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ABSTRACT

This paper presents a comprehensive analysis of a broad range of variations of the
stochastic proximal point method (SPPM). Proximal point methods have attracted
considerable interest owing to their numerical stability and robustness against
imperfect tuning, a trait not shared by the dominant stochastic gradient descent
(SGD) algorithm. A framework of assumptions that we introduce encompasses
methods employing techniques such as variance reduction and arbitrary sampling.
A cornerstone of our general theoretical approach is a parametric assumption on
the iterates, correction and control vectors. We establish a single theorem that en-
sures linear convergence under this assumption and the µ-strong convexity of the
loss function, and without the need to invoke smoothness. This integral theorem
reinstates best known complexity and convergence guarantees for several existing
methods which demonstrate the robustness of our approach. We expand our study
by developing three new variants of SPPM, and through numerical experiments
we elucidate various properties inherent to them.

1 INTRODUCTION

In this paper we consider the stochastic optimization problem
min
x∈Rd

{f(x) := Eξ∼D [fξ(x)]} , (1)

where ξ ∼ D is a random variable following distribution D, and E [·] denotes mathematical expec-
tation. Problems of this type are fundamental for statistical supervised learning theory. Here, x is
a machine learning model of d ∈ N parameters, D is an unknown distribution of labeled examples,
samples ξ ∼ D are available, fξ is the loss on datapoint ξ, f is the generalization error. In such a
setup, an unbiased estimator of the gradient ∇fξ(x) is computed instead of the gradient ∇f(x). We
rely on two assumptions, presented next.
Assumption 1. Function fξ : Rd → R is differentiable for all samples ξ ∼ D.

We implicitly assume that the order of differentiation and expectation can be swapped, which means
that ∇f(x)

(1)
= ∇Eξ∼D [fξ(x)] = Eξ∼D [∇fξ(x)] . This implies that f is differentiable.

Assumption 2. Function fξ : Rd → R is µ-strongly convex for all samples ξ ∼ D, where µ > 0 :

fξ(y) + ⟨∇fξ(y), x− y⟩+ µ

2
∥x− y∥2 ≤ fξ(x), ∀x, y ∈ Rd. (2)

This implies that f is µ-strongly convex, and hence f has a unique minimizer, which we denote by
x⋆. We know that ∇f(x⋆) = 0. Notably, we do not assume f to be L-smooth.

Another type of problem considered in the paper is a minimization of functions f that are averages
of a large number of differentiable functions:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (3)

This is a special case of (1), with D being the uniform distribution over the finite set [n]: ξ = i
with probability 1

n . Problems with this structure commonly emerge in practice during the training of
supervised machine learning models via empirical risk minimization. They are known as finite-sum
optimization problems. We rely on two assumptions, presented next.
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Assumption 3. Function fi : Rd → R is differentiable for all i ∈ [n].

This implies that f is differentiable.
Assumption 4. Function fi : Rd → R is µi-strongly convex for all i ∈ [n], where µi > 0. That is,

fi(y) + ⟨∇fi(y), x− y⟩+ µi

2
∥x− y∥2 ≤ fi(x), x, y ∈ Rd. (4)

This refines Assumption 2, with the the same strong convexity parameter for all functions. This
implies that f is µ-strongly convex with µ = mini µi. Hence, f has a unique minimizer x⋆.

2 VARIATIONS OF SPPM

The most common algorithm for finding an ε-accurate solution of problems (1) and (3) is stochastic
gradient descent (SGD)Robbins and Monro (1951); Nemirovski et al. (2009); Gower et al. (2019). In
general, SGD updates have the form of xk+1 = xk−γgk, where gk is an unbiased stochastic gradient
estimator: E

[
gk
∣∣xk
]
= ∇f(xk). There are numerous approaches to constructing an estimator with

the aim of attaining preferable algorithmic features such as faster convergence rate, lower iteration
cost, parallelization, and generalization. One of the most significant issues in SGD variations is the
difficulties with a suitable selection of the stepsize. Theoretical results highlight that the stepsize is
restricted to small values (Bach and Moulines, 2011).

Whenever we are able to evaluate the stochastic proximity operator, another option to consider in
place of SGD is the stochastic proximal point method (SPPM), whose iterations have the form

proxγfξk
(xk) := arg min

x∈Rd

{
fξk(x) +

1

2γ
∥x− xk∥2

}
, ξk ∼ D,

where γ > 0 is a stepsize. Clearly, the proximity operator is well-defined due to the strong convexity
Assumption 2 on fξ(x). Given the error tolerance ε > 0, we derive in Appendix B.2 (see (23);
also, see (Asi and Duchi, 2019, Proposition 5.3), (Khaled and Jin, 2023, Theorem 1)) that with
σ2
⋆ := Eξ∼D

[
∥∇fξ(x⋆)∥2

]
, the stepsize γ = µε

σ2
⋆

, we get E
[
∥xk − x⋆∥2

]
≤ ε provided that

k ≥
(
1

2
+

σ2
⋆

2µ2ε

)
log

(
2∥x0 − x⋆∥2

ε

)
.

As shown by Gower et al. (2019), in the same setting, SGD with fixed stepsize reaches an ε-accurate
solution after

k ≥
(
2L

µ
+

2σ2
⋆

µ2ε

)
log

(
4∥x0 − x⋆∥2

ε

)
iterations (L is a bound on the smoothness constant of stochastic functions). Note that although both
iteration complexities are dependent on the stochastic noise term, the iteration complexity of SGD
additionally hinges on the condition number. κ := L

µ ≥ 1 (µ is a strong convexity parameter of f
here). In contrast, the iteration complexity of SPPM remains unaffected by the smoothness constant
L. Consequently, if we have access to stochastic proximal operator evaluations, we can achieve
a faster convergence rate than SGD. Another important aspect is that SPPM still works for large
stepsizes. The primary distinction with the result of Khaled and Jin (2023) is that the neighborhood
guaranteed in our analysis for SPPM does not blow up to infinity as the stepsize γ grows to infinity
(see (21) in Theorem 2 and Commentary 2 after it).

Ryu and Boyd (2016); Asi and Duchi (2019) demonstrated that SPPM exhibits greater resilience in
terms of the choice of stepsize compared to SGD. Ryu and Boyd (2016) furnish convergence rates for
SPPM and note its stability against learning rate misspecification, a trait not shared by SGD. Asi and
Duchi (2019) examine a broader method (AProx) which encompasses SPPM as a particular instance,
providing both stability and convergence rates under convexity. Additionally, the convergence rates
of SPPM remain consistent with those of SGD across different versions of the algorithms.

We have discussed the versatility in designing the unbiased stochastic estimator gk in SGD, which
can be accomplished in various manners. Among these, popular sampling strategies include impor-
tance sampling and mini-batching. A comprehensive analysis of these methods within the frame-
work of arbitrary sampling was presented by Gower et al. (2019). Similarly, an analogous effort is
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made for SPPM in our paper, where sampling schemes and methods such as SPPM-NS and SPPM-
AS are proposed (see Appendix B.3 and B.4). While sampling strategies offer significant utility,
both for SGD and SPPM variations, they tend to converge to the vicinity of the solution for fixed
stepsizes, reaching the exact solution only in the overparameterized regime.

That being said, the issue of SGD iterates not converging to the optimum prompted the development
of variance-reduced methods. These methods enhance the convergence rate of SGD for finite-sum
problems by constructing gradient estimators with diminishing variance over time (e.g., SAGA (De-
fazio et al., 2014) and SVRG (Johnson and Zhang, 2013)). In other words, variance-reduced methods
progressively acquire knowledge of the stochastic gradients at the optimum and mitigate the influ-
ence of gradient noise. Consequently, for strongly convex f , these variance-reduced methods exhibit
linear convergence towards x⋆ with a fixed step size (see a survey by Gower et al. (2020)). In the
discussion above we concluded that SPPM has advantages over SGD. This motivated Khaled and
Jin (2023) to explore variance-reduced variants of SPPM. They proposed the SVRP algorithm with
an approximate calculation of the proximal operator and demonstrated that variance reduced vari-
ants of SPPM have better convergence guarantees under second-order similarity assumption for the
finite-sum setting (3). We present and employ in this paper a more general form of this assumption
for the stochastic setting (1) in order to analyze L-SVRP with the proximal operator in the updates.
We stipulate the similarity assumption to be valid exclusively at x⋆, whereas Khaled and Jin (2023)
require it to hold for any y ∈ Rd instead.

Assumption 5 (Similarity). There exists δ ≥ 0 such that

Eξ∼D

[
∥∇fξ(x)−∇f(x)−∇fξ(x⋆)∥2

]
≤ δ2∥x− x⋆∥2, ∀x ∈ Rd. (5)

Let us also note here that the standard δ-smoothness assumption implies the second-order similarity
assumption by Khaled and Jin (2023), which in turn implies Assumption 5. In Appendix B.6 we
discuss the generality of Assumption 5 in detail. In the studies of Szlendak et al. (2022); Panferov
et al. (2024), federated optimization with compression under the similarity assumption is explored,
leading to improved convergence rates achieved through specially designed compression operators.

Point SAGA, also a variant of SPPM, was proposed by Defazio (2016), where its convergence was
analyzed under the individual smoothness assumption. The algorithm requires a large amount of
memory for its execution. It inherits this shortcoming from its SGD variance-reduced archetype
SAGA by Defazio et al. (2014). The structure of Point SAGA will not allow us to perform the analysis
under the similarity assumption (Assumption 5). Instead, we will rely on this stronger assumption.

Assumption 6. We assume that there exists ν > 0 such that the inequality

1

n

n∑
j=1

∥∥∥∥∥∇fj(x
j)− 1

n

n∑
i=1

∇fi(x
i)−∇fj(x⋆)

∥∥∥∥∥
2

≤ ν2
1

n

n∑
j=1

∥∥xj − x⋆

∥∥2 (6)

holds for all x1, . . . , xn ∈ Rd.

Let us note that this condition is weaker than the individual ν-smoothness assumption. In Ap-
pendix B.8 we discuss the generality of Assumption 6 in more detail.

Traoré et al. (2023) analyze L-SVRP and Point SAGA algorithms in the setting (3) when each fi
is smooth, convex, and either f is convex or satisfies the PŁ-condition. In contrast, in our work
we consider a different setting with individually strongly convex functions under Assumption 5
or Assumption 6 (both are weaker than the individual smoothness assumption). The convergence
theory of variance-reduced SPPM methods significantly differs from that of standard SPPM. We
suggest the possibility of a unified theory that encompasses both SPPM and its variance-reduced
counterparts.

3 CONTRIBUTIONS

Numerous efficient adaptations of the SPPM algorithm have emerged, each with its specific ap-
plications. Our research stems from the absence of a comprehensive and universally applicable
theory. While some connections among existing methods have been established (as demonstrated

3
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by Traoré et al. (2023), who link the classical SPPM method with its variance-reduced counterparts),
a cohesive theoretical framework without the smoothness assumption is missing. Understanding the
connections among various algorithms rooted in SPPM is becoming increasingly challenging for the
community, both in theory and practical applications. While new variants are yet to be discovered,
determining concrete principles beyond intuition to guide their discovery remains challenging. Com-
plicating matters further is the use of various assumptions regarding the correction vectors across
different literature, each with differing levels of rigor. Key contributions of this study comprise:

• A universal algorithm. We design a universal SPPM-LC algorithm (stochastic proximal point
method with learned correction, Algorithm 1) that encompasses 7 variants of stochastic proximal
point method (SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA; see Ta-
ble 1) through (random) correction vectors hk. A specific choice of correction vectors allows to re-
trieve any particular of the mentioned algorithms. Motivated by the work of Gorbunov et al. (2020),
a similar universal algorithm was proposed by Traoré et al. (2023), but under different assumptions.

• Comprehensive analysis. We introduce a cohesive theoretical framework of assumptions that
includes three restrictions imposed on correction vectors hk of the SPPM-LC algorithm (Assump-
tion 7). These restrictions connect the correction vectors hk to the iterates of the algorithm and
have the forms of parametric recursions. The development of this framework constitutes one of
our major contributions. Under Assumption 1, Assumption 2 on the functions and Assumption 7
on the correction vectors, we analyze the convergence of SPPM-LC in the case when it is applied
to find an ε-accurate solution of the general stochastic optimization problem (1). This is the first
comprehensive analysis of the original, sampling-based, and variance-reduced versions of SPPM.
It implies the convergence results for all 7 variations of stochastic proximal point method (SPPM,
SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA). The sampling-based methods
SPPM-NS and SPPM-AS are employed for a less general setting (3), as well as the variance-reduced
method Point SAGA, they are analyzed under Assumption 3 and Assumption 4 on the functions. In
addition, the analysis of L-SVRP is based on the similarity Assumption 5, and the analysis of Point-
SAGA is based on Assumption 6. In order to obtain the convergence result for any particular of the
mentioned algorithms, one needs to check that (the recursive parametric) Assumption 7 holds for it.
Traoré et al. (2023) introduce a slightly different theoretical framework of assumptions and analyze
SPPM and its variance-reduced versions in a finite-sum setting (3) in another setup when functions
are individually convex and L-smooth.

• Best known rates retrieved. The rates derived from our comprehensive Theorem 1, under As-
sumption 1, Assumption 2 on the functions for SPPM, SPPM*, SPPM-GC, L-SVRP (under additional
Assumption 5) and Point-SAGA (under additional Assumption 6); under Assumption 3 and Assump-
tion 4 on the functions for SPPM-NS, SPPM-AS, represent the sharpest rates for these methods.
Notably, the neighborhood that we guarantee for SPPM in our analysis does not blow up for the
stepsize γ → ∞ in comparison to the result of Khaled and Jin (2023) (see (21) in Theorem 2 and
Commentary 2 after it). Also, we present the analysis for L-SVRP in a simplified way and obtain
slightly better bounds on the iteration complexity up to a constant factor than Khaled and Jin (2023).

