whereas SGP primarily localizes tokens
directly tied to the predicted answer. We quantify the difficulty of human instructions by their degree
of visual dependency, with more complex queries requiring a larger set of relevant visual tokens for
accurate reasoning. Under this characterization, we observe that pruning decisions guided by SGP
enable the large VLM to handle relatively simple queries but result in substantial performance degra-
dation on visually demanding ones.

Quantitative results in Table 1 further validate this advantage. With only 20% of visual tokens
retained, PGP and SGP preserve 99.4% and 98.82% of the original performance (measured by the
score ratio), respectively, indicating less than a 1% drop. However, under more aggressive pruning,
the performance gap widens significantly: with just 5% of tokens, PGP still maintains 95.4% of the
full performance, while SGP and FastV degrade to 88.9% and 67.1%, respectively. Fig. 5 also shows
that pruning guided by PGP yields more stable performance than competing methods. Together with
the qualitative examples in Fig. 4, these results support our main hypothesis that preserving highly
informative tokens is more effective than relying solely on answer-related ones.

4.3 ONE CAN SERVE MANY

Table 2: Performance comparison of InternVL2-8B with
different pruning methods including SGP and PGP.

Method R GQA MMStar MMBench RealWorldQA Score %

InternVL2-8B 100% 62.70 59.11 81.90 65.10 100%

SGP 20% 62.59 56.37 80.67 64.58 98.29%
PGP (ours) 20% 62.54 56.93 79.64 63.14 97.56%

SGP 5% 59.95 50.37 71.22 61.31 90.34%
PGP (ours) 5% 58.47 53.34 76.46 62.48 94.03%

We study whether a single fine-tuned
small VLM can guide pruning for
larger models that share the same ar-
chitecture. Reusing the guide model
from Table 1 (InternVL2.5-1B), we
prune InternVL2-8B with L = 0
and report results in Table 2. At a
moderate retention (R = 20%), both
SGP and PGP remain close to the
full-token baseline (normalized score
98.29% vs. 97.56%). PGP is slightly better on MMStar (+0.56), while SGP is marginally higher
on MMBench (−1.03) and RealWorldQA (−1.44), with parity on GQA (−0.05). Under aggressive
pruning (R = 5%), PGP clearly surpasses SGP at the same retention: 94.03% vs. 90.34% (+3.69).
Gains are largest on MMBench (+5.24) and MMStar (+2.97), with a smaller improvement on Real-
WorldQA (+1.17) and a modest drop on GQA (−1.48). These findings are consistent with Table 1
and indicate that the amortized posterior learned by the small VLM transfers reliably across model
scales within the InternVL family. In practice, we highlight the R = 5% regime for its superior
performance–efficiency trade-off.
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1. What's the least value of 
blue graph?

2. How many games in the 
chart have over 40 ratings? 

3. Is the average of two extreme values 
greater than the middle bar value?

Complex QuestionSimple Question

L-VLM: 28

Prune w SGP

L-VLM: 2 L-VLM: yes

L-VLM: 4L-VLM: 28 L-VLM: No

Prune w PGP (ours)

Prune w SGP Prune w SGP

Prune w PGP (ours) Prune w PGP (ours)

Figure 4: Comparison of the same large-VLM (L-VLM) with different pruning methods. For each
visual input, we highlight the top-5% of all the visual tokens based on the importance map predicted
by SGP and PGP. Upper three: SGP provides answer-driven pruning guidance, impacting the large-
VLM’s performance. Lower three: PGP provides posterior-driven guidance, where the retained
visual tokens are high query and answer relevance, allowing the L-VLM to perform sufficient visual
understanding before answering.

Method R L S-F L-F FLOPs % ↓ Score % ↑
InternVL2-26B 100% - - 117.7T 100.0% 100%

SGP
20% 9

14.5T
81.4T 81.5% 99.15%

5% 2 67.5T 69.7% 88.50%
5% 0 65.4T 67.9% 89.25%

PGP (ours)
20% 9

4.7T
83.4T 74.6% 99.55%

5% 2 69.3T 62.9% 95.41%
5% 0 67.3T 61.2% 95.44%

Table 3: Performance and FLOPs of different pruning
methods. We prune 100 − R(%) of visual tokens at
Lth decoder layer. S-F and L-F indicate the inference
FLOPs of the small- and large-VLM.

