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Abstract

Large language models (LLMs) have shown impressive capabilities across tasks
such as mathematics, coding, and reasoning, yet their learning ability, which is
crucial for adapting to dynamic environments and acquiring new knowledge, re-
mains underexplored. In this work, we address this gap by introducing a framework
inspired by cognitive psychology and education. Specifically, we decompose gen-
eral learning ability into three distinct, complementary dimensions: Learning from
Instructor (acquiring knowledge via explicit guidance), Learning from Concept (in-
ternalizing abstract structures and generalizing to new contexts), and Learning from
Experience (adapting through accumulated exploration and feedback). We conduct
a comprehensive empirical study across the three learning dimensions and identify
several insightful findings, such as (i) interaction improves learning; (ii) conceptual
understanding is scale-emergent and benefits larger models; and (iii) LLMs are
effective few-shot learners but not many-shot learners. Based on our framework
and empirical findings, we introduce a benchmark that provides a unified and real-
istic evaluation of LLMs’ general learning abilities across three learning cognition
dimensions. It enables diagnostic insights and supports evaluation and development
of more adaptive and human-like models.

1 Introduction

Large language models (LLMs) [3, 2, 87, 45] have demonstrated impressive capabilities across
diverse tasks such as mathematics [96, 93, 91], coding [59, 11, 38], and reasoning [29, 89, 98, 49].
Despite these achievements, as LLM-driven systems increasingly integrate into societal roles, serving
as AI companions [86, 8, 63] or AI employees [6, 52, 74, 20, 36], they must possess robust learning
capabilities. Effective learning is essential for AI agents to adapt dynamically to diverse and changing
environments, continuously acquire new knowledge, and autonomously respond to novel contexts.
However, research on the learning ability of LLMs remains scarce, with little work systematically
investigating how well LLMs can acquire and generalize new knowledge across tasks.

To address this gap, we aim to systematically investigate the learning ability of LLMs. Drawing
insights from cognitive science and educational theory [24, 41, 14], we first analogize from human
learning processes to identify three fundamental dimensions of learning: (1) learning from instructor,
where the model acquires knowledge through guided interaction [18, 71]; (2) learning from concept,
where the model internalizes structured abstractions and generalizes them to downstream tasks [55, 5];
and (3) learning from experience, where the model adapts based on accumulated trajectories or
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Figure 1: Overview of our proposed cognitive framework for evaluating general learning abilities
in LLMs. We decompose learning into three core types: (a) Learning from Instructor; (b) Learning
from Concept; and (c) Learning from Experience.

exploration-feedback [41, 97]. For each dimension, we design targeted experimental paradigms to
operationalize the corresponding learning mechanism. In Learning from Instructor, we simulate
tutor-learner settings with and without interactive clarification, demonstrating that interaction within
instructor and learner consistently improves model’s learning ability. In Learning from Concept, we
evaluate the impact of injecting abstract conceptual knowledge in competitive environments (i.e.,
TextArena [28]), showing that (i) conceptual understanding is scale-emergent, and (ii) injecting
structured domain knowledge can provide a tangible advantage, if the model is sufficiently capable
of internalizing it. In Learning from Experience, it is a crucial capability for adapting to novel
environments and acquiring new knowledge autonomously. While they are few-shot learners, they
struggle in many-shot settings due to the challenges of long-context integration. This highlights the
importance of a unified benchmark that can evaluate LLMs’ general learning abilities across cognitive
dimensions.

Building on this framework and empirical insights, we consolidate our findings into a unified
benchmark, LearnArena, that reflects realistic and cognitively grounded learning scenarios. It enables
principled evaluation of LLMs’ learning behavior across three learning aspects, and provides a
foundation for advancing learning capabilities. Empirical results reveal that learning ability benefits
from increased capacity, but faces a bottleneck; architectural and training advancements play a crucial
role in further enhancing learning capability.

Our contributions are as follows: (1) We present the first work to explicitly evaluate and analyze
the general learning ability of LLMs. Grounded in cognitive science, we propose a principled
decomposition into three dimensions: learning from instructor, learning from concept, and learning
from experience, each with dedicated methodologies. (2) We conduct a comprehensive empirical
study across the three learning dimensions, revealing three key insights: interaction improves learning
in instructor-based settings; conceptual understanding is scale-emergent and benefits larger models;
and LLMs are effective few-shot learners but not many-shot learners. (3) Based on our framework
and findings, we introduce a benchmark, LearnArena, that offers a unified and realistic evaluation of
LLMs’ general learning ability across three cognitive dimensions. It enables diagnostic insights and
supports the development of more adaptive and human-like models.

2 Related Work

Evaluation of Large Language Models. LLMs have been extensively evaluated on tasks involving
linguistic competence [76, 9, 39], factual recall [27, 80], reasoning [48, 50, 89, 98, 95, 94], instruction
following [34, 44, 35, 43, 33], and multitask generalization [58, 17, 88], with benchmarks such as
MMLU [30], BIG-Bench [1], and HELM [46] highlighting broad capabilities and emergent scaling
trends. However, most evaluations focus on static zero- or few-shot performance, offering limited
insight into how models learn or generalize from experience. To address this, recent studies have
begun shifting toward more dynamic formulations that probe the learning behavior of LLMs. [21]
categorize in-context learning (ICL) as inference-time adaptation and identify key factors for success.
[54] show that ICL performance depends more on input format than label correctness. [4] find
that many-shot ICL yields diminishing returns as context length grows. [67] introduce Toolformer,
enabling models to self-supervise API use. [90] develop models that improve via internally generated
feedback. Nevertheless, most such studies are piecemeal, lacking a unified theoretical lens or
systematic analysis for comparing learning processes across tasks. Our work addresses this gap by
introducing a cognitively grounded decomposition to systematically analyze learning ability.
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Learning Ability of Large Language Models. Recent advances in large language models have
demonstrated remarkable capabilities in adapting and generalizing knowledge beyond traditional
static evaluations [7, 83, 77]. Cognitive psychology and educational theory have long emphasized
that effective learning involves not only direct instruction and guided feedback [14, 18], but also the
ability to abstract conceptual structures and adapt from experience [41, 55, 24]. Motivated by these
insights, we adopt a tripartite perspective, learning from instructor, concept, and experience, that
mirrors rapid-instruction-to-implementation learning (RITL) in humans [71], classical rule-based
accounts of cognition [55, 24], and experiential learning theory [41]. While contemporary LLM
benchmarks extensively measure task-specific performance [1, 46, 30, 53], they rarely probe how
models internalize instructions, extract explicit rules, or accumulate and reuse episodic experience,
capacities increasingly highlighted by self-evolving or self-refinement agents [26, 32]. This gap un-
derscores the need for a cognitively informed evaluation framework that systematically characterizes
the general learning abilities of LLMs across these complementary dimensions.

3 A Cognitive Framework for Analyzing Learning Abilities in LLMs

To systematically investigate the general learning capabilities of LLMs, we propose a cognitively
grounded framework comprising three paradigms: Learning from Instructor (LfI), Learning from
Concept (LfC), and Learning from Experience (LfE). LfI captures learning via explicit guidance,
supported by evidence that instruction accelerates task acquisition and reduces cognitive load [18,
71, 14, 75]. LfC reflects structured abstraction from static concepts, grounded in symbolic cognitive
theories [55, 24, 32] despite critiques of their rigidity [5]. LfE models adaptation through feedback
and interaction, consistent with experiential learning theory [41, 37] and recent work showing LLMs
improve via self-refinement [97, 26].

Formally, we define a learning task t as a tuple (Xt,Yt, Ct), where Xt denotes the input space, Yt the
output space, and Ct the context space, which characterizes the type of information the model must
incorporate to generate correct outputs. The learning objective is to establish a predictive mapping:

fθ : Xt × Ct → Yt (1)

where the form of Ct is determined by the learning paradigm.

In Learning from Instructor (LfI), the model acquires task knowledge through explicit interactions
with an external instructor, which may involve demonstrations, explanations, or corrections. These
interactions form a communication-based supervision channel, where the instructor incrementally
shapes the model’s understanding of the task. Formally, we define the context as Ct = It, where It
encodes structured instructional signals such as natural language directives, step-by-step exemplars,
or annotated feedback. The model learns to integrate these interactive signals into its prediction
process: fθ(x, It) → ŷ.

In Learning from Concept (LfC), the model receives static, abstract conceptual knowledge that
captures abstract properties or domain principles. Unlike instructor signals that evolve through
interaction, concepts are predefined and non-interactive, such as definitions, category structures,
or rule schemata. We define the context as Ct = Kt, where Kt represents a set of symbolic or
linguistic descriptions encoding domain-relevant concepts. The model is expected to internalize
these abstractions and apply them to generate predictions consistent with conceptual constraints:
fθ(x,Kt) → ŷ, subject to ŷ being semantically aligned with Kt.

In Learning from Experience (LfE), the model accumulates and utilizes its own prior interaction
history to adapt future behavior. Unlike LfC, where supervision is static and predefined, LfI and
LfE both involve dynamic supervision. In LfI, the model receives guidance through interactive
instructions, while in LfE, supervision emerges from sequences of interactional feedback, potentially
including successful or failed trajectories, user preferences, or latent task rewards. The context is
defined as Ct = τt = {s1, s2, . . . , sk}, where each si represents a structured snapshot from a past
interaction, such as input-output pairs, action-state transitions, or dialog turns. The model is expected
to generalize from this accumulated experience to improve decision-making: fθ(x, τt) → ŷ.

These three paradigms offer a unified and cognitively motivated framework for evaluating how LLMs
acquire, organize, and apply knowledge. LfI emphasizes guided learning via instructor interaction;
LfC emphasizes structural abstraction from fixed knowledge; and LfE emphasizes adaptation through
situated experience. This decomposition allows us to probe distinct facets of model generalization
and align LLM evaluation with core dimensions of human learning.
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4 Learning from Instructor (LfI)

We investigate Learning from Instructor (LfI), where models acquire task knowledge via structured
guidance, such as demonstrations, explanations, or feedback. We evaluate this setting across two
dimensions: (1) Passive Consumption vs. Interactive Clarification, and (2) Scaling Learner.
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Figure 2: Comparison of learner performance under Passive Consumption and Interactive Clarifica-
tion paradigms across eight mathematical benchmarks.

4.1 Passive Consumption vs. Interactive Clarification

Experiment Setup. To examine the impact of interactivity in instruction-based learning, we adopt
the MagpieMath [85] dataset, a high-quality math dataset generated autoregressively by Qwen2.5-
Math-72B. An instructor model is first trained on this dataset and subsequently used to teach a
separate learner model under two learning paradigms: (1) Passive Consumption, in which the learner
receives only direct solutions from the instructor without any further interaction, and (2) Interactive
Clarification, where the learner is allowed to ask clarification questions following each instructor
response, and the instructor provides targeted, follow-up explanations. In this setting, the learner is
restricted to a single clarification question per sample to ensure consistency across training examples.
Both the initial answers and the clarification responses are aggregated as supervision for the learner.
We experiment with four representative LLM families: LLaMA3.1-8B, Qwen2.5-7B, Mistral-7B,
and Phi-3-mini—each used as both instructor and learner to test robustness across pairings. Learners
are trained on outputs from matched instructors within each setting. Evaluation is conducted on
eight diverse mathematical benchmarks: GSM8K [16], SVAMP [62], MATH [31], NumGLUE [56],
SimulEq [42], AQuA [47], SAT [100], and MMLU-Math [30], covering competencies from basic
arithmetic to multi-step symbolic reasoning and standardized test preparation. Implementation and
generation details are provided in Appendix A.3.

Main Result. As shown in Figure 2, learners trained under the Interactive Clarification paradigm
consistently outperform those trained via Passive Consumption across all eight evaluation benchmarks.
This performance gain highlights that LLMs are capable of leveraging interactive feedback to
improve task understanding, resembling human-like active learning behaviors. Notably, the gains
vary across model families. Mid-sized models such as Mistral-7B and Qwen2.5-7B show substantial
improvements, suggesting a strong capacity to benefit from additional instructional signals. In
contrast, the smallest model, Phi-3-mini, shows only marginal improvement, indicating limited ability
to engage in or benefit from interactive clarification, which suggests that active learning capabilities
are not uniform across models and may depend on model capacity or architecture.

4.2 Scaling Learner

Experiment Setup. While Section 4.1 explores the effect of instructional interactivity across
different model families, here we focus on how scaling the learner model within the same family
influences learning outcomes. Specifically, we fix the instructor as Qwen2.5-72B and vary the learner
model across Qwen2.5-1.5B, Qwen2.5-7B, and Qwen2.5-32B. We evaluate the impact of instructional
interactivity by comparing the Passive Consumption and Interactive Clarification paradigms. Training
data and evaluation benchmarks are kept consistent with Section 4.1. Results are shown in Figure 3,
where Origin refers to the performance of the untrained model, and Norm Acc denotes the accuracy
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Figure 3: Scaling learner models (Qwen2.5 variants) with a fixed Qwen2.5-72B instructor. Larger
learners learn more effectively, and interactive clarification further improves outcomes.

of the post-training under each setting divided by its corresponding untrained baseline. Further
implementation details are provided in Appendix A.3.

