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ABSTRACT

This paper presents a comprehensive analysis of a broad range of variations of the
stochastic proximal point method (SPPM). Proximal point methods have attracted
considerable interest owing to their numerical stability and robustness against
imperfect tuning, a trait not shared by the dominant stochastic gradient descent
(SGD) algorithm. A framework of assumptions that we introduce encompasses
methods employing techniques such as variance reduction and arbitrary sampling.
A cornerstone of our general theoretical approach is a parametric assumption on
the iterates, correction and control vectors. We establish a single theorem that en-
sures linear convergence under this assumption and the p-strong convexity of the
loss function, and without the need to invoke smoothness. This integral theorem
reinstates best known complexity and convergence guarantees for several existing
methods which demonstrate the robustness of our approach. We expand our study
by developing three new variants of SPPM, and through numerical experiments
we elucidate various properties inherent to them.

1 INTRODUCTION

In this paper we consider the stochastic optimization problem
min {f(2) = B¢~ [fe()]} (D

where £ ~ D is a random variable following distribution D, and E [-] denotes mathematical expec-
tation. Problems of this type are fundamental for statistical supervised learning theory. Here, x is
a machine learning model of d € N parameters, D is an unknown distribution of labeled examples,
samples £ ~ D are available, f¢ is the loss on datapoint £, f is the generalization error. In such a
setup, an unbiased estimator of the gradient V f¢ () is computed instead of the gradient V f (). We
rely on two assumptions, presented next.

Assumption 1. Function fe : RY — R is differentiable for all samples & ~ D.
We implicitly assume that the order of differentiation and expectation can be swapped, which means

that Vf () 0 VE¢p [fe(2)] = Eeup [V fe(x)] . This implies that f is differentiable.
Assumption 2. Function f¢ : R? — R is p-strongly convex for all samples & ~ D, where j1 > 0 :

H 2
Fey) + (VfeWw),w = y) + Sllz = yll” < fela), Yo,y eR7 )
This implies that f is p-strongly convex, and hence f has a unique minimizer, which we denote by
Z,. We know that V f(z,) = 0. Notably, we do not assume f to be L-smooth.

Another type of problem considered in the paper is a minimization of functions f that are averages
of a large number of differentiable functions:

i {f(x) - }lzmm} . ®

This is a special case of (I)), with D being the uniform distribution over the finite set [n]: & = ¢
with probability % Problems with this structure commonly emerge in practice during the training of
supervised machine learning models via empirical risk minimization. They are known as finite-sum
optimization problems. We rely on two assumptions, presented next.
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Assumption 3. Function f; : RY — R is differentiable for all i € [n)].

This implies that f is differentiable.
Assumption 4. Function f; : R? — R is p;-strongly convex for all i € [n], where yi; > 0. That is,

fity) +(Vfily),z —y) + %le —y|? < fi(z), x,yeR™ 4)

This refines Assumption [2} with the the same strong convexity parameter for all functions. This
implies that f is p-strongly convex with © = min; ;. Hence, f has a unique minimizer x,.

2  VARIATIONS OF SPPM

The most common algorithm for finding an e-accurate solution of problems (1) and (3)) is stochastic
gradient descent (SGD)Robbins and Monro|(1951); Nemirovski et al.|(2009); Gower et al.[(2019)). In
general, SGD updates have the form of ™! = x* —~¢*, where g* is an unbiased stochastic gradient
estimator: E [ g*| 2*] = V f(2*). There are numerous approaches to constructing an estimator with
the aim of attaining preferable algorithmic features such as faster convergence rate, lower iteration
cost, parallelization, and generalization. One of the most significant issues in SGD variations is the
difficulties with a suitable selection of the stepsize. Theoretical results highlight that the stepsize is
restricted to small values (Bach and Moulines|, [2011)).

Whenever we are able to evaluate the stochastic proximity operator, another option to consider in
place of SGD is the stochastic proximal point method (SPPM), whose iterations have the form

. 1 2
Prox, s, (vk) = arg min {fsk (@) + 5 e = } &~ D,

where v > 0 is a stepsize. Clearly, the proximity operator is well-defined due to the strong convexity
Assumption 2] on f¢(z). Given the error tolerance £ > 0, we derive in Appendix (see 23);
also, see (Asi and Duchi} 2019} Proposition 5.3), (Khaled and Jinl 2023, Theorem 1)) that with

02 :=E¢up [||Vf5(z*)\|2} , the stepsize 7 = L5, we get E [ka - l‘*”Q} < ¢ provided that

1 o2 2|zo — x4 ||?
E> =+ % Jlog [ 20—+l )
- (2 * 2;;%‘) ©8 ( €

As shown by |Gower et al.|(2019)), in the same setting, SGD with fixed stepsize reaches an e-accurate

solution after
2L 202 4l|lzo — 24|
k> ( + Z*> log (on z| )
I nee €

iterations (L is a bound on the smoothness constant of stochastic functions). Note that although both
iteration complexities are dependent on the stochastic noise term, the iteration complexity of SGD
additionally hinges on the condition number. k := ﬁ > 1 (u is a strong convexity parameter of f
here). In contrast, the iteration complexity of SPPM remains unaffected by the smoothness constant
L. Consequently, if we have access to stochastic proximal operator evaluations, we can achieve
a faster convergence rate than SGD. Another important aspect is that SPPM still works for large
stepsizes. The primary distinction with the result of Khaled and Jin| (2023) is that the neighborhood
guaranteed in our analysis for SPPM does not blow up to infinity as the stepsize v grows to infinity
(see (21) in Theorem[2]and Commentary [2] after it).

Ryu and Boyd|(2016);|Asi and Duchi| (2019) demonstrated that SPPM exhibits greater resilience in
terms of the choice of stepsize compared to SGD. Ryu and Boyd|(2016)) furnish convergence rates for
SPPM and note its stability against learning rate misspecification, a trait not shared by SGD.|Asi and
Duchi|(2019) examine a broader method (AProx) which encompasses SPPM as a particular instance,
providing both stability and convergence rates under convexity. Additionally, the convergence rates
of SPPM remain consistent with those of SGD across different versions of the algorithms.

We have discussed the versatility in designing the unbiased stochastic estimator ¢g* in SGD, which
can be accomplished in various manners. Among these, popular sampling strategies include impor-
tance sampling and mini-batching. A comprehensive analysis of these methods within the frame-
work of arbitrary sampling was presented by |(Gower et al.| (2019). Similarly, an analogous effort is
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made for SPPM in our paper, where sampling schemes and methods such as SPPM-NS and SPPM-
AS are proposed (see Appendix and [B.4). While sampling strategies offer significant utility,
both for SGD and SPPM variations, they tend to converge to the vicinity of the solution for fixed
stepsizes, reaching the exact solution only in the overparameterized regime.

That being said, the issue of SGD iterates not converging to the optimum prompted the development
of variance-reduced methods. These methods enhance the convergence rate of SGD for finite-sum
problems by constructing gradient estimators with diminishing variance over time (e.g., SAGA (De-
fazio et al.,[2014)) and SVRG (Johnson and Zhang,|2013))). In other words, variance-reduced methods
progressively acquire knowledge of the stochastic gradients at the optimum and mitigate the influ-
ence of gradient noise. Consequently, for strongly convex f, these variance-reduced methods exhibit
linear convergence towards z, with a fixed step size (see a survey by |Gower et al.| (2020)). In the
discussion above we concluded that SPPM has advantages over SGD. This motivated [Khaled and
Jin| (2023) to explore variance-reduced variants of SPPM. They proposed the SVRP algorithm with
an approximate calculation of the proximal operator and demonstrated that variance reduced vari-
ants of SPPM have better convergence guarantees under second-order similarity assumption for the
finite-sum setting (3). We present and employ in this paper a more general form of this assumption
for the stochastic setting (T)) in order to analyze L-SVRP with the proximal operator in the updates.
We stipulate the similarity assumption to be valid exclusively at z,, whereas [Khaled and Jin/ (2023)
require it to hold for any y € R? instead.

Assumption 5 (Similarity). There exists § > 0 such that

Eep [vag(x) —Vf(z) - Vfg(:c*)\ﬂ < |z —az.)? ~ VzeR%L (5)

Let us also note here that the standard §-smoothness assumption implies the second-order similarity
assumption by [Khaled and Jin| (2023), which in turn implies Assumption [5] In Appendix [B.6| we
discuss the generality of Assumption [3]in detail. In the studies of [Szlendak et al| (2022); [Panferov
et al.[(2024)), federated optimization with compression under the similarity assumption is explored,
leading to improved convergence rates achieved through specially designed compression operators.

Point SAGA, also a variant of SPPM, was proposed by |Defazio| (2016)), where its convergence was
analyzed under the individual smoothness assumption. The algorithm requires a large amount of
memory for its execution. It inherits this shortcoming from its SGD variance-reduced archetype
SAGA by |Defazio et al.|(2014)). The structure of Point SAGA will not allow us to perform the analysis
under the similarity assumption (Assumption[3). Instead, we will rely on this stronger assumption.

Assumption 6. We assume that there exists v > 0 such that the inequality

1 n

>
j=1

holds for all z*, ... 2" € R%

2
21 En i _ 2
<v n < ||'»75'j LIZ*H (6)
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Let us note that this condition is weaker than the individual v-smoothness assumption. In Ap-
pendix [B-8] we discuss the generality of Assumption[6]in more detail.

Traoré et al.| (2023) analyze L-SVRP and Point SAGA algorithms in the setting (3) when each f;
is smooth, convex, and either f is convex or satisfies the PL.-condition. In contrast, in our work
we consider a different setting with individually strongly convex functions under Assumption [3]
or Assumption [§] (both are weaker than the individual smoothness assumption). The convergence
theory of variance-reduced SPPM methods significantly differs from that of standard SPPM. We
suggest the possibility of a unified theory that encompasses both SPPM and its variance-reduced
counterparts.

3 CONTRIBUTIONS

Numerous efficient adaptations of the SPPM algorithm have emerged, each with its specific ap-
plications. Our research stems from the absence of a comprehensive and universally applicable
theory. While some connections among existing methods have been established (as demonstrated
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by |Traoré et al.|(2023)), who link the classical SPPM method with its variance-reduced counterparts),
a cohesive theoretical framework without the smoothness assumption is missing. Understanding the
connections among various algorithms rooted in SPPM is becoming increasingly challenging for the
community, both in theory and practical applications. While new variants are yet to be discovered,
determining concrete principles beyond intuition to guide their discovery remains challenging. Com-
plicating matters further is the use of various assumptions regarding the correction vectors across
different literature, each with differing levels of rigor. Key contributions of this study comprise:

e A universal algorithm. We design a universal SPPM-LC algorithm (stochastic proximal point
method with learned correction, Algorithm [T) that encompasses 7 variants of stochastic proximal
point method (SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA; see Ta-
ble[T) through (random) correction vectors hy,. A specific choice of correction vectors allows to re-
trieve any particular of the mentioned algorithms. Motivated by the work of (Gorbunov et al.[(2020),
a similar universal algorithm was proposed by [Traoré et al.|(2023), but under different assumptions.

e Comprehensive analysis. We introduce a cohesive theoretical framework of assumptions that
includes three restrictions imposed on correction vectors hy of the SPPM-LC algorithm (Assump-
tion [7). These restrictions connect the correction vectors hy, to the iterates of the algorithm and
have the forms of parametric recursions. The development of this framework constitutes one of
our major contributions. Under Assumption [T} Assumption [2] on the functions and Assumption [7]
on the correction vectors, we analyze the convergence of SPPM-LC in the case when it is applied
to find an e-accurate solution of the general stochastic optimization problem (T). This is the first
comprehensive analysis of the original, sampling-based, and variance-reduced versions of SPPM.
It implies the convergence results for all 7 variations of stochastic proximal point method (SPPM,
SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA). The sampling-based methods
SPPM-NS and SPPM-AS are employed for a less general setting (3), as well as the variance-reduced
method Point SAGA, they are analyzed under Assumption [3]and Assumption 4 on the functions. In
addition, the analysis of L-SVRP is based on the similarity Assumption 5] and the analysis of Point-
SAGA is based on Assumption[6] In order to obtain the convergence result for any particular of the
mentioned algorithms, one needs to check that (the recursive parametric) Assumption [/|holds for it.
Traoré et al.[(2023)) introduce a slightly different theoretical framework of assumptions and analyze
SPPM and its variance-reduced versions in a finite-sum setting (3)) in another setup when functions
are individually convex and L-smooth.

