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ABSTRACT

This paper explores the multifaceted consequences of federated unlearning (FU)
with data heterogeneity. We introduce key metrics for FU assessment, concentrating
on verification, global stability, and local fairness, and investigate the inherent trade-
offs. Furthermore, we formulate the unlearning process with data heterogeneity
through an optimization framework. Our key contribution lies in a comprehensive
theoretical analysis of the trade-offs in FU and provides insights into data hetero-
geneity’s impacts on FU. Leveraging these insights, we propose FU mechanisms
to manage the trade-offs, guiding further development for FU mechanisms.

1 INTRODUCTION

With the advancement of user data regulations, such as GDPR (Regulation, 2018) and CCPA (Gold-
man, 2020), the concept of “the right to be forgotten” has gained prominence. It necessitates models’
capability to forget or remove specific training data upon users’ request, which is non-trivial since
the models potentially memorize training data. Intuitively, the most straightforward approach is to
exactly retrain the model from scratch without the data to be forgotten. However, this method is com-
putationally expensive, especially for large-scale models. As a result, the machine unlearning (MU)
paradigm is proposed to efficiently remove data influences from models (Cao & Yang, 2015). The
effectiveness of unlearning, measured by verification approaches, requires the unlearning mechanism
to closely replicate the results of exact retraining without heavy computational burden.
Federated learning (FL) has gained attention in academia and industry with increased data privacy
concerns by allowing distributed clients to collaboratively train a model while keeping the data
local (Kairouz et al., 2021). While MU offers strategies for traditional centralized machine learning
context, federated unlearning (FU) introduces new challenges due to inherent data heterogeneity and
privacy concerns in the federated context (Wang et al., 2023). Recent research of FU, such as Gao
et al. (2022); Che et al. (2023); Pan et al. (2023a); Liu et al. (2023), mainly focused on verification and
efficiency in FU, aligning with the main objectives of MU. However, the inherent data heterogeneity
in federated systems introduces new challenges: (i) due to clients’ diverse preferences for the global
model, unlearning certain clients could result in unequal impacts on individuals; (ii) different clients
contribute differently to the global model, thus unlearning specific clients can lead to diverse impacts
on model performance.
On the challenges of FU under heterogeneous data. Figure 1 elaborates two key insights into the
challenges posed by data heterogeneity in FU. (1) Local Fairness: As shown in Figure 1(a), FU can
unequally impact remaining clients, where some clients benefit from unlearning, but others experience
disadvantages. It illustrates a “local fairness” concern, pertaining to the uniform distribution of
utility changes1 among remaining clients after unlearning. (2) Global Stability: Unlearning different
clients leads to different impacts on the global model’s performance, as depicted in Figure 1(b). This
highlights the “global stability” concern in FU, emphasizing the need to maintain consistent system
performance.
FU undertakes the potential for problematic unbounded instability and unfairness. Without controlling
the instability or unfairness, unlearning may potentially drive all remaining clients to leave the system,
leading to catastrophic forgetting Liu et al. (2022a) and problematic behavior among selfish clients
that exploit the resources of others, akin to free-rider attacks Fraboni et al. (2021). Thus, it is essential
to consider the two trade-off inherent in FU, including the FU verification vs. global stability
trade-off, as well as the FU verification vs. local fairness trade-off. These insights motivate us to ask:

∗Corresponding author: Bing Luo, {bing.luo}@dukekunshan.edu.cn
1In this context, ‘utility’ refers to an individual client’s experienced performance of the global model.
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Figure 1: Federated Unlearning and Its Consequences. (a) We consider an FL system of 5 clients
with non-IID training data. One client requests to be unlearned. (b) We conduct 5 experiments, each
featuring the unlearning of one specific client.

Q: How can we assess the consequences of FU, and what are the theoretical and practical
approaches to balancing the inherent trade-offs?

To address the above question, we will construct a comprehensive theoretical framework for FU’s
consequences, which should offer a rigorous understanding of how data heterogeneity affects FU
while balancing the trade-offs.
Contributions. We summarize our key contributions as follows:

1. Quantitative Understanding of FU Metrics: We introduce robust quantitative metrics for FU
assessment, including FU verification metric, global stability metric and local fairness metric (in
Section 4). These metrics provide comprehensive evaluations for trade-offs in FU.

2. Theoretical Analysis of FU Trade-offs: We present a theoretical analysis of the trade-offs in FU
(Section 5). Under data heterogeneity, our results demonstrate challenges in balancing between
FU verification and global stability, as well as between FU verification and local fairness.

3. FU Mechanism and Theoretical Framework: We propose a novel FU mechanism based on
the theoretical framework, encompassing optimization strategies and penalty methods. We provide
theoretical analysis and practical insights into balancing the tradeoffs, detailed in Appendix B.
Furthermore, we empirically validate our FU mechanisms in non-convex settings, confirming
theoretical insights by effectively balancing trade-offs in Section 6.

2 RELATED WORK

Mechine Unlearning & Federated Unlearning. Machine Unlearning (MU) targets efficient data
removal from models (Guo et al., 2020; Wu et al., 2020b), while Federated Unlearning (FU) concerns
“right to be forgotten” in FL with stringent privacy constraints. However, recent FU approaches often
overlook FL’s critical challenge of data heterogeneity (Liu et al., 2022b; Wu et al., 2022; Liu et al.,
2020; Zhang et al., 2023). Our work bridges this gap by incorporating data heterogeneity into FU
through an optimization framework, presenting theoretical insights on its implications.
Moreover, existing FU methods prioritize verifiable unlearning (Liu et al., 2021; 2022b), but the
impacts or consequences of data heterogeneity on FU are underexplored. Our analysis extends
beyond verification to examine the consequences, including fairness and stability in FU, underlining
the importance of balancing trade-offs in FU.
Stability and Fairness in FL and FU. Stability in FL concerns consistent model performance to
defend against external threats. (Yin et al., 2018; Fang et al., 2020; Li et al., 2021). In FU, it involves
adjusting to internal changes due to unlearning. Our research extends to analyzing stability in the
context of FU, particularly under data heterogeneity.
Fairness in FL ranges from proportional fairness (Wang et al., 2020; Yu et al., 2020) to safeguarding
specific attributes (Gu et al., 2022) and ensuring uniform performance across clients (Li et al., 2019;
Mohri et al., 2019). In FU, we explore the fairness implications of unlearning, specifically how it
affects utility variance among remaining clients under data heterogeneity.

3 PRELIMINARIES: FEDERATED LEARNING (FL) & UNLEARNING (FU)
Federated Learning: Suppose there is a client set N (|N | = N ), contributing to FL training. Each
client i ∈ N has a local training dataset with size ni, and the data is non-IID across different clients.
The optimal FL model is defined below:
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Figure 2: Key Model Notations (wu represents the unlearned model from the FU mechanism; wr is
from retraining with remaining clients, the special case of wu).

Definition 3.1 (Optimal FL Model). The optimal solution of the FL global model, denoted as w∗,
can be expressed by the following optimization problem:

w∗ = argminw[F (w) :=
∑

i∈N pifi(w)]

Here, fi denotes the local objective function of client i with the aggregation weight pi = ni∑
k∈N nk

.

The empirically trained model wo is obtained by training all clients i ∈ N , serving as the empirical
approximation of the theoretical optimum w∗ (summarized in Figure 2).
Federated Unlearning: FU mechanisms aim to obtain an unlearned model wu that removes the
influence of client set J who requests to be forgotten from the original trained model wo. This paper
focuses on the FU mechanism that begins with wo and iteratively updates it through the participation
of the remaining clients (i /∈ J ). The model is refined over T rounds akin to FL, converging to the
unlearned model wu. The optimal unlearned model could be defined as:
Definition 3.2 (Optimal FU Model). In the context of FU, the optimal unlearned model is defined as
the minimizer for the global objective F−J of all remaining clients i /∈ J . It is expressed as:

wr∗ = argminw[F−J (w) :=
∑

i/∈J p′ifi(w)],

Here, p′i is the normalized aggregation weight during unlearning, i.e., p′i = pi

1−PJ
with PJ =∑

j∈J pj . The exact retrained model wr is obtained after retraining all remaining clients2, serving
as the empirical approximation of the theoretical optimum wr∗ (summarized in Figure 2).