• Analysis under general similarity assumptions. The analysis of L-SVRP is based on the sim-
ilarity Assumption 5, and the analysis of Point-SAGA is based on Assumption 6. Both of these
assumptions are very general and distinguish our approach from the previous ones. Defazio (2016)
analyzed Point SAGA under the individual smoothness assumption, which implies Assumption 6.
Khaled and Jin (2023) analyzed L-SVRP under a more restrictive similarity assumption than As-
sumption 5. Traoré et al. (2023) analyzed L-SVRP and Point SAGA under the individual smoothness
assumption, which is much more restrictive than our Assumption 5 and Assumption 6. Their results
were obtained prior to our work, but we conducted our analysis independently: we already had our
result when we discovered their paper.

• Analysis in a general setting. We analyze L-SVRP in the stochastic optimization setting (1) while
previous works of Khaled and Jin (2023); Traoré et al. (2023) do this in the less general setting (3).

• New methods. Our comprehensive theory offers complexity bounds for a range of novel (SPPM-
LC, SPPM-NS, SPPM-AS, SPPM-GC, SPPM*) and upcoming variations of SPPM. It suffices to
confirm that Assumption 7 holds, and a complexity estimate is readily provided by Theorem 1.
Selected existing and new methods that align with our framework are outlined in Table 1.
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• Experiments. Through extensive experimentation, we demonstrate that several of the newly in-
troduced methods, analyzed within our framework, exhibit compelling empirical properties when
compared to natural baselines.

4 MAIN RESULT

We are now ready to present our general Algorithm 1, which we call Stochastic Proximal Point
Method with Learned Correction (SPPM-LC). Subsequently, we introduce the core assumption on
the correction vectors, iterates and control vectors of Algorithm 1 enabling our general analysis, and
further state and comment on our unified convergence result (Theorem 1).

Algorithm 1 Stochastic Proximal Point Method with Learned Correction (SPPM-LC)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd, control vector ϕ0 ∈ Rm

2: for k = 0, 1, 2, . . . do
3: Sample ξk ∼ D
4: Form correction vector hk as a function of the iterate xk, control vector ϕk, and sample ξk
5: xk+1 = proxγfξk

(xk + γhk)

6: Construct a new control vector ϕk+1

7: end for

4.1 KEY ASSUMPTION

We assume that the (random) correction vector hk has zero mean (conditioned on xk and ϕk, the
k-th iterate and control vector, respectively), and that it is connected with the iterates of SPPM-LC
via two parametric recursions/inequalities, described next. We introduce versatility by expressing
these inequalities parametrically.

Assumption 7 (Parametric recursions). Let {xk, ϕk}k≥0 be the random iterates produced by SPPM-
LC. Assume that

E [hk|xk, ϕk] = 0. (7)

Further, assume that there exists a function σ2 : Rm → R+ and nonnegative constants
A1, B1, C1, A2, B2, C2, with B2 < 1, such that

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, ϕk

]
≤ A1∥xk − x⋆∥2 +B1σ

2
k + C1, (8)

E
[
σ2
k+1

∣∣xk+1, ϕk

]
≤ A2∥xk+1 − x⋆∥2 +B2σ

2
k + C2, (9)

where σ2
k := σ2(ϕk).

For brevity, we refer to this assumption as the “σ2
k assumption”. If Assumption 7 holds, then by

taking expectation on both sides of (8) and (9) and applying the tower property in each case, we get

E
[
∥hk −∇fξk(x⋆)∥2

]
≤ A1E

[
∥xk − x⋆∥2

]
+B1E

[
σ2
k

]
+ C1, (10)

E
[
σ2
k+1

]
≤ A2E

[
∥xk+1 − x⋆∥2

]
+B2E

[
σ2
k

]
+ C2, (11)

The novelty of our approach lies in the introduction of inequalities (8) and (9). We support and
validate this assertion by providing numerous examples (in Section 5), demonstrating that these
inequalities encapsulate the nature of a broad range of existing SPPM methods as well as some new
ones, including standard SPPM alongside its arbitrary sampling and variance-reduced variants. In
its essence, we generalize, parameterize and establish as an independent assumption the conditions
on correction vectors for SPPM-type methods present in the literature, regardless of the specifics
defining the base method from which they stem. Traoré et al. (2023) propose different parameterized
recursive inequalities and analyze SPPM and its variance-reduced versions in a finite-sum setting (3)
under the condition where functions are individually convex and L-smooth. Similar inequalities
can be found in the analysis of SGD-type methods (a unified theory developed by Gorbunov et al.
(2020)).
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Table 1: Compilation of both existing and novel methods that align with our comprehensive analyti-
cal framework. Problem (1) encompasses a broader scope compared to problem (3). VR = variance
reduced method, AS = arbitrary sampling. Thm x = Thm 1 + Lemma x, Lemma x is in Section A.x,
x ∈ [8]. The last column indicates whether the analysis is new or not and whether we recover the
previously established rate.

Problem Method Alg # VR? AS? Section Result / Rate
(1) SPPM-LC [NEW] Alg 1 ✓✗ ✗ B.1 Thm 1 [NEW]
(1) SPPM (1) (Bertsekas, 2011) Alg 2 ✗ ✗ B.2 Thm 2 [NEW]
(3) SPPM-NS [NEW] Alg 3 ✗ ✗ B.3 Thm 3 [NEW]
(3) SPPM-AS [NEW] Alg 4 ✗ ✓ B.4 Thm 4 [NEW]
(1) SPPM* [NEW] Alg 5 ✓ ✓ B.5 Thm 5 [NEW]
(1) SPPM-GC [NEW] Alg 6 ✓ ✗ B.6 Thm 6 [NEW]
(1) L-SVRP (2) (Khaled and Jin, 2023) Alg 7 ✓ ✗ B.7 Thm 7 [NEW]
(3) Point SAGA (3) (Defazio, 2016) Alg 8 ✓ ✗ B.8 Thm 9 [NEW]

(1) SPPM was studied by Khaled and Jin (2023) under the less general similarity assumption than ours. Bertsekas (2011) proposed
incremental proximal point method (SPPM for problem (3)) and analyzed it under assumptions that each fi is Lipschitz. We
guarantee in our analysis that the neighborhood does not blow up when the stepsize is large and consider the general setting (1).

(2) The L-SVRP method was proposed by Khaled and Jin (2023) and called SVRP therein. It was inspired by the L-SVRG method
of Hofmann et al. (2015); Kovalev et al. (2020), who were in turn inspired by the SVRG method of Johnson and Zhang (2013).
Following Khaled and Jin (2023), we use the name L-SVRP to highlight the loopless nature of the update of control vector. The
theoretical results presented here are a minor adaptation of the results of Khaled and Jin (2023). We present the analysis in a
simplified way, and hence obtain slightly better bounds up to a constant factor. Khaled and Jin (2023) employ an approximation of
the proximal operator in the updates of L-SVRP while we use the operator itself.

(3) Point SAGA was proposed by Defazio (2016). The main difference between our form and the original one is in the control vectors.
Defazio (2016) updates a table with gradients, while we update a table with points at which we compute the gradients.

4.2 MAIN THEOREM

We are now prepared to introduce our main convergence result.

Theorem 1. Let Assumption 1 (differentiability) and Assumption 2 (µ-strong convexity) hold. Let
{xk, hk} be the iterates produced by SPPM-LC (Algorithm 1), and assume that they satisfy Assump-
tion 7 (σ2

k-assumption). Choose any γ > 0 and α > 0 satisfying the inequalities

(1 + γ2A1)(1 + αA2)

(1 + γµ)2
< 1,

γ2B1(1 + αA2)

α(1 + γµ)2
+B2 < 1, (12)

and define the Lyapunov function

Ψk := ∥xk − x⋆∥2 + ασ2
k. (13)

Then for all iterates k ≥ 0 of SPPM-LC we have

E [Ψk] ≤ θkΨ0 +
ζ

1− θ
, (14)

where the parameters 0 ≤ θ < 1 and ζ ≥ 0 are given by

θ = max

{
(1 + γ2A1)(1 + αA2)

(1 + γµ)2
,
γ2B1(1 + αA2)

α(1 + γµ)2
+B2

}
, (15)

ζ =
γ2C1(1 + αA2)

(1 + γµ)2
+ αC2. (16)

Theorem 1 proves a linear rate of convergence for a number of stochastic proximal point methods
towards a fluctuation neighborhood around the solution, regulated by the additive term in (14). It
depends on parameters C1 and C2. The neighborhood vanishes (i.e., ζ = 0) iff C1 = C2 = 0. If this
happens, then SPPM-LC converges linearly to the solution as k → ∞ for any fixed γ > 0, satisfying
the conditions of Theorem 1. Notice that θ ≥ B2, and hence the linear rate can not be faster than
(B2)

k. That is, as shown in Appendix B (also, see Table 2), the main difference between variance-
reduced versions of SPPM and its other variants is that the former methods satisfy σ2

k-assumption
with C1 = C2 = 0 (and reach the optimum x⋆), whilst the latter have either C1 > 0 or C2 > 0.

6
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5 OVERVIEW OF SPECIFIC METHODS AND OF THE FRAMEWORK

In this section we demonstrate the descriptive power of our new framework. We show that most
popular existing methods can be expressed in terms of our framework and, in addition to that, we
describe several new methods in more detail (see Table 1).

5.1 A BRIEF OVERVIEW

As asserted, the proposed framework is powerful enough to include methods without variance re-
duction (✗ in the “VR” column) alongside variance-reduced methods (✓ in the “VR” column),
methods that fall under the arbitrary sampling paradigm (✓ in the “AS” column). All novel meth-
ods introduced in this paper are clearly designated with the label [NEW]. Additionally, to facilitate
a thorough understanding of all algorithms discussed, detailed explanations are included in the Ap-
pendix. A link is provided for convenient navigation to the supplementary section. The generality
of our framework is reflected in Table 1. The “Result / Rate” column of Table 1 refers to a The-
orem x which follows from Theorem 1 and Lemma x, x ∈ [8]. The convergence results of the
algorithms considered in the paper are outlined in these theorems, offering insights into their per-
formance characteristics. Importantly, in instances where established methods are recovered, the
best-known convergence rates are reaffirmed or better results are obtained. This underscores the
robustness and reliability of our analytical framework in accurately capturing the behavior of estab-
lished algorithms.

5.2 PARAMETERS OF THE FRAMEWORK

The algorithms in Table 1 demonstrate specific patterns in relation to the parameters in Assump-
tion 7. To elucidate this observation, we provide a summary of these parameters in Table 2. As
predicted by Theorem 1, when C1 = C2 = 0, the corresponding method does not oscillate and
converges to the optimum x⋆, indicating the variance-reduced nature of the algorithm. All param-
eters referenced in Table 2 are defined in the Appendix, alongside descriptions and analyses of the
respective methods.

5.3 FIVE NOVEL ALGORITHMS

To showcase the efficiency of our comprehensive framework, we develop three new variants of
SPPM which have not previously been addressed in the literature (see Table 1). In this section,
we briefly outline the reasoning behind their implementation. Further specifics are available in the
Appendix.

SPPM-NS (Algorithm 3). The method is designed for solving the problem (3). Let positive numbers
p1, . . . , pn sum up to 1, set ik = i with probability pi, i ∈ [n]. The step of the method has the
form xk+1 = prox γ

npi
fik

(xk) . It unifies several powerful sampling strategies (as, e.g., importance
sampling). Sampling allows to improve the convergence rate and modify the neighborhood.

SPPM-AS (Algorithm 4). The method is also designed for the problem (3). The arbitrary sampling
framework was developed for SGD by Gower et al. (2019). It allows to conduct a sharp unified
convergence analysis for various effective sampling and mini-batch strategies. For strongly convex
functions, the method with constant stepsize converges linearly to the neighborhood of the solution.

SPPM* (Algorithm 5). This novel algorithm links conventional and variance-reduced SPPM meth-
ods. Although not immediately practical, it offers valuable insights into the inner workings of
variance reduction. This method addresses the fundamental question: assuming that the gradients
∇fξ(x⋆) are available, can they be leveraged to devise a more potent variant of SPPM? The affir-
mative answer culminates in the development of SPPM*. The construction of updates in SPPM*
involves correction vectors of the form hk = ∇fξk(x⋆). In essence, this implies augmenting xk

with gradients of the same functions at the optimal point x⋆, with respect to which the proximal
operator is calculated. As evidenced in Table 2, where C1 = C2 = 0, this method converges di-
rectly to x⋆ without oscillation, rather than converging to a neighborhood of the solution. Practical
variance-reduced methods operate by iteratively refining estimates of ∇fξk(x⋆). Notably, the term
σ2
k in the Lyapunov function of variance-reduced methods converges to zero.
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SPPM-GC (Algorithm 6). This method can be viewed as a practical variant of SPPM* featuring
a computable version of the correction vector, hk = ∇fξk(xk) − ∇f(xk), instead of the incom-
putable correction ∇fξk(x⋆). This method follows the same paradigm of iteratively constructing
increasingly more refined estimates of ∇fξk(x⋆) and is also variance reduced. As indicated in Ta-
ble 2, where C1 = C2 = 0, this method also converges to x⋆, and not to some neighborhood of the
solution only.

SPPM-LC (Algorithm 1). This new generic algorithm constructs the updates with correction vec-
tors hk of a universal form. We analyze its behavior under a new parametric Assumption 7. The
convergence result then follows. This is a unified analysis of all stochastic proximal point methods
we have encountered so far: SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-
SAGA. One only needs to check that this parametric assumption holds in each particular case (see
Table 2).