e Best known rates retrieved. The rates derived from our comprehensive Theorem [I] under As-
sumption|I|, Assumption|2|on the functions for SPPM, SPPM*, SPPM-GC, L-SVRP (under additional
Assumption[5) and Point-SAGA (under additional Assumption|[6); under Assumption[3|and Assump-
tion E| on the functions for SPPM-NS, SPPM-AS, represent the sharpest rates for these methods.
Notably, the neighborhood that we guarantee for SPPM in our analysis does not blow up for the
stepsize ¥ — oo in comparison to the result of [Khaled and Jin| (2023) (see (21 in Theorem [2] and
Commentary [2] after it). Also, we present the analysis for L-SVRP in a simplified way and obtain
slightly better bounds on the iteration complexity up to a constant factor than |Khaled and Jin|(2023).

e Analysis under general similarity assumptions. The analysis of L-SVRP is based on the sim-
ilarity Assumption [5] and the analysis of Point-SAGA is based on Assumption [f] Both of these
assumptions are very general and distinguish our approach from the previous ones. |Defazio| (2016)
analyzed Point SAGA under the individual smoothness assumption, which implies Assumption [6]
Khaled and Jin| (2023) analyzed L-SVRP under a more restrictive similarity assumption than As-
sumption [3] [Traoré et al| (2023) analyzed L-SVRP and Point SAGA under the individual smoothness
assumption, which is much more restrictive than our Assumption[5|and Assumption[6] Their results
were obtained prior to our work, but we conducted our analysis independently: we already had our
result when we discovered their paper.

e Analysis in a general setting. We analyze L-SVRP in the stochastic optimization setting (I)) while
previous works of Khaled and Jin| (2023)); Traoré et al.|(2023)) do this in the less general setting @)

o New methods. Our comprehensive theory offers complexity bounds for a range of novel (SPPM-
LC, SPPM-NS, SPPM-AS, SPPM-GC, SPPM*) and upcoming variations of SPPM. It suffices to
confirm that Assumption [7] holds, and a complexity estimate is readily provided by Theorem [I]
Selected existing and new methods that align with our framework are outlined in Table [T}



Under review as a conference paper at ICLR 2025

e Experiments. Through extensive experimentation, we demonstrate that several of the newly in-
troduced methods, analyzed within our framework, exhibit compelling empirical properties when
compared to natural baselines.

4 MAIN RESULT

We are now ready to present our general Algorithm [T} which we call Stochastic Proximal Point
Method with Learned Correction (SPPM-LC). Subsequently, we introduce the core assumption on
the correction vectors, iterates and control vectors of Algorithm|[I|enabling our general analysis, and
further state and comment on our unified convergence result (Theorem |T)).

Algorithm 1 Stochastic Proximal Point Method with Learned Correction (SPPM-LC)

1: Parameters: learning rate v > 0, starting point zo € R4, control vector ¢y € R™

2: fork=0,1,2,...do

3:  Sample & ~ D

4 Form correction vector /. as a function of the iterate x, control vector ¢y, and sample &,
5 Tht1 = ProX, s (zx + vhe)

6:  Construct a new control vector ¢y 1

7: end for

4.1 KEY ASSUMPTION

We assume that the (random) correction vector /. has zero mean (conditioned on z and ¢y, the
k-th iterate and control vector, respectively), and that it is connected with the iterates of SPPM-LC
via two parametric recursions/inequalities, described next. We introduce versatility by expressing
these inequalities parametrically.

Assumption 7 (Parametric recursions). Let {x, ¢i } x>0 be the random iterates produced by SPPM-
LC. Assume that

E[hk|l‘k,¢k] =0. (7)

Further, assume that there exists a function oc®> : R™ — R, and nonnegative constants
Ay, By,C4, Ay, By, O, with By < 1, such that

B [l = Vfe, (21| 2,61
E[of 1|2t dr] < Aolloesr — @e])® + Baof + O, )

Ail|wg — 2 |)* + Bio? + O, (8)

IN

N

where 03 = o%(dx).

For brevity, we refer to this assumption as the “o7 assumption”. If Assumption [7| holds, then by
taking expectation on both sides of (8) and (9) and applying the tower property in each case, we get

Bl = Ve @)?] < AB[lay -] + BIE[0F] + O, (10)

N

E[o2,,] < AF {me _ m*||2} + BoE [02] + (b, (11)

The novelty of our approach lies in the introduction of inequalities () and (9). We support and
validate this assertion by providing numerous examples (in Section [5), demonstrating that these
inequalities encapsulate the nature of a broad range of existing SPPM methods as well as some new
ones, including standard SPPM alongside its arbitrary sampling and variance-reduced variants. In
its essence, we generalize, parameterize and establish as an independent assumption the conditions
on correction vectors for SPPM-type methods present in the literature, regardless of the specifics
defining the base method from which they stem. Traoré et al.|(2023)) propose different parameterized
recursive inequalities and analyze SPPM and its variance-reduced versions in a finite-sum setting
under the condition where functions are individually convex and L-smooth. Similar inequalities
can be found in the analysis of SGD-type methods (a unified theory developed by |Gorbunov et al.
(2020)).
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Table 1: Compilation of both existing and novel methods that align with our comprehensive analyti-
cal framework. Problem (T)) encompasses a broader scope compared to problem (3). VR = variance
reduced method, AS = arbitrary sampling. Thm x = Thm 1 + Lemma x, Lemma x is in Section A.z,
x € [8]. The last column indicates whether the analysis is new or not and whether we recover the
previously established rate.

Problem Method AS? | Section | Result / Rate
{a SPPM-LC [NEW] X Thm|1/[NEW]
) sppm X Thm 2| [NEW]
(&1} SPPM-NS [NEV X Thm 3| [NEW]
@) SPPM-AS [NEW] v Thm 4| [NEW]
(]I[) SPPM* [INEW] v Thm [5|[NEW]
(D SPPM-GC [NEW] X Thm |[6|[NEW]
@ L-sVRP ? (Khaled and Jin| 2023) X Thm|7|[NEW]
B Point SAGA 7 (Defazio} 2016) X Thm 9| [NEW]

1 sPPM was studied by [Khaled and Jin|(2023) under the less general similarity assumption than ours. [Bertsekas proposed
incremental proximal point method (SPPM for problem @) and analyzed it under assumptions that each f; is Lipschitz. We
guarantee in our analysis that the neighborhood does not blow up when the stepsize is large and consider the general setting (T).

) The L-SVRP method was proposed by and called SVRP therein. It was inspired by the L-SVRG method

of |[Hofmann et al.| (2015); (2020), who were in turn inspired by the SVRG method of |Johnson and Zhang| (2013).
Following (2023), we use the name L-SVRP to highlight the loopless nature of the update of control vector. The

theoretical results presented here are a minor adaptation of the results of We present the analysis in a
simplified way, and hence obtain slightly better bounds up to a constant factor. (2023) employ an approximation of
the proximal operator in the updates of L-SVRP while we use the operator itself.

) Point SAGA was proposed by. The main difference between our form and the original one is in the control vectors.
updates a table with gradients, while we update a table with points at which we compute the gradients.

4.2 MAIN THEOREM

We are now prepared to introduce our main convergence result.

Theorem 1. Let Assumption [I| (differentiability) and Assumption [2| (u-strong convexity) hold. Let
{xy, hi} be the iterates produced by SPPM-LC (Algorithm , and assume that they satisfy Assump-
tion]z ( o%-assumption}. Choose any v > 0 and o > 0 satisfying the inequalities

(1+924)(1 + aAdy) Y2 By (1 + aAy)

(1+ )2 <t al e TPt (12
and define the Lyapunov function
Uy o= ||z — 2] + ao?. (13)
Then for all iterates k > 0 of SPPM-LC we have
E[wk]gekwo%-f€}§, (14)

where the parameters 0 < 0 < 1 and { > 0 are given by

(1+92A4) (1 + ads) ¥?Bi(1+ ady) }
0= B 15
max{ (L 4yp)? Tallrap? ()
2
Y Cl(]. —+ OéAQ) y
¢ = —(1 ) aCl. (16)

Theorem [T] proves a linear rate of convergence for a number of stochastic proximal point methods
towards a fluctuation neighborhood around the solution, regulated by the additive term in (T4). It
depends on parameters C'; and 5. The neighborhood vanishes (i.e., { = 0) iff (', = C5 = 0. If this
happens, then SPPM-L.C converges linearly to the solution as kK — oo for any fixed v > 0, satisfying
the conditions of Theorem |Il Notice that @ > Bs, and hence the linear rate can not be faster than
(Bz)k. That is, as shown in Appendix [B|(also, see Table , the main difference between variance-
reduced versions of SPPM and its other variants is that the former methods satisfy o7-assumption
with C'y = (5 = 0 (and reach the optimum x, ), whilst the latter have either C'; > 0 or C'; > 0.
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5 OVERVIEW OF SPECIFIC METHODS AND OF THE FRAMEWORK

In this section we demonstrate the descriptive power of our new framework. We show that most
popular existing methods can be expressed in terms of our framework and, in addition to that, we
describe several new methods in more detail (see Table|[T).

5.1 A BRIEF OVERVIEW

As asserted, the proposed framework is powerful enough to include methods without variance re-
duction (X in the “VR” column) alongside variance-reduced methods (v in the “VR” column),
methods that fall under the arbitrary sampling paradigm (v" in the “AS” column). All novel meth-
ods introduced in this paper are clearly designated with the label [NEW]. Additionally, to facilitate
a thorough understanding of all algorithms discussed, detailed explanations are included in the Ap-
pendix. A link is provided for convenient navigation to the supplementary section. The generality
of our framework is reflected in Table[Il The “Result / Rate” column of Table [T] refers to a The-
orem x which follows from Theorem |I| and Lemma x, = € [8]. The convergence results of the
algorithms considered in the paper are outlined in these theorems, offering insights into their per-
formance characteristics. Importantly, in instances where established methods are recovered, the
best-known convergence rates are reaffirmed or better results are obtained. This underscores the
robustness and reliability of our analytical framework in accurately capturing the behavior of estab-
lished algorithms.

5.2 PARAMETERS OF THE FRAMEWORK

The algorithms in Table |1| demonstrate specific patterns in relation to the parameters in Assump-
tion [/| To elucidate this observation, we provide a summary of these parameters in Table [2] As
predicted by Theorem [If when (', = (5 = 0, the corresponding method does not oscillate and
converges to the optimum =z, indicating the variance-reduced nature of the algorithm. All param-
eters referenced in Table [2) are defined in the Appendix, alongside descriptions and analyses of the
respective methods.

5.3 FIVE NOVEL ALGORITHMS

To showcase the efficiency of our comprehensive framework, we develop three new variants of
SPPM which have not previously been addressed in the literature (see Table [T). In this section,
we briefly outline the reasoning behind their implementation. Further specifics are available in the
Appendix.

SPPM-NS (Algorithm[3). The method is designed for solving the problem (3). Let positive numbers
Pl,...,Pn SUm up to 1, set 4 = 4 with probability p;, ¢ € [n]. The step of the method has the
form x4 = prox_~_ Fir (k) . It unifies several powerful sampling strategies (as, e.g., importance

sampling). Sampling allows to improve the convergence rate and modify the neighborhood.