Main Result. As shown in Figure 3, we observe a strong positive correlation between learner
model scale and normalized learning gains: larger models consistently achieve higher performance
improvements across all evaluation tasks. This trend holds for both Passive Consumption and
Interactive Clarification, with the benefits of interactivity becoming more pronounced as model
capacity increases. Qwen2.5-32B demonstrates substantial gains under interactive supervision across
all eight math-related benchmarks. For instance, in NUMGLUE and SVAMP, it achieves +25.7% and
+23.8% normalized improvement, compared to +18.2% and +16.8% in the passive setting—showing
clear added value from clarification feedback. Similar trends appear in SIMULEQ and MATH,
where interactive training leads to +22.4% and +11.0% improvements, respectively. In contrast,
Qwen2.5-1.5B shows smaller gains overall, and the gap between passive and interactive learning
is narrower. For example, in GSM8K and SAT, improvements under interactivity are only +5.0%
and +3.5%, compared to +3.8% and +2.8% in the passive case. This indicates that limited capacity
restricts the ability to absorb and act on richer supervision signals.

4.3 Scale Instructor

Experiment Setup. We examine how the scale of the instructor model influences learning effec-
tiveness under different supervision paradigms. Specifically, we fix the learner model as Qwen2.5-7B
and vary the instructor across Qwen2.5-1.5B, 7B, 32B, and 72B. In each setting, we compare two
learning paradigms: Passive Consumption, where the learner receives static demonstrations, and
Interactive Clarification, where the learner can ask follow-up questions. The training setup and
evaluation benchmarks follow those in Section 4.1, and additional implementation details are provided
in Appendix A.3.

Main Result. However, this trend breaks when the instructor model is extremely small (e.g.,
Qwen2.5-1.5B). In such cases, interactive clarification may introduce noise or misleading guidance,
leading to degraded performance compared to passive learning. For example, on tasks such as
GSM8K, MATH, and SAT in Figure 4, the interactive setting underperforms the passive counterpart,
suggesting that low-quality instructors are unable to generate helpful responses to clarification
queries, which in turn hinders learner improvement. As shown in Figure 4, larger instructor models
consistently lead to better learning outcomes. When the instructor is strong (e.g., Qwen2.5-32B
or 72B), interactive supervision significantly improves learner performance compared to passive
instruction. This suggests that powerful instructors can provide useful clarifications that facilitate
deeper understanding and generalization. However, when the instructor is too small (e.g., Qwen2.5-
1.5B), the benefits of interactivity diminish or even become negative. In tasks such as GSM8K, MATH,
and SAT, we observe that learners trained with Interactive Clarification underperform compared
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to those trained passively. This indicates that weak instructors may introduce noise or incorrect
signals during interaction, ultimately hindering learning. These findings highlight the importance of
instructor quality in interactive learning and suggest that poorly performing instructors can negatively
affect the training process.
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Figure 4: Scaling instructor models (Qwen2.5 variants) with a fixed Qwen2.5-7B learner. Weak
instructors can degrade learning in the interactive setting; however, interaction becomes beneficial as
instructor capability increases.

5 Learning from Concept (LfC)

We study Learning from Concept (LfC), where models leverage static, abstract knowledge, such as
rules, definitions, or structured representations, to guide behavior or reasoning. We evaluate this ability
in two settings: (1) Structured Knowledge Injection in Competitive Environments, testing whether
models can integrate conceptual hints to improve decision-making in competitive environments, and
(2) Conceptual Generalization in Logic and Planning Tasks, examining generalization from symbolic
structures in logic and planning tasks.

5.1 Structured Knowledge Injection in Competitive Environments

Experiment Setup. We evaluate whether conceptual knowledge improves strategic performance in
multi-agent settings using TextArena [28], a suite of competitive environments with symbolic rules
and multi-turn dynamics. Each game involves two players, Player-0 and Player-1. We fix Player-0
as Qwen2.5-32B and vary Player-1 across four scales: Qwen2.5-1.5B, 7B, 14B, and 32B. Prior
to gameplay, Player-1 either receives no guidance (without Concept) or is given natural language
descriptions of game rules and strategies (with Concept), generated by Qwen2.5-32B. For each
environment and model pair, we run 20 matches and report Player-1’s win rate averaged over these
games. Environments include Checkers (CH), Poker (PK), Stratego (ST), Tic Tac Toe (TT), Truth
and Deception (TD), and Ultimate Tic Tac Toe (UTT). Performance is measured as Player-1’s win
rate against the fixed opponent. Results are shown in Figure 5. Implementation details are provided
in Appendix A.4.

Main Result. Results are shown in Figure 5. We observe two key trends. First, model scale signifi-
cantly influences the effectiveness of conceptual guidance. For smaller models such as Qwen2.5-1.5B,
injecting conceptual descriptions consistently degrades performance across all environments—with
Concept underperforms without Concept, suggesting that low-capacity models struggle to integrate
abstract knowledge and may treat it as distractive noise. In contrast, as model size increases, the
gap progressively narrows and eventually reverses. By Qwen2.5-14B and 32B, models consistently
benefit from conceptual input across most tasks, indicating improved abstraction and utilization
capabilities with scale. Second, win rates across tasks also increase monotonically with model
size, regardless of condition, highlighting a strong correlation between scale and general strategic
competence. Notably, high-conceptual-load environments such as Stratego and Truth and Deception
show the largest gains from conceptual input, especially for larger models. These results suggest that
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Figure 5: Win rates of Player-1 across six competitive environments from TextArena under the LfC
setting.

(i) conceptual understanding is scale-emergent, and (ii) injecting structured domain knowledge can
provide a tangible advantage, if the model is sufficiently capable of internalizing it.

5.2 Conceptual Generalization in Logic and Planning Tasks

Table 1: Accuracy on six tasks with and without
concept input (baseline / +concept). Higher scores
indicate better subgoal completion or reasoning
accuracy. Darker cell colors indicate larger im-
provements from concept input; white means no
change.

Qwen 2.5 7b 14b 32b 72b
LogicGrid 0.36/0.42 0.51/0.54 0.53/0.56 0.54/0.57
NaLogic 0.13/0.16 0.14/0.18 0.17/0.20 0.21/0.23
Plan 0.14/0.17 0.32/0.34 0.33/0.34 0.33/0.35
AlfWorld 0.27/0.29 0.30/0.32 0.33/0.34 0.33/0.33
ScienceWorld 0.16/0.19 0.26/0.29 0.33/0.35 0.41/0.42
BabyAI 0.40/0.42 0.41/0.44 0.46/0.46 0.51/0.51

Experiment Setup. To evaluate rule-based
generalization, we include six tasks centered
on explicit symbolic or logical structures. Log-
icGrid and NaLogic feature structured and nar-
rative logic puzzles [51, 23], testing deduction
under constraint. Plan [78] translates classi-
cal symbolic planning domains (e.g., Gripper,
Barman) into natural language settings to as-
sess structured action reasoning. Additionally,
tasks from AlfWorld [73], ScienceWorld [81],
and BabyAI [10], models must complete goal-
oriented tasks requiring commonsense reason-
ing, procedural knowledge, and spatial naviga-
tion. For the concept-injected setting, we use
Qwen2.5-72B to generate static conceptual hints, which are provided as auxiliary input to smaller
models during evaluation. Results are presented in Table 1 and Figure 5. We use subgoal-based
annotations to enable fine-grained progress tracking. Implementation details are provided in Ap-
pendix A.4.

Main Result. As shown in Table 1, providing external conceptual information, generated by
Qwen2.5-72B, consistently improves performance across all model sizes and tasks. The improvements
are most pronounced in smaller models, indicating that such auxiliary knowledge can partially
offset limited inherent reasoning capacity. In symbolic reasoning tasks such as LogicGrid and
NaLogic, concept injection yields consistent gains. For example, LogicGrid accuracy increases
from 0.36 to 0.42 for Qwen2.5-7B, and from 0.54 to 0.57 for Qwen2.5-72B, suggesting that explicit
structural cues remain beneficial even for larger models, though with reduced marginal benefit. In
planning tasks like Plan, the gains are smaller but stable, e.g., from 0.14 to 0.17 in Qwen2.5-7B and
0.32 to 0.34 in Qwen2.5-14B, indicating that models can utilize conceptual breakdowns of action
dynamics, particularly when capacity is constrained. For interactive environments such as AlfWorld,
ScienceWorld, and BabyAI, we observe moderate but limited improvements. While concept injection
provides useful structural cues, these tasks involve complex dynamics, such as exploration, multi-step
control, and environment grounding, that are not fully addressed by static conceptual input. Notably,
performance gains plateau for larger models, indicating that further progress may require richer
supervision signals, interactive fine-tuning, or stronger state-tracking mechanisms beyond static
abstractions.

6 Learning from Experience (LfE)

We investigate Learning from Experience (LfE), where models adapt by accumulating and utilizing
prior interaction history. We evaluate this ability in two settings: (1) Experience-Driven Adaptation in
Competitive Games, where agents condition on past multi-round play to adapt strategic behavior; and
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Figure 6: Win rates of Player-1 across six competitive environments from TextArena under the LfE
setting.

(2) In-context Examples as Off-policy Exploration Supervision, where LLMs learn from ICL-style
demonstrations viewed as episodic traces.

6.1 Experience-Driven Adaptation in Competitive Games

Experiment Setup. We adopt the same experimental setup as in Section 5.1, using TextArena [28],
a suite of competitive environments featuring symbolic rules and multi-turn dynamics. The results
are shown in Figure 6. Here, "with experience" refers to a setting where, during the k-th game, the
player selects three prior game experiences from rounds 0 to k−1 (or all available ones if fewer than
three exist), which are then used as ICL examples, allowing the model to learn from past experiences.
Implementation details are provided in Appendix A.5.

Main Result. Figure 6 presents win rates of Player-1 across six competitive environments in the
TextArena benchmark, under two supervision regimes: without experience and with experience. Our
analysis yields the following key findings: First, we observe a clear scaling trend in the efficacy of
experience-based learning. For smaller models such as Qwen2.5-1.5B, the inclusion of past game
trajectories generally leads to performance degradation across all environments. For example, in
Checkers and Stratego, win rates drop from 0.30 to 0.11 and from 0.45 to 0.20, respectively. This
suggests that low-capacity models struggle to extract relevant patterns from prior games and may treat
such input as noise or distractors, leading to suboptimal decisions. Second, as model size increases,
the ability to benefit from experience becomes more pronounced. Qwen2.5-7B exhibits mixed but
improving trends, while Qwen2.5-14B and Qwen2.5-32B demonstrate consistent performance gains
across most games when experience is incorporated. Notably, Qwen2.5-32B shows substantial
improvements in complex environments like Stratego (0.6 to 0.8) and TruthAndDeception (0.6 to 0.9),
indicating that larger models can better internalize structured histories and use them to inform strategy.
Third, independent of experience usage, we observe a monotonic increase in win rates with model
scale. This finding is consistent with results from learning from concept in Section 5.1, and confirms
that larger models possess stronger general gameplay competence. Lastly, compared to concept-based
generalization (Section 5.2), experience-based learning appears to be more cognitively demanding.
Unlike abstract rules, game histories are long, structurally rich, and often noisy, posing challenges
for information extraction and reuse. Even for Qwen2.5-32B, environments like UltimateTicTacToe
show only modest gains, highlighting the inherent difficulty of experience-based generalization.
These results demonstrate that (i) learning from experience is a scale-emergent ability, and (ii) its
effectiveness is tightly coupled with a model’s capacity to integrate, abstract, and act upon past
interactions.

6.2 In-context Examples as Off-policy Exploration Supervisions

Experiment Setup. To investigate how accumulated experience influences model behavior, we
treat in-context examples as trajectories encoding implicit supervision. This setup parallels off-policy
learning: unlike competitive gameplay in Section 6.1, where models adapt through active interaction
(on-policy), here they condition passively on externally provided experience examples. In Figure 7a,
we evaluate four base models, LLaMA3.1-8B, Qwen2.5-7B, Mistral-7B, and Phi-3-mini, under
varying numbers of in-context exemplars. In Figure 7b, we scale the amount of examples up to 1300
and track the performance of Qwen2.5-14B-Instruct-1M as well as Qwen2.5-7B-Instruct-1M variants.
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Figure 7: Experiments on learning from experience under off-policy exploration supervision.

“Norm acc" in Figure 7b denotes accuracy normalized by the model’s zero-shot performance. Finally,
in Figure 7c, we compare two supervision regimes: in-context learning and instruction tuning. We
use MagpieMath [85], as introduced in Section 4, as the source of experience (i.e., the ICL examples),
and the test set is also drawn from it. All ICL-example experiments were run 20 times, and we report
the mean and standard deviation. Implementation details are provided in Appendix A.5.

Main Result. As shown in Figure 7a, all models exhibit a non-monotonic trend as the number of in-
context examples increases: performance improves initially, peaks, and then declines. This highlights
that current LLMs are effective few-shot learners but struggle to scale with longer trajectories, raising
doubts about their many-shot capabilities. Figure 7b further confirms this limitation: when the
number of in-context examples exceeds 900, performance drops sharply, even in larger models.
This suggests that excessive examples may exceed attention capacity or interfere with generalization.
Additionally, the 14B model consistently outperforms the 7B model, suggesting greater robustness to
many-shot degradation. Figure 7c compares few-shot learning and instruction tuning. When data
is limited, few-shot learning is highly efficient, using just 3 examples matches the performance of
tuning with 5k instances. However, as data increases, instruction tuning continues to improve, while
few-shot performance declines. This suggests a practical strategy: use few-shot learning in low-data
regimes, and switch to tuning as more data becomes available.