Method A1 B1 C1 A2 B2 C2 Lemma
SPPM-LC A1 B1 C1 A2 B2 C2 Lemma 1

SPPM 0 0 σ2
⋆ 0 0 0 Lemma 2

SPPM-NS 0 0 σ2
⋆,NS 0 0 0 Lemma 3

SPPM-AS 0 0 σ2
⋆,AS 0 0 0 Lemma 4

SPPM* 0 0 0 0 0 0 Lemma 5
SPPM-GC δ2 0 0 0 0 0 Lemma 6
L-SVRP 0 δ2 0 p 1− p 0 Lemma 7

Point SAGA 0 ν2 0 1
n

n−1
n

0 Lemma 8

Table 2: The parameters determining the compliance of the methods listed in Table 1 to Assump-
tion 7. Detailed explanations of the expressions featured in the table are provided in the Appendix.

6 EXPERIMENTS

In this section we describe numerical experiments conducted for the linear regression problem

min
x∈Rd

{
1

2n

n∑
i=1

(a⊤i x− bi)
2 + λi∥x∥2

}
, (17)

where ai ∈ Rd, bi ∈ Rd is the i-th data pair, each λi is a ℓ2-regularization parameter. We provide 4
sets of experiments. The first one is devoted to the comparison of different sampling strategies for
SPPM-NS : uniform sampling US, importance sampling IS, variance sampling VS (see Section B.3),
with three selected stepsizes. The second set of experiments demonstrates the change of the radius of
neighborhood for SPPM-AS with τ -nice sampling. In the next two sets of experiments we illustrate
the main difference between SPPM and SPPM with variance reduction. Also in practice we show
the relationship between SPPM-GC, L-SVRP, Poin-SAGA as we did in theory. For the first bunch
of experiments we set n = 10, d = 3 and the regularization parameters λi = 1/2i, where i ∈ [d].
Looking at Figure 1, we can see the different behavior of the methods. In the first two plots with the
smallest stepsizes, SPPM-IS has a faster start, but a larger neighborhood than the other considered
methods. Unfortunately, we cannot say that SPPM-VS has a much smaller neighborhood radius
than SPPM-US or SPPM-IS, but theoretically, the variance is smaller. In the second set of numerical
experiments (see Figure 2), we observe a clear correlation between the neighborhood radius and the
cardinality of the sampled subset τ . More precisely, the larger τ is, the smaller the neighborhood
radius is. In the third set of numerical experiments (see Figure 3), we set n = 1000, d = 10 and each
λi = 1 for the problem (17). On all three plots we observe the superiority of SPPM-star in terms of
the stepsize choice. For example, in the third plot with γ = 102, SPPM-GC diverges. In the fourth
set of numerical experiments (see Figure 4) with parameters n = 1000, d = 10 and each λi = 1
for the problem (17), we observe that the performances of SPPM-GC and L-SVRP with p = 1 are
identical, which is supported by our theoretical findings. With decreasing p from 1 to 1/n we see how
the behavior of L-SVRP worsens and matches with the performance of Point-SAGA when p = 1/n.
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Figure 1: Comparison of the performance of SPPM-US, SPPM-IS, SPPM-VS and SPPM-AS with
τ = 9-nice sampling for different selections of stepsize γ ∈ {10−4, 10−2, 1, 102}.
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Figure 2: Comparison of the performance of SPPM-AS with τ -nice sampling with different selec-
tions of cardinality τ ∈ {1, 2, 5, 9, n = 10} and stepsize γ ∈ {10−2, 10−1, 1}.
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Figure 3: Comparison of the performance of SPPM-US , SPPM-GC and SPPM-star with different
selections of stepsize γ ∈ {10−2, 1, 102}.
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Figure 4: Comparison of the performance of SPPM-GC , Point-SAGA , L-SVRP with different se-
lection of probabilities γ ∈ {1/n = 10−3, 5 · 10−3, 102, 5 · 102, 10−1, 1} . The stepsizes are taken
according to the theory.

7 FURTHER DISCUSSION

Although our approach is general, we still see some limitations, open problems and several possi-
ble directions for future extensions. Generating a similar result in the nonconvex case continues to
be an unsolved challenge. Expanding Assumption 7 to incorporate iteration-dependent parameters
A1, B1, C1, A2, B2, C2 could facilitate the development of various novel methods as SPPM with
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decreasing stepsizes. Khaled and Jin (2023) explore federated learning, investigating client sam-
pling to enhance communication efficiency. Another way to do that is to incorporate the utilization
of compressed vectors exchanged between a server and the clients. This motivates the problem of
providing the analysis for such SPPM-type methods and incorporating them into our framework.
It would be interesting to build theory for algorithms with correction vectors hk with a non-zero
expected value and unify with our theory. Another potential avenue for future research involves of-
fering a comprehensive analysis of SPPM-type methods incorporating acceleration and momentum.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods. In Advances in Neural Information
Processing Systems, 2018.

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: Convergence,
optimality, and adaptivity. SIAM Journal on Optimization, 29(3):2257–2290, 2019. doi: 10.1137/
18M1230323.
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those loops: SVRG and Katyusha are better without the outer loop. In Proceedings of the 31st
International Conference on Algorithmic Learning Theory, 2020.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Proximal and federated random
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A EXTENDED LITERATURE OVERVIEW

Stochastic gradient descent (SGD) Robbins and Monro (1951); Nemirovski et al. (2009); Bottou
(2010) is a contemporary common algorithm for solving optimization problems (1) and (3) with
updates of the form xk+1 = xk − γgk, where gk is an unbiased stochastic gradient estimator:
E
[
gk
∣∣xk
]
= ∇f(xk). Theoretical properties of SGD are nowadays studied well in works by

Vaswani et al. (2019); Gower et al. (2019); Gorbunov et al. (2020); Khaled and Richtárik (2023);
Demidovich et al. (2023). The versatility in the design of the estimator gk has led to a develop-
ment of highly effective variants of SGD based on importance sampling (see works by Needell et al.
(2015); Zhao and Zhang (2015)), mini-batching (see a work of Konečný et al. (2016)). These strate-
gies are unified in the arbitrary sampling paradigm proposed by Gower et al. (2019). The iterates
of standard SGD as well as of its sampling variants do not converge to the optimum due to the
presence of the stochastic gradient noise. The existence of this issue led to the construction of vari-
ance reduction methods in works by Roux et al. (2012); Defazio et al. (2014); Johnson and Zhang
(2013); Kovalev et al. (2020); Nguyen et al. (2017). Such methods are able to sequentially learn the
stochastic gradients at the optimum which allows them to reach a linear convergence to x⋆ when
equipped with constant stepsize in case of strongly convex f. The work by Gorbunov et al. (2020)
provided a unified theory for SGD and its variance-reduced, sampling, quantization and coordinate
sub-sampling modifications. Problem setting (3) can also be used to describe a Federated Learning
setup where n is the number of workers, and fi stands for the loss dependent on the data of worker
i ∈ [n]. Workers compute individual stochastic gradients and aggregate them on a master node (see
a paper by Konečný and Richtárik (2018)). A primary bottleneck in such settings is communication.
To address it, many techniques are used as quantization (see works by Gupta et al. (2015); Seide
et al. (2014)), sparsification (see a paper by Alistarh et al. (2018)), dithering (see a work by Alistarh
et al. (2017)). Many distributed optimization works employ variants of Assumption 5 to analyze
methods that solve the problem (3) in the strongly convex case (see works by Shamir et al. (2014);
Zhang and Xiao (2015); Yuan and Li (2020); Karimireddy et al. (2020)). Szlendak et al. (2022);
Beznosikov and Gasnikov (2022); Panferov et al. (2024) achieve better communication complexity
guarantees in a Federated Learning setting under the similarity assumption employing specific quan-
tizers and sparsifiers. Selecting the right stepsize is a critical aspect in the implementation of SGD,
see the work of Bach and Moulines (2011). In Section 2 we show that the iteration complexity of
SGD depends on condition number κ = L

µ . If we are able to evaluate stochastic proximal operator,
another algorithm to use instead of SGD is stochastic proximal point method (SPPM). Its iteration
complexity does not depend on the smoothness constant L. Bertsekas (2011) calls it the incremen-
tal proximal point method and considers it for solving the problem (3), proving a convergence to
the neighborhood when each fi is Lipschitz. In the study by Ryu and Boyd (2016), convergence
rates are presented for SPPM, emphasizing its robustness against learning rate misspecification, a
characteristic not exhibited by SGD. Pătraşcu and Necoara (2017) consider SPPM to solve a gen-
eral stochastic optimization problem (1) in the convex case and provide nonasymptotic convergence
guarantees. Asi and Duchi (2019) delve into the exploration of a broader method termed AProx,
which includes SPPM as a particular case. Their research entails analysis of convergence rates for
convex functions. Variance-reduced versions of SPPM should also have advantages over their SGD
counterparts. It motivated Khaled and Jin (2023) to analyze L-SVRP in the finite-sum and federated
settings under a stronger version of Assumption 5 and strong convexity. Defazio (2016) analyzes
Point SAGA under the individual smoothness and strong convexity assumptions. Traoré et al. (2023)
consider variance-reduced methods L-SVRP and Point SAGA when each fi(x) is L-smooth, con-
vex, and either f(x) is convex or satisfies PŁ-condition. Kim et al. (2022) consider SPPM with
momentum.

B SPECIAL CASES

B.1 STOCHASTIC PROXIMAL POINT METHOD WITH LEARNED CORRECTION (SPPM-LC)

This section is devoted to a unified analysis of all stochastic proximal point methods we have en-
countered so far: SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA. The
analysis is based on formulating a new parametric assumption (Assumption 7) on the behavior of
the method, and the convergence result then follows. All that has to be done is to check that this
parametric assumption holds in each particular case of interest.
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Lemma 1. Assumption 7 holds with constants A1, B1, C1 and A2, B2, C2.

Proof of Lemma 1. Since we assume the iterates produced by SPPM-LC (Algorithm 1) satisfy As-
sumption 7, the statement of Lemma 1 holds automatically.

We can now present the main result of this section.

Theorem 1. Let Assumption 1 (differentiability) and Assumption 2 (µ-strong convexity) hold. Let
{xk, hk} be the iterates produced by SPPM-LC (Algorithm 1), and assume that they satisfy Assump-
tion 7 (σ2

k). Choose any γ > 0 and α > 0 satisfying the inequalities

(1 + γ2A1)(1 + αA2)

(1 + γµ)2
< 1,

γ2B1(1 + αA2)

α(1 + γµ)2
+B2 < 1, (18)

and define the Lyapunov function

Ψk := ∥xk − x⋆∥2 + ασ2
k. (19)

Then for all iterates k ≥ 0 of SPPM-LC we have

E [Ψk] ≤ θkΨ0 +
ζ

1− θ
,

where the parameters 0 ≤ θ < 1 and ζ ≥ 0 are given by

θ = max

{
(1 + γ2A1)(1 + αA2)

(1 + γµ)2
,
γ2B1(1 + αA2)

α(1 + γµ)2
+B2

}
, ζ =

γ2C1(1 + αA2)

(1 + γµ)2
+ αC2.

Proof of Theorem 1. We use Lemma 9 (see Appendix C) and σ2
k-assumption. In particular, by com-

bining inequality Assumption 7 (see (9)) and Lemma 9 (see (70)), for all γ > 0 we get

E [Ψk+1]
(19)
= E

[
∥xk+1 − x⋆∥2 + ασ2

k+1

]
= E

[
∥xk+1 − x⋆∥2

]
+ αE

[
σ2
k+1

]
(70)
≤ (1 + γ2A1)

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

γ2B1

(1 + γµ)2
E
[
σ2
k

]
+

γ2C1

(1 + γµ)2
+ αE

[
σ2
k+1

]
(8)
≤ (1 + γ2A1)

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

γ2B1

(1 + γµ)2
E
[
σ2
k

]
+

γ2C1

(1 + γµ)2

+αA2E
[
∥xk+1 − x⋆∥2

]
+ αB2E

[
σ2
k

]
+ αC2

(70)
≤ (1 + γ2A1)

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

γ2B1

(1 + γµ)2
E
[
σ2
k

]
+

γ2C1

(1 + γµ)2

+
(1 + γ2A1)αA2

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

γ2B1αA2

(1 + γµ)2
E
[
σ2
k

]
+

γ2C1αA2

(1 + γµ)2

+αB2E
[
σ2
k

]
+ αC2

=
(1 + γ2A1)(1 + αA2)

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

(
γ2B1(1 + αA2)

α(1 + γµ)2
+B2

)
αE
[
σ2
k

]
+
γ2C1(1 + αA2)

(1 + γµ)2
+ αC2

≤ max

{
(1 + γ2A1)(1 + αA2)

(1 + γµ)2
,
γ2B1(1 + αA2)

α(1 + γµ)2
+B2

}
︸ ︷︷ ︸

:=θ

E [Vk]

+
γ2C1(1 + αA2)

(1 + γµ)2
+ αC2︸ ︷︷ ︸

:=ζ

= θE [Ψk] + ζ.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

By unrolling the recurrence (we can also just apply Fact 3), we get

E [Ψk] ≤ θkΨ0 +

k−1∑
t=0

θk−1−tζ = θkΨ0 +

k−1∑
t=0

θtζ ≤ θkΨ0 +

∞∑
t=0

θtζ = θkΨ0 +
1

1− θ
ζ.

B.2 STOCHASTIC PROXIMAL POINT METHOD (SPPM)

We aim to solve problem (1) via the stochastic proximal point method (SPPM), formalized as Algo-
rithm 2. The main step has the form

proxγfξk
(xk) := arg min

x∈Rd

{
fξk(x) +

1

2γ
∥x− xk∥2

}
,

where γ > 0 is a stepsize.