SPPM-AS (Algorithm [d)). The method is also designed for the problem (3). The arbitrary sampling
framework was developed for SGD by [Gower et al.| (2019). It allows to conduct a sharp unified
convergence analysis for various effective sampling and mini-batch strategies. For strongly convex
functions, the method with constant stepsize converges linearly to the neighborhood of the solution.

SPPM* (Algorithm [5). This novel algorithm links conventional and variance-reduced SPPM meth-
ods. Although not immediately practical, it offers valuable insights into the inner workings of
variance reduction. This method addresses the fundamental question: assuming that the gradients
V fe(z,) are available, can they be leveraged to devise a more potent variant of SPPM? The affir-
mative answer culminates in the development of SPPM*. The construction of updates in SPPM*
involves correction vectors of the form hy = V f¢, (z,). In essence, this implies augmenting x,
with gradients of the same functions at the optimal point x,, with respect to which the proximal
operator is calculated. As evidenced in Table 2] where (', = (', = 0, this method converges di-
rectly to =, without oscillation, rather than converging to a neighborhood of the solution. Practical
variance-reduced methods operate by iteratively refining estimates of V fe, (z,). Notably, the term
o? in the Lyapunov function of variance-reduced methods converges to zero.
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SPPM-GC (Algorithm [6). This method can be viewed as a practical variant of SPPM* featuring
a computable version of the correction vector, hy, = V fe, (xx) — V f(xy), instead of the incom-
putable correction V f¢, (z,). This method follows the same paradigm of iteratively constructing
increasingly more refined estimates of V f¢, (x,) and is also variance reduced. As indicated in Ta-
ble2] where (', = (', = 0, this method also converges to z,, and not to some neighborhood of the
solution only.

SPPM-LC (Algorithm [T). This new generic algorithm constructs the updates with correction vec-
tors hyj, of a universal form. We analyze its behavior under a new parametric Assumption /| The
convergence result then follows. This is a unified analysis of all stochastic proximal point methods
we have encountered so far: SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-
SAGA. One only needs to check that this parametric assumption holds in each particular case (see
Table2).

Method Ay By [&5) Ao Bs [ Lemma
SPPM-LC | A1 | Bt 5 Ay | Ba | (s Lemmai%i
SPPM 0 0 o2 0 0 0 | Lemma
SPPM-NS | 0 0 |oins | O 0 0 | Lemma[3
SPPM-AS | 0 0 | olas | O 0 0 | LemmaHd]

SPPM* 0 0 0 0 0 0 | Lemmal3
SPPM-GC | &2 0 0 0 0 0 | Lemmald
L-SVRP 0 | & 0 p | 1—p| 0 | Lemmal]
Point SAGA | 0 | »? 0 1 n-d 0 | Lemmal[g

Table 2: The parameters determining the compliance of the methods listed in Table [T to Assump-
tion[7} Detailed explanations of the expressions featured in the table are provided in the Appendix.

6 EXPERIMENTS

In this section we describe numerical experiments conducted for the linear regression problem

i
Hgﬁ@{%zwixbi)%wnz}, (17

i=1

where a; € R?, b; € R? is the i-th data pair, each \; is a /5-regularization parameter. We provide 4
sets of experiments. The first one is devoted to the comparison of different sampling strategies for
SPPM-NS : uniform sampling US, importance sampling |S, variance sampling VS (see Section [B3),
with three selected stepsizes. The second set of experiments demonstrates the change of the radius of
neighborhood for SPPM-AS with 7-nice sampling. In the next two sets of experiments we illustrate
the main difference between SPPM and SPPM with variance reduction. Also in practice we show
the relationship between SPPM-GC, L-SVRP, Poin-SAGA as we did in theory. For the first bunch
of experiments we set n = 10, d = 3 and the regularization parameters \; = 1/2¢, where i € [d].
Looking at Figure[T] we can see the different behavior of the methods. In the first two plots with the
smallest stepsizes, SPPM-IS has a faster start, but a larger neighborhood than the other considered
methods. Unfortunately, we cannot say that SPPM-VS has a much smaller neighborhood radius
than SPPM-US or SPPM-IS, but theoretically, the variance is smaller. In the second set of numerical
experiments (see Figure[2), we observe a clear correlation between the neighborhood radius and the
cardinality of the sampled subset 7. More precisely, the larger 7 is, the smaller the neighborhood
radius is. In the third set of numerical experiments (see Figure[3), we set n = 1000, d = 10 and each
Ai = 1 for the problem (T7). On all three plots we observe the superiority of SPPM-star in terms of
the stepsize choice. For example, in the third plot with v = 102, SPPM-GC diverges. In the fourth
set of numerical experiments (see Figure [) with parameters n = 1000, d = 10 and each \; = 1
for the problem (T7), we observe that the performances of SPPM-GC and L-SVRP with p = 1 are
identical, which is supported by our theoretical findings. With decreasing p from 1 to 1/n we see how
the behavior of L-SVRP worsens and matches with the performance of Point-SAGA when p = 1/n.
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Figure 1: Comparison of the performance of SPPM-US, SPPM-IS, SPPM-VS and SPPM-AS with
7 = 9-nice sampling for different selections of stepsize v € {107%,1072,1,10%}.
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Figure 2: Comparison of the performance of SPPM-AS with 7-nice sampling with different selec-
tions of cardinality 7 € {1,2,5,9,n = 10} and stepsize v € {1072,10~1,1}.
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Figure 3: Comparison of the performance of SPPM-US , SPPM-GC and SPPM-star with different

selections of stepsize y €

{1072,1,102}.

SPPM with VR

= x?

o sepce .
o] a Usvarip =1 \
—&— LSVRP: p =0.1 \

—&— LSVRP: p =005 \
i LsvRp:p =001 n
U A LSVRP: p =0.005 X

4~ LSVRP: p =0.001 e

—+— POINt-SAGA

Iterarion, k

Figure 4: Comparison of the performance of SPPM-GC , Point-SAGA , L-SVRP with different se-
lection of probabilities v € {1/n = 1073,5-1073,10%,5 - 102, 1071, 1} . The stepsizes are taken

according to the theory.

7 FURTHER DISCUSSION

Although our approach is general, we still see some limitations, open problems and several possi-
ble directions for future extensions. Generating a similar result in the nonconvex case continues to
be an unsolved challenge. Expanding Assumption [7]to incorporate iteration-dependent parameters
Ay, By,C1, As, B, (5 could facilitate the development of various novel methods as SPPM with
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decreasing stepsizes. [Khaled and Jin| (2023)) explore federated learning, investigating client sam-
pling to enhance communication efficiency. Another way to do that is to incorporate the utilization
of compressed vectors exchanged between a server and the clients. This motivates the problem of
providing the analysis for such SPPM-type methods and incorporating them into our framework.
It would be interesting to build theory for algorithms with correction vectors hj; with a non-zero
expected value and unify with our theory. Another potential avenue for future research involves of-
fering a comprehensive analysis of SPPM-type methods incorporating acceleration and momentum.
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A EXTENDED LITERATURE OVERVIEW

Stochastic gradient descent (SGD) [Robbins and Monro| (1951)); [Nemirovski et al.| (2009); Bottou
(2010) is a contemporary common algorithm for solving optimization problems (I) and (3) with
updates of the form 2**1 = z¥ — ~v¢*, where ¢g* is an unbiased stochastic gradient estimator:
E [ gk| x’ﬂ = Vf(z*). Theoretical properties of SGD are nowadays studied well in works by
Vaswani et al. (2019); |Gower et al.| (2019)); |Gorbunov et al.| (2020); |Khaled and Richtarik| (2023));
Demidovich et al.| (2023). The versatility in the design of the estimator g* has led to a develop-
ment of highly effective variants of SGD based on importance sampling (see works by |Needell et al.
(2015));Zhao and Zhang|(2015))), mini-batching (see a work of Konecny et al.[(2016)). These strate-
gies are unified in the arbitrary sampling paradigm proposed by |Gower et al.| (2019). The iterates
of standard SGD as well as of its sampling variants do not converge to the optimum due to the
presence of the stochastic gradient noise. The existence of this issue led to the construction of vari-
ance reduction methods in works by |[Roux et al.| (2012); |Defazio et al.| (2014); Johnson and Zhang
(2013); |[Kovalev et al.| (2020); Nguyen et al.|(2017). Such methods are able to sequentially learn the
stochastic gradients at the optimum which allows them to reach a linear convergence to x, when
equipped with constant stepsize in case of strongly convex f. The work by |Gorbunov et al.| (2020)
provided a unified theory for SGD and its variance-reduced, sampling, quantization and coordinate
sub-sampling modifications. Problem setting (3)) can also be used to describe a Federated Learning
setup where 7 is the number of workers, and f; stands for the loss dependent on the data of worker
i € [n]. Workers compute individual stochastic gradients and aggregate them on a master node (see
a paper by Konecny and Richtarik! (2018)). A primary bottleneck in such settings is communication.
To address it, many techniques are used as quantization (see works by (Gupta et al.| (2015)); |Seide
et al.|(2014)), sparsification (see a paper by|Alistarh et al.| (2018))), dithering (see a work by Alistarh
et al. (2017)). Many distributed optimization works employ variants of Assumption [5] to analyze
methods that solve the problem (3) in the strongly convex case (see works by Shamir et al.| (2014);
Zhang and Xiao| (2015)); [Yuan and Li| (2020); [Karimireddy et al.| (2020)). |Szlendak et al.| (2022);
Beznosikov and Gasnikov| (2022); [Panferov et al.|(2024) achieve better communication complexity
guarantees in a Federated Learning setting under the similarity assumption employing specific quan-
tizers and sparsifiers. Selecting the right stepsize is a critical aspect in the implementation of SGD,
see the work of |Bach and Moulines| (2011). In Section [2| we show that the iteration complexity of
SGD depends on condition number x = % If we are able to evaluate stochastic proximal operator,
another algorithm to use instead of SGD is stochastic proximal point method (SPPM). Its iteration
complexity does not depend on the smoothness constant L. |Bertsekas|(2011)) calls it the incremen-
tal proximal point method and considers it for solving the problem (3], proving a convergence to
the neighborhood when each f; is Lipschitz. In the study by Ryu and Boyd (2016)), convergence
rates are presented for SPPM, emphasizing its robustness against learning rate misspecification, a
characteristic not exhibited by SGD. [Patrascu and Necoaral (2017) consider SPPM to solve a gen-
eral stochastic optimization problem (1)) in the convex case and provide nonasymptotic convergence
guarantees. [Ast and Duchil (2019) delve into the exploration of a broader method termed AProx,
which includes SPPM as a particular case. Their research entails analysis of convergence rates for
convex functions. Variance-reduced versions of SPPM should also have advantages over their SGD
counterparts. It motivated Khaled and Jin|(2023)) to analyze L-SVRP in the finite-sum and federated
settings under a stronger version of Assumption [5| and strong convexity. [Defazio (2016) analyzes
Point SAGA under the individual smoothness and strong convexity assumptions. [Traoré et al.[(2023)
consider variance-reduced methods L-SVRP and Point SAGA when each f;(x) is L-smooth, con-
vex, and either f(x) is convex or satisfies PL-condition. Kim et al|(2022) consider SPPM with
momentum.

B SPECIAL CASES

B.1 STOCHASTIC PROXIMAL POINT METHOD WITH LEARNED CORRECTION (SPPM-LC)

This section is devoted to a unified analysis of all stochastic proximal point methods we have en-
countered so far: SPPM, SPPM-NS, SPPM-AS, SPPM*, SPPM-GC, L-SVRP and Point-SAGA. The
analysis is based on formulating a new parametric assumption (Assumption [7)) on the behavior of
the method, and the convergence result then follows. All that has to be done is to check that this
parametric assumption holds in each particular case of interest.