4 FU METRICS

This section introduces quantitative metrics for evaluating FU mechanisms. In Section 4.1, we
elaborate on the verification metric to verify the effectiveness of the FU process. Section 4.2 assesses
FU’s impact on the system’s global stability, quantifying how FU alters the global performance of the
model. Additionally, Section 4.3 evaluates FU’s impact on local fairness, capturing how FU unequally
impacts individuals in remaining clients. These metrics lay the foundation for our comprehensive
framework that captures the inherent trade-offs in FU.
4.1 FU VERIFICATION

Verification is critical to evaluate how much the unlearning mechanism effectively removes the
data (Yang & Zhao, 2023). Previous studies on unlearning verification often utilize a weak reference
like wr from retraining for comparison (Halimi et al., 2022; Che et al., 2023), but this reference is
often inconsistent for variability and randomness in the retraining process. Thus, we employ the
optimal unlearned model wr∗ as a theoretical benchmark for verification, allowing for consistent and
replicable evaluations in FU. We define a verification metric by the performance gap between the
unlearned model and wr∗:
Definition 4.1 (FU Verification Metric, V ). Consider an FU mechanism M designed to remove
specific clients’ influence, resulting in the unlearned model wu. The unlearning verification metric
V (wu) quantifies the effectiveness of M and is defined as:

V (wu) = E [F−J (wu)]− F−J (wr∗), (1)
where F−J (·) measures performance over the remaining clients after unlearning clients set J .

2In this paper, the retraining employs FedAvg (McMahan et al., 2017).
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4.2 GLOBAL STABILITY

Effective unlearning often requires modification to the trained model, which can lead to performance
variations of the global model. In FU, maintaining stable performance is particularly challenging under
data heterogeneity, as unlearning critical clients can significantly compromise model performance. To
measure the extent of performance stability in FU, we propose the global stability metric as follows:

Definition 4.2 (Global Stability Metric, S). Given an FU mechanism M and its resulting unlearned
model wu. The metric S(wu) evaluates the global stability of M, measuring the performance gap
between the unlearned model wu and the optimal original FL model w∗:

S(wu) = E [F (wu)]− F (w∗). (2)

This metric S evaluates the stability of the FU process, facilitating understanding of theoretical
analysis in Section 5.1.

4.3 LOCAL FAIRNESS

In FL, fairness can be associated with the consistency of model performance across different clients.
Specifically, a model is considered fairer if its performance has a smaller variance across clients (Li
et al., 2020a). For FU, effectively unlearning certain clients can unequally impact remaining clients
because they have diverse preferences for the global model (data heterogeneity). As demonstrated
in Section 1, some clients experience significant utility degradation after unlearning, potentially
prompting their departure and further degrading system performance. To measure this FU impact, we
propose the local fairness metric as follows:

Definition 4.3 (Local Fairness Metric, Q). Given an FU mechanism M and its resulting unlearned
model wu. The metric Q(wu) evaluates local fairness of M, assessing the unequal impact of FU on
remaining clients:

Q(wu) =
∑

i/∈J p′i
∣∣∆fi(w

u)−∆f
∣∣ , (3)

where ∆fi(w
u) = E [fi(w

u)]− fi(w
∗) represents the utility change for remaining client i /∈ J due

to FU. Moreover, ∆f =
∑

i/∈J p′i∆fi(w
u) is the weighted average of local utility changes among

remaining clients, serving as a benchmark for assessing deviation in the impacts of unlearning.

The metric Q is inspired by the mean absolute deviation (MAD) in measuring fairness of FL (Ezzeldin
et al., 2023). The metric Q captures FU’s impact on utility changes experienced by remaining clients
and further facilitates theoretical analysis of fairness implication in Section 5.2.

5 THEORETICAL ANALYSIS ON TRADE-OFFS IN FU
This section provides a theoretical analysis of the trade-offs in FU, particularly focusing on the
balance between FU verification and stability, as well as FU verification and fairness, as outlined
in Section 5.1 and 5.2, respectively. Our analysis critically examines the challenges posed by data
heterogeneity in FU. To begin, we formally state the assumptions required for the theoretical analysis.

Assumption 5.1 (Data Heterogeneity in FL). Given a subset of remaining clients S, the data
heterogeneity among remaining clients can be quantified as follows:

Ei∈S ∥∇fi(w)−∇F−J (w)∥2 ≤ ζ2S + β2
S∥∇F−J (w)∥2 , (4)

where ζ2S and β2
S are parameters quantifying the heterogeneity. Here, fi represents the objective

function of client i in subset S, and F−J is the global objective function of the remaining clients.

Assumption 5.1 assumes the data heterogeneity with parameters ζS , βS , representing the degrees
of data heterogeneity within the selected subset S of remaining clients, aligning closely with the
framework presented by Wang et al. (2021).

Assumption 5.2 (µ-strong Convexity). Assume that local objective functions fi : Rd → R are
all µ-strong convex. For any vectors u,v ∈ Rd, fi satisfies the following inequality: fi(u) ≥
fi(v) + ⟨∇fi(v),u− v⟩+ µ

2 ∥u− v∥2, where µ > 0 is the convexity constant.

Assumption 5.3 (L-smoothness). Assume that local objective functions fi : Rd → R are all
L-smooth. For any vectors u,v ∈ Rd, fi satisfies the following inequality: fi(u) ≤ fi(v) +
⟨∇fi(v),u− v⟩+ L

2 ∥u− v∥2, where L > 0 is the Lipschitz constant of the gradient of fi.

Assumption 5.4 (Bounded Variance). Let ξkt be sampled from the k-th client’s local data uni-
formly at random. The variance of stochastic gradients in each client is bounded at round t:
E ∥gi(w)−∇fk (wt)∥2 ≤ σ2

k,t for k = 1, · · · , N , where gi(w) = ∇fk (wt, ξt).
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Assumption 5.5 (Unlearning Clients’ Influence). Let PJ denote the total aggregation weights of the
clients in set J within FL, defined as PJ =

∑
j∈J pj . For a client set J required for unlearning, we

assume that PJ ≤ 1
2 .

Assumption 5.1-5.4 are commonly used for the FL convergence analysis (Li et al., 2020b; Wang
et al., 2021). Assumption 5.5 assumes unlearned clients’ aggregate weights do not exceed those of
the remaining clients. This is crucial to prevent catastrophic consequences, which could undermine
the objectives of fairness and stability in FU.
5.1 TRADE-OFF BETWEEN FU VERIFICATION AND STABILITY

This section explores the trade-off between FU verification and global stability via the lower bound
derived for verification (Lemma 5.6) and stability (Lemma 5.8). Then, we formalize the trade-off
characterized via the lower bounds in Theorem 5.10. We provide all proofs for lemmas and theorems
in Appendix D-H.
Lemma 5.6. Under Assumptions 5.1-5.4 and given the number of unlearning rounds T and the

learning rate η = 1
T
√
µ

√
βS−1

min{µ(βS−1),L(βS−1)} , the verification metric V (wu) = F−J (wu) −
F−J (wr∗) is lower bounded by:

C1 =

(
1 +

β2
S − 1

T

)
(∆F−J (w∗,wr∗) +∆F−J (wo,w∗)) +

1

2LT

(
σ̄2 + ζ̄2

)
,

where ∆F−J (◦, •) = F−J (◦)−F−J (•), σ̄2 = 1
T

∑T
t=1 σ

2
t , and ζ̄2 = 1

T

∑T
t=1 ζ

2
t . Parameters βS

and ζ̄2 characterize the data heterogeneity of remaining clients.
Remark 5.7. The effectiveness of FU, as measured by V (wu), is hindered by its lower bound C1 in
Equation (5) with several factors:

• Computational Complexity: More unlearning rounds T typically indicate convergence towards
the optimal unlearned model wr∗, characterized by a tighter lower bound C1. However, the
computational complexity grows as the number of unlearning rounds T increases.