7 LearnArena: A Benchmark Suite for General Learning Ability

Experiment Setup. We construct a benchmark suite that evaluates LLMs’ general learning ability
across three learning dimensions. The benchmark is built upon a modified version of the TextArena
framework [28], where each environment is cast as a two-player game between Player-0 and Player-1.
We fix Player-0 as Qwen2.5-32B and designate the evaluated LLM as Player-1. At each round k,
Player-1 selects three experiences from the previous k − 1 games and submits them to Player-0
for feedback. Player-0 provides suggestions for improvement, which Player-1 incorporates in the
current round, representing Learning from Instructor. Separately, a concise summary of the game
rules is generated by Qwen2.5-32B and given to Player-1, capturing Learning from Concept. In
addition, Player-1 is encouraged to perform its own analysis of the selected past experiences and
apply its conclusions in the current game, reflecting Learning from Experience. We evaluate each
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model-environment pair across 20 independent matches and report the average win rate of Player-1.
The environments span a diverse set of strategic and social reasoning tasks, including Checkers (CH),
Stratego (ST), Tic Tac Toe (TT), Truth and Deception (TD), SpellingBee (SB), SpiteAndMalice (SM),
Tak (TK), and WordChains (WC). We evaluate the following models: Llama-3.1-8B, Mistral-7B-v0.3,
Mistral-8B-2410, Qwen2.5-7B, Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct, Qwen3-8B, Qwen3-
14B, GPT-4-o, and GPT-4-o-mini. Further implementation details are provided in Appendix A.6.

Table 2: Win rates of Player-1 (evaluated model) across eight environ-
ments in the LearnArena benchmark. Bold indicates the best result for
each task.

Model CH ST TT TD SB SM TK WC Avg.
GPT4-o-mini 0.20 0.52 0.20 1.00 0.70 0.50 0.33 0.70 0.51

GPT4-o 0.80 0.61 0.81 1.00 0.60 0.82 0.71 0.80 0.75
Llama-3.1-8b 0.35 0.70 0.10 0.75 0.33 0.60 0.63 0.17 0.45

Mistral-7b 0.31 0.79 0.10 0.55 0.50 0.60 1.00 0.00 0.48

Mistral-8b 0.12 0.60 0.00 0.54 0.10 0.29 0.80 0.29 0.34

Qwen2.5-7b 0.39 0.61 0.08 0.93 0.20 0.11 0.10 0.30 0.34

Qwen2.5-14b 0.42 0.67 0.13 0.73 0.50 0.33 0.50 0.50 0.47

Qwen2.5-32b 0.40 0.72 0.09 0.83 0.30 0.50 0.67 0.60 0.51

Qwen3-8b 0.50 0.88 0.33 0.89 0.20 0.38 0.63 0.11 0.49

Qwen3-14b 0.50 0.88 0.50 1.00 0.50 0.20 1.00 0.25 0.60

Main Result. As shown
in Table 2, the performance
of LLMs varies widely
across tasks, model fami-
lies, and model scales, re-
vealing several important
trends. First, GPT-4o sets a
new state-of-the-art, achiev-
ing an average win rate
of 0.75 across the eight
tasks, significantly outper-
forming all other models.
Notably, GPT-4o demon-
strates strong and consistent
results across both symbolic
reasoning tasks (e.g., 0.80
on Checkers and 0.81 on
Tic Tac Toe) and social rea-
soning environments (e.g.,
1.0 on Truth and Deception),
showcasing its robust integration of instructional guidance, conceptual abstraction, and experien-
tial adaptation. Its smaller variant, GPT-4o-mini, also performs competitively (0.51), matching
Qwen2.5-32B and surpassing several larger models. Second, within the Qwen2.5 series, we observe
scale-driven improvement: performance increases steadily from 7B (0.34) to 14B (0.47) and 32B
(0.51), confirming that learning ability benefits from increased capacity, but only up to a point. The
gains diminish with scale. Third, the newer Qwen3 models exhibit a significant leap in performance:
Qwen3-8B reaches 0.49, while Qwen3-14B achieves 0.60, outperforming all other open-source
models and even exceeding GPT-4o-mini. This indicates that beyond scale, architectural and training
advancements play a crucial role in improving learning ability.

8 Conclusion

To address the lack of analyzing of learning ability in large language models, we propose a cognitively
grounded framework that decomposes general learning into three key dimensions: learning from
instructor, learning from concept, and learning from experience. This decomposition enables a
principled analysis of how LLMs acquire, internalize, and apply new knowledge. Our experiments
reveal that interaction enhances instruction-based learning, conceptual understanding scales with
model size, and LLMs struggle in many-shot scenarios due to long-context limitations. Motivated by
these findings, we introduce LearnArena, a unified benchmark designed to evaluate general learning
abilities across cognitively meaningful settings. While our current evaluation focuses on domains
such as mathematics and games, future work should expand the scope of LearnArena to encompass a
broader range of learning contexts and conceptual domains.
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A Experimental Setup

A.1 Implementation Details

All experiments were conducted on a high-performance computing server equipped with an AMD
EPYC 7V12 64-Core Processor, 512 GB of system memory, and 96 logical CPUs. The system
also includes eight NVIDIA A100 GPUs, each with 80 GB of memory. The code is available
here.2. Our training script is adapted from the example provided by LlamaFactory [99]. 3 Full
configuration details are provided in Appendix I. The references to Llama3.1-8B, Qwen2.5-7B,
Mistral-7B, Phi-3-mini, Qwen2.5-1.5B, Qwen2.5-14B, Qwen2.5-32B, Qwen2.5-72B, Mistral-8B,
Qwen3-8B, and Qwen3-14B in the main text refer to the specific models: Llama-3.1-8B-Instruct,
Qwen2.5-7B-Instruct, Mistral-7B-Instruct-v0.3, Phi-3-mini-128k-instruct, Qwen2.5-1.5B-Instruct,
Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct, Qwen2.5-72B-Instruct, Mistral-8B-Instruct-2410,
Qwen3-8B, and Qwen3-14B, respectively. Each environment in LearnArena contains 50 unique tasks
and is evaluated with 20 independent runs per task under a fixed protocol. Average input lengths
(tokens) are: WordChains 131, SpellingBee 63.9, SpiteAndMalice 593, Tak 739, TicTacToe 166,
Stratego 839, Checkers 289, and TruthAndDeception 122.9.

A.2 Evaluation Datasets

SVAMP [62] SVAMP tasks are designed to provide a robust benchmark for evaluating the math-
ematical reasoning capabilities of language models on Math Word Problems (MWPs). Each task
presents a short natural language narrative that describes a real-world scenario and poses a quantitative
question. Previous benchmarks, such as ASDiv-A and MAWPS, were shown to permit high model
performance even when critical question components were removed or word-order was disregarded,
revealing the presence of shallow heuristics in existing approaches. SVAMP addresses these deficien-
cies by introducing examples that require models to demonstrate sensitivity to the question, robust
reasoning, and invariance to structural alterations.

MATH [31] MATH tasks are constructed from a dataset of 12,500 challenging competition-
level mathematics problems, specifically designed to evaluate the mathematical problem-solving
capabilities of language models. Each problem is accompanied by a detailed, step-by-step solution,
enabling both the assessment of answer derivations and the development of explanation generation.
In addition to the main benchmark, a large auxiliary pretraining dataset is provided to help teach
models the fundamentals of mathematics. Despite advancements in large-scale Transformer models,
accuracy on the MATH benchmark remains relatively low, highlighting the limitations of current
approaches and the need for new algorithmic innovations in mathematical reasoning.

NumGLUE [56] NumGLUE tasks are derived from a comprehensive multi-task benchmark
designed to evaluate the numerical reasoning abilities of AI systems across eight distinct task types,
each requiring some form of arithmetic understanding. The benchmark includes tasks involving
commonsense and domain-specific arithmetic reasoning, quantitative comparison, fill-in-the-blank
questions, reading comprehension with explicit and implicit numerical reasoning, quantitative natural
language inference, and arithmetic word problems. By assessing model performance across these
diverse task formats, NumGLUE provides a rigorous evaluation of both simple and complex numerical
reasoning skills without leveraging explicit task-type labels during training.

SimulEq [42] SimulEq tasks are based on a dataset comprising 514 test samples centered on
equation solving, with a particular focus on algebraic manipulation and logical reasoning. The dataset
is designed to evaluate models’ proficiency in formulating and solving algebraic equations through
the application of structured reasoning processes.

AQuA [47] AQuA tasks are derived from the AQUA-RAT dataset, which comprises approximately
100,000 algebraic word problems accompanied by natural language rationales. Each problem includes
a natural language question, five answer options (A–E) with a single correct choice, and a detailed

2https://aka.ms/learnarena
3https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/train_full/llama3_

full_sft_ds3.yaml

17

https://aka.ms/learnarena
https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/train_full/llama3_full_sft_ds3.yaml
https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/train_full/llama3_full_sft_ds3.yaml


rationale describing the solution process. This dataset enables evaluation of both answer selection
and reasoning transparency in mathematical problem solving.

SAT [100] SAT tasks are sourced from the AGIEval benchmark, which is designed to evaluate
the general abilities of foundation models using authentic, human-centric standardized exams. The
SAT component consists of mathematics and verbal reasoning problems that mirror those found
in real-world college entrance assessments. By incorporating these tasks, AGIEval provides a
robust framework for assessing models’ understanding, reasoning, and calculation skills at a human-
competitive level. Recent results show that state-of-the-art models, such as GPT-4, can achieve
or surpass average human performance on SAT tasks, highlighting both the progress and current
limitations of large language models in solving complex, human-oriented problems.

MMLU-Math [30] MMLU-Math tasks are part of a comprehensive multitask benchmark designed
to evaluate a model’s accuracy across a wide range of academic subjects, with a specific focus on
elementary and advanced mathematics. The benchmark requires models to demonstrate both broad
world knowledge and sophisticated problem-solving skills. While recent large language models
show improvements over random-chance accuracy, substantial gaps remain in achieving expert-level
performance, particularly in mathematics. MMLU-Math enables detailed analysis of a model’s
mathematical proficiency and helps to identify critical areas requiring further advancement.

MagpieMath [85] MagpieMath is a large-scale dataset generated via the Magpie pipeline,
which synthesizes high-quality mathematical instruction data through auto-regressive sampling
from Qwen2.5-Math. Unlike prior instruction tuning datasets that depend on seed prompts or
handcrafted templates, Magpie employs a pre-query-based sampling approach to elicit diverse and
pedagogically rich instruction data directly from aligned LLMs. The resulting dataset spans a wide
range of mathematical skills, including arithmetic, algebra, and multi-step reasoning, and serves as a
robust resource for evaluating instruction-based learning in mathematical domains.

Poker [28] is a strategic two-player Texas Hold’em game where players compete by betting chips
based on their hole cards and community cards. Each player aims to win chips by either having the
best hand at showdown or making their opponent fold. The game follows standard Texas Hold’em
rules with a fixed number of rounds and betting structures.

Ultimate Tic Tac Toe [28] is a strategic two-player game that combines the classic Tic Tac Toe
with an added layer of complexity. Players aim to win three micro boards in a row (horizontally,
vertically, or diagonally) on the macro board, which tracks the outcomes of individual micro boards.
Each move influences the opponent’s next playable micro board, creating dynamic and strategic
gameplay. This environment implements the full rules of Ultimate Tic Tac Toe, including valid move
enforcement, micro board and macro board win detection, and a clear rendering of the board state for
agent-based gameplay and experimentation.

Checkers [28] (also known as Draughts) is a turn-based game played on an 8×8 board. Each
player controls a set of pieces placed on alternating dark squares. Pieces move diagonally forward
and can capture opponent pieces by jumping over them. A piece that reaches the opposite side of the
board becomes a "King," gaining the ability to move backward as well. The game ends when one
player’s pieces are all captured or when a player has no valid moves left.

Stratego [28] is a two-player strategy board game where players aim to capture their opponent’s
Flag or eliminate all of their movable pieces. Each player strategically places their army, consisting
of pieces of varying ranks, on a 10x10 grid, with special rules for movement and battle. Bombs act as
immovable traps, while Scouts can move multiple spaces in a straight line. The game involves hidden
information, where a player’s pieces are unknown to their opponent until revealed in battle. This
environment simulates the full rules of Stratego, including strategic placement, battle resolution, and
dynamic board rendering, providing a robust setup for agent-based gameplay and experimentation.

TicTacToe [28] (also known as Noughts and Crosses) is a classic two-player game played on
a 3×3 grid. Players take turns marking cells with their symbol (’X’ or ’O’), with the objective of
placing three of their marks in a horizontal, vertical, or diagonal row. This implementation provides a
complete game environment with move validation, win detection, and draw conditions.
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Truth and Deception [28] is a two-player social deduction game where one player (the Deceiver)
attempts to mislead the other player (the Guesser) about which of two facts is correct. The players
engage in a conversation of limited turns, during which the Deceiver strategically shares information
to encourage the Guesser to choose the incorrect fact. At the end of the conversation, the Guesser
must determine which fact is true. The game tests persuasion, critical thinking, fact verification, and
strategic communication in a structured environment with clear objectives for both roles.