14



Under review as a conference paper at ICLR 2025

Lemma 1. Assumption[7|holds with constants Ay, By, C'y and Ay, By, Cs.

Proof of Lemmal[l] Since we assume the iterates produced by SPPM-LC (Algorithm [T satisfy As-
sumption[7] the statement of Lemma [I] holds automatically. O

We can now present the main result of this section.

Theorem 1. Let Assumption [I| (differentiability) and Assumption 2] (p-strong convexity) hold. Let
{zk, hi} be the iterates produced by SPPM-LC (Algorithm , and assume that they satisfy Assump-
tioniz (0%). Choose any v > 0 and o > 0 satisfying the inequalities

(1+’Y2A1)(1+0u42) ’}/231(14-&142)

<1, + By < 1, (18)
(14 yp)? ol +yp)?
and define the Lyapunov function
Uy, = |ag — 2o |* + ook (19)
Then for all iterates k > 0 of SPPM-LC we have
¢
E (W] < 0" + ——
[ k] >~ o+ 1_ 07

where the parameters 0 < 0 < 1 and ( > 0 are given by

2 ‘ 2 . 27 .
Hzmax{(1+7 A1) (14 ady) 7B1(1+QAZ)+BQ}, C:w

’ + 0402.
(1+yp)? a(l +yp)? (1+yp)?

Proof of Theorem[l} We use Lemmal9|(see Appendix|C) and o7-assumption. In particular, by com-
bining inequality Assumption (see (9)) and Lemma 9] (see ), for all v > 0 we get

E [\I/k-i-l] @ E {”l’k-&-l - 1'*”2 + O‘O—I%—H]

= E[llokr — @l + 0B [0,)]
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By unrolling the recurrence (we can also just apply Fact[3), we get

k—1 k—1 oo
1
E[W,] <00+ ) 0F 17 =00, 4+ 01¢C <080y + > 0¢C =60, 4+ —.
[Wr] <07V ; ¢ 0 ; ¢ <0V ; ¢ ot T4

B.2 STOCHASTIC PROXIMAL POINT METHOD (SPPM)

We aim to solve problem (|1}) via the stochastic proximal point method (SPPM), formalized as Algo-
rithm [2] The main step has the form

. 1 2
prox g, (ox) = arg i, { e (o) + oo — e}

where 7 > 0 is a stepsize.

Algorithm 2 Stochastic Proximal Point Method (SPPM)
1: Parameters: learning rate v > 0, starting point 2y € R?
2: fork=0,1,2,...do
3:  Sample &, ~ D
4 Ty = prox. s (k)
5: end for

Notice that if v is kept “too large”, then =11 ~ argmin, fe, (z), and hence the method just
“samples” the minimizers of the stochastic functions, and does not progress towards finding .
(unless, of course, x, happens to be shared by all functions f¢, ). As we shall see, the situation is
different if +y is kept sufficiently small.

Lemma 2 (SPPM). Assumption[7|holds for the iterates of SPPM (Algorithm2) with
A1 =0,B, =0,y =02, and Ay =0,By, =0, =0.

Proof of Lemma|2| Recall that the iterates of SPPM have the form

Tki1 = Prox (zk)
Y e

Thus, h;, = 0. Let 02 = 0. Clearly, (]ﬂ) holds. Furthermore,

B[ I0e = Vfe, (@) | o0, 02] = B [V feu (2)P] = 2.
Hence, Assumption[7|holds with
A1 =0,B,=0,0,=0% and Ay =0,By=0,C5=0.

The convergence of SPPM is captured by the following theorem.

Theorem 2. Let Assumption [I| (differentiability) and Assumption [2| (u-strong convexity) hold and
define

0? = Eeop || Ve ] 20)

Let 2y € R? be an arbitrary starting point. Then for any k > 0 and any ~y > 0, the iterates of SPPM
(Algorithm2) satisfy

1 2k 702
2 2
E[ka—l‘*u } < <1+w> o = aull* + — @1

Commentary:
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1. Interpolation regime. Consider the interpolation regime, characterized by o2 = 0. Since
we can use arbitrarily large v > 0, we obtain an arbitrarily fast convergence rate:

1 2k
B llo —.]°] < ( ) o — .1 @)

T4+yp

2k
Indeed, (1 +1w> can be made arbitrarily small for any fixed & > 1, even kK = 1, by

choosing +y large enough. However, this is not surprising, since now f and all functions f
share a single minimizer, z., and hence it is possible to find it by sampling a single function
f¢ and minimizing it, which is what the prox does, as long as vy is large enough.

2 2
Vo,  _ %% _
o Pt = e In fact, the con
vergence neighborhood wli*z# is bounded above by three times this quantity irrespective

of the choice of the stepsize. Indeed,
2 2 2 2
% m{ W*} <%
YHE 21 W Iz
This means that no matter how far the starting point x is from the optimal solution x,, if

we choose the stepsize «y to be large enough, then we can get a decent-quality solution after
a single iteration of SPPM already! Indeed, if we choose ~y large enough so that

1 2
( )mruwd,
T4+yp

where § > 0 is chosen arbitrarily, then for £ = 1 we get

2. A single step travels far. Observe that for v = %, we have

2 o}
E[Hxl—x*H] < 0ty

3. Iteration complexity. We have seen above that accuracy arbitrarily close to (but not reach-
2
ing) % can be achieved via a single step of the method, provided the stepsize v is large

enough. Assume now that we aim for € accuracy where ¢ < Z—’z Using the inequality
1 —t < exp(—t) which holds for all t > 0, we get

2k 2k
1 _ Y 2ypk
=(1- <exp|— .
I+ I+p L+yp

Therefore, provided that

1 2|zo — 2.
k>+wm<W0$H>
2vu €

2ep
202 —ep?

2%k
we get (ﬁ) lzo — ac*||2 < 5. Furthermore, as long as 7y < (this is true

provided that the more restrictive but also more elegant-looking condition v < € £; holds),

we get
Lo €
2 +2p T 2

Putting these observations together, we conclude that with the stepsize v = £ £, we get

B [llax — 2] <=
provided that
1 2l|zo — || 21 2|0 — ||
2y € 2ep? 2 €

17
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Proof of Theorem[2] Recall that in the case of SPPM, we have A, = 0,B; = 0, = o Ay =
0,B; = 0,C5 = 0 (it is the result of Lemma [2). From Theorem [T} choosing any o > 0, § =

20'2 .
arme ¢ = @ e (13) and (16)), we obtain

¢ _ Vol __ 7o o}

1—0 A+ yp2(1—0) Q+yw)?—1 pZ+2u
For any k > 0 and any ~ > 0, the iterates of SPPM (Algorithm 2)) satisfy

1 2k /70_2
2 2 *
E[lek—x*\l } < <1+7/J> [zo — 2|l +m~

B.3 STOCHASTIC PROXIMAL POINT METHOD WITH NONUNIFORM SAMPLING (SPPM-NS)

Applying SPPM directly to the optimization formulation (3), Theorem [2]applies with 1 = min; p;
since f is p-strongly convex for p = min; p;. If min; p,; is small, the convergence rate becomes
weak. In this section we shall describe a trick which enables us to obtain a dependence on the
average of the strong convexity constants instead of their minimum.

Choose positive numbers pq, . . ., p, summing up to 1, and let
- 1 )
fia) = o-file), ie ]
Note that (3] can be reformulated in the form
min, {f(x) = Zpiﬁ(w)}. 24)
“ i=1

We rely on Assumptions [3|and [}

This is a more refined version of Assumption [2] where we assumed the strong convexity parameter
was the same for all functions. This implies that f is u-strongly convex with p = min; p;. Hence,
f has a unique minimizer, which we shall denote z,.

We can now apply SPPM to the reformulated problem (24) instead, with D being the nonuniform
distribution over the finite set [n] given by the parameters py, . .., p, as follows: & = ¢ with prob-
ability p; > 0. This method is called stochastic proximal point method with nonuniform sampling
(SPPM-NS):

Th41 = Prox, i (rx) = prox_~ for (x),

np;

where 4, = ¢ with probability p; > 0.

Algorithm 3 Stochastic Proximal Point Method with Nonuniform Sampling (SPPM-NS)
1: Parameters: learning rate v > 0, starting point 2o € R<, positive probabilities p, ..., pp
summing up to 1
2: for k=0,1,2,...do
3:  Choose i, = @ with probability p; > 0
4 Tpy1 =prox g (o)
npg )ik
5: end for

Define N
,u,; 2 1 1 2

= — —\Vf; . 25
T LIV 25)

UNS = min
2

Lemma 3 (SPPM-NS). Assumption[7|holds for the iterates of SPPM-NS (Algorithm 3)) with
A =0,B1 =0, =0lyg, and Ay =0,By=0,,=0.

18
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Proof. Recall that the iterates of (SPPM-NS) have the form
Th4r = Prox g (vx) = prox_a g, (),
where i;, = ¢ with probability p; > 0. Therefore, that hy, = 0. Let 02 = 0. Clearly, holds.

Furthermore,
2

E [Hhk — Vi (24)

Hence, Assumption[7|holds with
Al :O,Bl :07(']7 :UE,NS3 and AQ :O,BQ :0, (72 =0.

T, a,%] =E Mvﬁk (z4)

2 2
= O—*st.

O

Theorem 3. Let Assumpttonland Assumption | I hold. Let o € R? be an arbitrary starting point.
Let jins and o s be asin (23). Then for any k > 0 and any v > 0, the iterates of SPPM-NS
(Algorithm[3) satzsfy

2k 2
1 2 YO NS
Tr — Ty } _ To — Tyl|” + ———. (26)
gl H (1 +yuN ) | P s+ 2

Commentary:

(a) Uniform sampling. If we choose p; = % for all i € [n], we shall refer to Algorithmas
stochastic proximal point method with uniform sampling (SPPM-US). In this case,

n
. 2
[NS = jUs =N, 0% Ng = 0Fus = - E 1 IV fi(z)ll™.
1=
(b) Importance sampling: optimizing the linear rate. If we choose p; = ST t 0 for all
=1

i € [n], we shall refer to Algonthml 3|as stochastic proximal point method with importance
sampling (SPPM-IS). In this case,
1 P = ||V fi(z 2
HMNs = H1s = *ZM, UE,NS = Uf,ls = izt Z [V/:z)] :
= i=1 Hi
This choice maximizes the value of ung (and hence the first part of the convergence rate)
over the choice of the probabilities.

(c) Variance sampling: optimizing the variance. If we choose p; = %}22“)” for all
1 T,

i € [n], we shall refer to Algorithm [3|as stochastic proximal point method with variance
sampling (SPPM-VS). In this case,

[N = pvs = ZIIsz (@l (mm ||Vf( )II)

2
1
UE,NS = UE,VS = <n Z IV fi(2s) |
i=1

This choice minimizes the value of o, ng (and hence the second part of the convergence
rate) over the choice of the probabilities.

Proof of Theorem[3] From Lemma[3] we have that Assumption [7]holds for the iterates of SPPM-NS
(Algorithm [3)) with
Ay =0,B; =0,0 =0lng, and Ay =0,By =0, =0.

From Theorem choosing any a > 0, § = m, ¢ = 11:;;\1:)2 (see (T3) and (T6)), we

obtain that, for any k£ > 0 and any ~ > 0, the iterates of SPPM-NS (Algorithm 3) satisfy

1\ V03 NS
B o -] < () ool

L+p Ypufs + 26Ns

Alternatively, we can derive Theorem (3 I from Theorem |2 l It is easy to show that each function f;
is fi;-strongly convex with fi; := ’” . Hence, f; is also uns-strongly convex for all 4. It now only
remains to apply Theorem 2] O
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B.4 STOCHASTIC PROXIMAL POINT METHOD WITH ARBITRARY SAMPLING (SPPM-AS)

We consider the optimization problem (3) and rely on Assumption 3] (differentiability) and Assump-
tion 4 (strong convexity).