• Data Heterogeneity among Remaining Clients: A high data heterogeneity (β2
S , ζ̄

22) among remain-
ing clients can amplify C1. Therefore, under unlearning rounds T , the more heterogeneous among
remaining clients, the more challenging it is to achieve effective unlearning by the increased lower
bound C1 of V .

• Data Heterogeneity Between Remaining and Unlearned Clients: The discrepancy
∆F−J (w∗,wr∗) implies data heterogeneity between remaining and unlearned clients. A high
heterogeneity enlarges C1, thereby potentially compromising FU verification V . Conversely,
suppose the data is homogeneous between these two groups, C1 can be diminished, as removing
homogeneous data does not significantly alter the overall data distribution (∆F−J (w∗,wr∗) ≈ 0).

Lemma 5.8. Under Assumptions 5.2, 5.5 and consider T ≥ µ
η2 unlearning rounds. The global

stability metric S(wu) = E [F (wu)]− F (w∗) is bounded below by C2:

C2 =
PJ ηT

2
∥∇F−J (wo)−∇FJ (wo)∥2 + δ, (5)

where δ = F (wo)−F (w∗) represents the empirical risk minimization (ERM) gap in the original FL.
Remark 5.9. Maintaining global stability S(wu) poses challenges due to the lower bound C2

established in Equation (5), which is influenced by the following factors:

• Unlearned Clients’ Influence: The higher aggregation weight of unlearned clients PJ implies their
substantial influence on the original model. Consequently, their removal has a greater impact on
the model’s performance, as reflected by increasing C2.

• Data Heterogeneity Between Remaining and Unlearned Clients: ∥∇F−J (wo) − ∇FJ (wo)∥2
measures the objectives divergence between remaining and unlearned clients. A larger value of
this term indicates higher heterogeneity between the two groups, contributing to increased C2 and
thereby increasing instability.

• Unlearning Rounds: Increasing unlearning rounds T can enhance unlearning effectiveness as
discussed in Lemma 5.6. However, the growth of T , particularly with divergent objectives
∥∇F−J (wo)−∇FJ (wo)∥2, intensifies instability by increasing C2.

Theorem 5.10. Let Assumptions 5.1-5.5 hold, and given an original trained model wo undergoing

unlearning. Consider the learning rate η = 1
T
√
µ

√
βS−1

min{µ(βS−1),L(βS−1)} , the sum of the FU
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verification metric and the global stability metric V (wu)+S(wu) is bounded below by a constant Cs.

Cs =
PJ√
2µ

∥∇F−J (wo)−∇FJ (wo)∥2 + δ + C1 , (6)

where C1 is defined in Lemma 5.8.

Theorem 5.10 illustrates a fundamental trade-off in FU: effectively unlearning clients (V ) while
maintaining the stability of the global model’s performance (S). This trade-off is determined by the
divergence between the optimal model w∗ and the optimal unlearned model wr∗. Specifically, achiev-
ing effective FU and stability is not feasible under the substantial divergence between w∗ and wr∗.
5.2 TRADE-OFF BETWEEN FU VERIFICATION AND FAIRNESS

This section delves into the trade-off between FU verification and local fairness among the remaining
clients. We introduce the following Theorem 5.11, which quantifies this trade-off by a lower bound
for the cumulative effect of verification and fairness. The lower bound is determined by the optimality
gap, which is defined as the disparity between the performance of the optimal unlearned model wr∗

and the local optimal models for each remaining client wi
∗.

Theorem 5.11 (Trade-off between Local Fairness and Effective Unlearning). Within FU, the sum of
the FU verification metric and the local fairness metric is bounded below by a constant Cq:

2V (wu) +Q(wu) ≥ Cq = F ∗
−J −

∑
i/∈J p′ifi(wi

∗), (7)
where wi

∗ denotes the local optimal model for client i.
Remark 5.12. The lower bound Cq underscores another fundamental trade-off in FU: the balance
between effectively unlearning (V ) and maintaining fairness among the remaining clients (Q). If
Cq is large, optimizing either metric could compromise the other. The challenges of balancing this
trade-off primarily arise from data heterogeneity:

• Data Heterogeneity among Remaining Clients: When data distribution is homogeneous among re-
maining clients, each client’s optimal model (w∗

i for ∀i /∈ J) is identical with the optimal unlearned
model (w∗

i = wr∗). Thus, data homogeneity reduces Cq to 0, indicating FU verification and fair-
ness can be achieved simultaneously. Conversely, high heterogeneity means divergent optimalities
for different clients, thus increasing Cq and posing challenges in balancing this trade-off.

• Data Heterogeneity Between Remaining and Unlearned Clients: As discussed in Lemma 5.6, a
high heterogeneity between remaining and unlearned clients increases lower bound C1 for the
unlearning verification metric V . With a constant Cq, a larger V typically leads to a reduced
fairness metric Q. It indicates that under higher heterogeneity, fairness is enhanced for the
remaining clients after unlearning. The enhanced fairness is because unlearning divergent clients
J aligns the FU optimal model wr∗ more closely to remaining clients than the original FL
optimal model w∗. Conversely, under homogeneity between two groups, unlearning reduces V
(in Lemma 5.6 ∆F−J (w∗,wr∗) = 0), and thereby, the fairness metric Q primarily depends on
data heterogeneity among remaining clients.

5.3 DISCUSSIONS

Based on our theoretical insights, we propose FU mechanisms to balance the trade-offs between FU
verification and global stability, as well as FU verification and local fairness.
Firstly, we propose a penalty-based FU mechanism with gradient correction techniques to maintain
global stability during the unlearning process, as detailed in Appendix B.1. By formulating the
optimization problem and adjusting the penalty parameter, we can balance the trade-off between
verification and global stability.
Moreover, we propose a framework that minimizes unlearning objectives with fairness constraints to
prevent disproportionate impacts on remaining clients, as detailed in Appendix B.2.
Our theoretical analysis not only demonstrates the convergence of our method but also establishes a
foundation for future exploration into the complex interplay of verification, stability, and fairness in
FU. Furthermore, in Section 6, we empirically validate our FU mechanisms in non-convex settings,
confirming theoretical insights by effectively balancing trade-offs.

6 EXPERIMENTS

6.1 EXPERIMENT SETTINGS

In our experiment, we utilize the MNIST dataset LeCun et al. non-IID distributed across ten clients,
each holding four distinct classes (the data distribution is detailed in Appendix C). We employ
LeNet-5 architecture LeCun et al. (1998), a classic non-convex neural network model, to evaluate
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(a) Unlearning Convergence and Handling Stability:
Increasing stability penalty λ enhances global perfor-
mance of FU.

(b) Trade-offs with Stability Penalty λ: Increasing
λ improves the balance between FU verification and
stability, reflected by reduced V + S.

Figure 3: FU for Balancing Stability.