Algorithm 2 Stochastic Proximal Point Method (SPPM)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Sample ξk ∼ D
4: xk+1 = proxγfξk

(xk)

5: end for

Notice that if γ is kept “too large”, then xk+1 ≈ argminx fξk(x), and hence the method just
“samples” the minimizers of the stochastic functions, and does not progress towards finding x⋆

(unless, of course, x⋆ happens to be shared by all functions fξk ). As we shall see, the situation is
different if γ is kept sufficiently small.
Lemma 2 (SPPM). Assumption 7 holds for the iterates of SPPM (Algorithm 2) with

A1 = 0, B1 = 0, C1 = σ2
⋆, and A2 = 0, B2 = 0, C2 = 0.

Proof of Lemma 2. Recall that the iterates of SPPM have the form

xk+1 = proxγfξk
(xk) .

Thus, hk = 0. Let σ2 ≡ 0. Clearly, (7) holds. Furthermore,

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, σ
2
k

]
= E

[
∥∇fξk(x⋆)∥2

]
:= σ2

⋆.

Hence, Assumption 7 holds with

A1 = 0, B1 = 0, C1 = σ2
⋆, and A2 = 0, B2 = 0, C2 = 0.

The convergence of SPPM is captured by the following theorem.
Theorem 2. Let Assumption 1 (differentiability) and Assumption 2 (µ-strong convexity) hold and
define

σ2
⋆ := Eξ∼D

[
∥∇fξ(x⋆)∥2

]
. (20)

Let x0 ∈ Rd be an arbitrary starting point. Then for any k ≥ 0 and any γ > 0, the iterates of SPPM
(Algorithm 2) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2 +
γσ2

⋆

γµ2 + 2µ
. (21)

Commentary:
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1. Interpolation regime. Consider the interpolation regime, characterized by σ2
⋆ = 0. Since

we can use arbitrarily large γ > 0, we obtain an arbitrarily fast convergence rate:

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2. (22)

Indeed,
(

1
1+γµ

)2k
can be made arbitrarily small for any fixed k ≥ 1, even k = 1, by

choosing γ large enough. However, this is not surprising, since now f and all functions fξ
share a single minimizer, x⋆, and hence it is possible to find it by sampling a single function
fξ and minimizing it, which is what the prox does, as long as γ is large enough.

2. A single step travels far. Observe that for γ = 1
µ , we have γσ2

⋆

γµ2+2µ =
σ2
⋆

3µ2 . In fact, the con-

vergence neighborhood γσ2
⋆

γµ2+2µ is bounded above by three times this quantity irrespective
of the choice of the stepsize. Indeed,

γσ2
⋆

γµ2 + 2µ
≤ min

{
σ2
⋆

µ2
,
γσ2

⋆

µ

}
≤ σ2

⋆

µ2
.

This means that no matter how far the starting point x0 is from the optimal solution x⋆, if
we choose the stepsize γ to be large enough, then we can get a decent-quality solution after
a single iteration of SPPM already! Indeed, if we choose γ large enough so that(

1

1 + γµ

)2

∥x0 − x⋆∥2 ≤ δ,

where δ > 0 is chosen arbitrarily, then for k = 1 we get

E
[
∥x1 − x⋆∥2

]
≤ δ +

σ2
⋆

µ2
.

3. Iteration complexity. We have seen above that accuracy arbitrarily close to (but not reach-
ing) σ2

⋆

µ2 can be achieved via a single step of the method, provided the stepsize γ is large

enough. Assume now that we aim for ε accuracy where ε ≤ σ2
⋆

µ2 . Using the inequality
1− t ≤ exp(−t) which holds for all t > 0, we get(

1

1 + γµ

)2k

=

(
1− γµ

1 + γµ

)2k

≤ exp

(
− 2γµk

1 + γµ

)
.

Therefore, provided that

k ≥ 1 + γµ

2γµ
log

(
2∥x0 − x⋆∥2

ε

)
,

we get
(

1
1+γµ

)2k
∥x0 − x⋆∥2 ≤ ε

2 . Furthermore, as long as γ ≤ 2εµ
2σ2

⋆−εµ2 (this is true
provided that the more restrictive but also more elegant-looking condition γ ≤ ε µ

σ2
⋆

holds),
we get

γσ2
⋆

γµ2 + 2µ
≤ ε

2
.

Putting these observations together, we conclude that with the stepsize γ = ε µ
σ2
⋆

, we get

E
[
∥xk − x⋆∥2

]
≤ ε

provided that

k ≥ 1 + γµ

2γµ
log

2∥x0 − x⋆∥2

ε
=

(
σ2
⋆

2εµ2
+

1

2

)
log

(
2∥x0 − x⋆∥2

ε

)
. (23)
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Proof of Theorem 2. Recall that in the case of SPPM, we have A1 = 0, B1 = 0, C1 = σ2
⋆, A2 =

0, B2 = 0, C2 = 0 (it is the result of Lemma 2). From Theorem 1, choosing any α > 0, θ =
1

(1+γµ)2 , ζ =
γ2σ2

⋆

(1+γµ)2 (see (15) and (16)), we obtain

ζ

1− θ
=

γ2σ2
⋆

(1 + γµ)2(1− θ)
=

γ2σ2
⋆

(1 + γµ)2 − 1
=

γσ2
⋆

γµ2 + 2µ
.

For any k ≥ 0 and any γ > 0, the iterates of SPPM (Algorithm 2) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2 +
γσ2

⋆

γµ2 + 2µ
.

B.3 STOCHASTIC PROXIMAL POINT METHOD WITH NONUNIFORM SAMPLING (SPPM-NS)

Applying SPPM directly to the optimization formulation (3), Theorem 2 applies with µ = mini µi

since f is µ-strongly convex for µ = mini µi. If mini µi is small, the convergence rate becomes
weak. In this section we shall describe a trick which enables us to obtain a dependence on the
average of the strong convexity constants instead of their minimum.

Choose positive numbers p1, . . . , pn summing up to 1, and let

f̃i(x) :=
1

npi
fi(x), i ∈ [n].

Note that (3) can be reformulated in the form

min
x∈Rd

{
f(x) :=

n∑
i=1

pif̃i(x)

}
. (24)

We rely on Assumptions 3 and 4.

This is a more refined version of Assumption 2, where we assumed the strong convexity parameter
was the same for all functions. This implies that f is µ-strongly convex with µ = mini µi. Hence,
f has a unique minimizer, which we shall denote x⋆.

We can now apply SPPM to the reformulated problem (24) instead, with D being the nonuniform
distribution over the finite set [n] given by the parameters p1, . . . , pn as follows: ξ = i with prob-
ability pi > 0. This method is called stochastic proximal point method with nonuniform sampling
(SPPM-NS):

xk+1 = proxγf̃ik
(xk) = prox γ

npi
fik

(xk) ,

where ik = i with probability pi > 0.

Algorithm 3 Stochastic Proximal Point Method with Nonuniform Sampling (SPPM-NS)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd, positive probabilities p1, . . . , pn

summing up to 1
2: for k = 0, 1, 2, . . . do
3: Choose ik = i with probability pi > 0
4: xk+1 = prox γ

npi
fik

(xk)

5: end for

Define

µNS := min
i

µi

npi
, σ2

⋆,NS :=
1

n

n∑
i=1

1

npi
∥∇fi(x⋆)∥2. (25)

Lemma 3 (SPPM-NS). Assumption 7 holds for the iterates of SPPM-NS (Algorithm 3) with

A1 = 0, B1 = 0, C1 = σ2
⋆,NS, and A2 = 0, B2 = 0, C2 = 0.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. Recall that the iterates of (SPPM-NS) have the form
xk+1 = proxγf̃ik

(xk) = prox γ
npi

fik
(xk) ,

where ik = i with probability pi > 0. Therefore, that hk = 0. Let σ2 ≡ 0. Clearly, (7) holds.
Furthermore,

E

[∥∥∥hk −∇f̃ik(x⋆)
∥∥∥2∣∣∣∣xk, σ

2
k

]
= E

[∥∥∥∇f̃ik(x⋆)
∥∥∥2] := σ2

⋆,NS.

Hence, Assumption 7 holds with
A1 = 0, B1 = 0, C1 = σ2

⋆,NS, and A2 = 0, B2 = 0, C2 = 0.

Theorem 3. Let Assumption 3 and Assumption 4 hold. Let x0 ∈ Rd be an arbitrary starting point.
Let µNS and σ2

⋆,NS be as in (25). Then for any k ≥ 0 and any γ > 0, the iterates of SPPM-NS
(Algorithm 3) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµNS

)2k

∥x0 − x⋆∥2 +
γσ2

⋆,NS

γµ2
NS + 2µNS

. (26)

Commentary:

(a) Uniform sampling. If we choose pi =
1
n for all i ∈ [n], we shall refer to Algorithm 3 as

stochastic proximal point method with uniform sampling (SPPM-US). In this case,

µNS = µUS := min
i

µi, σ2
⋆,NS = σ2

⋆,US :=
1

n

n∑
i=1

∥∇fi(x⋆)∥2.

(b) Importance sampling: optimizing the linear rate. If we choose pi = µi∑n
j=1 µj

for all

i ∈ [n], we shall refer to Algorithm 3 as stochastic proximal point method with importance
sampling (SPPM-IS). In this case,

µNS = µIS :=
1

n

n∑
i=1

µi, σ2
⋆,NS = σ2

⋆,IS :=

∑n
i=1 µi

n

n∑
i=1

∥∇fi(x⋆)∥2

nµi
.

This choice maximizes the value of µNS (and hence the first part of the convergence rate)
over the choice of the probabilities.

(c) Variance sampling: optimizing the variance. If we choose pi =
∥∇fi(x⋆)∥∑n

j=1 ∥∇fj(x⋆)∥ for all

i ∈ [n], we shall refer to Algorithm 3 as stochastic proximal point method with variance
sampling (SPPM-VS). In this case,

µNS = µVS :=
1

n

n∑
i=1

∥∇fi(x⋆)∥
(
min
i

µi

∥∇fi(x⋆)∥

)
,

σ2
⋆,NS = σ2

⋆,VS :=

(
1

n

n∑
i=1

∥∇fi(x⋆)∥

)2

.

This choice minimizes the value of σ⋆,NS (and hence the second part of the convergence
rate) over the choice of the probabilities.

Proof of Theorem 3. From Lemma 3, we have that Assumption 7 holds for the iterates of SPPM-NS
(Algorithm 3) with

A1 = 0, B1 = 0, C1 = σ2
⋆,NS, and A2 = 0, B2 = 0, C2 = 0.

From Theorem 1, choosing any α > 0, θ = 1
(1+γµNS)

2 , ζ =
γ2σ2

⋆,NS

(1+γµNS)
2 (see (15) and (16)), we

obtain that, for any k ≥ 0 and any γ > 0, the iterates of SPPM-NS (Algorithm 3) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµNS

)2k

∥x0 − x⋆∥2 +
γσ2

⋆,NS

γµ2
NS + 2µNS

.

Alternatively, we can derive Theorem 3 from Theorem 2. It is easy to show that each function f̃i
is µ̃i-strongly convex with µ̃i :=

µi

npi
. Hence, f̃i is also µNS-strongly convex for all i. It now only

remains to apply Theorem 2.
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B.4 STOCHASTIC PROXIMAL POINT METHOD WITH ARBITRARY SAMPLING (SPPM-AS)

We consider the optimization problem (3) and rely on Assumption 3 (differentiability) and Assump-
tion 4 (strong convexity).

Let S be a probability distribution over the 2n subsets of [n]. Given a random set S ∼ S, we define

pi := Prob (i ∈ S) , i ∈ [n]. (27)

We will restrict our attention to proper and nonvacuous random sets.
Assumption 8. S is proper (i.e., pi > 0 for all i ∈ [n]) and nonvacuous (i.e., Prob (S = ∅) = 0).

Given ∅ ̸= C ⊆ [n] and i ∈ [n], we define

vi(C) :=

{
1
pi

i ∈ C

0 i /∈ C
, (28)

and

fC(x) :=
1

n

n∑
i=1

vi(C)fi(x)
(28)
=
∑
i∈C

1

npi
fi(x). (29)

Note that vi(S) is a random variable and fS is a random function. By construction, ES∼S [vi(S)] =
1 for all i ∈ [n], and hence

ES∼S [fS(x)] = ES∼S

[
1

n

n∑
i=1

vi(S)fi(x)

]
=

1

n

n∑
i=1

ES∼S [vi(S)] fi(x) =
1

n

n∑
i=1

fi(x) = f(x).

Therefore, the optimization problem (3) is equivalent to the stochastic optimization problem

min
x∈Rd

{f(x) := ES∼S [fS(x)]} . (30)

Further, if for each C ⊂ [n] we let pC := Prob (S = C), f can be written in the equivalent form

f(x) = ES∼S [fS(x)] =
∑

C⊆[n]

pCfC(x) =
∑

C⊆[n],pC>0

pCfC(x). (31)

Applying SPPM to (30), we arrive at stochastic proximal point method with arbitrary sampling
(SPPM-AS) (Algorithm 4):

xk+1 = proxγfSk
(xk) ,

where Sk ∼ S.

Algorithm 4 Stochastic Proximal Point Method with Arbitrary Sampling (SPPM-AS)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd, distribution S over the subsets of [n]
2: for k = 0, 1, 2, . . . do
3: Sample Sk ∼ S
4: xk+1 = proxγfSk

(xk)

5: end for

Define

µAS := min
C⊆[n],pC>0

∑
i∈C

µi

npi
, σ2

⋆,AS :=
∑

C⊆[n],pC>0

pC

∥∥∥∥∥∑
i∈C

1

npi
∇fi(x⋆)

∥∥∥∥∥
2

. (32)

Lemma 4. Assumption 7 holds for the iterates of SPPM-AS (Algorithm 4) with

A1 = 0, B1 = 0, C1 = σ2
⋆,AS, and A2 = 0, B2 = 0, C2 = 0.
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Proof. Recall that the iterates of SPPM-AS (Algorithm 4) have the form

xk+1 = proxγfSk
(xk) .