Let S be a probability distribution over the 2" subsets of [n]. Given a random set S ~ S, we define

p; :=Prob (i € S), i € [n]. (27)

We will restrict our attention to proper and nonvacuous random sets.
Assumption 8. S is proper (i.e., p; > 0 for all i € [n]) and nonvacuous (i.e., Prob (S = @) = 0).

Given @ # C C [n] and i € [n], we define

L 4ecC
’UZ(C) = {8’ Z¢C7 (28)
and .
fo@) = S u(@)fie) B Y. - fi(o) 9)
i=1 ieC Pi

Note that v;(S) is a random variable and fg is a random function. By construction, Egs [v;(S)] =
1 for all ¢ € [n], and hence

n

oy vi<s>fi<x>] = 2> B () file) = 3 file) = (o)

i=1

Esws [fs(z)] = Es~s

Therefore, the optimization problem (3)) is equivalent to the stochastic optimization problem

min {f(z) = Es~s [fs(@)]}- (30)

Further, if for each C' C [n] we let pc := Prob (S = C), f can be written in the equivalent form

f(x) =Es~s[fs(@ Z pcfolz > pofo(x). 3D

CCln],pc>0

Applying SPPM to (30), we arrive at stochastic proximal point method with arbitrary sampling
(SPPM-AS) (Algorithm [):
Tt = prox,y, (1),

where S, ~ S.

Algorithm 4 Stochastic Proximal Point Method with Arbitrary Sampling (SPPM-AS)
1: Parameters: learning rate v > 0, starting point o € R?, distribution S over the subsets of [n]
2: fork=0,1,2,...do
3:  Sample Sy ~ S
4 Ty = Prox. s (k)
5: end for

Define
2

i 2
AS 1= o = C (32)
1% pc>0 Z npl *,AS Z p

CCln],pc>0

> n;vfi(x*)

iec

Lemma 4. Assumption[]|holds for the iterates of SPPM-AS (Algorithm[d) with
A1 =0,B1 =0, =075, and Ay =0,By=0,,=0.
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Proof. Recall that the iterates of SPPM-AS (Algorithm @) have the form
T41 = ProX, o (k)
Thus, ki, = 0. Let 02 = 0. Clearly, (7) holds. Furthermore,
B[ = Vic@lP| 2y, 0F] =B [IVfe(@)l’] i= 0 as,
since

0 = Beup [[Vfela)|’]

@ welVie@IP

CCln],pc>0

>, we

CCln],pc>0

2

[E

iec

1
Z np Vfi()

2
O, AS-

Hence, Assumption [7 holds with
A =0,B1=0,0; =075, and Ay =0,B, =0, =0.

The convergence of SPPM-AS is captured by the following theorem.

Theorem 4. Let Assumption 3] (differentiability) and Assumption [ (strong convexity) hold. Let S
be a random set satisfying Assumption@ Let g € RY be an arbitrary starting point, pas and UE’ AS
be as in (32). Then for any k > 0 and any v > 0, the iterates of SPPM-AS (AlgorithmH) satisfy

2k 2
1 VO AS
B lax—ol?] < (1) llao = @ll® + 25— (33)
L+ ypas Yhas + 2pas

Commentary:

(a) Full sampling. Let S = [n] with probability 1 (“full sampling”; abbreviated as “FS”).
Then SPPM-AS applied to (30) becomes PPM for minimizing f. So, besides Theorem [2]
Theorem [d]is the third theorem capturing the convergence of PPM in the differentiable and
strongly convex regime.

Moreover, we have p; = 1 for all ¢ € [n] and the expressions (32)) take on the form

RS 2 2
fas = prs == Zﬂz’a Ok as = Oxrs = 0.
i=1
Note that ppg a lower bound on the the strong convexity constant of f — one that can be
computed from the strong convexity constants y; of the constituent functions f;.

(b) Nonuniform sampling. Let S = {7} with probability ¢; > 0, where ) _, ¢; = 1. This leads
to SPPM-NS. Then p; := Prob (i € S) = ¢; for all i € [n], and the expressions (32) take
on the form

7 2 2 1 1 2
= = min = = — Viilx
[LAS = KNS nos Tnas = Ouns n;:l npin fi(@)7,

which recovers the quantities from Section [B.3} see (23).

(c) Nice sampling. Choose 7 € [n] and let S be a random subset of [n] of size 7 chosen uni-
formly at random. We call the resulting method SPPM-NICE. Then p; := Prob (i € S) =

T~ for all i € [n]. Moreover, pc = ﬁ whenever |C| = 7 and pc = 0 otherwise. So,

T~

1
AS = UNICE(T) := min  — i (34)
pas = pmice(T) = a2 i;“
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(@

(e)

and
2

% > Vii(z) (35)

ieC

1
UE,AS = OiNICE(T) = Z (T)
CCn],|Cl=7 \T
It can be shown that pnicg(7) is a nondecreasing function of 7. So, as the minibatch size
T increases, the strong convexity constant pnicg (7) can only improve. Since pnicr(1) =
min; ; and pnice(n) = % S, i, the value of unicr (7) interpolates these two extreme
cases as 7 varies between 1 and n.
Block sampling. Let C1,...,C} be a partition of [n] into b nonempty blocks. For each
i € [n], let B(%) indicate which block does i belong to. In other words, ¢ € C; iff B(i) = j.
Let S = Cj with probability ¢; > 0, where >, ¢; = 1. We call the resulting method
SPPM-BS. Then p; := Prob (i € S) = qp(;), and hence the expressions (32) take on the
form
2

1 !
fiAs = pBs i= TN om ) flis OrAS = Oims = Y 4| D rp; * (@)
JE[b] Ng; iec; jEb] iec; Y

We now consider two extreme cases:

— Ifb =1, then SPPM-BS = SPPM-FS = PPM. Let’s see, as a sanity check, whether we
recover the right rate as well. We have ¢g; = 1, C; = [n], p; := Prob (i € S) = 1 for
all ¢ € [n], and the expressions for p g and OE’BS simplify to

1 n
HBS = prs = ZW’ UE,BS = UE,FS = 0.
i=1
So, indeed, we recover the same rate as SPPM-FS.
— If b = n, then SPPM-BS = SPPM-NS. Let’s see, as a sanity check, whether we recover
the right rate as well. We have C; = {i} and p; := Prob (i € S) = ¢; forall i € [n],
and the expressions for a5 and af’BS simplify to

n

oM 2 2 1 1 2
frnd = —_— = = — V : .
s = jiNs = mmin - TiBS = OiNs = ; o IV fi(zs)]
So, indeed, we recover the same rate as SPPM-NS.
Stratified sampling. Let C1, . . ., C} be a partition of [n] into b nonempty blocks, as before.

For each i € [n], let B(¢) indicate which block ¢ belongs to. In other words, i € C,
iff B(i) = j. Now, for each j € [b] pick §; € C; uniformly at random, and define
S = Ujem 1€} We call the resulting method SPPM-SS. Clearly, p; := Prob (i € S) =

—L The expression ke on the form
cp ] The expressio s (32) take on the fo
b
HAS = HSS = - min E e
(i1,..,8p)EC1L XX Ch £ n
Jj=1
and

2
b
1 |C}]
st () X [Y )|
(31,-++580)

b
Hj:l |Cj| €C1x-xCy ||7=1
We now consider two extreme cases:
— If b = 1, then SPPM-SS = SPPM-US. Let’s see, as a sanity check, whether we recover

the right rate as well. We have C; = [n], |C}| = n, (H?Zl ‘C—1|> = L and hence

. 1« 2
pss = pus = min i, 0 5 = 02 yus i= - S IV i)l
=1

So, indeed, we recover the same rate as SPPM-US.
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— If b = n, then SPPM-SS = SPPM-FS. Let’s see, as a sanity check, whether we recover
the right rate as well. We have C; = {i} forall i € [n], (H?Zl ﬁ) =1, and hence

n
— o 1 . 2 I =0
Hss = HFS = ” i, 0488 = Oy Fs -= Y-
=1

So, indeed, we recover the same rate as SPPM-FS.

Proof of Theorem[d] From Lemma 4 we have that Assumption 7 holds for the iterates of SPPM-AS
(Algorithm [ with

Al = O,Bl = O7C/V| = O—E,ASﬂ and A2 = O,BQ = 0, CY_) =0.

2 2
From Theorem choosing a > 0, 6 = (Hiu)z’ ¢= 21:;:)52 (see (T3) and (I6)), we obtain that,

for any k£ > 0 and any ~ > 0, the iterates of SPPM-AS (Algorithm[d) satisfy

1 2 2 Y02 As
low =2} < 1T+ ypas o = .| YAg + 21As

Alternatively, we can derive Theorem [] from Theorem ?} Let C be any (necessarily nonempty)

subset of [n] such that pc > 0. Recall that in view of we have
1
fola) =3 = fi(a);
iec P
i.e., fc is a conic combination of the functions { f; : ¢ € C'} with weights w; = ﬁ Since each f;
is p;-strongly convex, Lemma|10|says that fo po-strongly convex with
Hi
icc ""Pi
So, every such f¢ is p-strongly convex with
ji=pias == __ min i
© CClnlpo>0 /g npi
Further, the quantity o2 from (20) is equal to
2
0! = Eep [|Ve(@)|’]
2
@ Y pelvicEl
CClnl,pc>0
2
1
® Y pe|Y Vi)

ccmpe>o  lliec P

a E,AS'
It now only remains to apply Theorem 2} O

B.5 STOCHASTIC PROXIMAL POINT METHOD WITH OPTIMAL GRADIENT CORRECTION
(SPPM*)

ol
YH2+2p°

0 i=Bewp ||Vl

We now describe a simple trick which gets rid of the neighborhood when o2 > 0. The trick is of a
conceptual nature: as is, it is practically useless. However, it will serve as an inspiration for a trick
that can be implemented.

where

We showed that SPPM converges up to a neighborhood of size
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Algorithm 5 Stochastic Proximal Point Method with Optimal Gradient Correction (SPPM*)

1: Parameters: learning rate v > 0, starting point o € R?

2: fork=0,1,2,...do

3:  Sample & ~ D

4 hy = Ve (x)

5 Tht1 = prOX’Yfgk (xk + 'yhk.) = Prox, (zr)
6: end for

Let us reformulate the problem by adding a smart zero.

For each & ~ D, define

fe(@) = fe(z) = (Vfe(x.), ), (36)
and instead of solving (I)), consider solving the problem
min { /(@) = Bewp [fe(@)] }. G7)

Observations:
* We do not know V f¢(z,), and hence formulation (37) is not of practical interest.
* Itis easy to see that f = f , and hence problems (I)) and are equivalent. Indeed,
f@) @ Ben[fe@)] © Beonlfel) - (Vfelwn), )]
= Eeop [fe(@)] — Eenp [(Vfe(24), )]
= Eeup[fe(2)] - <E5~D [V fe(xs)], :c> L
——— ——
=Vf(z.)=0
* All stochastic gradients of f at x, are zero. Indeed,
Vi) 8 V(@) - Vfeln),
and hence Vfg (z,) =0.

* It is easy to see that since f¢ is differentiable and y-strongly convex, then so is fg.

Hiding the prox. Further, recall that if for some 2 € R? and differentiable and convex ¢ we let
T4 = prox, (7), then zy = ¥ — Vé(r, ). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

Try1 = 2 + Y — YV fe, (Try1) = 26 — 7 (Ve (0rg1) — Ve, (22))

Lemma 5 (SPPM*). Assumption[7|holds for the iterates of SPPM* (Algorithm[3) with
A1 =0,B1=0,01=0, and Ay=0,B,=0,05=0.
Proof. Recall that the iterates of SPPM* have the form
Th+1 = Prox,r (2 + YV fe, (24))
Thus, hy = V f¢, (z.). Let 02 = 0. Clearly, (7) holds. Furthermore,
B [0 = ¥ fe, (2.) | on, 2] = 0.
Hence, Assumption|/|holds with
A1:0,B1:0,(V1:07 and AQZO,BQZO,(EZO.
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The convergence of SPPM* is captured by the following theorem.