Table 1: Unlearning Efficiency Compared to Retraining. (Computing Resources: 2 Intel Xeon Gold
5217 CPUs, 384GB RAM, and 8 Nvidia GeForce RTX-2080Ti GPUs)

FASTER THAN RETRAIN (×)
λ = 1 1.425±0.057
λ = 3 2.103±0.149
λ = 5 3.211 ±0.315

FU’s consequences. To straightforwardly assess the FU evaluations metrics (V, S,Q), we focus
on accuracy, e.g., V = −Acc−J (wu) + Acc−J (wr∗) (in percentage). A smaller value of these
metrics indicates better effectiveness, stability, or fairness achieved by our FU mechanism. We
further conduct additional experiments focusing on data heterogeneity and employ different datasets,
as detailed in Appendix C. The overall experimental evaluation confirms our FU mechanisms in
balancing the trade-offs, aligning with the theoretical insights in Section 5.
6.2 FU FOR BALANCING STABILITY

We examine the stability penalty λ in our FU mechanism in Appendix B.1 and unlearning clients
[3, 4, 8] starts at round 10 where the FL model has converged.
Unlearning Convergence and Handling Stability. The heterogeneity between remaining and
unlearned clients leads to instability after unlearning (discussed in Lemma 5.8), as indicated by
the reduced global performance after retraining in Figure 3a. Additionally, Figure 3a showcases
the convergence of our FU mechanism with different stability penalties λ in the context of global
performance. Specifically, with a stability penalty λ = 1, unlearning shows better stability than exact
retraining. Increasing λ to 5 further improves the stability of FU.
Balancing Verification and Stability: As shown in Figure 3b, increasing λ lowers V +S, improving
the balance between verification and stability in FU. Although a higher λ reduces FU effectiveness
(increasing V ), our FU mechanism allows a better trade-off within a certain tolerance level for V .
Additionally, it demonstrates time efficiency compared to retraining in Table 1, making it practical in
real-world FU scenarios.
6.3 FU FOR BALANCING FAIRNESS

Considering a higher data heterogeneity between unlearned and remaining clients, unlearning clients
[2, 10] leads to a maximum performance drop of 1.5% (ϵ = 1.5) for client 6. We employ the FU
mechanism in Appendix B.2 with a fairness constraint ϵ = 1 and Λ = 1.3 ensuring no client’s
performance deviates beyond ϵ. This setting yields the FU verification metric V = 0.57. We further
tighten ϵ to 1, and observe V reduces to 0.11. This enhancing FU effectiveness and fairness is
consistent with insights on data heterogeneity in Lemma B.8 and Theorem 5.11.

7 CONCLUSION

In this study, we investigated the trade-offs in FU under data heterogeneity, focusing on balancing
unlearning verification with global stability and local fairness. We proposed a novel FU mechanism
grounded in a comprehensive theoretical framework with optimization strategies and penalty controls.
Our findings highlight the impacts of data heterogeneity in FU, paving the way for future research to
explore adaptive FU mechanisms.
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A RELATED WORK

Mechine Unlearning & Federated Unlearning. Machine unlearning (MU) aims to remove specific
data from a machine learning model, addressing the challenges in both effectiveness and efficiency of
the unlearning process (Guo et al., 2020; Wu et al., 2020b; Bourtoule et al., 2021b;a; Tarun et al.,
2023a;b; Jia et al., 2023). In FL, federated unlearning (FU) is proposed to address clients’ right
to be forgotten, including methods like rapid retraining (Liu et al., 2022b), subtracting historical
updates from the trained model (Wu et al., 2022), subtracting calibrated gradients of the unlearn
clients to remove their influence (Liu et al., 2020; 2021), and adding calibrated noises to the trained
model by differential privcacy (Zhang et al., 2023). However, none of them involves any rigorous
consideration for data heterogeneity, the main challenge in FL. In this work, we account for data
heterogeneity in FU through a comprehensive optimization framework, and theoretically analyze how
data heterogeneity impacts unlearning in Section 5.
Moreover, existing FU methods has focused on methods ensuring verifiable and efficient unlearn-
ing (Liu et al., 2021; 2022b; Fraboni et al., 2022; Gao et al., 2022; Jin et al., 2023; Che et al., 2023).
The verification of unlearning typically involves comparing the unlearned model, obtained through
an unlearning mechanism, with a reference model using performance metrics such as accuracy and
model similarity metrics (Gao et al., 2022). Additionally, attack-based verification methods, such as
membership inference attacks (MIA) and backdoor attacks (BA), are often employed in MU (Nguyen
et al., 2022) but are not applicable in federated systems due to privacy concerns. Besides verification,
data heterogeneity in FU introduces consequences on global stability and local fairness, necessitating
consideration of trade-offs in FU, as previously discussed in Section 1. In this work, we conduct a
rigorous analysis of inherent trade-offs in FU under data heterogeneity .
Stability in FL and FU. In FL, performance stability revolves around maintaining consistent
and robust model performance despite alterations in the training dataset. This aspect of stability,
highlighted in studies such as Yin et al. (2018); Fang et al. (2020); Li et al. (2021), often involves
defending against external threats. Unlike FL, FU is concerned with managing internal changes
within the system for users’ rights to be forgotten. Considering unlearning in the federated system,
the inherent data heterogeneity can lead to significant shifts in data distribution, thereby altering the
model’s performance. In this work, we delve into the theoretical analysis of unlearning, examining
how data heterogeneity impacts stability in FU.
Fairness in FL and FU. In FL, there are several works that have proposed different notions of
fairness. The proportional fairness ensures whoever contributes more to the model can gain greater
benefits (Wang et al., 2020; Yu et al., 2020). Additionally, the model fairness focuses on protecting
specific characteristics, like race and gender (Gu et al., 2022). Furthermore, the performance
fairness (Li et al., 2019; Mohri et al., 2019; Hao et al., 2021; Li et al., 2021; Shi et al., 2023; Pan
et al., 2023b) aims to reduce the variance of local test performance or utility across all clients.
In FU, we observe that unlearning certain clients can lead to unequal impacts on remaining clients
due to data heterogeneity, as discussed in Section 1. In this work, we extend performance fairness
to FU by the variance of utility changes among remaining clients and further analyze how data
heterogeneity impacts fairness in FU.

B OPTIMIZING FU UNDER TRADE-OFFS

In the previous section, we examine the inherent trade-offs involving FU verification and their
challenges. To balance these trade-offs, this section introduces our FU mechanisms developed within
an optimization framework3.
B.1 FU FOR BALANCING GLOBAL STABILITY

In FU, maintaining global stability is crucial for ensuring the overall performance and reliability
of the federated system throughout the unlearning process. However, as explored in Section 5.1, a
trade-off exists between FU verification and global stability. To manage this trade-off, we propose
an FU mechanism utilizing a penalty-based approach and gradient correction techniques. We also
theoretically demonstrate the convergence of our method.
FU Mechanism Design: To balance stability during FU, we formulate the optimization problem for
unlearning as:

P1: min
w

V (w) + λS(w). (8)

By adjusting λ, we can manage the trade-off between these two objectives, allowing for a flexible
approach to specific requirements of the federated system.

3These FU mechanisms are grounded in approximate unlearning, which gives tolerance on effectiveness.
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By the definition of stability metric S(w), we have: S(w) = E [F (w)]− F (w∗) = E [F (wu)]−
F (wo) + δ, where δ = F (wo) − F (w∗). Consequently, solving P2: minw F−J (w) +
λ (F (w)− F (wo)) optimizes P1. However, in P2, optimizing the global objective F (w) among all
clients is untraceable in FU as it cannot involve unlearned client j ∈ J in unlearning process. To
address this, we consider the approximate problem P3 to P2:

P3: minw H(w) := [F−J (w) + h̃(w)], (9)

where h̃(w) = (1 − PJ )F1 + PJF2, F1 := λF−J (w), and F2 :=

λ
(
⟨∇FJ (wo),w −wo⟩+ L

2 ∥w −wo∥2
)

.