Thus, hk = 0. Let σ2 ≡ 0. Clearly, (7) holds. Furthermore,

E
[
∥hk −∇fC(x⋆)∥2

∣∣∣xk, σ
2
k

]
= E

[
∥∇fC(x⋆)∥2

]
:= σ2

⋆,AS,

since

σ2
⋆ := Eξ∼D

[
∥∇fξ(x⋆)∥2

]
(31)
=

∑
C⊆[n],pC>0

pC∥∇fC(x⋆)∥2

(29)
=

∑
C⊆[n],pC>0

pC

∥∥∥∥∥∑
i∈C

1

npi
∇fi(x⋆)

∥∥∥∥∥
2

:= σ2
⋆,AS.

Hence, Assumption 7 holds with

A1 = 0, B1 = 0, C1 = σ2
⋆,AS, and A2 = 0, B2 = 0, C2 = 0.

The convergence of SPPM-AS is captured by the following theorem.
Theorem 4. Let Assumption 3 (differentiability) and Assumption 4 (strong convexity) hold. Let S
be a random set satisfying Assumption 8. Let x0 ∈ Rd be an arbitrary starting point, µAS and σ2

⋆,AS

be as in (32). Then for any k ≥ 0 and any γ > 0, the iterates of SPPM-AS (Algorithm 4) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµAS

)2k

∥x0 − x⋆∥2 +
γσ2

⋆,AS

γµ2
AS + 2µAS

. (33)

Commentary:

(a) Full sampling. Let S = [n] with probability 1 (“full sampling”; abbreviated as “FS”).
Then SPPM-AS applied to (30) becomes PPM for minimizing f . So, besides Theorem 2,
Theorem 4 is the third theorem capturing the convergence of PPM in the differentiable and
strongly convex regime.
Moreover, we have pi = 1 for all i ∈ [n] and the expressions (32) take on the form

µAS = µFS :=
1

n

n∑
i=1

µi, σ2
⋆,AS = σ2

⋆,FS := 0.

Note that µFS a lower bound on the the strong convexity constant of f – one that can be
computed from the strong convexity constants µi of the constituent functions fi.

(b) Nonuniform sampling. Let S = {i} with probability qi > 0, where
∑

i qi = 1. This leads
to SPPM-NS. Then pi := Prob (i ∈ S) = qi for all i ∈ [n], and the expressions (32) take
on the form

µAS = µNS := min
i

µi

npi
, σ2

⋆,AS = σ2
⋆,NS :=

1

n

n∑
i=1

1

npi
∥∇fi(x⋆)∥2,

which recovers the quantities from Section B.3; see (25).
(c) Nice sampling. Choose τ ∈ [n] and let S be a random subset of [n] of size τ chosen uni-

formly at random. We call the resulting method SPPM-NICE. Then pi := Prob (i ∈ S) =
τ
n for all i ∈ [n]. Moreover, pC = 1

(nτ)
whenever |C| = τ and pC = 0 otherwise. So,

µAS = µNICE(τ) := min
C⊆[n],|C|=τ

1

τ

∑
i∈C

µi (34)
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and

σ2
⋆,AS = σ2

⋆,NICE(τ) :=
∑

C⊆[n],|C|=τ

1(
n
τ

)∥∥∥∥∥1τ ∑
i∈C

∇fi(x⋆)

∥∥∥∥∥
2

. (35)

It can be shown that µNICE(τ) is a nondecreasing function of τ . So, as the minibatch size
τ increases, the strong convexity constant µNICE(τ) can only improve. Since µNICE(1) =
mini µi and µNICE(n) =

1
n

∑n
i=1 µi, the value of µNICE(τ) interpolates these two extreme

cases as τ varies between 1 and n.
(d) Block sampling. Let C1, . . . , Cb be a partition of [n] into b nonempty blocks. For each

i ∈ [n], let B(i) indicate which block does i belong to. In other words, i ∈ Cj iff B(i) = j.
Let S = Cj with probability qj > 0, where

∑
j qj = 1. We call the resulting method

SPPM-BS. Then pi := Prob (i ∈ S) = qB(i), and hence the expressions (32) take on the
form

µAS = µBS := min
j∈[b]

1

nqj

∑
i∈Cj

µi, σ2
⋆,AS = σ2

⋆,BS :=
∑
j∈[b]

qj

∥∥∥∥∥∥
∑
i∈Cj

1

npj
∇fi(x⋆)

∥∥∥∥∥∥
2

.

We now consider two extreme cases:
– If b = 1, then SPPM-BS = SPPM-FS = PPM. Let’s see, as a sanity check, whether we

recover the right rate as well. We have q1 = 1, C1 = [n], pi := Prob (i ∈ S) = 1 for
all i ∈ [n], and the expressions for µAS and σ2

⋆,BS simplify to

µBS = µFS :=
1

n

n∑
i=1

µi, σ2
⋆,BS = σ2

⋆,FS := 0.

So, indeed, we recover the same rate as SPPM-FS.
– If b = n, then SPPM-BS = SPPM-NS. Let’s see, as a sanity check, whether we recover

the right rate as well. We have Ci = {i} and pi := Prob (i ∈ S) = qi for all i ∈ [n],
and the expressions for µAS and σ2

⋆,BS simplify to

µBS = µNS := min
i∈[n]

µi

npi
, σ2

⋆,BS = σ2
⋆,NS :=

1

n

n∑
i=1

1

npi
∥∇fi(x⋆)∥2.

So, indeed, we recover the same rate as SPPM-NS.
(e) Stratified sampling. Let C1, . . . , Cb be a partition of [n] into b nonempty blocks, as before.

For each i ∈ [n], let B(i) indicate which block i belongs to. In other words, i ∈ Cj

iff B(i) = j. Now, for each j ∈ [b] pick ξj ∈ Cj uniformly at random, and define
S = ∪j∈[b]{ξj}. We call the resulting method SPPM-SS. Clearly, pi := Prob (i ∈ S) =

1
|CB(i)|

. The expressions (32) take on the form

µAS = µSS := min
(i1,...,ib)∈C1×···×Cb

b∑
j=1

µij |Cj |
n

and

σ2
⋆,AS = σ2

⋆,SS :=

(
1∏b

j=1 |Cj |

) ∑
(i1,...,ib)∈C1×···×Cb

∥∥∥∥∥∥
b∑

j=1

|Cj |
n

∇fij (x⋆)

∥∥∥∥∥∥
2

.

We now consider two extreme cases:
– If b = 1, then SPPM-SS = SPPM-US. Let’s see, as a sanity check, whether we recover

the right rate as well. We have C1 = [n], |C1| = n,
(∏b

j=1
1

|Cj |

)
= 1

n and hence

µSS = µUS := min
i

µi, σ2
⋆,SS = σ2

⋆,US :=
1

n

n∑
i=1

∥∇fi(x⋆)∥2.

So, indeed, we recover the same rate as SPPM-US.
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– If b = n, then SPPM-SS = SPPM-FS. Let’s see, as a sanity check, whether we recover
the right rate as well. We have Ci = {i} for all i ∈ [n],

(∏b
j=1

1
|Cj |

)
= 1, and hence

µSS = µFS :=
1

n

n∑
i=1

µi, σ2
⋆,SS = σ2

⋆,FS := 0.

So, indeed, we recover the same rate as SPPM-FS.

Proof of Theorem 4. From Lemma 4 we have that Assumption 7 holds for the iterates of SPPM-AS
(Algorithm 4) with

A1 = 0, B1 = 0, C1 = σ2
⋆,AS, and A2 = 0, B2 = 0, C2 = 0.

From Theorem 1, choosing α > 0, θ = 1
(1+γµ)2 , ζ =

γ2σ2
∗,AS

(1+γµ)2 (see (15) and (16)), we obtain that,
for any k ≥ 0 and any γ > 0, the iterates of SPPM-AS (Algorithm 4) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµAS

)2k

∥x0 − x⋆∥2 +
γσ2

⋆,AS

γµ2
AS + 2µAS

.

Alternatively, we can derive Theorem 4 from Theorem 2. Let C be any (necessarily nonempty)
subset of [n] such that pC > 0. Recall that in view of (29) we have

fC(x) =
∑
i∈C

1

npi
fi(x);

i.e., fC is a conic combination of the functions {fi : i ∈ C} with weights wi =
1

npi
. Since each fi

is µi-strongly convex, Lemma 10 says that fC µC-strongly convex with

µC :=
∑
i∈C

µi

npi
.

So, every such fC is µ-strongly convex with

µ = µAS := min
C⊆[n],pC>0

∑
i∈C

µi

npi
.

Further, the quantity σ2
⋆ from (20) is equal to

σ2
⋆ := Eξ∼D

[
∥∇fξ(x⋆)∥2

]
(31)
=

∑
C⊆[n],pC>0

pC∥∇fC(x⋆)∥2

(29)
=

∑
C⊆[n],pC>0

pC

∥∥∥∥∥∑
i∈C

1

npi
∇fi(x⋆)

∥∥∥∥∥
2

:= σ2
⋆,AS.

It now only remains to apply Theorem 2.

B.5 STOCHASTIC PROXIMAL POINT METHOD WITH OPTIMAL GRADIENT CORRECTION
(SPPM*)

We showed that SPPM converges up to a neighborhood of size γσ2
⋆

γµ2+2µ , where

σ2
⋆ := Eξ∼D

[
∥∇fξ(x⋆)∥2

]
.

We now describe a simple trick which gets rid of the neighborhood when σ2
⋆ > 0. The trick is of a

conceptual nature: as is, it is practically useless. However, it will serve as an inspiration for a trick
that can be implemented.
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Algorithm 5 Stochastic Proximal Point Method with Optimal Gradient Correction (SPPM*)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Sample ξk ∼ D
4: hk = ∇fξk(x⋆)
5: xk+1 = proxγfξk

(xk + γhk) = proxγf̃ξk
(xk)

6: end for

Let us reformulate the problem by adding a smart zero.

For each ξ ∼ D, define
f̃ξ(x) := fξ(x)− ⟨∇fξ(x⋆), x⟩ , (36)

and instead of solving (1), consider solving the problem

min
x∈Rd

{
f̃(x) := Eξ∼D

[
f̃ξ(x)

]}
. (37)

Observations:

• We do not know ∇fξ(x⋆), and hence formulation (37) is not of practical interest.

• It is easy to see that f = f̃ , and hence problems (1) and (37) are equivalent. Indeed,

f̃(x)
(37)
= Eξ∼D

[
f̃ξ(x)

]
(36)
= Eξ∼D [fξ(x)− ⟨∇fξ(x⋆), x⟩]

= Eξ∼D [fξ(x)]− Eξ∼D [⟨∇fξ(x⋆), x⟩]

= Eξ∼D [fξ(x)]−

〈
Eξ∼D [∇fξ(x⋆)]︸ ︷︷ ︸

=∇f(x⋆)=0

, x

〉
(1)
= f(x).

• All stochastic gradients of f̃ at x⋆ are zero. Indeed,

∇f̃(x)
(36)
= ∇fξ(x)−∇fξ(x⋆),

and hence ∇f̃ξ(x⋆) = 0.

• It is easy to see that since fξ is differentiable and µ-strongly convex, then so is f̃ξ.

Hiding the prox. Further, recall that if for some x ∈ Rd and differentiable and convex ϕ we let
x+ := proxϕ (x), then x+ = x − ∇ϕ(x+). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

xk+1 = xk + γhk − γ∇fξk(xk+1) = xk − γ (∇fξk(xk+1)−∇fξk(x⋆)) .

Lemma 5 (SPPM*). Assumption 7 holds for the iterates of SPPM* (Algorithm 5) with

A1 = 0, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.

Proof. Recall that the iterates of SPPM* have the form

xk+1 = proxγfξk
(xk + γ∇fξk(x⋆)) .

Thus, hk = ∇fξk(x⋆). Let σ2 ≡ 0. Clearly, (7) holds. Furthermore,

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, σ
2
k

]
= 0.

Hence, Assumption 7 holds with

A1 = 0, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.
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The convergence of SPPM* is captured by the following theorem.
Theorem 5. Let Assumption 1 (differentiability), Assumption 2 (µ-strong convexity) hold. Let x0 ∈
Rd be an arbitrary starting point. Then for any k ≥ 0 and any γ > 0, the iterates of SPPM*
(Algorithm 5) satisfy

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2. (38)

Commentary:

• The convergence neighborhood is fully removed; the method converges to the exact solu-
tion! The result is identical to (22); i.e., to the rate of SPPM in the interpolation regime.

– The method converges to x⋆ for any fixed γ > 0 as long as k → ∞.
– The method converges to x⋆ for any fixed k ≥ 1 as long as γ → ∞.

• The method is practically useless since it relies on the knowledge of the optimal stochastic
gradients ∇fξ(x⋆) for all ξ as hyper-parameters of the method. Needless to say, these
vectors are rarely known.

• If we follow (36), add “smart zero” to (30), and apply SPPM to the resulting formulation,
we automatically get a “star” variant of SPPM-AS, and Theorem 5 captures the complexity
of this method.

Proof of Theorem 5. From Lemma 5 we know that Assumption 7 holds for the iterates of SPPM*
(Algorithm 5) with

A1 = 0, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.

Therefore, from Theorem 1, by choosing any α > 0, θ =
(

1
1+γµ

)2
, ζ = 0 (see (15) and (16)), we

have

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2.

B.6 STOCHASTIC PROXIMAL POINT METHOD WITH GRADIENT CORRECTION (SPPM-GC)

We consider the stochastic optimization problem (1), i.e.,

min
x∈Rd

{f(x) := Eξ∼D [fξ(x)]} ,

and rely on Assumption 1 (differentiability of fξ) and Assumption 2 (µ-strong convexity of fξ).
Recall that this implies strong convexity of f. Hence f has a unique minimizer, which we denote
x⋆.