Theorem 5. Let Assumption[l|(differentiability), Assumption [2|(j-strong convexity) hold. Let x( €
R? be an arbitrary starting point. Then for any k > 0 and any v > 0, the iterates of SPPM*
(Algorithm D) satisfy

1 2%
E {ka — x*llﬂ < (1 n “W) l|lxo — x*||2. (38)

Commentary:

* The convergence neighborhood is fully removed; the method converges to the exact solu-
tion! The result is identical to @; i.e., to the rate of SPPM in the interpolation regime.
— The method converges to z, for any fixed v > 0 as long as k — oo.
— The method converges to x, for any fixed k£ > 1 as long as 7 — co.
* The method is practically useless since it relies on the knowledge of the optimal stochastic

gradients V f¢(z,) for all £ as hyper-parameters of the method. Needless to say, these
vectors are rarely known.

* If we follow (36), add “smart zero” to (30), and apply SPPM to the resulting formulation,
we automatically get a “star” variant of SPPM-AS, and Theorem 3] captures the complexity
of this method.

Proof of Theorem[3] From Lemma [5] we know that Assumption [7] holds for the iterates of SPPM*
(Algorithm [5)) with

Ai :?O,[%V:ZO,(H :?0, and .AQ ::O,[b :?0,(5 =0.

2
Therefore, from Theorem by choosing any a > 0, 6 = (1 +1w> , ¢ = 0 (see (13) and (T6)), we

have

1 2k
2 2
Bflow -] < (15=) leo-aul?

B.6 STOCHASTIC PROXIMAL POINT METHOD WITH GRADIENT CORRECTION (SPPM-GC)

We consider the stochastic optimization problem (), i.e.,
min {f(z) := Eevp [fe(2)]}
z€RY

and rely on Assumption |1 (differentiability of f¢) and Assumption [2| (u-strong convexity of f).
Recall that this implies strong convexity of f. Hence f has a unique minimizer, which we denote
Ty

We have already described the SPPM* method — this a variant of SPPM without the neighborhood
term in the convergence bound. In order to run it, we need to know V f¢(x,) for all £, which is of
course something we almost never know; one exception to this is the interpolation regime, defined
by the assumption that V f¢(x,) = 0 for all €.

In this section we describe a practical method inspired by SPPM*. The method is based on the
following ideas:

» While we do not know V fe¢(z,), what if this quantity could be in some appropriate/useful
sense approximated by some vector g¢ we do know?

* One option is to require a quantity such as

lge = Ve )lI”  or  Eeun |llge — Vel

to be “small” in some sense. However, where can such vectors come from? And what
should “small” mean?
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* One idea is to make an extra assumption on the functions f¢ that would somehow auto-

matically guarantee the existence and availability of such vectors. So, we trade off easy
availability of vectors g for a limitation on the class of problems we solve this way.

Recall the Similarity Assumption[5] There exists ¢ > 0 such that

Eep IV fe(@) = VI (@) = Vfe@a)I’] €%l -], Vo eR

The above assumption says that we can consider the vectors g¢ = V f¢(z) — V f(x) for any =, and
that by “small enough” we require a bound by 62|z — 2, ||>. Why these particular choices make
sense will become clear from the convergence proof. Let us now make some observations about the
class of functions satisfying Assumption [5}

B LN =

. The approximation of V f¢ (z,) by V fe(x) — V f(x) gets better as = gets closer to z,.
. The smaller § is, the better the approximation.

If § = 0, we get perfect approximation.

. Since

Eewp [Vfe(x) = Vie(z,)] = V(@)
the left-hand side of (3) is the variance of the random vector V f¢(z) — V fe(z,) as an
estimator of V f(z) = Vf(z) — Vf(z4).

. It follows that (5)) can be equivalently written in the form

Bep |IVfe@) = View)I?| = IVF(2) = V@) < %o —a|?,  voeR

(39)
. Note that holds if the following stronger condition holds:
Bep [IVfe@) = Vie@ || < %o —a|?,  voeR (40)
. Furthermore, holds if the following even stronger condition holds: there exists § > 0
such that
IV fe(z) = VSe(z)ll < 8llz -2l Vo eR? (41)
for all &.

. Finally, (1)) holds if there exists § > 0 such that V f is §-Lipschitz for all &:

IVfe(@) = Vel <oz —yll,  Vo,y R (42)

For each ¢ € [n] and any “parameter” v € R%, define

fé(@) = fel@) = (Vfe(v) = V(v),2), (43)
and instead of solving (), consider solving the problem
min {f(x) = Bew [ f2(@)]} (44

Algorithm 6 Stochastic Proximal Point Method with Gradient Correction (SPPM-GC)

1
2
3
4:
5
6

: Parameters: learning rate v > 0, starting point 2 € R?
fork=0,1,2,...do

Sample &, ~ D
hiw =V fe, (xk) = Vf(2k)
Th41 = ProX, g (zx + vhe) = prox, i (zk)

: end for

The algorithm can be interpreted as:
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* a practical variant of SPPM* in which we use the computable correction iy, = V fe, (x1) —
V f(zy,) instead of incomputable correction V fe, (z.),

* SPPM applied to the reformulated problem (44), with the “control” vector v = xj, at
iteration k:

e Th41 = PIOX, o (xk)
k

Hiding the prox. Further, recall that if for some x € R? and differentiable and convex ¢ we let
T4 = prox, (v), then r; = x — V¢(x, ). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

Tp1 = T +Yhe = YV e (Thr1) = 21 — 7 (Ve (Tr41) — Ve (o) + V().

Lemma 6 (SPPVM-GC). Suppose AssumptionP|holds with § > 0. Assumption[7|holds for the iterates
of SPPM-GC (Algorithm 6)) with

Al = 52,B1 = 0,(‘1 = 0, and AQ = O,Bg = 0,(’2 =0.

Proof. Recall that the iterates of SPPM-GC have the form
Th41 = ProxX,r (xx + vhe) ,

where hy, = V f¢, (zx) — V f(xr). Let 02 = 0. Since Assumptionholds, we get

B[ = Vfeu (@) | o0, 02] = B [ IV fe (00) = V(1) = V fe (@)1 ] < 02l = .
Hence, Assumption [7 holds with
A1:52,B1:0,(,V1:0, and AQZO,B2:07(V2:0.
O

Theorem 6. Let Assumption [I|(differentiability), Assumption 2| (u-strong convexity), and Assump-
tion@(d-similarily) hold. Choose any xoy € RY. Then for any v > 0, and all k > 0, we have

k

1 252

E [||xk —x*Hﬂ < <m> [ (45)
TR

Commentary:

1. Perfect similarity. If § = 0, for all v > 0 we get

1 2k

E { - 2} < — o> 46
ok — 7| < Tt [0 — .|| (46)
We get convergence even with £k = 1 provided that ~ is chosen large enough. This rate
is identical to what Theorem [2] predicts in the interpolation regime. However, the methods
are different, and we do not need to assume interpolation regime here. Instead, we assume
perfect similarity (0 = 0), and the availability of the gradient of f. So, while the rates are
exactly the same, both the methods and the assumptions are different.

1+’72 62
(1+yp)*

2. General case. It can be shown that the expression

is minimized for v = £. With
this choice of the stepsize we get
2

52 k i k
2 2 2
B llz — 2. < (W) lzo — 2.]° = (1_ W) o — 2 |®. (@7

2 2
k> (1 + 62> log <acox*||> (48)
I €

iterations suffice to guarantee E [||:ck — :c*||2] <e.

This means that
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Proof of Theorem 6] From Lemmal6|we have that Assumption [7|holds for the iterates of SPPM-GC
(Algorithm[6) with

Ay =6%2B=0,0, =0, and A, =0,B,=0,C, =0.

From Theorem choosing any o > 0, 6 = (1111?)22 , ¢ =0 (see and (16))), we have

k
1 252
E [||$k - .’E*Hﬂ < <(1—:_7)2> ||$0 - (E*HQ.
olL

B.7 LOOPLESS STOCHASTIC VARIANCE REDUCED PROXIMAL POINT METHOD (L—SVRP /
SPPM-LGC)

We consider the stochastic optimization problem (T)), i.e.,

min {f(z) := E¢op [fe(x)]},

z€ERY

and rely on Assumption [I] (differentiability of f¢) and Assumption [2] (u-strong convexity of f¢).
Recall that this implies strong convexity of f. Hence f has a unique minimizer, which we denote
Ty

Note that SPPM-GC needs to compute V f(xy) in iteration k. This can be very costly or even
impossible to do in practice. To make this more clear, consider the problem

1
min, {f(i’?) = Zfi(l")}
as a special case of (I).

* One worker. Assume we have a single machine solving this problem. Moreover, assume
it takes one unit of time to this machine to compute V f; for any ¢, and n units of time
to compute V f. If the computation of V f is the bottleneck (i.e., if it is more expensive
than the evaluation of the proximity operator of f;), then an attempt to design a method
addressing this bottleneck would be justified.

* Parallel workers. Assume we have n workers able to work in parallel. Then V f can be
computed in 1 unit of time if communication among the workers is instantaneous. However,
it may still be desirable to avoid having to compute the gradient:

— The server aggregating the n gradients computed by the workers may have limited
capacity, and it make take more time for it to be able to compute the average of a very
large number of vectors.

— Some workers may be not available at all times.

These considerations justify the desire to reduce the reliance of SPPM-GC on the computation of
V f. The key idea is to compute the gradient only periodically, i.e., to be “lazy” about computing
the gradient. In particular, we flip a biased coin, and compute a new gradient if the coin lands the
right way. Otherwise, we use the previously computed gradient instead. We shall formalize this in
the next section.

We are now ready to present the stochastic proximal point method with lazy gradient correction
(SPPM-LGC). In the literature, the method is known under the name loopless stochastic variance
reduced proximal (L-SVRP) point method.
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Algorithm 7 Loopless Stochastic Variance Reduced Proximal Point Method (L-SVRP / SPPM-LGC)
1: Parameters: learning rate v > 0, starting point o € RY, starting control vector wy € RY,
probability p € (0, 1]
2: fork=0,1,2,...do
3:  Sample &, ~ D
4: Set hy =V fe, (wi) — V f(wy)
5: Thy1 = ProX,j (zx + vhe)

6:  Setwpy = {

7: end for

Tp+1 with probability p
W with probability 1 —p

Note that as intended, L-SVRP indeed reduces to SPPM-GC when wg = zp and p = 1.

Hiding the prox. Further, recall that if for some 2 € R? and differentiable and convex ¢ we let
T4 1= prox, (r), then r; = x — V¢(x, ). Therefore, steps 4 and 5 of the method can be written
in the equivalent form

Tht1 = T +Yh = YV fe, (@rt1) = 26 — 7 (Ve (@p41) = Ve, (wr) + Vf(wi)) -

L-SVRP vs L-SVRG. The name L-SVRP was intentionally coined to resemble the name L-SVRG,
which is a method proposed in and studied by |Kovalev et al.|(2020). This method has the form
Tpp1 = zp — ¥ (Ve (@) — Ve, (wi) + Vf(wi)),

with Step 6 being identical. That is, the only difference here is that L-SVRP involves V fe, (511)
while L-SVRG uses V fe, (x) in the same place. So, “P” in L-SVRP refers to the proximal nature of
the term V f¢, (x+1), while “G” in L-SVRG refers to the gradient nature of the corresponding term

vfﬁk (mk)

Loopless vs loopy structure. The word “loopless™ refers to the way the control vector wy,y; is
updated in Step 6. The alternative to this, used in the famous SVRG method of Johnson and Zhang
(2013), is to update wy| once every m iterations, where m is an appropriately chosen parameter.
This change introduces an outer loop into the method, and makes it look a bit more cumbersome.
More importantly, the loopless nature of L-SVRG is useful in three ways:

(i) leads to a somewhat sharper analysis,

(i) makes the method easier to analyze, and

(iii) allows for easier to extensions / modifications.