To address P3, we propose an FU mechanism that operates two steps during each unlearning round t:
1. Federated Aggregation: The remaining client i ∈ S performs local training over E epochs with

learning rate ηl to obtain w
(t,E)
i . Then, the server aggregates {w(t,E)

i }i∈S for the global model
w̄(t,E) =

∑
i∈S αi ·w(t,E)

i , where αi is the weight for client i.

2. Global Correction: Following the aggregation, the server applies a gradient correction to w̄(t,E).
Specially, the server compute ht = λ(1 − PJ )gt

S + λPJ ĝt
J ,4 where ĝt

J (w) = ∇F−J (wo) +

L(w −wo). The correction term gt
c is then obtained by projecting ht onto the tangent space of

the aggregated gradient gS : gt
c = ht − ProjgS

ht. The global model is updated for the next round:
w̄(t+1,0) = w̄(t,E) − ηgg

t
c, where ηg is the learning rate for the gradient correction.

The FU mechanism thus iteratively updates the global model by w̄(t+1,0) = w(t,0) − ηlg
t
S − ηgg

t
c.

Theoretical Analysis: Now, we delve into the convergence of the proposed FU mechanism, ensuring
its reliability in FU. We also conduct theoretical analysis to determine the upper bound for the
verification metric V , which is essential for verifying the effectiveness of unlearning. To begin, we
formally state the assumptions required for our main results.
Assumption B.1. The gradients of local objectives are bounded, i.e., ∥∇fi(w)∥ ≤ G for all i. This
implies the gradient of global objective F−J for remaining clients is also bounded: ∥∇F−J (w)∥ ≤
G.
Assumption B.2. The heterogeneity between the unlearned clients J and the remaining clients is
quantified as: ∥∥E [ĝt

J (w)
]
−∇F−J (w)

∥∥2 ≤ ζ ′2 + β′2 ∥∇F−J (w)∥2 ,
where ĝt

J (w) = ∇F−J (wo) + L(w −wo), ζ
′2 and β

′2 indicate heterogeneity between unlearned
and remaining clients.

The following lemma derives the upper bound on the expected norm of gradient correction, and then
we establish the convergence theorem of our proposed FU mechanism.
Lemma B.3. Under Assumption B.2, the expected norm of the gradient correction at unlearning
round t is bounded:

E
[∥∥∥gc(w̄

(t,E))
∥∥∥2

]
≤ ϕ

(
ζ′2 + (β′2 + 1)

∥∥∥∇F−J (w̄t,E)
∥∥∥2

)
,

where ϕ = λ2P 2
J (1 + cos2 θ), cos2 θ represents the similarity in objectives between remaining and

unlearned clients.
Theorem B.4 (Convergence). Let Assumptions 5.1-5.4, B.1 and B.2 hold, we consider an FU
mechanism with diminishing step size ηl =

β
2(t+γ) for some β > 1

µ and γ > 0, such that ηl ≤ 1
4L .

The convergence result after t rounds is:

E
[
H

(
w̄(t+1,0)

)]
−H (w∗) ≤ L

2

(
v

γ + t
+ ∥wr∗ −w∗∥2

)
,

where v = max
{

β2B
βµ−4 , (γ + 1) ∥wo −wr∗∥2

}
.

Our approach introduces additional complexity in the convergence analysis compared to that of Li
et al. (2020b, Theorem 1) due to incorporating a gradient correction in FU, as detailed in Appendix H.1

This complexity is reflected in B with additional components: 2ϕ
(

ηg

ηl

)2
((β′2 + 1)G2 + ζ ′2). It

highlights two insights:
4For simplicity, denote ht := h(w̄(t,E))
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1. A high data heterogeneity between remaining and unlearned clients, indicated by β′2 and ζ ′2,
increases unlearning rounds T for FU convergence;

2. The term ϕ = λ2P 2
J (1 + cos2 θ) in the convergence bound indicates that larger influence of

unlearned clients (characterized by PJ ) and larger stability penalties (λ) increase rounds T needed
for FU convergence.

In the special case of homogeneity between remaining and unlearned clients, where the original model
and the optimal unlearned model are ideally aligned ( ∥wr∗ −w∗∥2 = 0, β′2 = ζ ′2 = 0, cos θ = 1,

and PJ = 0.5), the additional term in B reduces to λ2
(

ηl

ηg

)2
G2. In this scenario, handling stability

in FU is straightforward for the tight bound. Conversely, our mechanism reduces the convergence
bound in heterogeneous settings, characterized by orthogonal gradient correction to remaining clients’
gradients (cos θ = 0). This indicates we effectively adapt to this heterogeneity.
Next, we verify unlearning in our FU mechanism by a theoretical upper bound on V . The additional
assumptions and lemmas are stated as follows:

Assumption B.5. For each round t, the norm of the gradient after E epochs is bounded by the
gradient at the start of the round t,

∥∥∇F−J (w̄(t,E))
∥∥2 ≤ ϵ

∥∥∇F−J (w̄(t,0))
∥∥2.

Lemma B.6. Under Lemma B.3 and Assumption B.5, the expected norm of the gradient
correction at unlearning round t is bounded: E

[∥∥gc(w̄(t,E))−∇F−J (w̄(t,0))
∥∥2] ≤ ζ

′′2 +

β
′′2
∥∥∇F−J (w̄(t,0))

∥∥2 , where ζ
′′2 = ϕζ ′2, β

′′2 = ϕϵβ′2 + ϕϵ+ 1.

Theorem B.7 (Verifiable Unlearning). Under Assumptions 5.1-5.4, and Assumptinos B.1-B.5,
taking ηl = ηg = 2

LT , and T ≥ max
{
2β2

S + 2, 1+∆
4L , 1

2 (β
′′2 + 1), 1+∆′

L

}
, where ∆ =√

max {0, 1− 16L(β2
S + 1)} and ∆′ =

√
max {0, 1− L(β′′2 + 1)}. Then, the verification metric

V is bounded as follows:
V = E [F−J (wu)− F−J (w∗)] ≤ χ1 + χ2, where

χ1 =
1

2

(
1− 1

2LT
+

β2
S + 1

LT 2

)T

D +
(σ2 + ζ2S)

2LT
,

χ2 =
1

2

(
1− 1

LT
+

β
′′2 + 1

LT 2

)T

D +
ζ ′′2

2LT
.

Here, D = F−J (wo)− F−J (wr∗), σ2 =
∑

i∈S α2
iσ

2
i,t

From Theorem B.7, the FU verification metric V is primarily determined by two factors:

1. Data Heterogeneity among Remaining Clients (β2
S): Within χ1, a higher data heterogeneity

necessitates more unlearning rounds T to lower V for effective unlearning;
2. Impact of Global Gradient Correction: Within χ2, β′′2 encapsulates stability penalty (λ), unlearned

clients’ influence (captured by PJ ), and the data heterogeneity between remaining and unlearned
clients. Increasing either of them requires more rounds T to lower V .

Additionally, Theorem B.7 highlights future adaptive strategies with client sampling or reweighting
to reduce heterogeneity and variance of sampled remaining clients S in FU.

B.2 FU FOR BALANCING LOCAL FAIRNESS

As discussed in Section 5.2, FU can lead to uneven impacts across different clients due to data
heterogeneity. To address this, we propose an optimization framework to minimize the unlearning
objective with fairness constraints, ensuring that unlearning does not unequally harm any remaining
clients. We highlight our contribution to a theoretical and practical groundwork for balancing fairness
and verification in FU, and providing insights for future adaptive strategies.

P4: min
w

F−J (w)

s.t. ∆fi = fi(w)− fi(w
o) ≤ ϵ, ∀i /∈ J

To solve this problem, we adapt the saddle point optimizations as in (Agarwal et al., 2018; Hu et al.,
2022), using a Lagrangian multiplier λi for each constraint:

P5: min
w

max
λ∈RZ ,∥λ∥≤Λ

F−J (w) + λ⊤r(w),
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where r(wo) = [∆fi − ϵ]i/∈J . The detailed algorithm for solving this problem is provided in
Appendix B.2.