Spelling Bee [28] is a two-player word game where players take turns creating valid English words
using only a limited set of allowed letters. The challenge increases as the game progresses because
each new word must be at least as long as the previous word. Players must balance vocabulary
knowledge with strategic thinking to outmaneuver their opponent by forcing them into increasingly
difficult positions. This implementation features frequency-weighted letter selection to ensure
balanced and playable letter sets.

Spite and Malice [28] is a two-player competitive card game that combines elements of solitaire
and strategic play. Each player has their own payoff pile that they aim to deplete first to win. Players
can play cards to shared center piles in ascending sequence (Ace to Queen), with Kings serving as
wild cards. The game involves careful resource management, opportunistic card placement, and
strategic blocking to prevent your opponent from emptying their payoff pile. This implementation
features a complete deck management system, discard piles, and a hand limit of five cards.

Tak [28] is a two-player abstract strategy board game. Players aim to build a continuous road
connecting two opposite edges of the board while blocking their opponent’s attempts. The game
involves placing and moving pieces of various types—Flat Stones, Standing Stones (Walls), and
Capstones—each with unique abilities. This environment simulates the full rules of Tak, including
flexible board sizes, road-building mechanics, and dynamic board rendering, offering a rich platform
for agent-based gameplay and experimentation.

Word Chains [28] is a turn-based word game where two players take turns providing valid English
words that start with the last letter of the previous word. The game enforces rules such as no word
repetition and requires valid English words. Players lose if they fail to provide a valid word.

LogicGrid [51] LogicGrid tasks are constructed as logic puzzles that require participants to
perform grid-based deduction and symbolic reasoning. These tasks are specifically designed to
evaluate the systematic application of abstract rules within constrained environments. All LogicGrid
tasks presented in this work are newly developed adaptations based on established principles from
classic puzzle collections.

NaLogic [23] NaLogic tasks are narrative-driven logic puzzles that require solvers to extract and
apply logical constraints embedded within rich, contextualized storytelling. These tasks are directly
inspired by literary puzzle formats, and they are specifically designed to assess the integration of
logical reasoning within narrative comprehension. All NaLogic tasks included in this work are
systematically derived from established approaches found in classic puzzle literature.

Plan [78] Plan tasks are adapted from classical scenarios formulated within the Planning Do-
main Definition Language (PDDL), including representative domains such as Gripper, Barman,
Blocksworld, and Tyreworld. In these tasks, symbolic states are systematically translated into natural
language descriptions to enable seamless interaction with large language models. Progress is quanti-
tatively tracked by computing state-goal matching scores, thus providing a robust measure of task
completion and logical reasoning within dynamic planning environments.

AlfWorld [73] AlfWorld tasks require agents to perform everyday household activities that
necessitate both exploration and commonsense reasoning. AlfWorld leverages interactive TextWorld
environments that are closely aligned with the embodied scenarios found in the ALFRED dataset.
This alignment enables agents to develop and reason about high-level policies within an abstract,
text-based space, prior to executing embodied tasks that demand low-level actuation in physical or
simulated environments.
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ScienceWorld [81] ScienceWorld tasks require agents to comprehend and execute a variety of
scientific procedures, including activities such as measuring physical properties and manipulating
laboratory equipment. Each task is accompanied by carefully reannotated subgoals designed to more
accurately capture incremental progress, thereby enabling a granular evaluation of scientific reasoning
and procedural understanding.

BabyAI [10] BabyAI tasks require agents to navigate and interact within grid-world environ-
ments, leveraging newly introduced textual action representations and re-annotated subgoals. These
modifications are designed to facilitate more nuanced agent-environment interaction and provide
finer-grained evaluation of task completion in language-conditioned navigation settings.

AlpacaEval [22] AlpacaEval tasks consist of a diverse set of 805 instructions, systematically
aggregated from multiple benchmark sources. Specifically, the collection includes 252 instructions
from the self-instruct test set[82], 188 from the Open Assistant test set (OASST), 129 from the
Anthropic Helpful Test Set [101], 80 from the Vicuna test set [12], and 156 from the Koala test
set [79]. This comprehensive assembly is designed to support the broad evaluation of the instruction-
following capabilities across a wide range of language models.

Vicuna [12] Vicuna tasks consist of 80 test instructions, systematically organized into eight distinct
categories: Fermi problems, common sense reasoning, role-play scenarios, coding, mathematics,
writing tasks, counterfactuals, knowledge assessment, and generic questions. This categorical organi-
zation is designed to facilitate a thorough evaluation of multiple dimensions of chatbot performance.
Prior research suggests that the Vicuna dataset predominantly features instructions of comparatively
lower difficulty and complexity[84]. In this study, the Vicuna test set is used to specifically assess the
performance of large language models across these various types of instruction.

Self-Instruct [82] Self-Instruct tasks consist of 252 human-authored test instructions, each paired
with a carefully crafted reference output. This test set is meticulously curated to represent the
real-world applicability of instruction follower models, encompassing a wide range of domains
such as email composition, social media engagement, productivity software, and coding tasks. The
instructions exhibit substantial diversity in both style and format, including various task lengths and
a spectrum of input/output types such as bullet points, tables, code fragments, and mathematical
equations. In this study, the Self-Instruct test set is utilized to rigorously evaluate the model’s
proficiency in adhering to precise instructions across heterogeneous domains.

Wizardlm [84] Wizardlm tasks are derived from a large-scale instruction dataset initially seeded
with 52,000 instructional examples from Alpaca, subsequently expanded through M = 4 evolutionary
cycles to produce 250,000 unique instructions. In each cycle, for every instruction, six new prompts
are generated—five via in-depth evolution and one through in-breadth evolution—of which one
prompt is randomly selected. Responses are then generated using ChatGPT, culminating in 52, 000×
4× 3 = 624, 000 instruction-response pairs. The training subset utilized for the Evol-Instruct dataset
comprises 70,000 of these instructions. The test set, consisting of 218 instructions, is curated from
diverse sources, including open-source projects and online forums, and encompasses 29 distinct skill
areas identified from real-world human tasks.

ARC [13] ARC tasks are derived from a dataset comprising 7,787 English-language science
exam questions sourced from a variety of educational materials, including licensed content provided
by a research partner affiliated with AI2. Each question is presented in a multiple-choice format,
typically with four answer options, and spans a range of grade levels. The dataset is partitioned into a
Challenge Set containing 2,590 “hard” questions—defined as those that cannot be correctly answered
by either retrieval-based or co-occurrence-based baseline methods—and an Easy Set containing 5,197
questions of comparatively lower difficulty. This structure supports comprehensive evaluation of
reasoning and scientific understanding across different levels of complexity.

HellaSwag [92] HellaSwag tasks are derived from a challenging benchmark for commonsense
natural language inference, wherein models must select the most plausible continuation for a given
event description. For example, given an event such as “A woman sits at a piano,” the model
must choose the most likely follow-up, such as “She sets her fingers on the keys.” Despite the
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introduction of advanced pretrained models like BERT, which achieved near human-level performance
on previous tasks, HellaSwag demonstrates that even state-of-the-art models still struggle with robust
commonsense reasoning. The dataset is constructed using Adversarial Filtering, a methodology where
a series of discriminators iteratively select adversarially challenging, machine-generated distractors.
While these questions are trivial for humans (accuracy >95%), state-of-the-art models frequently
misclassify them (accuracy <48%).

WinoGrande [66] WinoGrande tasks are derived from a dataset comprising 44,000 problems,
inspired by the Winograd Schema Challenge [40], but specifically adjusted to enhance both scale and
robustness against dataset-specific biases. Each task is presented as a fill-in-the-blank question with
binary options, requiring the participant to select the correct answer based on contextual commonsense
reasoning.

MMLU [30] MMLU tasks are derived from the benchmark introduced by Hendrycks et al.,
evaluating a model’s ability to answer multiple-choice questions across a broad range of academic
subjects. In the original format, each question presents the answer choices within the context, and
the model is required to produce the answer letter (e.g., A, B, C, D) as the continuation. The mmlu-
continuation variant adopts a cloze-style format, omitting the answer choices in the context and
requiring the full answer choice in the continuation. The mmlu-generation variant is similar to the
original, but the model is tasked with generating the correct answer letter directly. These variants
collectively enable a nuanced evaluation of language models’ reasoning and generation capabilities
across diverse knowledge domains.

GSM8k [16] GSM8k tasks are drawn from a dataset of 8,500 high-quality, linguistically diverse
grade school math word problems, designed to evaluate multi-step mathematical reasoning in language
models. Despite the conceptual simplicity of the problem distribution, state-of-the-art transformer-
based models consistently struggle to achieve high performance on this benchmark. The GSM8k
dataset thus provides a rigorous diagnostic tool for analyzing the limitations of current models and
supporting further research in mathematical reasoning.

Intlaw [60, 61] Intlaw tasks are derived from L. Oppenheim’s two-volume International Law:
A Treatise, and are designed to assess understanding of both foundational and applied principles
in international law. Volume 1 emphasizes legal theory, sources of law, and the concept of state
sovereignty, while Volume 2 explores topics such as conflict, neutrality, and mechanisms for peaceful
dispute resolution. This dataset enables evaluation of models’ capabilities in legal reasoning, state
interactions, and comprehension of diplomatic and legal frameworks.

Willidea [68, 69, 70] Willidea tasks are constructed from all three volumes of Arthur Schopen-
hauer’s The World as Will and Idea, focusing on the evaluation of philosophical reasoning and
metaphysical analysis. The dataset challenges models to interpret complex philosophical arguments,
engage with Kantian critique, and reason across abstract conceptual structures related to perception,
will, and reality. Through these tasks, the ability of language models to comprehend and analyze
dense philosophical discourse is rigorously assessed.

Ancsoc [57] Ancsoc tasks are derived from Lewis H. Morgan’s Ancient Society and are designed
to assess a model’s understanding of the evolution of human civilization through the stages of
savagery, barbarism, and civilization. The dataset emphasizes analysis of social structures, cultural
development, and key concepts in anthropological theory. Through these tasks, models are evaluated
on their capacity for historical analysis and cross-cultural reasoning.

Poliec [64, 65] Poliec tasks are based on Wilhelm Roscher’s two-volume Principles of Political
Economy and focus on the historical development of economic systems, classification of income,
and the influence of human behavior on economic theory. The dataset is designed to assess models’
abilities to reason through complex economic frameworks, drawing on both historical context and
theoretical foundations.
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A.3 Details of Learning from the Instructor

We evaluate instruction-based learning ability across five distinct domains: Mathematics, Law,
Philosophy, Anthropology, and Economy. Each domain is selected to reflect different facets of
instruction-following behavior, ranging from structured problem-solving to conceptual understanding.
During training, we additionally use the MAGPIEMATH dataset [85], which provides large-scale, high-
quality mathematical instruction data synthesized from Qwen2.5-Math. It is a subset of the dataset
available at this link 4. The prompt can be found in Appendix L. We used eight representative test
benchmarks: GSM8K [16], SVAMP [62], MATH [31], NumGLUE [56], SimulEq [42], AQuA [47],
SAT [100], and MMLU-Math [30]. These datasets cover a range of mathematical competencies
from grade-school arithmetic to advanced problem-solving, including multi-step reasoning, equation
solving, and standardized testing skills. In the Law domain, we use the Intlaw dataset [60, 61]. It
covers core topics such as sovereignty, conflict, and dispute resolution, and evaluates models’ legal
reasoning and understanding of international legal systems. In the Philosophy domain, we use the
Willidea dataset [68, 69, 70], which focuses on metaphysics, perception, and will, testing models’
ability to interpret abstract arguments and philosophical reasoning. In the Anthropology domain,
we use the Ancsoc dataset [57], which evaluates understanding of social evolution, cultural systems,
and anthropological theory. In the Economy domain, we use the Poliec dataset [64, 65], which
emphasizes historical and theoretical reasoning in value, income, and economic behavior. Across
these four non-math domains, question formats included fill-in-the-blank (fill), judgment (judge),
multiple-choice (multi-choice), open-ended (open), and single-choice (single-choice). We provide
representative cases of each question format in Appendix J. Further dataset details are provided in
Appendix A.2

A.4 Details of Learning from the Concept

We evaluate models’ ability to learn from structured conceptual information across a variety of tasks
that require rule interpretation, logical reasoning, and symbolic planning. Our experiments focus
on two complementary settings: multi-agent competitive environments and logic-based planning
tasks. In each case, we compare model performance with and without access to high-level conceptual
summaries that describe task-specific rules, goals, or strategies. These summaries are generated
by a stronger teacher model and provided as auxiliary context to the learner model. We first study
conceptual learning in strategic settings using the TEXTARENA framework [28], a collection of multi-
agent environments characterized by symbolic rules and multi-turn dynamics. Each game involves
two players, Player-0 and Player-1. We fix Player-0 as Qwen2.5-32B and vary Player-1 across
four model scales: Qwen2.5-1.5B, 7B, 14B, and 32B. Prior to gameplay, Player-1 either receives
no guidance (without Concept) or is given a natural language description of the game rules and
strategies (with Concept) generated by Qwen2.5-32B. For each environment and model combination,
we run 20 matches and report the average win rate of Player-1. The evaluation environments include
CHECKERS (CH), POKER (PK), STRATEGO (ST), TIC TAC TOE (TT), TRUTH AND DECEPTION
(TD), and ULTIMATE TIC TAC TOE (UTT). Performance is measured as the win rate of Player-1
against the fixed opponent. We then evaluate rule-based generalization across a set of logic and
planning tasks. The LOGICGRID and NALOGIC tasks consist of structured and narrative logic
puzzles [51, 23], requiring deduction under symbolic constraints. PLAN [78] adapts classical PDDL-
style planning domains (e.g., Gripper, Barman) into natural language to assess symbolic action
reasoning. Additionally, we include ALFWORLD [73], SCIENCEWORLD [81], and BABYAI [10]
tasks, which involve procedural and goal-oriented behaviors requiring commonsense reasoning and
spatial understanding. For the concept-injected setting, we use Qwen2.5-72B to generate static
conceptual summaries tailored to each task. These summaries are provided as additional input to the
learner model during evaluation. Further dataset details are provided in Appendix A.2