35 20 9 5
Visual token retention ratio (%)
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Figure 5: Performance–efficiency curve.
PGP demonstrates greater stability under
progressively fewer visual tokens, pre-
serving accuracy more effectively.

4.4 IMPROVING EFFICIENCY WITH LESS PERFORMANCE-DROPS

Although PGP utilizes a small VLM to guide pruning for the large VLM, our experiments demon-
strate that even with an auxiliary model, the total computational cost (FLOPs) of the system remains
reduced compared to using the large VLM alone. Table 3 reports the average FLOPs over 100 sam-
ples. PGP achieves lower FLOPs in the small VLM because it requires only a single forward pass to
generate pruning guidance, whereas SGP requires a complete answer generation. While PGP incurs
slightly higher FLOPs in the large VLM—due to the growth of inference cost with generated token
length—it remains more efficient overall. On average, PGP reduces FLOPs by 34% with only a
3.2% performance drop, demonstrating a favorable trade-off for practical deployment.
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Table 4: Ablation study of major components in our proposed objective function for training the
information bottleneck. We report the results of InternVL2-26B after pruning guided by our small-
VLM using PGP with R = 5% and L = 0 for all the models. β is the weight of the KL penalty and
f(∗) is the gateway activation for posterior mean approximation.

β f(∗) ChartQA GQA MMStar MMBench TextVQA MM-Vet RealWorldQA Score % ↑
- - 84.92 64.89 60.08 83.46 82.45 64.00 67.58 100%

0.5 exp 69.92 63.34 52.25 77.15 78.28 49.63 65.23 89.83%
0.5 σ 70.28 63.77 52.58 75.77 78.72 53.30 66.27 90.80%

τ(0.2, 0.5) σ 70.96 65.53 52.49 77.23 79.04 51.42 66.01 91.19%

4.5 ABLATION STUDY

Effect of channel-wise gating activation. We compare the exponential and sigmoid (σ) functions
as channel-wise gating activations. While both methods achieve non-trivial compression, sigmoid
consistently outperforms exponential gating across benchmarks (90.80% vs. 89.83% overall score).
This suggests that sigmoid provides a more independent and stable allocation of importance weights
across channels, as its normalized scaling is from (0, 1). This reduces the gradient spikes and vari-
ance in the KL term, preventing the over-amplification of individual channels.

Training with adaptive KL weight. Our objective in Eq. 5 has a KL penalty term, aiming to
compress the information of non-query and non-answer correlated visual tokens. A fixed coefficient
β can, however, lead to suboptimal trade-offs across different training stages. In the early phase of
optimization, a strong KL regularization may suppress informative tokens prematurely, hindering
reconstruction fidelity. Conversely, a weak regularization in later stages can result in redundant
token retention and slow convergence.

To mitigate this issue, we adopt an adaptive KL weighting strategy. Concretely, we introduce a
schedule β(s) = τmax − (τmax − τmin) ∗min(1, s/γ) is the annealing coefficient, s is the index
of the current training step and γ is the number of warm-up steps. This scheme imposes fewer
penalties at the beginning and stronger penalties in later stages. As shown in Table 4, using a fixed
β = 0.5 yields competitive performance, but incorporating a learnable prior with a linear schedule
τ(0.2, 0.5) improves results by better balancing compression and reconstruction. This demonstrates
that adaptive KL weighting not only stabilizes training but also enables more precise pruning of
redundant tokens.

Limitation. Our experiments focus on the InternVL family. PGP assumes access to non-compressed
visual tokens, whereas architectures such as QwenVL incorporate an explicit token-merging module
that performs sequence-level compression and discards fine-grained spatial information. Directly
applying PGP to QwenVL is therefore non-trivial; doing so likely requires operating pre-merger,
learning a merger-aware posterior, or redesigning the bottleneck to recover spatial structure. We
leave this adaptation to future work.