Algorithm 1 Balancing Fairness Federated Unlearning

Require: T, η, ϵ,Λ
1: Initialize λ = 0.
2: for t = 0, · · · , T − 1 do
3: Server broadcasts wt, λi to each client i /∈ J .
4: for each client i do

# Local Training Start.
5: ri = fi(w

t)− fi(w
o)

6: Update weight wi for E local epochs with f ′(w) = fi (w) + λi (fi (w)− fi(w
o))

7: w
(t,τ+1)
i = w

(t,τ)
i − η∇f ′

i(w
(t,τ)
i )

8: Send w(t,E) and ri back to the server
# Local Training End.

9: end for
10: Server aggregates the weight wt+1 =

∑
i/∈J p′iw

(t,E)
i .

11: If maxi ri ≤ ϵ: Return wt+1

12: Update λi = Λ exp(ri)
1+

∑
i/∈J exp(ri)

for ∀i /∈ J .
13: end for
14: Return wT

Lemma B.8. Assume ∥r∥∞ ≤ ρ, and suppose ν = 2ρ2Λ, achieving a ν-approximate saddle point
of P5 requires T ≥ 1

ν(γ+1)−2κC
(
M
ν + 2κC(γ − 1)

)
, where M is a constant and C = 2C

(1+Λ)µ +

(1+Λ)µγ
2 E

[
∥wo −wr∗∥2

]
, with C specified in Lemma H.1.

Remark B.9. This lemma can be derived from Hu et al. (2022, Theorem 1). It indicates the required
unlearning rounds to reach a ν-approximate saddle point of P5. It highlights that increased data
heterogeneity among remaining clients and stringent fairness constraints require more unlearning
rounds T to balance the trade-off.

Theorem B.10. Given ϵ = 1
Λ (F−J (wo) − F ∗

−J ) and assuming the existence of ν-approximate
saddle points of the trade-off fairness problem, then the unlearning verification metric V ≤ 2ν and
maxi/∈J ∆fi ≤ ϵ.

Theorem B.10 emphasizes the feasibility of ν-approximate suboptimal solution that balances FU
verification with fairness constraint ϵ, providing two insights:

1. Data Hetegeneity: When the original FL model and optimal FU model are homogeneous, then
ϵ = F−J (wo)− F−J (w∗), there is no fairness loss from unlearning but from data heterogeneity
among remaining clients (as discussed in Theorem 5.11). However, with higher heterogeneity
and lacking a focus on balancing fairness (characterized by a negligible Λ and a small ν), FU
compromises fairness ϵ to reduce V .

2. ν Selection: Choosing a smaller ν potentially reduces V but aggressively minimizing ν risks
infeasibility and increased resources for growing T (stated in Lemma B.8).

For future work, these insights suggest advanced strategies adjusting to data heterogeneity and system
constraints.
B.3 TRADE-OFF BETWEEN GLOBAL STABILITY AND LOCAL FAIRNESS

Remark 5.12 shows that high heterogeneity between remaining and unlearned clients can enhance
fairness in FU by aligning the optimal model more closely with remaining clients. Yet, Remark 5.9
highlights how this heterogeneity can undermine system stability, revealing a trade-off where in-
creased fairness may affect stability. Future work will explore balancing verification, stability, and
fairness within FU’s complex dynamics.

C EXPERIMENTS

In this section, we present experiments to validate the proposed FU mechanisms. We examine
various scenarios and settings to demonstrate the effectiveness and robustness of our approaches. Our
implementation utilizes the open-source FL framework Plato (Li et al., 2023) for reproducibility.
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Figure 4: Non-IID Class Distribution for MNIST (Section 6) and CIFAR-10: Each client has four
classes.

C.1 EXPERIMENT SETTINGS

In our experiment, we utilize the MNIST dataset (LeCun et al.) and the CIFAR-10 dataset (Krizhevsky,
2009) that are non-IID distributed across ten clients, each holding four distinct classes (the data
distribution is detailed in Figure 4). We employ LeNet-5 architecture (LeCun et al., 1998) for MNIST
and the ResNet18 architecture (He et al., 2016) for CIFAR-10 to evaluate FU’s consequences. The
classic non-convex neural network models are to demonstrate the effectiveness and robustness of our
approaches. To straightforwardly assess the FU evaluations metrics (V, S,Q), we focus on accuracy,
e.g., V = −Acc−J (wu) +Acc−J (wr∗) (in percentage). A smaller value of these metrics indicates
better effectiveness, stability, or fairness achieved by our FU mechanism. The overall experimental
evaluation confirms our FU mechanisms in balancing the trade-offs, aligning with the theoretical
insights in Section 5.
C.2 FU FOR BALANCING STABILITY

We examine the stability penalty λ in our FU mechanism in Appendix B.1 and unlearning clients
[3, 4, 8] starts at round 10 where the FL model has converged.
Unlearning Convergence and Handling Stability. The heterogeneity between remaining and
unlearned clients leads to instability after unlearning (discussed in Lemma 5.8), as indicated by
the reduced global performance after retraining in Figure 3a. Additionally, Figure 3a showcases
the convergence of our FU mechanism with different stability penalties λ in the context of global
performance. Specifically, with a stability penalty λ = 1, unlearning shows better stability than exact
retraining. Increasing λ to 5 further improves the stability of FU.
Balancing Verification and Stability: As shown in Figure 3b, increasing λ lowers V +S, improving
the balance between verification and stability in FU. Although a higher λ reduces FU effectiveness
(increasing V ), our FU mechanism allows a better trade-off within a certain tolerance level for V .
Additionally, it demonstrates time efficiency compared to retraining in Table 1, making it practical in
real-world FU scenarios.
C.3 FU FOR BALANCING FAIRNESS

Considering a higher data heterogeneity between unlearned and remaining clients, unlearning clients
[2, 10] leads to a maximum performance drop of 1.5% (ϵ = 1.5) for client 6. We employ the FU
mechanism in Appendix B.2 with a fairness constraint ϵ = 1 and Λ = 1.3 ensuring no client’s
performance deviates beyond ϵ. This setting yields the FU verification metric V = 0.57. We further
tighten ϵ to 1, and observe V reduces to 0.11. This enhancing FU effectiveness and fairness is
consistent with insights on data heterogeneity in Lemma B.8 and Theorem 5.11.
C.4 HETEROGENEITY BETWEEN REMAINING AND UNLEARNED CLIENTS

This section investigates the stability in FU under varying levels of heterogeneity between these
two groups, and data within both remaining and unlearned clients is homogeneous. According to
Lemma B.8, this setting should facilitate fairness in the unlearning process. Specifically, the number
of classes in clients’ datasets follows a Dirichlet distribution with parameter α, where a lower α
value indicates higher data heterogeneity. We explore scenarios with α values corresponding to label
distributions of 0.1, 0.4, and 0.7.
Table 2 demonstrates a correlation between the data heterogeneity level and the system’s stability
after unlearning.
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Table 2: Data Heterogeneity Between Groups (PJ = 0.38): A lower label distribution indicates
higher heterogeneity. Greater heterogeneity leads to increased instability after FU (evidenced by
larger Sretrain values). Employing a stability trade-off FU approach with λ = 1 enhances stability
(reduced Sλ=1) while maintaining negligible compromise in FU verification (Vλ=1).