We have already described the SPPM* method – this a variant of SPPM without the neighborhood
term in the convergence bound. In order to run it, we need to know ∇fξ(x⋆) for all ξ, which is of
course something we almost never know; one exception to this is the interpolation regime, defined
by the assumption that ∇fξ(x⋆) = 0 for all ξ.

In this section we describe a practical method inspired by SPPM*. The method is based on the
following ideas:

• While we do not know ∇fξ(x⋆), what if this quantity could be in some appropriate/useful
sense approximated by some vector gξ we do know?

• One option is to require a quantity such as

∥gξ −∇fξ(x⋆)∥2 or Eξ∼D

[
∥gξ −∇fξ(x⋆)∥2

]
to be “small” in some sense. However, where can such vectors come from? And what
should “small” mean?

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• One idea is to make an extra assumption on the functions fξ that would somehow auto-
matically guarantee the existence and availability of such vectors. So, we trade off easy
availability of vectors gξ for a limitation on the class of problems we solve this way.

Recall the Similarity Assumption 5. There exists δ ≥ 0 such that

Eξ∼D

[
∥∇fξ(x)−∇f(x)−∇fξ(x⋆)∥2

]
≤ δ2∥x− x⋆∥2, ∀x ∈ Rd.

The above assumption says that we can consider the vectors gξ = ∇fξ(x) −∇f(x) for any x, and
that by “small enough” we require a bound by δ2∥x− x⋆∥2. Why these particular choices make
sense will become clear from the convergence proof. Let us now make some observations about the
class of functions satisfying Assumption 5:

1. The approximation of ∇fξ(x⋆) by ∇fξ(x)−∇f(x) gets better as x gets closer to x⋆.
2. The smaller δ is, the better the approximation.
3. If δ = 0, we get perfect approximation.
4. Since

Eξ∼D [∇fξ(x)−∇fξ(x⋆)] = ∇f(x),

the left-hand side of (5) is the variance of the random vector ∇fξ(x) − ∇fξ(x⋆) as an
estimator of ∇f(x) = ∇f(x)−∇f(x⋆).

5. It follows that (5) can be equivalently written in the form

Eξ∼D

[
∥∇fξ(x)−∇fξ(x⋆)∥2

]
− ∥∇f(x)−∇f(x⋆)∥2 ≤ δ2∥x− x⋆∥2, ∀x ∈ Rd.

(39)
6. Note that (39) holds if the following stronger condition holds:

Eξ∼D

[
∥∇fξ(x)−∇fξ(x⋆)∥2

]
≤ δ2∥x− x⋆∥2, ∀x ∈ Rd. (40)

7. Furthermore, (40) holds if the following even stronger condition holds: there exists δ ≥ 0
such that

∥∇fξ(x)−∇fξ(x⋆)∥ ≤ δ∥x− x⋆∥, ∀x ∈ Rd (41)
for all ξ.

8. Finally, (41) holds if there exists δ ≥ 0 such that ∇fξ is δ-Lipschitz for all ξ:

∥∇fξ(x)−∇fξ(y)∥ ≤ δ∥x− y∥, ∀x, y ∈ Rd. (42)

For each ξ ∈ [n] and any “parameter” v ∈ Rd, define

f̃v
ξ (x) := fξ(x)− ⟨∇fξ(v)−∇f(v), x⟩ , (43)

and instead of solving (1), consider solving the problem

min
x∈Rd

{
f̃v(x) := Eξ∼D

[
f̃v
ξ (x)

]}
. (44)

Algorithm 6 Stochastic Proximal Point Method with Gradient Correction (SPPM-GC)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd

2: for k = 0, 1, 2, . . . do
3: Sample ξk ∼ D
4: hk = ∇fξk(xk)−∇f(xk)
5: xk+1 = proxγfξk

(xk + γhk) = proxγf̃
xk
ξk

(xk)

6: end for

The algorithm can be interpreted as:
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• a practical variant of SPPM* in which we use the computable correction hk = ∇fξk(xk)−
∇f(xk) instead of incomputable correction ∇fξk(x⋆),

• SPPM applied to the reformulated problem (44), with the “control” vector v = xk at
iteration k:

v = xk, xk+1 = proxγf̃v
ξk

(xk)

Hiding the prox. Further, recall that if for some x ∈ Rd and differentiable and convex ϕ we let
x+ := proxϕ (x), then x+ = x − ∇ϕ(x+). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

xk+1 = xk + γhk − γ∇fξk(xk+1) = xk − γ (∇fξk(xk+1)−∇fξk(xk) +∇f(xk)) .

Lemma 6 (SPPM-GC). Suppose Assumption 5 holds with δ > 0. Assumption 7 holds for the iterates
of SPPM-GC (Algorithm 6) with

A1 = δ2, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.

Proof. Recall that the iterates of SPPM-GC have the form

xk+1 = proxγfξk
(xk + γhk) ,

where hk = ∇fξk(xk)−∇f(xk). Let σ2 ≡ 0. Since Assumption 5 holds, we get

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, σ
2
k

]
= E

[
∥∇fξk(xk)−∇f(xk)−∇fξk(x⋆)∥2

∣∣∣xk

]
≤ δ2∥xk − x⋆∥2.

Hence, Assumption 7 holds with

A1 = δ2, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.

Theorem 6. Let Assumption 1 (differentiability), Assumption 2 (µ-strong convexity), and Assump-
tion 5 (δ-similarity) hold. Choose any x0 ∈ Rd. Then for any γ > 0, and all k ≥ 0, we have

E
[
∥xk − x⋆∥2

]
≤

(
1 + γ2δ2

(1 + γµ)
2

)k

∥x0 − x⋆∥2. (45)

Commentary:

1. Perfect similarity. If δ = 0, for all γ > 0 we get

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)2k

∥x0 − x⋆∥2. (46)

We get convergence even with k = 1 provided that γ is chosen large enough. This rate
is identical to what Theorem 2 predicts in the interpolation regime. However, the methods
are different, and we do not need to assume interpolation regime here. Instead, we assume
perfect similarity (δ = 0), and the availability of the gradient of f . So, while the rates are
exactly the same, both the methods and the assumptions are different.

2. General case. It can be shown that the expression 1+γ2δ2

(1+γµ)2
is minimized for γ = µ

δ2 . With
this choice of the stepsize we get

E
[
∥xk − x⋆∥2

]
≤
(

δ2

δ2 + µ2

)k

∥x0 − x⋆∥2 =

(
1− µ2

δ2 + µ2

)k

∥x0 − x⋆∥2. (47)

This means that

k ≥
(
1 +

δ2

µ2

)
log

(
∥x0 − x⋆∥2

ε

)
(48)

iterations suffice to guarantee E
[
∥xk − x⋆∥2

]
≤ ε.
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Proof of Theorem 6. From Lemma 6 we have that Assumption 7 holds for the iterates of SPPM-GC
(Algorithm 6) with

A1 = δ2, B1 = 0, C1 = 0, and A2 = 0, B2 = 0, C2 = 0.

From Theorem 1, choosing any α > 0, θ = 1+γ2δ2

(1+γµ)2
, ζ = 0 (see (15) and (16)), we have

E
[
∥xk − x⋆∥2

]
≤

(
1 + γ2δ2

(1 + γµ)
2

)k

∥x0 − x⋆∥2.

B.7 LOOPLESS STOCHASTIC VARIANCE REDUCED PROXIMAL POINT METHOD (L-SVRP /
SPPM-LGC)

We consider the stochastic optimization problem (1), i.e.,

min
x∈Rd

{f(x) := Eξ∼D [fξ(x)]} ,

and rely on Assumption 1 (differentiability of fξ) and Assumption 2 (µ-strong convexity of fξ).
Recall that this implies strong convexity of f. Hence f has a unique minimizer, which we denote
x⋆.

Note that SPPM-GC needs to compute ∇f(xk) in iteration k. This can be very costly or even
impossible to do in practice. To make this more clear, consider the problem

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}

as a special case of (1).

• One worker. Assume we have a single machine solving this problem. Moreover, assume
it takes one unit of time to this machine to compute ∇fi for any i, and n units of time
to compute ∇f . If the computation of ∇f is the bottleneck (i.e., if it is more expensive
than the evaluation of the proximity operator of fi), then an attempt to design a method
addressing this bottleneck would be justified.

• Parallel workers. Assume we have n workers able to work in parallel. Then ∇f can be
computed in 1 unit of time if communication among the workers is instantaneous. However,
it may still be desirable to avoid having to compute the gradient:

– The server aggregating the n gradients computed by the workers may have limited
capacity, and it make take more time for it to be able to compute the average of a very
large number of vectors.

– Some workers may be not available at all times.

These considerations justify the desire to reduce the reliance of SPPM-GC on the computation of
∇f . The key idea is to compute the gradient only periodically, i.e., to be “lazy” about computing
the gradient. In particular, we flip a biased coin, and compute a new gradient if the coin lands the
right way. Otherwise, we use the previously computed gradient instead. We shall formalize this in
the next section.

We are now ready to present the stochastic proximal point method with lazy gradient correction
(SPPM-LGC). In the literature, the method is known under the name loopless stochastic variance
reduced proximal (L-SVRP) point method.
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Algorithm 7 Loopless Stochastic Variance Reduced Proximal Point Method (L-SVRP / SPPM-LGC)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd, starting control vector w0 ∈ Rd,

probability p ∈ (0, 1]
2: for k = 0, 1, 2, . . . do
3: Sample ξk ∼ D
4: Set hk = ∇fξk(wk)−∇f(wk)
5: xk+1 = proxγfξk

(xk + γhk)

6: Set wk+1 =

{
xk+1 with probability p

wk with probability 1− p
7: end for

Note that as intended, L-SVRP indeed reduces to SPPM-GC when w0 = x0 and p = 1.

Hiding the prox. Further, recall that if for some x ∈ Rd and differentiable and convex ϕ we let
x+ := proxϕ (x), then x+ = x − ∇ϕ(x+). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

xk+1 = xk + γhk − γ∇fξk(xk+1) = xk − γ (∇fξk(xk+1)−∇fξk(wk) +∇f(wk)) .

L-SVRP vs L-SVRG. The name L-SVRP was intentionally coined to resemble the name L-SVRG,
which is a method proposed in and studied by Kovalev et al. (2020). This method has the form

xk+1 = xk − γ (∇fξk(xk)−∇fξk(wk) +∇f(wk)) ,

with Step 6 being identical. That is, the only difference here is that L-SVRP involves ∇fξk(xk+1)
while L-SVRG uses ∇fξk(xk) in the same place. So, “P” in L-SVRP refers to the proximal nature of
the term ∇fξk(xk+1), while “G” in L-SVRG refers to the gradient nature of the corresponding term
∇fξk(xk).

Loopless vs loopy structure. The word “loopless” refers to the way the control vector wk+1 is
updated in Step 6. The alternative to this, used in the famous SVRG method of Johnson and Zhang
(2013), is to update wk+1 once every m iterations, where m is an appropriately chosen parameter.
This change introduces an outer loop into the method, and makes it look a bit more cumbersome.
More importantly, the loopless nature of L-SVRG is useful in three ways:

(i) leads to a somewhat sharper analysis,

(ii) makes the method easier to analyze, and

(iii) allows for easier to extensions / modifications.

The last two points are more important than the first one.

Lemma 7 (L-SVRP). Suppose Assumption 5 holds with δ > 0. Assumption 7 holds for the iterates
of L-SVRP (Algorithm 7) with

A1 = 0, B1 = δ2, C1 = 0, and A2 = p,B2 = 1− p, C2 = 0.

Proof of Lemma 7. Recall that the iterates of L-SVRP have the form

xk+1 = proxγfξk
(xk + γhk) ,

where hk is defined as hk = ∇fξk(wk) − ∇f(wk), and wk is updated in a loopless fashion. Let
ϕk = wk. Then

E [hk|xk, ϕk] = E [∇fξk(wk)−∇f(wk)|xk, wk] = 0,

and hence (7) holds. If, moreover, Assumption 5 holds, then

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, wk

] (80)
≤ δ2∥wk − x⋆∥2,
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which means that (8) holds with A1 = 0, B1 = δ2 and C1 = 0 if we let σ2(z) := ∥z − x⋆∥2 (since
then σ2

k = σ2(wk) = ∥wk − x⋆∥2). On the other hand, from the proof of auxiliary Lemma 12 we
know that

E
[
∥wk+1 − x⋆∥2

∣∣∣xk+1, wk

]
(81)
= p∥xk+1 − x⋆∥2 + (1− p)∥wk − x⋆∥2,

which means that (9) holds with A2 = p, B2 = 1 − p, and C2 = 0. In summary, Assumption 7
holds with

A1 = 0, B1 = δ2, C1 = 0, and A2 = p,B2 = 1− p, C2 = 0.

Theorem 7. Let Assumption 1 (differentiability), Assumption 2 (µ-strong convexity), and Assump-
tion 5 (δ-similarity) hold. Choose any x0, w0 ∈ Rd. Then for any p ∈ (0, 1], γ > 0, α > 0 and all
k ≥ 0, we have

E [Ψk] ≤ max

{
1 + αp

(1 + γµ)2
,

1 + αp

(1 + γµ)2
γ2δ2

α
+ 1− p

}k

Ψ0, (49)

where

Ψk := ∥xk − x⋆∥2 + α∥wk − x⋆∥2. (50)

If δ = 0, we have the more precise result

E
[
∥xk+1 − x⋆∥2

]
≤ 1

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
. (51)

Commentary:

1. Convergence vs divergence. Clearly, it is possible for the maximum in (49) to not be
smaller than 1. In this case, the theorem gives a meaningless result. Whether or not the
value is smaller than 1 depends on the choice of the parameters α, p and γ in relation to the
strong convexity constant µ. For example, it’s clear that if γ and p are fixed and α is too
large, the expression 1+αp

(1+γµ)2 might exceed 1, rendering the rate vacuous.