The last two points are more important than the first one.

Lemma 7 (L-SVRP). Suppose Assumption ] holds with § > 0. Assumption [/ holds for the iterates
of L-SVRP (Algorithm[7) with

Ay =0,B,=6%C,=0, and Ay, =p,Bos=1—p, > =0.

Proof of Lemmal[7] Recall that the iterates of L-SVRP have the form
Thy1 = PrOX, (g + vhe) ,

where hy, is defined as hy = V fe, (wi) — V f(wg), and wy, is updated in a loopless fashion. Let
¢r = wg. Then

E[hi| 2k, ¢r] = E[V fe, (wr) — V f(wy)| 21, wi] = 0,
and hence (]Z[) holds. If, moreover, AssumptionE]holds, then

B[ - Ve P anw] € 02— o
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which means that (8) holds with A; = 0, By = 6% and (', = 0if we let 02(2) := ||z — x| (since
then 07 = o2 (wy) = |Jwy — 2,]|*). On the other hand, from the proof of auxiliary Lemma |12 we
know that

E[Jwnes =@ o] € pllawe =2 + (0= p)lwr - .,

which means that @I) holds with A = p, Bo = 1 — p, and (>, = 0. In summary, Assumptionm
holds with
A =0,B; =6%C, =0, and A, =p,By=1—p,(5=0.

O
Theorem 7. Let Assumption [I] (differentiability), Assumption 2] (p-strong convexity), and Assump-

tion(d-similarity) hold. Choose any xq,wo € R%. Then for any p € (0,1], v > 0, a > 0 and all
k >0, we have

k
1+ap 14+ap 7252 }
E [y gmax{ , +1—pp Yy, (49)
(] CEEN (R
where

U= |lag — z.)* + aljwp — 2.7 (50)

If § = 0, we have the more precise result

1 2

B lorn = 2l?] € B [l — ] 51
Iz = 2lF] < o ek = 2 G

Commentary:

1. Convergence vs divergence. Clearly, it is possible for the maximum in @9) to not be
smaller than 1. In this case, the theorem gives a meaningless result. Whether or not the
value is smaller than 1 depends on the choice of the parameters «, p and + in relation to the
strong convexity constant p. For example, it’s clear that if v and p are fixed and « is too

large, the expression (11:'352 might exceed 1, rendering the rate vacuous.

2. Optimal choice of a. Note that o +— (=l
2¢2
(11:%”)2 % + 1 — pis convex and decreasing (make sure you understand why!). More-

over, while the first function has a finite value at o = 0, the second function blows up as «
approaches 0 from the right. This means that the maximum of these two functions will be
minimized at the point where the graphs of the two functions intersect, i.e., at « satisfying

1 .. . .
'H”’)z is linear and increasing, and o +>

1+ ap 1+ap ~252
= 1—np. 52
Q- e a P 62

In the p = 1 case (L-SVRP reduces to SPPM-GC in this regime), the equation simplifies to

252
1=2% je. the optimal solution is & = 7262, and ([@9) reduces to

14+ ~262 )k
EWw,]< ("1
[k]<ﬂ+7m2 0

This is the same result we obtained in for the SPPM-GC method, up to the choice of
the Lyapunov function. However, if we initialize with wy = ¢, then

(53)

Wi = (1+yp)llee — 2., (54)
and plugging this into (33) gives
144207 \"
E ||l — .| < (H) lzo — a.]I%, (55)
(1+p)

which is exactly (@7).
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The 0 < p < 1 case turns out to be a more cumbersome. After a bit of algebra, one obtains
that equation is equivalent to the quadratic equation

pa +ba+c=0,
where b = 1 — (1 4+ yu)?(1 — p) — py?6? and ¢ = 252 The roots of the quadratic are

—b+/b? — 4pc

2p ’
It seems it is awkward to work with this expression since the resulting rate will become hard
to parse and interpret. So, we’ll give up on working with perfectly optimal «.. Nevertheless,
we will show how to choose some (slightly suboptimal) a in Corollary [§] which also gives
the right complexity result.

o =

Admittedly, it’s not easy to understand how good is the rate provided by {@9). The following corol-
lary sheds light on what is achievable.

Corollary 8. If we choose o = % and v = — , then for any € > 0 we have

P
p-+(1-p)p

o

2
b <1 N 52> log (‘1’0) B[ <- (56)
P ou e

Proof. Since o = %, we have

1+ap 1
A "Y = =
) (I+yp)? T4
and 252 52
14+ap 1 p
B(y) = At BTy AL,

(L+yp)? o Ltyp p
Plugging this into (50) leads to

E[¥y] < max {A(y), B()}" ¥, (57)

We will now select stepsize v which minimizes

v = max{A(7), B(7)}.

Notice that v — A() is decreasing to zero on (0, co), with A(y) blowing up to co as -y approaches
zero from the right. Further, v — B(+y) is increasing in (0, co). This means that max{A(v), B(y)}
is minimized at the point where the graphs of the two functions intersect, i.e., at -y satisfying A(y) =
B(~). Direct calculation shows that the solution of this is
Y= i (58)
pr+ 1 —-pp

and hence

k k
1 X
E[W)] < max {A(7), B(y)} o = A(7,) ¥ = (1 Y u) Yo = (1 1 15#) Yo

1 ) log <%> = E U] <e. 59)
Yl €

Plugging ~, into this iteration complexity result gives

This implies that

k2<1+

1l gy, W tl-pu 1 &

1+—S14 £ -4
Vx kb pbp p p
Plugging this back into (59) gives the final result
1 62 v
k> =+ )log(— =  E[U]<e (60)
P ou €
O
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Commentary:

1. Comparing to SPPM with Gradient Correction (i.e., p = 1). Recall that L-SVRP re-
duces to SPPM-GC when wg = z¢ and p = 1. Therefore, one would expect the rates to be
the same. First, notice that wy, = 1z, for all k, and as a result, the Lyapunov function (50)
reduces to

Ui = (1+yp)llzw — 2%, ©1)

and hence (57) reduces to

(1+ywE [ka — 2| ] @ g E[Wy] <max{<1+1fw>k, (1_:7M’ylj2)k}\110.

If we choose v < 5%, then the first term in the max dominates, and we get

k k k
1 1 2 1
max ( ) ,( WS) U, = ( ) v,
L+ L+ p I+

k
(61) 1 2
= 1+ o — Tl
<1+7u> (1 +vu)lzo |

Combining the above observations, we get

& k
[” — } ! [0 — ||2 =|1- ! l[zo — ||2
Th — T To — Tk Lo — x| -
k 1 0 1 w 0

It is easy to see that this means that if we choose k > (1 + %ﬂ) log (M) , then

E [H:ck — 9:*||2} < e. The best rate is obtained for the largest allowed stepsize, i.e., for

7 = 4 (recall that this was the optimal stepsize choice for SPPM-GC established in Ap-
pendix [B.6), in which case we conclude that

2 _ 2
k> (1 + 52> log (xox*||> = E [||xk - 33*||2} <e.
1 £

If more similarity (i.e., smaller 4) or more strong convexity (i.e., larger p) is present, fewer
iterations are needed to solve the problem. Note that we get the same result as in @8));
so, we do not lose anything by doing the analysis in the § > 0 case using the Lyapunov
approach.

2. Comparison to the result of Khaled and Jin (2023). Choosing oo = 7?“, V=g p=1,

we retrieve the convergence guarantees of Khaled and Jin (2023). Indeed, from Corollary g

we have that
1 1 6%

, B(y) =
L+yp L+yp p
The condition on the stepsize states that ’7/5 < <. It implies that B(vy) < 1 — . Let
<

1
2
p = min { TR 5’} . Clearly, E [ka — 24| ] E [V] . Further, as wg = o,

A(y) = +1-p

B¥o) = oo = 2l + Ll — . = (1+p)nm—xm

For any k£ > 0, we obtain

B [lox ] < (14 2) (1= 9 oo =
therefore,

B [Jaowe — "] < (14 2 ) exp (- pE) o = .
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If we run L-SVRP for

1 (o= (1+22)
K > —log
P €
Making the substitutions p = min{%,g},y =, p= %, we arrive at
2
" oo — . (14 45#)
K>2max{+2,n}log ,
2 pu €

which is even slightly better than the result by Khaled and Jin| (2023).

Proof of Theorem[7} From Lemmam we know that Assumption |Z| holds for the iterates of L-SVRP
(Algorithm [7) with
AI:O,B1:§2’(,'1207 and A2:p,B2:1—p,(i'2:
. 1+« 1+« 252
From Theoremchoosmg any o > 0, 0 = max {(HJFTP)Q, ﬁ% +1- p} , ¢ =0 (see (I3)
and (16)), we get

1 1 252 b
E[\Ifk]ﬁmax{ +ap27 +ap27 +1—p} Uy,
(I+yp)? (I+yp)? «
where
2 2
Uy o= ||z — 2||” + af|wi — z4||”-

B.8 POINT SAGA (Point SAGA)

The main motivation is to give one more example of a SPPM method based on the idea of gradient
correction which does not need to compute the full/exact gradient of f in each iteration. We consider
another well-known variance-reduced SPPM method called Point SAGA. However, we will revert
back to the finite-sum optimiziation problem

g%{ﬂ@=i2ﬁ@%.
=1

Algorithm 8 Point SAGA (Point SAGA)

1: Parameters: learning rate v > 0, starting point 2o € R?, starting control vectors w, € RY for
i € [n]
2: for k=0,1,2,...do
3:  Sample i, € {1,...,n} uniformly at random
4 Sethy = Vfi (w)) =5 2 Vfi(wy)
j=1

5: ki1 = ProX,yp (z + vhi)

. o ) Tk+1 for j =1k
6: Set lLk,Jrl = {u]j f()r . .
pA J# ik
7: end for
Commentary:

1. Compared to Algorithm[7, Algorithm§uses additional memory to store the table of control
vectors wj, or computed gradients V f; (w},).
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2. In each iteration, the method update only one “column” in a memory table replacing the
old control vector/gradient with the corresponding new one.

The structure of Point SAGA will not allow us perform the analysis under the similarity assumption
(Assumption[5). Instead, we will rely on the stronger Assumption [6]

We assume that there exists v > 0 such that the inequality

1 n

"2
Jj=1

holds for all !, ..., 2" € R%,

<v *Z!Ixﬂ —af

Vii(al) - %ZVfi(ac — V()
=1

This inequality can be written in the form

2
1 ¢ : S ERS L~ 2 :
bt (7)) — . —_||= ) <2z J_ J d )
nZHVfJ(x) ij(:r*)H nZVfl(x <v nZHx x*‘ , V7 eR? j€n]
j=1 i=1 j=1
(62)
Thus, (62) holds, if the following condition is assumed
1 ¢ :
= > Vi) = Vi) I -z, V2l eR?, jenl 63
ST - Vs < an wlfs e jell @
Moreover, (63) is equivalent to the following condition: for all j € [n], we have
IVfi@) = V@l < vl —ad®, Vo e R (64)
Finally, (64) holds, if each f; is v-smooth, i.e.
IVFi(@) = VEWI° < vl =yl Va,y e R (65)

In summary, we have the following relations between the above conditions:

) = @ = © = © = 6.
Lemma 8. Suppose Assumption [6] holds with v > 0. Then Assumption[7] holds for the iterates of
Point SAGA (Algorithm[8) with

n—1

i 1 i
Ale,Blzyz,(‘lzo, and AZ —_ 32: ,(E:O.
n’ n
Proof of Lemmal[8] Let o), = % > Hw}C — Z‘*HZ, oK = (w}c, e ,w,’j) . Recalling that
i=1
hy, =V f;, (wi*) — = ZWJ wl), (66)
we have
E [ ., dx] ZVfJ (w]) — fZij (w])| zx, 61 | = 0. (67)
j=1
Further,
2
E [||hk - Vi, (fU*)HZ‘ xwﬁk} @ B|||vh, @) - - D Vi) = Vi @) | zk, ox
j=1
2
1 PR ;
= =) |[Vfiwi) = =Y Vi) = Vii(z,)
i=1 j=1

INS
3| %
=
=

|
&
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Therefore, we have that A, =0, B; = v2, (', =0.