Label Distribution Sretrain Sλ=1 Vλ=1

0.1 8.24 7.69 (-0.55) 0.0
0.4 3.45 2.05 (-1.4) 0.0
0.7 0.26 0.23 (-0.03) 0.06

A higher data heterogeneity leads to increased instability after unlearning, as indicated by the higher
Sretrain values. Notably, applying our FU mechanism with a stability trade-off parameter (λ = 1)
results in improved stability, as shown by the reduced Sλ=1 values, while the difference in FU
verification remains negligible. This underscores our proposed approach could balance the trade-off
between unlearning verification and global stability under varying degrees of data heterogeneity.
To further verify the unlearning, we examine the accuracy for class 4, which is unique to the unlearned
clients. In the original trained model wo, we observe a 77.09% accuracy for class 4. However, in
the retrained model wr, the accuracy for class 4 drops to 0%, indicating successful unlearning. In
our FU mechanism with stability penalty λ = 1, the accuracy for class 4 is 0.3%, further validating
the effectiveness of our approach in unlearning the influence of unlearned clients while maintaining
stability.
C.5 HETEROGENEITY AMONG REMAINING CLIENTS.
This section explores the fairness in FU under varying levels of heterogeneity among remaining
clients, and data between remaining and unlearned clients is also heterogeneous5.
To extend our analysis, we consider the CIFAR-10 dataset (Krizhevsky, 2009) with class distribution
in Figure 4 and utilize the ResNet18 architecture (He et al., 2016). CIFAR-10 exhibits greater
complexity compared to MNIST. Figure 5 illustrates the impact of unlearning on fairness among
remaining clients, with a fairness parameter Λ = 1, ϵ = 20. In this scenario, clients [1, 3] experienced
significant utility loss due to their similar data distribution with unlearned clients [8, 9] (as shown
in Figure 4). However, our FU mechanism achieves a lower fairness metric (Qour = 6.91) compared to
the retraining approach (Qretrain = 10.23), indicating more equitable utility changes among remaining
clients. The verification metric in this case is V = 0.42, demonstrating that our mechanism enhances
fairness even in more complex and heterogeneous environments.

Figure 5: Unlearning Impact on Fairness: ensuring no client’s performance deviates beyond 20%;
fairness metric (Q) of our FU mechanism (Qour = 6.91) is lower than that of retrain Qretrain = 10.23

C.6 BALANCING STABILITY UNDER RESNET18, CIFAR 10
We examine the stability penalty λ in on more complicated dataset and model, and unlearning clients
[3, 4, 8] starts at round 10 where the FL model has converged. With a stability penalty λ = 1,
unlearning shows better stability (S = 1.42) than exact retraining (S = 2.42). Moreover, our FU
mechanism improves the balance between verification and stability in FU. This is evidenced by a

5According to Lemma B.8, given homogeneous two groups, the fairness primarily depends on data het-
erogeneity among remaining clients, as we aim to investigate the impact of unlearned clients, we choose
heterogeneous two groups setting.
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Table 3: Balancing Stability in FU (ResNet18, CIFAR10)

Global Per-
formance
(%)

Unlearning
Performance
(%)

V (%) S (%) V + S (%)

Original FL 63.6 - - - -
Retrain 61.18 63.99 0 2.42 2.42
Unlearning
(λ = 1)

62.10 63.57 0.42 1.42 1.84

reduction in the combined metric of verification and stability, denoted as V + S = 1.83, which is
lower than the corresponding value for exact retraining (2.42). Additionally, our FU mechanism
demonstrates time efficiency, achieving a speedup of ×2.79 compared to retraining.

D PROOF OF LEMMA 5.6

Proof. Given the FU verification metric V (wu) = E [F−J (wu)] − F−J (wr∗), we analyze the
metric using iterative updates in the FU process.

For each iteration t+ 1:

F−J (wt+1)− F−J (wt) ≥
〈
∇F−J (wt),wt+1 −wt

〉
+

µ

2
∥wt+1 −wt∥2

=
〈
−ηgt

S ,∇F−J (wt)
〉
+

µη2

2
∥gt

S∥2

where gt
S =

∑
i∈S αig

t
i, and αi is the aggregation weight of client i.

Taking expectations on both sides, we derive:

E
[
F−J (wt+1)

]
− F−J (wt) ≥ η

2

∥∥Gt
S −∇F−J (wt)

∥∥2︸ ︷︷ ︸
A1

−η

2
∥∇F−J (wt)∥2 − η

2

∥∥Gt
S
∥∥2 + µη2

2
E∥gt

S∥2︸ ︷︷ ︸
A2

(10)

where Gt
S =

∑
i∈S αiG

t
i, with Gt

i = E [gt
i] representing the gradient for client i at iteration t, while

gt
i denotes the stochastic gradient.

Firstly, for A1:∥∥Gt
S −∇F−J (wt)

∥∥2 ≤ Ei

∥∥Gt
i −∇F−J (wt)

∥∥2 ≤
Assumption 5.1

ζ2S + β2
S∥∇F−J (wt)∥2 (11)

Let
∥∥Gt

S −∇F−J (wt)
∥∥2 = ζ2t +β2

S∥∇F−J (wt)∥, where ζ2t is specific for each round t (ζ2t ≤ ζ2S ).

Applying the triangle inequality, we derive the following relation for A1: ∥Gt
S∥2 ≥ ζ2t + (β2

S −
1)∥∇F−J (wt)∥2.

Then, for A2, we expand it as follows:

A2 =
µη2

2
E
∥∥Gt

S − gt
S
∥∥2︸ ︷︷ ︸

=σ2
t≤σ2(Assumption 5.4)

+
η

2
(ηµ− 1)

∥∥Gt
S
∥∥2 − η

2

∥∥∇F−J (wt)
∥∥2 (12)
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Now, by Equation (11) and Equation (12), taking expectation on both sides of Equation (10):

E
[
F−J (wt+1)

]
− F−J (wt) ≥ η

2

(
ζ2t + β2

S∥∇F−J (wt)∥2
)︸ ︷︷ ︸

=A1

(13)

+
µη2

2
σ2
t +

η

2

(
ηµβ2

S − ηµ− β2
S
)
∥∇F−J (wt)∥2 + η

2
(ηµ− 1) ζ2t︸ ︷︷ ︸

≤A2

=
µη2

2

(
β2
S − 1

)
∥∇F−J (wt)∥2 + η2µ

2

(
σ2
t + ζ2t

)
≥ µη2

2
M
(
β2
S − 1

)
︸ ︷︷ ︸

B1

(
F−J (wt)− F−J (wr∗)

)
+

η2µ

2

(
σ2
t + ζ2t

)
,

(14)
where M = 2µ if βS ≥ 1, else M = 2L.

Let σ̄2 = 1
T

∑T
t=1 σ

2
t and ζ̄2 = 1

T

∑T
t=1 ζ

2
t . Thus, by iterative updates, we have:

E
[
F−J (wT )

]
−F−J (wr∗) ≥ (B1 + 1)

T
(F−J (wo)− F−J (wr∗))+

η2µ

2
(σ̄2+ζ̄2)

T∑
r=1

(B1 + 1)
T−r

(15)
Taking η2 = 2

µMT 2 , we have B1 =
β2
S−1
T 2 .

Now, considering two cases for B1:
Case 1: If B1 ≤ −1 (since T 2 ≥ 1, Case 1 only holds when T = 1 and β2

S = 0), we get:

E
[
F−J (wT )

]
− F−J (wr∗) ≥ 1

M

(
σ̄2 + ζ̄2

)
, (16)

Case 2: If B1 > −1, then (B1 + 1)T ≥ 1 + TB1, which leads to the inequality:

E
[
F−J (wT )

]
− F−J (wr∗) ≥

(
1 +

β2
S − 1

T

)
(F−J (wo)− F−J (wr∗)) + ρ

(
σ̄2 + ζ̄2

)
, (17)

where ρ = η2µ
2B1

(
(B1 + 1)

T − 1
)
≥ 0 for ∀B1 ≥ −1. Therefore, we can derive ρ ≥ η2µT

2 = 1
MT

Combining two cases and M ≤ 2L, we conclude

E
[
F−J (wT )

]
− F−J (wr∗) ≥

(
1 +

β2
S − 1

T

)
(F−J (wo)− F−J (wr∗)) +

1

2LT

(
σ̄2 + ζ̄2

)
,

(18)

E PROOF OF LEMMA 5.8

Proof. Given the stability metric S(wu), we express it as
S(wu) = E [F (wu)]− F (w∗) = A1 +A2, (19)

where A1 = E [F (wu)]− F (wo) and A2 = F (wo)− F (w∗) = δ. A2 represents the empirical risk
minimization (ERM) gap.
Firstly, to bound A1, we utilize the convexity of F : A1 ≥ ⟨∇F (wo),E [wu −wo]⟩ +
µ
2E
[
∥wu −wo∥2

]
.