A.5 Details of Learning from the Experience

We investigate how language models adapt their behavior based on prior experiences. Our experiments
are designed to capture different aspects of experience-based learning, ranging from competitive
multi-turn interactions to static in-context supervision. In all settings, models are exposed to past
interaction traces or curated examples, which serve as proxies for experiential knowledge. We

4https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2.5-Math-Pro-300K-v0.1
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evaluate two complementary scenarios: (1) interactive adaptation through self-selected experience in
multi-agent games, and (2) passive conditioning on externally provided in-context examples. These
two settings align conceptually with classical learning paradigms: the first resembles on-policy
learning, where the model actively explores and adapts through its own interactions; the second
mirrors off-policy learning, where the model passively leverages prior trajectories without influencing
their generation. Together, they allow us to explore whether LLMs can extract useful patterns from
previous data. We adopt the same multi-agent environment setup described in Section 5.1, using
TEXTARENA [28], a suite of competitive games involving symbolic rules and multi-turn dynamics.
The results are shown in Figure 6. In this setting, "with experience" refers to a scenario where, during
the k-th game, the model selects three prior experiences from rounds 0 to k−1 (or all available
ones if fewer than three exist). These samples are used as in-context learning (ICL) examples,
allowing the model to draw on its past trajectories for real-time adaptation. Performance is measured
by the average win rate of Player-1 across 20 independent matches. This setup captures whether
models can benefit from self-curated experiential memory in competitive decision-making. To further
analyze how accumulated experience affects model behavior, we treat in-context examples as off-
policy trajectories that encode supervision signals. This setup parallels off-policy learning: unlike
competitive gameplay in Section 6.1, where models adapt through active interaction (on-policy),
here they condition passively on externally provided experience examples. These exemplars are not
generated by the current model but are instead drawn from prior runs or curated datasets. We use
MagpieMath [85], introduced in Section4, as the source of experience for in-context learning, with
both the ICL examples and test set drawn from this dataset. All in-context experiments are repeated
20 times using different random seeds. We report the mean and standard deviation for each result.
Further dataset details are provided in Appendix A.2

A.6 Details of LearnArena

We design a benchmark suite to evaluate the general learning ability of large language models across
three distinct learning paradigms: Learning from Instructor, Learning from Concept, and Learning
from Experience. Each paradigm is operationalized within the same unified game-based evaluation
setting, adapted from the TextArena framework [28]. In this setup, each environment is framed as a
two-player game involving Player-0 and Player-1. Player-0 is fixed as Qwen2.5-32B and serves as the
consistent teacher or opponent across all tasks. Player-1 is the evaluated model, which varies across
runs. At each round k, Player-1 selects three prior experiences from rounds 0 to k−1 and submits
them to Player-0 to receive feedback. Player-0 then returns suggestions for improvement. This
interactive feedback process constitutes the Learning from Instructor component of the benchmark.
In parallel, a concise natural language summary of the environment’s rules is generated by Qwen2.5-
32B and given to Player-1 prior to gameplay. This summary includes key mechanics, legal moves,
and basic strategies for the task, enabling models to condition on explicit rule representations. This
serves as the Learning from Concept component. Player-1 is also encouraged to analyze its own
past experience samples and draw inferences to improve future performance. These self-selected
experiences are used as in-context examples during gameplay, forming the Learning from Experience
component. The prompt can be found in Appendix K. We evaluate each model-environment pair
over 20 independent matches and report the average win rate of Player-1. The benchmark includes
a diverse set of environments designed to test strategic reasoning, symbolic planning, and adaptive
behavior. The selected games include CHECKERS (CH), STRATEGO (ST), TIC TAC TOE (TT),
TRUTH AND DECEPTION (TD), SPELLINGBEE (SB), SPITEANDMALICE (SM), TAK (TK), and
WORDCHAINS (WC). We evaluate the following models as Player-1: LLaMA-3.1-8B, Mistral-7B-
v0.3, Mistral-8B-2410, Qwen2.5-7B, Qwen2.5-14B-Instruct, Qwen2.5-32B-Instruct, Qwen3-8B,
Qwen3-14B, GPT-4-o-mini, and GPT-4-o. Each model plays all environments under the same setup,
enabling controlled and comparable assessment across architectures and scales. The details of dataset
are provided in Appendix A.2 Further implementation details, including prompt formats, sampling
settings, and game environment configurations, are provided in the released codebase.

Comparison with Existing Benchmarks. To assess the uniqueness and relevance of our benchmark,
we compare it with a broad set of widely used evaluation benchmarks by computing Spearman rank
correlations between system-level rankings. These benchmarks include instruction-following datasets
such as AlpacaEval [22], Vicuna [12], Self-Instruct [82], and WizardLM [84], as well as standard task-
specific evaluations including ARC [13] (science reasoning), HellaSwag [92] and Winogrande [66]
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Figure 8: Spearman rank correlation matrix between our benchmark and nine existing benchmarks.

(commonsense inference), GSM8K [16] (mathematical reasoning), and MMLU [30] (broad-domain
knowledge).

As shown in Figure 8, our benchmark shows low correlation with all existing benchmarks, with
the highest only reaching a moderate level (0.66), indicating it captures distinct aspects of model
performance. Among all benchmarks, our strongest correlations are with AlpacaEval (ρ = 0.66) and
MMLU (ρ = 0.66), followed by HellaSwag (ρ = 0.53), WizardLM (ρ = 0.44), and Self-Instruct
(ρ = 0.43). The correlation with Vicuna is relatively low (ρ = 0.25), and correlations with ARC,
Winogrande, and GSM8K are near zero. These results indicate that while there is some overlap
between our benchmark and existing instruction-following or knowledge-based tasks, our evaluation
framework provides a different and complementary signal. This divergence is expected, given the
design objective of our benchmark. Unlike most prior benchmarks that focus on static task-solving or
narrow instruction-following performance, our benchmark is explicitly constructed to evaluate general
learning ability. It is grounded in a cognitive framework that integrates three key dimensions: learning
from instructor, learning from concept, and learning from experience. However, our benchmark
does not treat these dimensions as isolated tasks or modules. Instead, we embed them holistically
across the benchmark’s task suite, such that model success requires simultaneously demonstrating
the ability to absorb guidance, abstract rules, and dynamic feedback. As a result, our benchmark
presents a more integrated and realistic test of adaptive intelligence, resembling how learning occurs
in natural human settings. The varying degrees of correlation across external benchmarks further
illuminate how different datasets capture different cognitive demands. Benchmarks like ARC focus
on domain-specific problem-solving (e.g., science) with fixed question-answer formats. These tasks
require correctness but do not test a model’s ability to update its behavior through interaction or
abstraction, which likely explains the near-zero correlation with our benchmark. On the other hand,
AlpacaEval and WizardLM emphasize open-ended instruction-following, which partially aligns
with our learning-from-instructor dimension. MMLU, though knowledge-centric, requires broad
generalization across domains and may tap into conceptual understanding and knowledge transfer,
hence the higher correlation. These findings confirm that our benchmark captures a distinct and
underexplored aspect of LLM evaluation by assessing general-purpose learning through the integrated
use of instruction, abstraction, and adaptation.

B Opponent Robustness and Extended Evaluation

LearnArena in the main text fixes Player-0 to Qwen2.5-32B. To assess robustness to opponent
choice and reduce the risk that models overfit to a single opponent’s idiosyncrasies, we repeated the
evaluation with three alternative Player-0 models—Phi-4, GPT-4o-mini, and GPT-4o. For each fixed
Player-0, we measured Player-1 performance on four environments (Checkers, Stratego, SpellingBee,
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Table 3: Player-0 = Phi-4. Player-1 win rates on four environments.
Player-1 CH ST SB SM

gpt-4o 1.00 0.90 0.65 1.00
gpt-4o-mini 0.65 0.88 0.86 0.72
llama-3.1-8b 0.65 0.70 0.50 0.75
mistral-8b 0.40 0.75 0.28 0.69
qwen2.5-7b 0.70 0.75 0.35 0.35
qwen3-8b 0.75 0.65 0.50 0.70

Table 4: Player-0 = GPT-4o-mini. Player-1 win rates on four environments.
Player-1 CH ST SB SM

gpt-4o 0.80 1.00 0.65 1.00
gpt-4o-mini 0.50 0.55 0.45 0.55
llama-3.1-8b 0.25 0.85 0.10 0.70
mistral-8b 0.15 0.85 0.20 0.45
qwen2.5-7b 0.45 0.70 0.25 0.35
qwen3-8b 0.40 0.95 0.55 0.50

SpiteAndMalice) under the same protocol as the main paper, averaged win rates across the four
environments to obtain a per–Player-1 score, ranked Player-1 models by this score, and computed the
Spearman rank correlation between this ranking and the baseline ranking obtained with Player-0 =
Qwen2.5-32B.

Across these alternative opponents, the rank-order agreement with the baseline is high. The Spear-
man correlations with the Qwen2.5-32B–based ranking are ρPhi-4 = 1.000, ρGPT-4o-mini = 0.829,
ρGPT-4o = 0.714. These values indicate that relative model rankings are largely preserved across sub-
stantially different opponents. In practice, stronger opponents compress absolute win rates yet retain
the broad ordering of Player-1 models, which is useful for difficulty calibration while maintaining
comparative validity. Taken together, these results suggest that the main conclusions of the benchmark
are not overly sensitive to the specific choice of Player-0. While average win rate remains a clear and
discriminative summary of success in dynamic environments, it is a coarse measure of learning. To
provide a more granular view of learning dynamics in future versions of LearnArena (LearnArena),
we will augment reporting with process-level signals that capture how models adapt, follow guidance,
and reuse experience. Specifically, we will measure adaptation speed through per-round improvement
and rounds-to-threshold; instruction adherence through agreement between instructor feedback and
subsequent actions under automatic alignment checks; concept utilization through rule compliance
and strategy-template coverage when conceptual summaries are provided; experience reuse through
the recurrence of salient patterns from selected prior trajectories in current decisions; and stability and
robustness through variance across seeds and sensitivity to controlled noise injected into instructions,
concepts, and experiences.

C Many-Shot Behavior and Long-Context Models

This section examines whether degradation in many-shot settings is merely a consequence of poor
long-context capability. In the many-shot experiments reported in Section 6.2, we evaluate Qwen2.5-
7B/14B-Instruct-1M, which support up to 1M-token windows and are explicitly designed for long-
context usage. Across these models, performance follows a clear non-monotonic trend: accuracy
improves as in-context examples increase, peaks at a small number of shots (3–9 depending on model
size), and then declines as the prompt grows longer. This indicates that, even with extended context
windows, current models remain effective few-shot learners while many-shot generalization remains
challenging. To further validate this pattern with a frontier model under tractable cost, we additionally
evaluate GPT-4o-mini (128k context) following the protocol in Section 6.2 and the setup of [4], using
4-shot as a reference and scaling up to 100 examples. On MagpieMath, we observe 71.2 (0-shot),
71.4 (4-shot), 72.8 (10-shot), a peak at 75.2 (15-shot), followed by 71.2 (20-shot), 70.8 (30-shot),
70.0 (50-shot), 70.6 (80-shot), and 70.6 (100-shot). The rise-then-fall trajectory replicates the central
empirical regularity documented in prior work. The observations above are consistent with [4]. In
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Table 5: Player-0 = GPT-4o. Player-1 win rates on four environments.
Player-1 CH ST SB SM

gpt-4o 0.60 0.50 0.45 0.50
gpt-4o-mini 0.15 0.45 0.35 0.10
llama-3.1-8b 0.00 0.50 0.20 0.15
mistral-8b 0.00 0.43 0.05 0.10
qwen2.5-7b 0.25 0.53 0.05 0.05
qwen3-8b 0.45 0.65 0.15 0.05

their Section 3.1, Figure 7 (left), Gemini 1.5 Pro on MATH-500 with ground-truth exemplars exhibits
the same shape: performance rises as the number of shots increases, peaks at roughly 125 shots, and
then declines as the context grows further. Although [4] truncates at 500 shots, the downward trend
is already evident. In our experiments on MagpieMath, when we extend beyond 30–100 examples
the decline persists and eventually dips below the 4-shot baseline, noting that the absolute scores
differ across datasets and evaluation protocols. Taken together, evaluations spanning Qwen2.5-7B,
Qwen2.5-14B, GPT-4o-mini, and previously reported results for Gemini 1.5 Pro all exhibit the same
qualitative regularity: performance improves, peaks, and then degrades as the number of in-context
examples grows. As model capability increases, the peak tends to occur at a larger shot count and the
subsequent degradation is slower, suggesting that stronger long-context handling delays but does not
eliminate many-shot brittleness. These results reinforce that long-context capacity is necessary but
not sufficient; robust many-shot generalization remains an open challenge.