TL
: 2
E [0'13+1|93k+1;¢k] = |w;§+1 *‘T*H $k+1a¢k]
1 & ; 2
- Z L T L ) [
k=1 j?éik
-1
= ﬁHﬂka — 2 + Tt
Therefore, we have that Ay = %, By = == 1 ,Cy = O

The convergence of Point SAGA is captured by the following theorem.

Theorem 9. Let Assumptlonl Assumptton@and Assumptlon@hold Chose any xo,w}, ..., wl €
R®. Then for any ~ > 0, and all k > 0, we have
k 2 k
1 1 1
E[¥;] < max ( ) ( W+1> 0, (68)
14+yu 14+ypu un n
where
k= ka—w*||2+'mZHwk—x*H . (69)
i=1

Clearly, it is possible for the maximum in (68) to not be smaller than 1. In this case, the theorem
produces the meaningless result. Whether or not the value is smaller than 1 dependes on the choice
of v with respect to the strong convexity constant j, the number of individual functions n, the
similarity constant v.

Proof of Theorem[9] From Lemma[g]we have that Assumption[7]holds for the iterates of Point SAGA
(Algorithm [8) with

n—1

A =0,By=v%C, =0, and Ay, =—,By = ,C5 =0.

:M—‘
3

From Theorem choosing @ = yun, § = max {ﬁ, = 77'/712 +1-— %} , ¢ = 0 (see (13) and
(T6)), we obtain

k 2 k
1 1 1
E [Pf] < max , K—|—1—— U,
14+ 1+yp pn n

n
Uy = ||log — 33*||2 + ’WAZ Hw,’c — x*HZ.
i=1

where

Corollary 10. If we choose v = ﬁ, then, for any € > 0, we have
TR Lp

2
kz<n+”2>1og<%) = B[l <e
1 5

Proof of Corollary[I0} Notice that A(y) := 1+w is decreasing for v > 0, and B(7) := 1+w +1-—
1

— is increasing for v > 0. This means that max {} is minimized at y := ~, where A(y) = B(7).
Direct calculation shows that the solution of this is
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and hence

1\ e \"
< k = k) = = _— * .
E [\I/k] < max {A(’Y*), B(’)/*)} \I/() A(’}/*) \I/() (1 + V*M) \IJO <1 1 n ’y*/J,) \I/()

This implies that

1 v
k> (1 + ) log (O) = E[¥;] <e.
Y €
Plugging ~, into this iteration complexity result gives
2
1 4 (1-4)p 2
1+ =1+ # =n+ V—Q
Vel n K

‘We obtain the final result

2 v
k> (n—l— 52> log (O) = E[¥;] <e.
©

€
[
C AUXILIARY LEMMA FOR SPPM-LC
Our main result relies on a single lemma only.
Lemma 9. Let Assumption[I| Assumption[2land Assumption[7|hold. Then
(1++%41) 2 v’ B, 2 720,
E[ Thil — Tu 2} SiE{ P }+7E o2+ 1L (70
B T L AR e A e

Proof. By combining Fact[T]and Fact[2] we get

2  Fact[ 2
Jowsr = zal® TEE lprox, ;o (o +vha) = prox, s (20 + 2V feu ()|
Factl2 1 9
= m”ﬂfk +vhi — (T4 + YV fe, (24)) |
1

= Tyl e V@)

Thus, we have that

lzk+1 — 33*”2 < 2 (ka - 33*”2 + 27 (e — V fe, (), 21 — 24) + ’YQHhk - vf&k(“”*)‘ﬁ) .

(1+yp)

We can use it since it holds irrespective of the choice of hj. Taking conditional expectation on both
sides, we get

1
E|:||-Tk+1—$*||2‘$k7¢k} < mE[Hij—Z’*HQ‘JJk,(ﬁk]
2
+ﬁ <E [hk - vfﬁk(aj*” xka¢k¢] y Tk — I*>
72 2
B I = Ve @l |ewa] . an
Note that
E[Hmk—x*lﬂxk,qﬁk} = |lop — z* (72)
Further,
Elhy — Ve (@) ze, or] = Elhilxg, ¢x] — E[Vfe, (2.)| 2k, d1]
= Elhi|zg, o] — Vf(xy)
= E[hg|zr, ¢r]
=0 (73)
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where the last equality follows from Assumption[7} relation (7). Relation (8) of Assumption [7]says
that

B0 = Vfe (@) | o,08] < Aullow = 2> + Biof + Cu. 74)

Plugging (74), (73) and (72) into (71)), we obtain
1
E [Hffkﬂ - IE*||2’ $k7¢k] < E=mE ((1 +92A) ||k — z.||* + 92 Bio} + 72('1) . (75

It only remains to take expectation on both sides and apply the tower property. O

D AUXILIARY LEMMAS

D.1 SPPM-AS

Lemma 10. Let ¢1, . .., by, : R — R be differentiable functions, with ¢; being fi;- strongly convex
for all i € [n]. Further, let wy, ..., w,, be positive scalars. Then the function ¢ =Y .- w;¢p; is
p-strongly convex with | = lel Wi [

Proof. By assumption,

Hi
6iy) + (Voi(w).x — ) + Slle —yl* < di2),  Vay R (76)
This means that
> wi (4) + (Vo) —9) + e —yl?) < Y wioi(@).  Vay R,
i=1 i=1
which is equivalent to
;1 W g
60 + (Vo) x —) + =Ly <) vryeRt @)
So, ¢ is p-strongly convex. O
D.2 L-SVRP
Lemma 11. Recalling that
hk = Vfgk (wk) - Vf(wk), (78)

we can write

E[(hi — Ve, (x0), 2 — )| i, wi]) = (E[hy — Ve, (w0 2, wi), 2 — 24)

B B[V, (wr) — VI (wr) = Vfey (@) 200 wi] , 7 — 2,)

<Vf — Vf(w) = Vf(z.),zr — x*>
=0

= 0, 79

and
B[l = Ve @l |zrwe] B E[1V/e (wr) = VF (we) = Ve ()7 ar ]
9 P (30)

Lemma 12. Observe that by the way w1 is defined, we have

E [ lwnss = 2| e wn] = pllawss = al® + (1= p)ljwe — . 81)
Taking expectation again, and applying the tower property of expectation, we get

E[lwne =] = B [E [ o] e w]

Dk [larss 2] + Q= pE [lun -], 62

which is what we set out to prove.
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E AUXILIARY FACTS

Fact 1 (Every point is a fixed point). Let ¢ : R? — R be a differentiable convex function. Then
prox, s (z +vV¢(z)) = z, Yy >0, VoecRe

In particular, if z, is a minimizer of ¢, then prox. s (T+) = .

Proof. Pick any x € R% and > 0. Evaluating the proximity operator at

y =z +7Vo(x) (83)
gives

prox,, (4) = ag min, (") + oo —yl*).
v z’ €R? 2’}/

This is a strongly convex minimization problem, and hence the (necessarily unique) minimizer

x’ := prox., (y) (84)
of this problem satisfies the first-order optimality condition

1
Vo(x') + S (' —y)=0.

Note that 2’ = x satisfies this equation, and hence

2 @ prox, (y) @ prox., (z + 1V(2)).

The next statement is (Khaled and Jin, 2023, Fact 4)

Fact 2 (Contractivity of the prox). If ¢ is differentiable and yi-strongly convex, then for all v > 0
and for any x,y € R% we have

2
HPTOXW (z) — prox,, W < WHJU —yl.

Proof. This lemma can be seen as a tighter version of (Mishchenko et al., {2022, Lemma 5) though
our proof technique is different. Note that p(x) = prox. () satisfies YVh(p(z)) + [p(z) — 2] = 0,
or equivalently p(x) = x — yVh(p(x)). Using this we have

Ip(z) — p)|1? = lllz — yVh(p(z))] - [y — ¥Vh(p(y))]|”
= ||[z — y] — v [VA(p(z)) — Vh(py))]|
h

)
= & = yI* + V| Vh(p(x)) — VAlp))* - 2 (x — y, VA(p(x)) - Vh(p(l{%?)'

Now note that

(x —y, Vh(p(x)) — Vh(p(y))) = (p(z) + 7¥Vh(p(z)) — [p(y) + YVh(p(y))], Vh(p(x)) — Vh(p(y)))
= (p(x) — p(y), Vh(p(x)) — Vh(p(y))) + vIVh(p(z)) — Vizézggy))H?-

Combining Equations (85) and (86) we get
Ip(z) — pW)|1* = llz = yll* +¥*|VA(p(2)) — VR(p»)|* = 27 (p(x) — p(y), Vh(p(z)) — VA(p(1)))
— 29%||Vh(p(z)) — VA(p(y))|I
= ||z — y|* = 2IVA(p(z)) — VRpW)|? — 27 (p(z) — p(y), VA(p(z)) - 78117()19@)» :
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Let Dy, (u,v) = h(u) —h(v) — (Vh(v), u — v) be the Bregman divergence associated with h at u, v.
It is easy to show that

(u— v, Vh(u) — Vh(v)) = Dp(u,v) + Dp(v,u).

This is a special case of the three-point identity (Chen and Teboulle, |1993] Lemma 3.1). Using this
with v = p(z) and v = p(y) and plugging back into we get

Ip(a) — p)|1? = llz = ylI* = VVR(p(z)) — VR(pW))]|* = 27 [Da(p(z), p(y)) + Da(p(y), p(z))] -

2
|

Note that because A is strongly convex, we have that Dy (p(y),p(z)) > 5llp(y) —p(z)||” and

Di(p(z),p(y)) = %llp(y) — p()||”, hence
Ip(z) = p)I* < llz = ylI” = P IVR(p(@)) = VRp))I* = 29ullp(z) = py)*. (88)
Strong convexity implies that for any two points u, v
IVA(w) = Vh()|* = 42 ]lu — o,

see (Nesterov, 2018, Theorem 2.1.10) for a proof. Using this in Equation with u = p(x) and
v = p(y) yields

2 2 2 2
Ip(z) = pW)I” < llz = ylI” = vk lIp(x) = pW)II” — 2vullp(z) — pW)]".
Rearranging gives
2 2
(149207 + 2] llp(2) = p()|I” < llz — "
It remains to notice that (1 + yu)? = 1+ 2u? + 2ypu. O

Fact 3 (Recurrence). Assume that a sequence {sy}r>o of positive real numbers for all k > 0
satisfies

Sk+1 < asp + b,

where 0 < a < 1 and b > 0. Then the sequence for all k > 0 satisfies

1
Sk Sakso—l—bmin{k‘, l—a}' (89)

Proof. Unrolling the recurrence, we get

k—1
skSask,l—i—bga(ask,g—i—b)—i—bg-~-§akso+b2ai. (90)
i=0
‘We can now bound the sum Zi:ol a’ in two different ways. First, since a < 1, we get the estimate
k—1 k—1
al < Z 1=k 91)
i=0 i=0
Second, we sum a geometric series
k—1 00 1
Z at < Z ol =— (92)
1=0 1=0

Note that either of these bounds can be better. So, we apply the best of these bounds. Substituting

Equations (91) and (92) into (90) gives (89). O
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