2. Optimal choice of α. Note that α 7→ 1+αp
(1+γµ)2 is linear and increasing, and α 7→

1+αp
(1+γµ)2

γ2δ2

α + 1 − p is convex and decreasing (make sure you understand why!). More-
over, while the first function has a finite value at α = 0, the second function blows up as α
approaches 0 from the right. This means that the maximum of these two functions will be
minimized at the point where the graphs of the two functions intersect, i.e., at α satisfying

1 + αp

(1 + γµ)2
=

1 + αp

(1 + γµ)2
γ2δ2

α
+ 1− p. (52)

In the p = 1 case (L-SVRP reduces to SPPM-GC in this regime), the equation simplifies to
1 = γ2δ2

α , i.e., the optimal solution is α = γ2δ2, and (49) reduces to

E [Ψk] ≤
(

1 + γ2δ2

(1 + γµ)2

)k

Ψ0. (53)

This is the same result we obtained in (47) for the SPPM-GC method, up to the choice of
the Lyapunov function. However, if we initialize with w0 = x0, then

Ψk = (1 + γµ)∥xk − x⋆∥2, (54)

and plugging this into (53) gives

E
[
∥xk − x⋆∥2

]
≤
(

1 + γ2δ2

(1 + γµ)2

)k

∥x0 − x⋆∥2, (55)

which is exactly (47).
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The 0 < p < 1 case turns out to be a more cumbersome. After a bit of algebra, one obtains
that equation (52) is equivalent to the quadratic equation

pα2 + bα+ c = 0,

where b = 1− (1 + γµ)2(1− p)− pγ2δ2 and c = γ2δ2. The roots of the quadratic are

α =
−b±

√
b2 − 4pc

2p
.

It seems it is awkward to work with this expression since the resulting rate will become hard
to parse and interpret. So, we’ll give up on working with perfectly optimal α. Nevertheless,
we will show how to choose some (slightly suboptimal) α in Corollary 8 which also gives
the right complexity result.

Admittedly, it’s not easy to understand how good is the rate provided by (49). The following corol-
lary sheds light on what is achievable.
Corollary 8. If we choose α = γµ

p and γ = p

p δ2

µ +(1−p)µ
, then for any ε > 0 we have

k ≥
(
1

p
+

δ2

µ2

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε. (56)

Proof. Since α = γµ
p , we have

A(γ) :=
1 + αp

(1 + γµ)2
=

1

1 + γµ

and

B(γ) :=
1 + αp

(1 + γµ)2
γ2δ2

α
+ 1− p =

1

1 + γµ

pγδ2

µ
+ 1− p.

Plugging this into (50) leads to

E [Ψk] ≤ max {A(γ), B(γ)}k Ψ0, (57)

We will now select stepsize γ which minimizes

γ 7→ max{A(γ), B(γ)}.
Notice that γ 7→ A(γ) is decreasing to zero on (0,∞), with A(γ) blowing up to ∞ as γ approaches
zero from the right. Further, γ 7→ B(γ) is increasing in (0,∞). This means that max{A(γ), B(γ)}
is minimized at the point where the graphs of the two functions intersect, i.e., at γ satisfying A(γ) =
B(γ). Direct calculation shows that the solution of this is

γ = γ⋆ :=
p

p δ2

µ + (1− p)µ
, (58)

and hence

E [Ψk] ≤ max {A(γ⋆), B(γ⋆)}k Ψ0 = A(γ⋆)
kΨ0 =

(
1

1 + γ⋆µ

)k

Ψ0 =

(
1− γ⋆µ

1 + γ⋆µ

)k

Ψ0.

This implies that

k ≥
(
1 +

1

γ⋆µ

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε. (59)

Plugging γ⋆ into this iteration complexity result gives

1 +
1

γ⋆µ

(58)
= 1 +

pδ2

µ + (1− p)µ

pµ
=

1

p
+

δ2

µ2
.

Plugging this back into (59) gives the final result

k ≥
(
1

p
+

δ2

µ2

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε. (60)
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Commentary:

1. Comparing to SPPM with Gradient Correction (i.e., p = 1). Recall that L-SVRP re-
duces to SPPM-GC when w0 = x0 and p = 1. Therefore, one would expect the rates to be
the same. First, notice that wk = xk for all k, and as a result, the Lyapunov function (50)
reduces to

Ψk = (1 + γµ)∥xk − x⋆∥2, (61)

and hence (57) reduces to

(1 + γµ)E
[
∥xk − x⋆∥2

]
(61)
= E [Ψk] ≤ max

{(
1

1 + γµ

)k

,

(
1

1 + γµ

γδ2

µ

)k
}
Ψ0.

If we choose γ ≤ µ
δ2 , then the first term in the max dominates, and we get

max

{(
1

1 + γµ

)k

,

(
1

1 + γµ

γδ2

µ

)k
}
Ψ0 =

(
1

1 + γµ

)k

Ψ0

(61)
=

(
1

1 + γµ

)k

(1 + γµ)∥x0 − x⋆∥2.

Combining the above observations, we get

E
[
∥xk − x⋆∥2

]
≤
(

1

1 + γµ

)k

∥x0 − x⋆∥2 =

(
1− 1

1 + 1
γµ

)k

∥x0 − x⋆∥2.

It is easy to see that this means that if we choose k ≥
(
1 + 1

γµ

)
log
(

∥x0−x⋆∥2

ε

)
, then

E
[
∥xk − x⋆∥2

]
≤ ε. The best rate is obtained for the largest allowed stepsize, i.e., for

γ = µ
δ2 (recall that this was the optimal stepsize choice for SPPM-GC established in Ap-

pendix B.6), in which case we conclude that

k ≥
(
1 +

δ2

µ2

)
log

(
∥x0 − x⋆∥2

ε

)
⇒ E

[
∥xk − x⋆∥2

]
≤ ε.

If more similarity (i.e., smaller δ) or more strong convexity (i.e., larger µ) is present, fewer
iterations are needed to solve the problem. Note that we get the same result as in (48);
so, we do not lose anything by doing the analysis in the δ > 0 case using the Lyapunov
approach.

2. Comparison to the result of Khaled and Jin (2023). Choosing α = γµ
p , γ = µ

2δ2 , p = 1
n ,

we retrieve the convergence guarantees of Khaled and Jin (2023). Indeed, from Corollary 8
we have that

A(γ) =
1

1 + γµ
, B(γ) =

1

1 + γµ

γδ2p

µ
+ 1− p.

The condition on the stepsize states that γδ2

µ ≤ 1
2 . It implies that B(γ) ≤ 1 − p

2 . Let

ρ = min
{

γµ
1+γµ ,

p
2

}
. Clearly, E

[
∥xk − x⋆∥2

]
≤ E [Ψk] . Further, as w0 = x0,

E [Ψ0] = ∥x0 − x⋆∥2 +
γµ

p
∥w0 − x⋆∥2 =

(
1 +

γµ

p

)
∥x0 − x⋆∥2.

For any k ≥ 0, we obtain

E
[
∥xk − x⋆∥2

]
≤
(
1 +

γµ

p

)
(1− ρ)

k ∥x0 − x⋆∥2,

therefore,

E
[
∥xK − x⋆∥2

]
≤
(
1 +

γµ

p

)
exp {−ρK} ∥x0 − x⋆∥2.
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If we run L-SVRP for

K ≥ 1

ρ
log

∥x0 − x⋆∥2
(
1 + γµ

p

)
ε

 .

Making the substitutions ρ = min
{

γµ
1+γµ ,

p
2

}
, γ = µ

2δ2 , p = 1
n , we arrive at

K ≥ 2max

{
1

2
+

δ2

µ2
, n

}
log

∥x0 − x⋆∥2
(
1 + µ2n

2δ2

)
ε

 ,

which is even slightly better than the result by Khaled and Jin (2023).

Proof of Theorem 7. From Lemma 7 we know that Assumption 7 holds for the iterates of L-SVRP
(Algorithm 7) with

A1 = 0, B1 = δ2, C1 = 0, and A2 = p,B2 = 1− p, C2 = 0.

From Theorem 1 choosing any α > 0, θ = max
{

1+αp
(1+γµ)2 ,

1+αp
(1+γµ)2

γ2δ2

α + 1− p
}
, ζ = 0 (see (15)

and (16)), we get

E [Ψk] ≤ max

{
1 + αp

(1 + γµ)2
,

1 + αp

(1 + γµ)2
γ2δ2

α
+ 1− p

}k

Ψ0,

where

Ψk := ∥xk − x⋆∥2 + α∥wk − x⋆∥2.

B.8 POINT SAGA (Point SAGA)

The main motivation is to give one more example of a SPPM method based on the idea of gradient
correction which does not need to compute the full/exact gradient of f in each iteration. We consider
another well-known variance-reduced SPPM method called Point SAGA. However, we will revert
back to the finite-sum optimiziation problem

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi(x)

}
.

Algorithm 8 Point SAGA (Point SAGA)
1: Parameters: learning rate γ > 0, starting point x0 ∈ Rd, starting control vectors wi

0 ∈ Rd for
i ∈ [n]

2: for k = 0, 1, 2, . . . do
3: Sample ik ∈ {1, . . . , n} uniformly at random

4: Set hk = ∇fik(w
ik
k )− 1

n

n∑
j=1

∇fj(w
j
k)

5: xk+1 = proxγfik
(xk + γhk)

6: Set wj
k+1 =

{
xk+1 for j = ik
wj

k for j ̸= ik
7: end for

Commentary:

1. Compared to Algorithm 7, Algorithm 8 uses additional memory to store the table of control
vectors wi

k or computed gradients ∇fi(w
i
k).
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2. In each iteration, the method update only one “column” in a memory table replacing the
old control vector/gradient with the corresponding new one.

The structure of Point SAGA will not allow us perform the analysis under the similarity assumption
(Assumption 5). Instead, we will rely on the stronger Assumption 6.

We assume that there exists ν > 0 such that the inequality

1

n

n∑
j=1

∥∥∥∥∥∇fj(x
j)− 1

n

n∑
i=1

∇fi(x
i)−∇fj(x⋆)

∥∥∥∥∥
2

≤ ν2
1

n

n∑
j=1

∥∥xj − x⋆

∥∥2
holds for all x1, . . . , xn ∈ Rd.

This inequality can be written in the form

1

n

n∑
j=1

∥∥∇fj(x
j)−∇fj(x⋆)

∥∥2−∥∥∥∥∥ 1n
n∑

i=1

∇fi(x
i)

∥∥∥∥∥
2

≤ ν2
1

n

n∑
j=1

∥∥xj − x⋆

∥∥2, ∀xj ∈ Rd, j ∈ [n].

(62)

Thus, (62) holds, if the following condition is assumed

1

n

n∑
j=1

∥∥∇fj(x
j)−∇fj(x⋆)

∥∥2 ≤ ν2
1

n

n∑
j=1

∥∥xj − x⋆

∥∥2, ∀xj ∈ Rd, j ∈ [n]. (63)

Moreover, (63) is equivalent to the following condition: for all j ∈ [n], we have

∥∇fj(x)−∇fj(x⋆)∥2 ≤ ν2∥x− x⋆∥2, ∀x ∈ Rd. (64)

Finally, (64) holds, if each fj is ν-smooth, i.e.

∥∇fj(x)−∇fj(y)∥2 ≤ ν2∥x− y∥2, ∀x, y ∈ Rd. (65)

In summary, we have the following relations between the above conditions:
(65) ⇒ (64) ≡ (63) ⇒ (62) ≡ (6).

Lemma 8. Suppose Assumption 6 holds with ν > 0. Then Assumption 7 holds for the iterates of
Point SAGA (Algorithm 8) with

A1 = 0, B1 = ν2, C1 = 0, and A2 =
1

n
,B2 =

n− 1

n
,C2 = 0.

Proof of Lemma 8. Let σk = 1
n

n∑
i=1

∥∥wi
k − x⋆

∥∥2, ϕk =
(
w1

k, . . . , w
n
k

)
. Recalling that

hk := ∇fik(w
ik
k )− 1

n

n∑
j=1

∇fj(w
j
k), (66)

we have

E [hk|xk, ϕk] = E

 1

n

n∑
j=1

∇fj(w
j
k)−

1

n

n∑
j=1

∇fj(w
j
k)

∣∣∣∣∣∣xk, ϕk

 = 0. (67)

Further,

E
[
∥hk −∇fik(x⋆)∥2

∣∣∣xk, ϕk

]
(66)
= E


∥∥∥∥∥∥∇fik(w

ik
k )− 1

n

n∑
j=1

∇fj(w
j
k)−∇fik(x⋆)

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣xk, ϕk


=

1

n

n∑
i=1

∥∥∥∥∥∥∇fi(w
i
k)−

1

n

n∑
j=1

∇fj(w
j
k)−∇fi(x⋆)

∥∥∥∥∥∥
2

(6)
≤ ν2

n

n∑
i=1

∥∥wi
k − x⋆

∥∥2.
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Therefore, we have that A1 = 0, B1 = ν2, C1 = 0.

E
[
σ2
k+1

∣∣xk+1, ϕk

]
= E

[
1

n

n∑
i=1

∥∥wi
k+1 − x⋆

∥∥2∣∣∣∣∣xk+1, ϕk

]

=
1

n

n∑
ik=1

 1

n
∥xk+1 − x⋆∥2 +

1

n

∑
j ̸=ik

∥∥∥wj
k − x⋆

∥∥∥2


=
1

n
∥xk+1 − x⋆∥2 +

n− 1

n
σ2
k.

Therefore, we have that A2 = 1
n , B2 = n−1

n , C2 = 0.