D Clarifying “Passive Consumption” (LfI) vs. “Experience-Driven
Adaptation” (LfE)

Although both settings can appear as few-shot style prompts, they differ in intent and supervision:
LfI (passive consumption) supplies instructional content—worked solutions, step-by-step rationales,
or corrections—from a strong instructor, providing pedagogically curated guidance; formally, the
context is Ct = It and prediction follows fθ(x, It) → ŷ. LfE (experience-driven adaptation)
instead presents episodic traces—raw input–output pairs, partial trajectories, or outcomes—without
didactic restructuring, requiring the model to infer what to abstract or discard; here Ct = τt =
{s1, . . . , sk} and prediction follows fθ(x, τt)→ ŷ. In our experiments, LfI uses instructor-produced
solutions/rationales, whereas LfE uses selected histories from earlier rounds as off-policy trajectories,
reflecting guided transfer versus autonomous abstraction from unstructured experience.

E Rationale for Dataset Choices Across Learning Dimensions

The evaluation follows a two-stage design. Sections 4–6 isolate and validate each learning mechanism
under task families that provide the right supervision affordances and minimal cross-factor interfer-
ence. Section 7 then integrates all three mechanisms in a unified setting via LearnArena, enabling a
holistic assessment. A single fixed dataset for all experiments would entangle constructs and reduce
interpretability, whereas the staged design improves construct validity by matching task structure
to the learning signal being tested. For Learning from Instructor (Section 4), mathematics is used
because it naturally supports a tutor–learner paradigm with high-fidelity supervision. Problems admit
worked solutions and stepwise rationales, enabling clear, pedagogically oriented instructional signals
from a strong instructor (e.g., Qwen2.5-Math-72B) and objective evaluation of whether instruction
improves the learner. For Learning from Concept (Section 5), domains are chosen where structured
knowledge can be injected and audited. Competitive environments (TextArena) expose explicit
rules and strategy templates; logic puzzles (LogicGrid, NaLogic) emphasize formal constraints;
and planning/agent tasks (Plan, AlfWorld, ScienceWorld, BabyAI) probe procedural abstractions
and generalization. These settings make conceptual cues precise, testable, and meaningfully tied to
downstream behavior. For Learning from Experience (Section 6), the focus is on adaptation from
trajectories rather than instruction. Two complementary regimes are used: on-policy experience in
competitive games, where histories accumulate across rounds and must be exploited under stochastic
interaction, and off-policy experience via in-context examples, where pre-collected traces serve as
episodic supervision without didactic restructuring. This separation targets the specific cognitive
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demands of experience integration. Section 7 introduces LearnArena as a unified benchmark that
combines instructional feedback, conceptual summaries, and experience selection within shared game
environments. The unified evaluation complements the isolated studies by testing whether the three
learning mechanisms compose in realistic multi-agent settings, while the earlier sections justify that
each mechanism is measurable and interpretable in its most suitable domain.

F Why Three Perspectives? Scope and Relationship to Self-Critique

The tripartite decomposition—Learning from Instructor (LfI), Learning from Concept (LfC), and
Learning from Experience (LfE)—is chosen as a cognitively grounded and minimally overlapping
basis that captures the principal supervision channels through which learning occurs. LfI models
didactic guidance delivered by an external agent via demonstrations, explanations, or corrections
(instructional intent; [19, 72]); LfC captures the use of declarative, abstract structure (rules, defini-
tions, schemata) to enable transfer and constraint-based generalization ([25, 5]); LfE characterizes
adaptation from accumulated trajectories and outcomes under interaction or replay, without curated
pedagogy ([41]). These axes align with long-standing accounts in cognitive psychology and education
that separate guided instruction, conceptual abstraction, and experiential learning as complementary
pathways ([15, 41, 25]). Self-critique and related practices (reflection, self-rewarding, self-refinement)
fit naturally within this framework rather than constituting a separate axis. When a model critiques,
edits, or rewards its own outputs, the instructional channel is internalized: the model acts as its own
instructor while still supplying pedagogically structured signals, which places self-critique as an
instance of LfI with the instructor collapsed into the learner. In settings where the model instead mines
unstructured past attempts or rollouts to improve future behavior, the mechanism corresponds to LfE.
Thus, the proposed three perspectives provide a coherent basis that cleanly factorizes the supervision
source (instructor vs. concept vs. experience) while accommodating practical variants—external or
internal—within the same taxonomy.

G Limitations

While our work provides a structured perspective on the learning capabilities of large language
models, we acknowledge that our evaluations are conducted in synthetic and benchmark-driven
environments. As such, the implications of improved learning abilities in real-world settings, such
as education, healthcare, or human-AI collaboration, are not directly explored. Moreover, while
better learning may enhance LLM adaptability, it may also raise concerns around user over-reliance,
unintended memorization, or alignment with user intent in high-stakes applications. Our framework
is intended as a diagnostic tool for understanding LLM behavior, not as a comprehensive measure
of safety, fairness, or trustworthiness. We hope future work will extend our approach to include
evaluations grounded in real-world impact, especially in socially sensitive domains.
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becomes cleaner through selection.

H Learning with Useful Knowledge Selection

27



iter1 iter2 iter3 iter4

20

25

30

N
oi

se
 R

at
io

 (%
)

Anthropology
Anthropology Baseline
Economics
Economics Baseline

iter1 iter2 iter3 iter4

20

25

30

N
oi

se
 R

at
io

 (%
)

Law
Law Baseline
Philosophy
Philosophy Baseline

Figure 9: Noise ratios in data selected across
four domains and iterations. Solid bars (e.g.,
Anthropology) show trained models; dashed
bars (e.g., Anthropology Baseline) show un-
trained model selections.

Experiment Setup. Humans naturally develop the
ability to select high-quality learning materials based
on prior experience. In this section, we investigate
whether LLMs possess a similar capacity to identify
and prefer informative over noisy data during training.
We evaluate this ability across four non-mathematical
domains, Anthropology, Economics, Law, and Phi-
losophy, where domain knowledge is derived from
canonical classical texts, including works on interna-
tional law [60, 61], philosophy [68, 69, 70], anthro-
pology [57], and economics [64, 65]. Each domain
includes five question types: fill-in-the-blank (fill),
judgment (judge), multiple-choice (multi-choice),
open-ended (open), and single-choice (single-choice).
To simulate realistic noise, we inject 30% noisy sam-
ples into the training data through random perturba-
tion and irrelevant distractors. We adopt a four-step
iterative training procedure: (1) Model-1 is trained
on a randomly sampled 25% of the full dataset, from
which 70% is used for training. (2) Model-2 selects
70% of a new 25% data slice (from the remaining
75%) using Model-1 as the evaluator. (3) Model-3
repeats this process using Model-2 as the evaluator
on the next 25%. (4) Model-4 completes the final
iteration using Model-3 as the evaluator on the remaining data. All models use Qwen2.5-7B as
the base learner. Results are shown in Figure 9 and Figure 10, where Origin denotes the untrained
Qwen2.5-7B baseline, and Iter-1 to Iter-4 correspond to the four models described above. Evaluation
is performed on a held-out test set for each domain and question type. Case studies for each domain
are provided in Appendix J. Implementation details are provided in Appendix A.3.

Main Result. As illustrated in Figure 10, model performance consistently improves across all
domains, Anthropology, Economics, Law, and Philosophy, and all question types (fill-in-the-blank,
judgment, multiple-choice, open-ended, single-choice) over the four iterations. Figure 9 further
shows that the proportion of noisy samples in the selected training data steadily declines from Iter-1
to Iter-4 across all four domains demonstrating that LLMs can progressively learn to favor cleaner,
more informative data through iterative self-selection. For instance, in the domain of Anthropology,
the noise ratio drops from 30.00% in Iter-1 to 17.28% by Iter-4. This trend is consistent across
domains, indicating an emergent capacity to filter out irrelevant or misleading content during the
learning process. Compared to the untrained model baseline, which consistently selects data with
26% noise, trained models show a clear advantage in filtering out noise. This suggests that LLMs can
learn to identify and prioritize higher-quality data through iterative training.

I Instruction Tuning Configuration

ts specifications of the instruction tuning corpora in each domain and Table 6 presents instruction
tuning hyper-parameters. We conduct full-parameter supervised fine-tuning on five domain-specific
corpora that cover Economics, Law, Philosophy, Anthropology, and Mathematics. Each corpus
is built by pairing public domain texts with instruction–response examples produced through an
automated prompt-and-verify pipeline: we first segment source documents into short passages, then
use GPT-4 to write an instruction for each passage and generate a reference answer, finally filtering
out low-quality pairs with simple heuristic checks. After deduplication and shuffling, the resulting
datasets contain between 12k and 100k samples per domain, as detailed in Table 7. We adopt the
training recipe from LlamaFactory5 and keep the same optimizer, scheduler, and precision across
domains. Because the mathematics corpus is much larger than the others, we train for two epochs
on Math and four epochs on the remaining domains while keeping the effective batch size, learning

5https://github.com/hiyouga/LLaMA-Factory/blob/main/examples/train_full/llama3_
full_sft_ds3.yaml
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Table 6: Supervised fine-tuning hyper-parameters across domains. Left: configuration for Mathe-
matics, which uses a larger dataset and fewer epochs. Right: shared configuration for Philosophy,
Anthropology, Economics, and Law.

Math Domain Non-Math Domains
Hyper-parameter Assignment
Number of epochs 2
Batch size per device 1
Gradient accumulation steps 4
Effective batch size 32
Maximum sequence length 2048
Learning rate 1e-5
Learning rate scheduler cosine
Warm-up steps 20
Optimizer AdamW
Precision FP16

Hyper-parameter Assignment
Number of epochs 4
Batch size per device 1
Gradient accumulation steps 4
Effective batch size 32
Maximum sequence length 2048
Learning rate 1e-5
Learning rate scheduler cosine
Warm-up steps 20
Optimizer AdamW
Precision FP16

rate, sequence length, and other hyper-parameters identical (Table 6). All experiments are run on
eight A100 80 GB GPUs with gradient accumulation to reach an effective batch size of 32.

I.1 Task Descriptions and Token Length Statistics

Table 7: Instruction–response corpora across
five domains.

Domain # Samples Source
Economy 12,408 [64, 65]
Law 29,648 [60, 61]
Philosophy 23,804 [68, 69, 70]
Anthropology 25,516 [57]
Mathematics 100,365 [85]

Across the eight environments we track the num-
ber of generated tokens for every model–task
pair and compare these budgets with the win-
rate figures in Table 2. As shown in Table 8,
token usage spans more than an order of mag-
nitude: SpellingBee is consistently the cheapest
task (all models< 350 tokens) whereas Tak is
the most expensive (from 1.6 k for Llama-3.1-
8B up to 6.6 k for Qwen3-8B). Model style has
a larger impact than size: the Qwen3 series and
Mistral models tend to answer verbosely, often
emitting twice as many tokens as GPT-4o on the
same input, while GPT-4o and GPT-4o-mini remain concise even on large boards. This verbosity does
not buy success: GPT-4o secures the highest average win rate (0.75) while producing 30–50 % fewer
tokens than its closest open-source competitors on most tasks. Conversely, Qwen3-8B generates the
longest outputs yet ranks only mid-pack (0.49). Within individual tasks the pattern persists. On the
compact SB game every model stays brief, but performance still ranges widely (0.10–0.70), showing
that concision need not hurt accuracy. In the token-hungry TK environment only models that combine
moderate length with strong heuristics—Mistral-7B (3.2 k tokens, win = 1.00) and Qwen3-14B (3.7
k, 1.00)—match GPT-4o’s high score; models that answer either too tersely (Llama-3.1-8B, 1.6 k,
0.63) or too verbosely (Qwen2.5-7B, 5.6 k, 0.10) fall behind. Computing Pearson’s ρ across all 88
model–task pairs yields a weak negative correlation of roughly −0.28 between token count and win
rate, indicating that quality of reasoning, not sheer output length, is the primary driver of performance
in LearnArena.

J Case Studies of LfI in Non-Math Domains

The illustrative cases in Tables 9, Tables 10, Tables 11 and Tables 12 highlight the diversity and
domain fidelity of the non-mathematical Learning-from-Instructor (LfI) benchmark. For each of the
four domains—Anthropology, Economics, Law, and Philosophy—we present one exemplar of every
question format used in our experiments: fill-in-the-blank, judgment, multiple-choice, open-ended,
and single-choice. Each example is accompanied by a short answer and a concise explanation that
reflects the expected reasoning chain. Together, these cases demonstrate the range of skills required
by the benchmark: factual recall (fill), binary verification (judge), multi-step selection (multi-choice),
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Table 8: Average generated tokens per match for each model across the eight LearnArena environ-
ments.