5 RELATED WORK

5.1 VISION LANGUAGE MODEL

Vision-Language Models (VLMs) have rapidly advanced by aligning visual encoders with large
language models, enabling multimodal reasoning across various tasks, including image captioning,
visual question answering, and video understanding. Early approaches such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) demonstrated the power of contrastive pretraining, while more
recent instruction-tuned models, including LLaVA (Li et al., 2024a; Sun et al., 2024), QwenVL (Bai
et al., 2025; Wang et al., 2024), and InternVL (Chen et al., 2024d;e), leverage lightweight adapters
or cross-attention modules to bridge modalities efficiently. These architectures typically concate-
nate visual tokens from a vision transformer with textual embeddings, enabling joint reasoning but
also introducing substantial computational burdens when processing high-resolution images or long
videos. The scaling of VLMs toward long-context multimodal understanding has further amplified
these challenges, as visual tokens can dominate the sequence length—often exceeding 80% of total
tokens. Therefore, reducing the number of visual tokens without compromising semantic fidelity has
emerged as a key research direction, motivating recent advances in token pruning and compression.
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5.2 VISUAL TOKEN PRUNING AND COMPRESSION

To address the inefficiency of processing redundant visual tokens, a wide range of token compression
strategies has been proposed, spanning transformation-based, similarity-based, attention-based, and
query-guided methods. Among these, attention-based pruning has attracted particular interest be-
cause it directly exploits sparsity in the attention maps of vision transformers or LLMs. Encoder-side
methods, such as PruMerge+ (Shang et al., 2024) and VisionZip (Yang et al., 2025), select tokens
with high attention relative to the [CLS] token and merge or discard the remainder. Decoder-side
methods, including FastV (Chen et al., 2024a) and PyramidDrop (Xing et al., 2025), prune inat-
tentive tokens progressively across layers, guided by the average attention they receive from visual
tokens. A line of work employs small-VLM to guide pruning. For instance, SGP (Zhao et al., 2025)
utilizes a small model to estimate token relevance by aggregating all the attention weights across all
the decoder layers within the decoding stage, reducing the computational overhead of large back-
bones. While effective, these approaches face practical hurdles when integrated with optimized
libraries such as FlashAttention, which obscure explicit attention scores.

5.3 INFORMATION BOTTLENECK

The Information Bottleneck (IB) (Tishby et al., 2000) formalizes representation learning as a
trade-off between task sufficiency and input compression (Dai et al., 2018); its variational form
(VIB) (Alemi et al., 2016) makes this trainable at scale by regularizing a parametric posterior to-
ward a simple prior through a KL term while maximizing predictive likelihood. IB/VIB has been
widely used for compression and pruning by limiting per-unit information capacity, yielding task-
aware sparsity across neurons, channels, and tokens, and often outperforming heuristic saliency
measures at aggressive budgets. In Transformers, IB-style regularization has been applied to heads,
MLP channels, and layers such as Wang & Yang (2024), as well as token representations in our
study, where per-token latent variables are scored via KL-to-prior as a principled importance signal.
Complementary “latent bottleneck” modules (e.g., resamplers or token learners) compress vision
features into a compact, task-adaptive set (Achille & Soatto, 2018), embodying the same retain-
relevant/discard-nuisance principle even when not derived from the IB Lagrangian. Our approach,
PGP, instantiates an amortized, token-level IB for VLMs: a small VLM learns Qϕ(z|v) per visual
token; the per-token serves as the importance score.

6 CONCLUSIONS

We introduced Posterior-Guided token Pruning (PGP), a principled framework that reframes visual-
token pruning in VLMs as amortized variational inference rather than attention- or answer-driven
heuristics. By fine-tuning a small-VLM to act as a latent sampler, PGP estimates token impor-
tance via the KL divergence between the learned posterior and a prior. This posterior-driven sig-
nal is both query- and answer-aware, enabling the small model to detect non-informative tokens
while preserving broad regions of informative content for the large model’s reasoning. Practically,
PGP produces pruning guidance in a single forward pass of the small-VLM, requires no architec-
tural modifications to the large-VLM, and remains fully compatible with optimized kernels such
as FlashAttention. Comprehensive experiments demonstrate that PGP achieves state-of-the-art ef-
ficiency–accuracy trade-offs across diverse visual tasks. PGP preserves up to 95% of the original
accuracy using only 5% of visual tokens, and reduces computational cost by about 40%. These gains
stem from replacing brittle attention heuristics with a robust, transferable posterior that better aligns
retained tokens with downstream reasoning needs.

Discussion. While effective, PGP’s amortized posterior relies on a learned small-VLM, leaving
room to explore stronger priors. Future work includes extending PGP to multi-image and video
inputs, coupling it with retrieval or routing to further reduce sequence length, and analyzing theo-
retical guarantees for posterior-guided sparsification. We believe PGP offers a scalable and easily
deployable route to bring large-VLMs closer to practical, low-latency deployment without sacrific-
ing reasoning quality.
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