The convergence of Point SAGA is captured by the following theorem.
Theorem 9. Let Assumption 1, Assumption 2 and Assumption 6 hold. Chose any x0, w

1
0, . . . , w

n
0 ∈

Rd. Then for any γ > 0, and all k ≥ 0, we have

E [Ψk] ≤ max

{(
1

1 + γµ

)k

,

(
1

1 + γµ

γν2

µn
+ 1− 1

n

)k
}
Ψ0, (68)

where

Ψk := ∥xk − x⋆∥2 + γµ

n∑
i=1

∥∥wi
k − x⋆

∥∥2. (69)

Clearly, it is possible for the maximum in (68) to not be smaller than 1. In this case, the theorem
produces the meaningless result. Whether or not the value is smaller than 1 dependes on the choice
of γ with respect to the strong convexity constant µ, the number of individual functions n, the
similarity constant ν.

Proof of Theorem 9. From Lemma 8 we have that Assumption 7 holds for the iterates of Point SAGA
(Algorithm 8) with

A1 = 0, B1 = ν2, C1 = 0, and A2 =
1

n
,B2 =

n− 1

n
,C2 = 0.

From Theorem 1, choosing α = γµn, θ = max
{

1
1+γµ ,

1
1+γµ

γν2

µn + 1− 1
n

}
, ζ = 0 (see (15) and

(16)), we obtain

E [Ψk] ≤ max

{(
1

1 + γµ

)k

,

(
1

1 + γµ

γν2

µn
+ 1− 1

n

)k
}
Ψ0,

where

Ψk := ∥xk − x⋆∥2 + γµ

n∑
i=1

∥∥wi
k − x⋆

∥∥2.
Corollary 10. If we choose γ = 1

γ2

µ +(n−1)µ
, then, for any ε > 0, we have

k ≥
(
n+

ν2

µ2

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε.

Proof of Corollary 10. Notice that A(γ) := 1
1+γµ is decreasing for γ > 0, and B(γ) := γν2

1+γµ+1−
1
n is increasing for γ > 0. This means that max {} is minimized at γ := γ⋆ where A(γ) = B(γ).
Direct calculation shows that the solution of this is

γ = γ⋆ :=
1

ν2

µ + (n− 1)µ
,
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and hence

E [Ψk] ≤ max {A(γ⋆), B(γ⋆)}k Ψ0 = A(γ⋆)
kΨ0 =

(
1

1 + γ⋆µ

)k

Ψ0 =

(
1− γ⋆µ

1 + γ⋆µ

)k

Ψ0.

This implies that

k ≥
(
1 +

1

γ⋆µ

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε.

Plugging γ⋆ into this iteration complexity result gives

1 +
1

γ⋆µ
= 1 +

ν2

µn +
(
1− 1

n

)
µ

µ
n

= n+
ν2

µ2
.

We obtain the final result

k ≥
(
n+

δ2

µ2

)
log

(
Ψ0

ε

)
⇒ E [Ψk] ≤ ε.

C AUXILIARY LEMMA FOR SPPM-LC

Our main result relies on a single lemma only.
Lemma 9. Let Assumption 1, Assumption 2 and Assumption 7 hold. Then

E
[
∥xk+1 − x⋆∥2

]
≤ (1 + γ2A1)

(1 + γµ)2
E
[
∥xk − x⋆∥2

]
+

γ2B1

(1 + γµ)2
E
[
σ2
k

]
+

γ2C1

(1 + γµ)2
. (70)

Proof. By combining Fact 1 and Fact 2, we get

∥xk+1 − x⋆∥2
Fact 1
=

∥∥∥proxγfξk (xk + γhk)− proxγfξk
(x⋆ + γ∇fξk(x⋆))

∥∥∥2
Fact 2
≤ 1

(1 + γµ)2
∥xk + γhk − (x⋆ + γ∇fξk(x⋆))∥2

=
1

(1 + γµ)2
∥xk − x⋆ + γ (hk −∇fξk(x⋆))∥2.

Thus, we have that

∥xk+1 − x⋆∥2 ≤ 1

(1 + γµ)2

(
∥xk − x⋆∥2 + 2γ ⟨hk −∇fξk(x⋆), xk − x⋆⟩+ γ2∥hk −∇fξk(x⋆)∥2

)
.

We can use it since it holds irrespective of the choice of hk. Taking conditional expectation on both
sides, we get

E
[
∥xk+1 − x⋆∥2

∣∣∣xk, ϕk

]
≤ 1

(1 + γµ)2
E
[
∥xk − x⋆∥2

∣∣∣xk, ϕk

]
+

2γ

(1 + γµ)2
⟨E [hk −∇fξk(x⋆)|xk, ϕk] , xk − x⋆⟩

+
γ2

(1 + γµ)2
E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, ϕk

]
. (71)

Note that

E
[
∥xk − x⋆∥2

∣∣∣xk, ϕk

]
= ∥xk − x⋆∥2. (72)

Further,

E [hk −∇fξk(x⋆)|xk, ϕk] = E [hk|xk, ϕk]− E [∇fξk(x⋆)|xk, ϕk]

= E [hk|xk, ϕk]−∇f(x⋆)

= E [hk|xk, ϕk]

= 0, (73)
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where the last equality follows from Assumption 7, relation (7). Relation (8) of Assumption 7 says
that

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, ϕk

]
≤ A1∥xk − x⋆∥2 +B1σ

2
k + C1. (74)

Plugging (74), (73) and (72) into (71), we obtain

E
[
∥xk+1 − x⋆∥2

∣∣∣xk, ϕk

]
≤ 1

(1 + γµ)2

((
1 + γ2A1

)
∥xk − x⋆∥2 + γ2B1σ

2
k + γ2C1

)
. (75)

It only remains to take expectation on both sides and apply the tower property.

D AUXILIARY LEMMAS

D.1 SPPM-AS

Lemma 10. Let ϕ1, . . . , ϕm : Rd → R be differentiable functions, with ϕi being µi-strongly convex
for all i ∈ [n]. Further, let w1, . . . , wm be positive scalars. Then the function ϕ :=

∑m
i=1 wiϕi is

µ-strongly convex with µ =
∑m

i=1 wiµi.

Proof. By assumption,

ϕi(y) + ⟨∇ϕi(y), x− y⟩+ µi

2
∥x− y∥2 ≤ ϕi(x), ∀x, y ∈ Rd. (76)

This means that
m∑
i=1

wi

(
ϕi(y) + ⟨∇ϕi(y), x− y⟩+ µi

2
∥x− y∥2

)
≤

m∑
i=1

wiϕi(x), ∀x, y ∈ Rd,

which is equivalent to

ϕ(y) + ⟨∇ϕ(y), x− y⟩+
∑m

i=1 wiµi

2
∥x− y∥2 ≤ ϕ(x), ∀x, y ∈ Rd, (77)

So, ϕ is µ-strongly convex.

D.2 L-SVRP

Lemma 11. Recalling that
hk := ∇fξk(wk)−∇f(wk), (78)

we can write
E [ ⟨hk −∇fξk(x⋆), xk − x⋆⟩|xk, wk] = ⟨E [hk −∇fξk(x⋆)|xk, wk] , xk − x⋆⟩

(78)
= ⟨E [∇fξk(wk)−∇f(wk)−∇fξk(x⋆)|xk, wk] , xk − x⋆⟩

=

〈
∇f(wk)−∇f(wk)−∇f(x⋆)︸ ︷︷ ︸

=0

, xk − x⋆

〉
= 0, (79)

and

E
[
∥hk −∇fξk(x⋆)∥2

∣∣∣xk, wk

]
(78)
= E

[
∥∇fξk(wk)−∇f(wk)−∇fξk(x⋆)∥2

∣∣∣xk, wk

]
(5)
≤ δ2∥wk − x⋆∥2. (80)

Lemma 12. Observe that by the way wk+1 is defined, we have

E
[
∥wk+1 − x⋆∥2

∣∣∣xk+1, wk

]
= p∥xk+1 − x⋆∥2 + (1− p)∥wk − x⋆∥2. (81)

Taking expectation again, and applying the tower property of expectation, we get

E
[
∥wk+1 − x⋆∥2

]
= E

[
E
[
∥wk+1 − x⋆∥2

∣∣∣xk+1, wk

]]
(81)
= pE

[
∥xk+1 − x⋆∥2

]
+ (1− p)E

[
∥wk − x⋆∥2

]
, (82)

which is what we set out to prove.
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E AUXILIARY FACTS

Fact 1 (Every point is a fixed point). Let ϕ : Rd → R be a differentiable convex function. Then

proxγϕ (x+ γ∇ϕ(x)) = x, ∀γ > 0, ∀x ∈ Rd.

In particular, if x⋆ is a minimizer of ϕ, then proxγϕ (x⋆) = x⋆.

Proof. Pick any x ∈ Rd and γ > 0. Evaluating the proximity operator at

y := x+ γ∇ϕ(x) (83)

gives

proxγϕ (y) = arg min
x′∈Rd

(
ϕ(x′) +

1

2γ
∥x′ − y∥2

)
.

This is a strongly convex minimization problem, and hence the (necessarily unique) minimizer

x′ := proxγϕ (y) (84)

of this problem satisfies the first-order optimality condition

∇ϕ(x′) +
1

γ
(x′ − y) = 0.

Note that x′ = x satisfies this equation, and hence

x
(84)
= proxγϕ (y)

(83)
= proxγϕ (x+ γ∇ϕ(x)) .

The next statement is (Khaled and Jin, 2023, Fact 4)

Fact 2 (Contractivity of the prox). If ϕ is differentiable and µ-strongly convex, then for all γ > 0
and for any x, y ∈ Rd we have∥∥proxγϕ (x)− proxγϕ (y)

∥∥2 ≤ 1

(1 + γµ)2
∥x− y∥2.

Proof. This lemma can be seen as a tighter version of (Mishchenko et al., 2022, Lemma 5) though
our proof technique is different. Note that p(x) = proxγh(x) satisfies γ∇h(p(x))+[p(x)− x] = 0,
or equivalently p(x) = x− γ∇h(p(x)). Using this we have

∥p(x)− p(y)∥2 = ∥[x− γ∇h(p(x))]− [y − γ∇h(p(y))]∥2

= ∥[x− y]− γ [∇h(p(x))−∇h(p(y))]∥2

= ∥x− y∥2 + γ2∥∇h(p(x))−∇h(p(y))∥2 − 2γ ⟨x− y,∇h(p(x))−∇h(p(y))⟩ .
(85)

Now note that

⟨x− y,∇h(p(x))−∇h(p(y))⟩ = ⟨p(x) + γ∇h(p(x))− [p(y) + γ∇h(p(y))] ,∇h(p(x))−∇h(p(y))⟩
= ⟨p(x)− p(y),∇h(p(x))−∇h(p(y))⟩+ γ∥∇h(p(x))−∇h(p(y))∥2.

(86)

Combining Equations (85) and (86) we get

∥p(x)− p(y)∥2 = ∥x− y∥2 + γ2∥∇h(p(x))−∇h(p(y))∥2 − 2γ ⟨p(x)− p(y),∇h(p(x))−∇h(p(y))⟩
− 2γ2∥∇h(p(x))−∇h(p(y))∥2

= ∥x− y∥2 − γ2∥∇h(p(x))−∇h(p(y))∥2 − 2γ ⟨p(x)− p(y),∇h(p(x))−∇h(p(y))⟩ .
(87)
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Let Dh(u, v) = h(u)−h(v)−⟨∇h(v), u− v⟩ be the Bregman divergence associated with h at u, v.
It is easy to show that

⟨u− v,∇h(u)−∇h(v)⟩ = Dh(u, v) +Dh(v, u).

This is a special case of the three-point identity (Chen and Teboulle, 1993, Lemma 3.1). Using this
with u = p(x) and v = p(y) and plugging back into (87) we get

∥p(x)− p(y)∥2 = ∥x− y∥2 − γ2∥∇h(p(x))−∇h(p(y))∥2 − 2γ [Dh(p(x), p(y)) +Dh(p(y), p(x))] .

Note that because h is strongly convex, we have that Dh(p(y), p(x)) ≥ µ
2 ∥p(y)− p(x)∥2 and

Dh(p(x), p(y)) ≥ µ
2 ∥p(y)− p(x)∥2, hence

∥p(x)− p(y)∥2 ≤ ∥x− y∥2 − γ2∥∇h(p(x))−∇h(p(y))∥2 − 2γµ∥p(x)− p(y)∥2. (88)

Strong convexity implies that for any two points u, v

∥∇h(u)−∇h(v)∥2 ≥ µ2∥u− v∥2,

see (Nesterov, 2018, Theorem 2.1.10) for a proof. Using this in Equation (88) with u = p(x) and
v = p(y) yields

∥p(x)− p(y)∥2 ≤ ∥x− y∥2 − γ2µ2∥p(x)− p(y)∥2 − 2γµ∥p(x)− p(y)∥2.

Rearranging gives [
1 + γ2µ2 + 2γµ

]
∥p(x)− p(y)∥2 ≤ ∥x− y∥2.

It remains to notice that (1 + γµ)2 = 1 + γ2µ2 + 2γµ.

Fact 3 (Recurrence). Assume that a sequence {sk}k≥0 of positive real numbers for all k ≥ 0
satisfies

sk+1 ≤ ask + b,

where 0 < a < 1 and b ≥ 0. Then the sequence for all k ≥ 0 satisfies

sk ≤ aks0 + bmin

{
k,

1

1− a

}
. (89)

Proof. Unrolling the recurrence, we get

sk ≤ ask−1 + b ≤ a (ask−2 + b) + b ≤ · · · ≤ aks0 + b

k−1∑
i=0

ai. (90)

We can now bound the sum
∑k−1

i=0 ai in two different ways. First, since a < 1, we get the estimate

k−1∑
i=0

ai ≤
k−1∑
i=0

1 = k. (91)

Second, we sum a geometric series

k−1∑
i=0

ai ≤
∞∑
i=0

ai =
1

1− a
. (92)

Note that either of these bounds can be better. So, we apply the best of these bounds. Substituting
Equations (91) and (92) into (90) gives (89).
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