Model CH ST TT TD SB SM TK WC
Llama-3.1-8B 635 1057 951 656 172 1004 1591 409

Mistral-7B-v0.3 886 1463 1900 1265 629 1095 3223 505

Mistral-8B-2410 663 1661 1977 772 541 1167 4149 289

Phi-4-mini 669 1222 1594 1315 344 1561 2111 296

Qwen2.5-14B-Chat 980 1370 2308 867 326 1206 4116 478

Qwen2.5-32B-Chat 551 1531 2252 1006 187 1413 3002 498

Qwen2.5-7B 567 1624 2259 1006 232 1147 5559 239

Qwen3-14B 2312 1037 4167 1949 2743 3938 3688 1396

Qwen3-8B 1648 1885 5736 2545 2030 3025 6577 1826

GPT-4o 1535 2110 1050 563 201 2021 4294 436

GPT-4o-mini 720 1349 952 531 172 1634 3607 405

free-form synthesis (open), and focused identification (single-choice). They also show that the
prompts draw directly on domain-specific classics, ensuring that successful solutions depend on
relevant expert knowledge rather than surface heuristics. This qualitative examination complements
the quantitative results in Section H, confirming that the LfI tasks provide a realistic and varied testbed
for evaluating how well large language models can identify, learn, and apply useful knowledge in the
presence of noise.
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Table 9: Question formats in anthropology domain.

Multiple-Choice Question Example (multi-choice):
Question: What are the two plans of government that have developed throughout human history?
Choices:
A: Social organization
B: Political organization
C: Religious organization
D: Economic organization
E: Military organization
Answer: A, B
Explanation: A and B are correct because the two primary plans of government that have developed
throughout human history are social organization and political organization. Social organization,
which is the older form, is based on kinship structures such as the gens, phratry, and tribe. Political
organization, which emerged later, is based on territorial divisions such as townships, counties, and
states. Religious, economic, and military organizations, while significant, are not listed as the two
primary plans of government that have shaped societal structures.

Judgment Question Example (judge):
Question: The Aztec civilization extended slightly north of the Tropic of Cancer.
Answer: True
Explanation: This statement is true because the Aztec civilization, one of the most prominent in
the New World, had its center in the region that extends just north of the Tropic of Cancer. This
area, while still influenced by tropical conditions, provided a suitable environment for the Aztecs to
develop their advanced society, including their complex social structures and agricultural practices.

Single-Choice Question Example (single-choice):
Question: What is one of the natural centers of subsistence mentioned in the text?
Choices:
A: The Mississippi Delta
B: The Great Plains
C: The Valley of the Columbia
D: The Appalachian Mountains
Answer: C
Explanation: C is correct because the Valley of the Columbia is mentioned as one of the natural
centers of subsistence. This region is noted for its extraordinary variety and amount of subsistence
resources, which made it an ideal place for the development of a surplus population and the subsequent
formation of new tribes.

Open-Ended Question Example (open):
Question: How were the upper levels of Pueblo dwellings accessed?
Answer: By means of movable ladders and a hatchway in the roof
Explanation: The upper levels of Pueblo dwellings were reached using movable ladders and a
hatchway in the roof. This design provided a means of access while also enhancing security, as the
ladders could be removed to prevent unauthorized entry.

Fill-in-the-Blank Question Example (fill):
Question: In which region were the X-shaped bronze objects used as money, according to the passage?

Answer: Lunda
Explanation: The X-shaped bronze objects were used as money in the region of Lunda. These objects
were made in Lunda and were widely accepted as currency throughout the Congo. The use of such
distinctive and uniquely shaped metal objects as money highlights the diverse forms of currency that
have been developed by different societies to facilitate trade and economic transactions.
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Table 10: Question formats in economics domain.

Multiple-Choice Question Example (multi-choice):
Question: What does the text imply about the role of history in the study of law?
Choices:
A: History should be the exclusive focus of legal studies
B: History has no value in the study of law
C: History should be integrated with other methods in legal studies
D: History should be used to pursue pure abstractions
E: History should be used to understand the evolution of legal principles and practices
Answer: C, E
Explanation: C and E are correct because history should be integrated with other methods in legal
studies and should be used to understand the evolution of legal principles and practices. History
should not be the exclusive focus of legal studies, does have value in the study of law, and should not
be used to pursue pure abstractions.

Judgment Question Example (judge):
Question: During the middle ages, candles were very expensive, costing about 1-1/3 to 2 shillings
per pound.
Answer: True
Explanation: Historical records indicate that candles were a luxury item during the middle ages,
with prices ranging from 1-1/3 to 2 shillings per pound. This high cost made candles an expensive
commodity, accessible primarily to the wealthy, and contributed to their status as a symbol of affluence
and status.

Single-Choice Question Example (single-choice):
Question: Which Roman emperor made a significant legal change concerning the treatment of
abandoned children?
Choices:
A: Julius Caesar
B: Augustus
C: Constantine the Great
D: Nero
Answer: C
Explanation: C is correct because Constantine the Great, in the year 315 AD, made a significant legal
change concerning the treatment of abandoned children. This change likely aimed to improve the
conditions and legal standing of abandoned children, reflecting a shift in Roman societal values and
legal practices.

Open-Ended Question Example (open):
Question: What is the relationship between the development of private property and the advancement
of civilization?
Answer: Private property has developed as civilization and well-being have advanced
Explanation: The evolution of private property is closely linked to the progress of civilization and the
improvement of living standards. As societies become more developed and culturally advanced, the
concept and institution of private property become more established, reflecting and contributing to
the overall well-being and prosperity of the community.

Fill-in-the-Blank Question Example (fill):
Question: The unnecessary destruction of wealth, such as spending 10,000 dollars on fireworks, is
considered , regardless of whether the money remains in the country.
Answer: disastrous
Explanation: Economic theory emphasizes the importance of productive and sustainable use of
resources. When wealth is spent on non-productive activities, such as extravagant fireworks displays,
it is considered a wasteful and disastrous use of resources. This is because the destruction of wealth,
even if the money circulates within the country, does not contribute to long-term economic growth or
development. The resources used for such displays could have been allocated to more productive
uses, such as investment in infrastructure or education.
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Table 11: Question formats in law domain.

Multiple-Choice Question Example (multi-choice):
Question: Which of the following authors wrote treatises that were used as textbooks for teaching
International Law?
Choices:
A: William Edward Hall
B: Sir Edward Shepherd Creasy
C: Theodore D. Woolsey
D: Heinrich Bernhard Oppenheim
E: Luigi Casanova
F: Ernest Nys
Answer: A, B, C, D, E
Explanation: A, B, C, D, and E are correct because William Edward Hall, Sir Edward Shepherd
Creasy, Theodore D. Woolsey, Heinrich Bernhard Oppenheim, and Luigi Casanova all wrote treatises
that were used as textbooks for teaching International Law. These works were designed to provide
comprehensive and accessible introductions to the field, suitable for students and practitioners. Ernest
Nys, while a significant author, did not specifically write a textbook.

Judgment Question Example (judge):
Question: Private enemy property on a belligerent’s territory can be confiscated according to the
customary rule of International Law.
Answer: False
Explanation: The customary rule of International Law now prohibits the confiscation of private
enemy property on the territory of a belligerent. This rule evolved through international treaties,
municipal laws, and decrees, making the old practice of confiscation obsolete.

Single-Choice Question Example (single-choice):
Question: What is the significance of the Hague Conferences of 1899 and 1907 in the context of
guerilla warfare?
Choices:
A: They banned all forms of guerilla warfare
B: They provided a legal framework for the treatment of guerilla fighters
C: They recognized guerilla warfare as a legitimate form of war
D: They established the rules for the treatment of prisoners of war
Answer: B
Explanation: B is correct because the Hague Conferences of 1899 and 1907 provided a legal
framework for the treatment of guerilla fighters. These conferences established conditions under
which guerilla fighters could be treated as soldiers, thus providing them with certain protections under
international law.

Open-Ended Question Example (open):
Question: What is the purpose of pledging movable property in the context of international treaties?
Answer: To secure the performance of a treaty
Explanation: Pledging movable property in international treaties serves as a form of collateral to
ensure that the obligations outlined in the treaty are fulfilled. This practice acts as a safeguard, where
the pledged items can be retained or used to compensate the other party if the treaty obligations are
not met.

Fill-in-the-Blank Question Example (fill):
Question: The concept of prescription in international law is not solely based on the of time.
Answer: passage
Explanation: Prescription in international law is not determined by a fixed period of time alone. It
involves a combination of factors, including the stability of possession, the absence of protests, and
the general acceptance by the international community. The passage of time is only one aspect of the
broader context that contributes to the formation of a prescriptive title.
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Table 12: Question formats in philosophy domain.

Multiple-Choice Question Example (multi-choice):
Question: Which of the following philosophers is praised for his deeper insights compared to
Rousseau?
Choices:
A: Voltaire
B: Schopenhauer
C: Locke
D: Byron
E: Herodotus
F: Plutarch
Answer: B, C
Explanation: B and C are correct because the unnamed great man, likely Schopenhauer, is praised
for his depth of thinking, which includes insights aligned with Locke’s principle. Voltaire, Byron,
Herodotus, and Plutarch are not mentioned as being praised for deeper insights compared to Rousseau.

Judgment Question Example (judge):
Question: Satisfaction of a wish can lead to the creation of a new wish.
Answer: True
Explanation: Satisfaction of a wish often leads to the creation of a new wish because desires and
wants are inherently dynamic and ever-evolving. Once a particular goal is achieved, the human mind
tends to focus on the next goal, creating a continuous cycle of desire and fulfillment. This is rooted
in the nature of human psychology, where the satisfaction of one need or desire often reveals or
intensifies another, keeping individuals in a perpetual state of seeking.

Single-Choice Question Example (single-choice):
Question: Which of the following are considered essential fundamental constituent elements of
language according to the passage?
Choices:
A: Noun, verb, and adjective
B: Pronoun, article, and adverb
C: Substantive, adjective, and verb
D: Substantive, article, and pronoun
Answer: C
Explanation: C is correct because the essential fundamental constituent elements of language, as
mentioned, are substantive (which is another term for noun), adjective, and verb. These elements are
crucial for the structure and function of language, providing the core components needed to form
sentences and convey meaning.

Open-Ended Question Example (open):
Question: What is the first step towards achieving a metaphysical understanding of the world,
according to the text?
Answer: Bringing to distinct consciousness and firmly retaining the difference between physics and
metaphysics.
Explanation: The first step in moving towards a metaphysical understanding is to clearly recognize
and maintain the distinction between physics and metaphysics. Physics deals with the observable and
measurable aspects of the world, while metaphysics explores the deeper, underlying nature of reality.
Understanding this difference is crucial for recognizing the limitations of physical explanations and
the need for a metaphysical approach.

Fill-in-the-Blank Question Example (fill):
Question: The aesthetic effect of architectural works is in exact proportion to the of the
building.
Answer: size
Explanation: The aesthetic impact of a building increases with its size. Larger structures are more
effective in showcasing the forces of nature, such as gravity, in a more apparent and impressive
manner. This is because larger masses make the action of these forces more visible and tangible,
enhancing the overall aesthetic experience. Therefore, the size of a building is a critical factor in its
aesthetic value.
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K Prompt Design for LearnArena

To support the evaluation of general learning ability in LearnArena, we design three types of prompts
corresponding to the three learning dimensions: Concept, Instructor, and Experience. Each prompt is
carefully constructed to elicit behavior aligned with the intended mode of learning, while remaining
concise and task-relevant. For Learning from Concept, in Table 13, the prompt introduces the game
setting and provides a concise, structured request for strategic advice. The system prompt frames
the LLM as an expert strategist, while the user prompt asks for a list of key principles, tactics, and
pitfalls, grounded in the rules of the game. This setup encourages the model to abstract general
strategies directly from conceptual understanding. For Learning from Instructor, in Table 14, the
prompt simulates feedback-based instruction. The system prompt positions the model as a game
instructor giving targeted feedback. The user provides a summary of game history from prior rounds,
and the model is asked to analyze and respond in a structured format. This prompt encourages the
model to extract lessons from explicit advice and past decisions, simulating instructor-led reflection.
For Learning from Experience, in Table 15, the prompt shifts the role to that of a self-reflective player.
The system prompt instructs the model to analyze its own performance and derive improvements. The
user supplies a history of recent gameplay, and the model is prompted to identify useful patterns, good
and bad moves, and general strategic takeaways. This design promotes autonomous learning from
accumulated experience. All prompts share a consistent structure and tone, enabling fair comparison
across models and environments. By isolating each learning mode, we can evaluate how well a model
generalizes knowledge from rules, instruction, and prior experience independently.

Table 13: Prompt template for the concept learning setting.

Prompt for Concept

System Prompt:
You are an expert game strategist with deep knowledge of game theory and optimal
play. Your task is to provide concise, actionable strategic advice that will help a player
win. Focus on identifying winning patterns, key decision points, and optimal strategies.

User Prompt:
For this game ’{game}’, provide brief winning strategies based on this initial
observation.

WINNING STRATEGIES:

1. Top 3–5 strategic principles that lead to victory
2. Best opening moves or early game tactics
3. Key patterns to recognize during gameplay
4. Critical mistakes to avoid

Rules of the Game: {rules}

Keep your response concise and focused on practical advice that will maximize winning
chances.

L Prompt Design for the Passive/Interactive Setting

To support our experiments in Section 4.1, we design distinct prompting strategies to simulate the
two instruction-based learning paradigms: Passive Consumption and Interactive Clarification. These
prompts define how the instructor and learner interact during the generation and clarification phases
of training data construction. In the Passive setting, the instructor model is prompted to solve a
math problem directly, using a system instruction that encourages detailed step-by-step reasoning
and a final answer. The learner is then trained solely on these final outputs without any follow-up
interaction. The corresponding prompt template is shown in Table 17. In the Interactive setting, the
instructor-learner interaction is decomposed into a three-step process. First, the instructor provides a
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Table 14: Prompt template for the instructor learning setting.

Prompt for Instructor

System Prompt:
You are an expert game instructor. Your task is to provide detailed strategic advice for
the game based on the provided information.

User Prompt:
Analyze this history and provide strategic advice.

Game history: {game history}

Provide your analysis in this format:
1. Strategic principles to follow
2. Specific moves to consider
3. Moves to avoid
4. Key patterns to watch for

Table 15: Prompt template for the experience learning setting.

Prompt for Experience

System Prompt:
You are a player analyzing your own gameplay. Your task is to identify strengths,
weaknesses, and learn from this experience to enhance future performance.

User Prompt:
Analyze this history and provide strategic advice.

Game history: {game history}

Provide your analysis in this format:
1. Strategic principles to follow
2. Specific moves to consider
3. Moves to avoid
4. Key patterns to watch for

detailed solution to a math problem, identical to the passive setting. Second, the learner (student)
reviews the solution and is prompted to identify specific confusions or follow-up questions based
on the instructor’s response. Finally, the instructor receives the student’s clarifying question and
provides a targeted explanation aimed at resolving the confusion. This interactive exchange is used as
training data for the learner model, capturing a more realistic and adaptive instructional process. This
procedure reflects a more realistic and adaptive instructional scenario. The full prompting sequence
for this setting is shown in Table 16.

We also present a concrete case study illustrating the benefits of the Interactive prompting approach,
as shown in Table 19, Table 20, and Table 21. In this example, the learner poses meaningful and
specific questions about the instructor’s initial solution, such as clarifying the strategy behind number
grouping, order of operations, and the existence of alternative solutions. The instructor’s detailed
responses systematically address these queries, clearly enhancing the instructional quality compared
to the passive setting. This exchange highlights the distinct advantage of interactive clarification,
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where learner-generated questions provoke richer, more targeted explanations, ultimately improving
learning effectiveness.

Table 16: Interactive prompts for mathematical domain.

Interactive Step 1: Instructor Receives Problem

System Prompt:
You are a mathematician and educator. Solve the following math problem with accurate,
complete, and clear explanations. Break down your reasoning into a logical chain of
steps, and provide the final answer only after completing the reasoning.

User Prompt:
{question}

Interactive Step 2: Student Reviews Solution

System Prompt:
You are a math student. You will read the math problem and a solution provided by
your math teacher. If you have any questions or confusions about the solution, ask
specific questions about those parts.

User Prompt:
Math Problem: {question}
Here is the solution provided by your teacher: {answer}
If you have any questions or confusions about the solution, please list them.

Interactive Step 3: Instructor Addresses Confusions

System Prompt:
You are a mathematician and educator dedicated to resolving confusions about math
solutions. Provide clear, step-by-step explanations to logically address each confusion.

User Prompt Context:
Initial Question: {question}

Provided Solution: {answer}

Student’s Confusions: Confusions about the solution: {confusion}

Please address the confusions.
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Table 17: Passive prompt for mathematical domain.

Passive Prompt for Mathematical Domain

System Prompt:
You are a mathematician and educator. Solve the following math problem with accurate,
complete, and clear explanations. Break down your reasoning into a logical chain of
steps, and provide the final answer only after completing the reasoning.

User Prompt:
{question}

Table 18: Case study: passive prompt in mathematics.

Passive Prompt Math Problem and Solution:
Prompt: You are a mathematician and educator. Solve the following math problem with accurate,
complete, and clear explanations. Break down your reasoning into a logical chain of steps, and
provide the final answer only after completing the reasoning.
Question: If a, b, and c are positive integers satisfying ab+ c = bc+ a = ac+ b = 41, what is the
value of a+ b+ c?

Solution (Output): We have ab+ c = 41 and bc+ a = 41, so ab+ c = bc+ a. Subtracting the two
equations, we have ab− bc+ c− a = 0 ⇒ b(a− c)+ (c− a) = 0 ⇒ (b− 1)(a− c) = 0. Therefore,
a = c or b = 1.

If a = c, we have ab+ c = a2 + b = 41. We also have bc+ a = ab+ c = 41. If a2 + b = 41, then
a2 ≤ 41, so a ≤ 6. If a = 6, then 36 + b = 41 ⇒ b = 5. If a = c = 6 and b = 5, then our three
equations are satisfied, so a+ b+ c = 6 + 5 + 6 = 17 . If a < 6, then b ≥ 6, so b > a. We also
have a2 + b = 41, so b = 41 − a2 < 25. Therefore, 6 ≤ a < 6, so a = 6, and we have the same
solution as before.

If b = 1, we have ab+ c = a+ c = 41 and bc+ a = c+ a = 41. Therefore, a+ c = c+ a, which
is always true. However, we also have ac + b = ac + 1 = 41 ⇒ ac = 40. Therefore, a and c are
factors of 40. The only factor pairs of 40 are (1, 40), (2, 20), (4, 10), and (5, 8). However, we are
looking for positive integers a, b, c such that a+ c = 41, so the only possible solution is a = 5 and
c = 8. Therefore, a+ b+ c = 5 + 1 + 8 = 14 . The answer is 14

Table 19: Case study: interactive prompts for mathematical domain.

Interactive Step 1: Instructor Receives Problem

System Prompt:
You are a mathematician and educator. Solve the following math problem with accurate, complete,
and clear explanations. Break down your reasoning into a logical chain of steps, and provide the final
answer only after completing the reasoning.

User Prompt (Question):
Using the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 in order, and only using the operations of addition and
subtraction, how can you make the expression equal 100? Parentheses can be used to change the
order of operations.

38



Table 20: Case study: interactive prompts for mathematical domain.

Interactive Step 2: Student Reviews Solution & Asks Questions

System Prompt:
You are a math student. You will read the math problem and a solution provided by your math teacher.
If you have any questions or confusions about the solution, ask specific questions about those parts.

User Prompt:
Math Problem: Using the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 in order, and only using the operations of
addition and subtraction, how can you make the expression equal 100? Parentheses can be used to
change the order of operations.

Here is the solution provided by your teacher (Initial Answer): To solve the problem of making
the expression using the numbers 1 through 9 in order, and only using addition and subtraction
to equal 100, we need to strategically place the operations and parentheses. Let’s break down the
solution step-by-step.
First, let’s consider the structure of the problem. We need to use all the digits from 1 to 9 in order
and use only addition and subtraction to reach 100. We will experiment with different placements of
operations and parentheses to find a valid expression.
One effective approach is to group numbers in a way that allows us to use the operations to balance
the result to 100. Let’s start by trying to use the larger numbers to get close to 100 and then adjust
with smaller numbers.
Consider the sequence:

123− 45− 67 + 89

Let’s break this down: 1. Calculate 123− 45:

123− 45 = 78

2. Next, calculate 78− 67:
78− 67 = 11

3. Finally, add 89 to 11:
11 + 89 = 100

So, the expression 123− 45− 67 + 89 equals 100.
Therefore, the final answer is:

123− 45− 67 + 89

If you have any questions or confusions about the solution, please list them (Student’s Confu-
sions): I understand the solution provided, but I have a few questions and points of confusion:
1. **Grouping Numbers**: Why did we choose to group the numbers as 123, 45, 67, and 89? Is
there a specific strategy or intuition behind this grouping?
2. **Order of Operations**: How do we ensure that the order of operations (addition and subtraction)
is correctly applied when evaluating the expression? Specifically, how do the parentheses ensure the
correct order?
3. **Alternative Solutions**: Are there other ways to group the numbers and use addition and
subtraction to reach 100? If so, could you provide an example of another valid expression?
4. **General Strategy**: Is there a general method or algorithm to solve problems like this, where
we need to use a sequence of numbers and operations to reach a specific target?
5. **Verification**: How can we verify that no other combination of addition and subtraction using
the numbers 1 through 9 in order will also result in 100?
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Table 21: Case study: interactive prompts for mathematical domain — Part 1

Interactive Step 3: Instructor Addresses Confusions
System Prompt:
You are a mathematician and educator dedicated to resolving confusions about math solutions.
Provide clear, step-by-step explanations to logically address each confusion.

User Prompt Context:
Initial Question: Using the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 in order, and only using the operations of
addition and
subtraction, how can you make the expression equal 100? Parentheses can be used to change the
order of operations.
Provided Solution (Initial Answer):
To solve the problem of making the expression using the numbers 1 through 9 in order, and only
using addition and subtraction
to equal 100, we need to strategically place the operations and parentheses. Let’s break down the
solution step-by-step.
First, let’s consider the structure of the problem. We need to use all the digits from 1 to 9 in order and
use only addition and
subtraction to reach 100. We will experiment with different placements of operations and parentheses
to find a valid expression.
One effective approach is to group numbers in a way that allows us to use the operations to balance
the result to 100. Let’s
start by trying to use the larger numbers to get close to 100 and then adjust with smaller numbers.
Consider the sequence:

123− 45− 67 + 89

1. Calculate 123− 45 = 78

2. Then 78− 67 = 11

3. Finally 11 + 89 = 100

Therefore the expression 123−45−67+89 equals 100, and the final answer is 123− 45− 67 + 89 .
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Table 21: Case study: interactive prompts for mathematical domain — Part 2

Student’s Confusions:
1. The strategy behind grouping 123, 45, 67, 89.
2. Ensuring the order of operations, especially the role of parentheses.
3. Whether alternative solutions exist and an example.
4. Whether a general algorithm exists for such problems.
5. How to verify that no other combinations yield 100.

Instructor’s Response:
1. Grouping Numbers (123 | 45 | 67 | 89).
A reliable heuristic is to fuse the early digits into the largest possible chunk (here 123) so you begin
near the target of 100.
Next, look for a pair of medium-sized numbers whose difference is small (45 and 67 differ by 22)
and a final adjustment
term (±89) that brings the running total to the goal. This “large-number-first, cancel-with-a-pair,
fine-tune” pattern
dramatically shrinks the search space compared with blind trial-and-error.

2. Order of Operations & Parentheses.
Because addition and subtraction are left-associative and equal-priority, 123 - 45 - 67 + 89 is
automatically evaluated
left-to-right, producing 100 without extra parentheses. Parentheses matter only when we deliberately
override that rule—
e.g. ( 123− (45− 67) + 89 ), which forces 45− 67 first.

3. Alternative Solutions.
Multiple expressions satisfy the constraints, for example

• 123 + 4− 5 + 67− 89 = 100
• 12 + 3− 4 + 5 + 6 + 78 = 100

Each follows the same philosophy: create or destroy “mass” with big blocks, then make small tweaks.

4. General Strategy / Algorithm.
A systematic method is depth-first search with pruning:
• At each digit boundary, choose to concatenate or to insert + / −.
• Track a running total; abandon any branch whose partial total already overshoots a sensible bound.
• There are 28= 256 operator patterns and 28= 256 digit-merge patterns, so the full tree has at most
65 536 leaves—

small for a computer and still manageable by hand with pruning.

5. Verifying Uniqueness.
Write a short program (or spreadsheet) that enumerates every merge / operator pattern; collect the
ones equalling 100.
You will find only a handful of distinct families and no hidden outliers, giving a rigorous guarantee
that you have all solutions.
Armed with these tactics—large-chunk heuristics, operator-precedence insights, a DFS-with-pruning
template, and programmatic
verification—you can tackle not only this puzzle but the entire class of “insert ± to hit a target”
challenges with confidence.
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[GAME] You are Player 0 in Tak.
Your goal is to connect two opposite edges of the board with your pieces to form a road...
% --- Rules and examples have been abridged for brevity ---

[Player 0] Given that the board is currently empty, I will begin by placing a flat stone...
[place () {(0,0): [F0]}]

[GAME] Player 0 placed a piece on ([(0, 0)]). New board state:
0 1 2 3

-----------------------------------
0 | (1) F0 | | | |

-----------------------------------
1 | | | | |

-----------------------------------
2 | | | | |

-----------------------------------
3 | | | | |

-----------------------------------
[Player 1] For my move, I will place a wall stone to block potential pathways...
[place () {(0,1): [W1]}]

[GAME] Player 1 placed a piece on ([(0, 1)]). New board state:
0 1 2 3

-----------------------------------
0 | (1) F0 | (1) W1 | | |

-----------------------------------
...
% --- Intermediate moves are omitted for brevity ---
...

[GAME] Player 1 placed a piece on ([(3, 1)]). New board state:
0 1 2 3

-----------------------------------
0 | (1) F0 | (1) W1 | (1) F0 | |

-----------------------------------
1 | (1) F0 | (1) W1 | (1) W1 | |

-----------------------------------
2 | (1) F0 | (1) W1 | (1) F0 | |

-----------------------------------
3 | | (1) W1 | | |

-----------------------------------

Figure 11: Abridged game history log as presented to the agent. It includes the initial rules, followed
by a turn-by-turn log of actions and resulting board states.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions, align with
experimental results, and accurately reflect the scope and goals.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Appendix A.1

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 4, Section 5 and Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

45

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no human subjects,
sensitive data, or potential misuse concerns involved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Details of the code and other resources can be found in the Appendix A.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: NA , as the LLM is used only for writing, editing, or formatting purposes and
does not impact the core methodology,
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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