With wu −wo = −η
∑T

r=1 g
(S)
r , and g

(S)
r being the aggregated stochastic gradient from the subset

of remaining clients S ⊆ N \ J , let ḡ(S) = 1
T

∑T
r=1 g

(S)
r , we have wu −wo = −ηT ḡ(S).

Considering FL with remaining clients, the global objective is F−J =
∑

i/∈J p′ifi, where p′i =
pi

1−PJ
.

For FL with unlearned clients, the global objective is FJ =
∑

j∈J p′jfj , where p′j =
pj

PJ
. Then,

∇F (·) = (1− PJ )∇F−J (·) + PJ∇FJ (·).
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Expanding A1, we get:

=
(1− PJ )ηT

2
E
[
∥∇F−J (wo)− ḡ(S)∥2

]
+

PJ ηT

2
E
[
∥∇FJ (wo)− ḡ(S)∥2

]
− (1− PJ )ηT

2
∥∇F−J (wo)∥2 − PJ ηT

2
∥∇FJ (wo)∥2

− ηT

2
E
[
∥ḡ(S)∥2

]
+

µη2T 2

2
E
[
∥ḡ(S)∥2

]
, (20)

Under Assumption 5.5 where 1− PJ ≥ PJ , and Assumption B.1 where gradient norm is bounded
(∥∇F∥2 ≤ G2), taking T ≥ µ

η2 , we can derive the lower bound for A1:

A1 ≥ PJ ηT

2
∥∇F−J (wo)−∇FJ (wo)∥2 + η2T 2 − µT

2
(∥Ḡ(S)∥2 + σ2) +

ηT

2
G2

≥
T≥ µ

η2

PJ ηT

2
∥∇F−J (wo)−∇FJ (wo)∥2 (21)

Therefore, we obtain the lower bound for S in FU:

S(wu) ≥ PJ ηT

2
∥∇F−J (wo)−∇FJ (wo)∥2 + δ (22)

F PROOF OF THEOREM 5.10

Proof. By setting η = 1
T

√
2

µM , we ensure the inequality in Equation (18) is satisfied. Given the

fact that 1
M ≤ 1

2µ , it follows that η ≤ 1
µT . Therefore, the inequality in Equation (22) also holds,

completing the proof.

G PROOF OF THEOREM 5.11

Proof. Starting with the local fairness metric Q(wu), we have:

Q(wu) =
∑
i/∈J

p′i

∣∣∣∣∣∆fi −
∑
i/∈J

p′i∆fi

∣∣∣∣∣
=
∑
i/∈J

p′i
∣∣∆fi − V + FJ (w∗)− F ∗

−J
∣∣

≥
∑
i/∈J

p′i |∆fi| − V −
(
FJ (w∗)− F ∗

−J
)

≥ −2V + F ∗
−J −

∑
i/∈J

p′ifi(wi
∗). (23)

The last inequality arises from:∑
i/∈J

p′i |∆fi| =
∑
i/∈J

p′i |E [fi(w
u)]− fi(w

∗)|

=
∑
i/∈J

p′i |(fi(w∗)− fi(wi
∗))− (E [fi(w

u)]− fi(wi
∗))|

≥
∑
i/∈J

p′i (fi(w
∗)− fi(wi

∗))−
∑
i/∈J

p′i (E [fi(w
u)]− fi(wi

∗))

≥
(1)

F−J (w∗)−
∑
i/∈J

p′ifi(wi
∗)−

(
E [F−J (wu)]− F ∗

J
)

= F−J (w∗)−
∑
i/∈J

p′ifi(wi
∗)− V. (24)
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The inequality (1) is justified because
∑

i/∈J p′ifi(wi
∗) ≤ F ∗

−J , as minw F−J (w) ≥∑
i/∈J p′i minw fi(w).

Therefore,

Q(wu) + 2V (wu) ≤ F ∗
−J −

∑
i/∈J

p′ifi(wi
∗).

H BALANCING STABILITY UNLEARNING ALGORITHM ANALYSIS

H.1 PROOF FOR THEOREM B.4

Lemma H.1. Lemma 1 of (Li et al., 2020b) Let Assumption 5.1 holds and ηl ≤ 1
4L , the remaining

clients’ contribution to unlearning for every round t gives:

E
[∥∥∥w̄(t,E) −wr∗

∥∥∥2] ≤ (1− ηlµ)E
[∥∥∥w̄(t,0) −wr∗

∥∥∥2]+ η2l C (25)

where C = σ2 + 6LΓ + 8(E − 1)2
(
ζ2S + (β2

S + 1)G2
)
, Γ = F ∗

−J −
∑

i∈S αiF
∗
i and wr∗ =

argminwF−J (w) is the optimal unlearned model.

Proof. Suppose the FU process involves a total of T unlearning rounds, and within each round t,
each participating client i engages in E local iterations. During local iterations, client i’s model at
iteration τ (τ ≤ E) of round t is denoted as w(t,τ)

i . At the end of round t, the server aggregates to
obtain the global model w̄(t,E) and updates the global model by gradient correction as w̄(t+1,0) =
w̄(t,E) − ηgg

t
c.

Then, we can express w̄(t+1,0) = w̄(t,0) − ηlg
t
S − ηgg

t
c, and we have:

E
[∥∥∥w̄(t+1,0) −wr∗

∥∥∥2] = E
[∥∥∥w̄(t,0) − ηlg

t
S − ηgg

t
c −wr∗

∥∥∥2]
= E

[∥∥∥w̄(t,0) − ηlg
t
S −wr∗

∥∥∥2]︸ ︷︷ ︸
Rt

+ η2gE
[∥∥gt

c

∥∥2]− 2ηgE
[〈

w̄(t,0) −wr∗, gt
c

〉]
︸ ︷︷ ︸

Φt

(26)

where Rt can be bounded by Lemma H.1.
Then, we will bound the second term Φt in Equation (26). By Cauchy-Schwarz inequality and
AM-GM inequality, we have −2

〈
gt
c, w̄

(t,0) −wr∗〉 ≤ ηg ∥gt
c∥

2
+ 1

ηg

∥∥w̄(t,0) −wr∗
∥∥2

Thus,

Φt ≤ E
[∥∥∥w̄(t,0) −wr∗

∥∥∥2]+ 2η2gE
[∥∥gt

c

∥∥2]
≤

Lemma B.3
E
[∥∥∥w̄(t,0) −wr∗

∥∥∥2]+ 2η2gζ
′2ϕ+ 2η2g(β

′2 + 1)ϕ
∥∥∇F−J (w̄t,0)

∥∥2
≤

Assumption B.1
E
[∥∥∥w̄(t,0) −wr∗

∥∥∥2]+ 2η2gζ
′2ϕ+ 2η2gϕΩG

2 (27)

where Ω = (β′2 + 1), β′2 indicates the data heterogeneity between remaining and unlearned clients.

Under Lemma H.1, taking Equation (27) into Equation (26) and letting ∆t = E
[∥∥w̄(t,0) −wr∗

∥∥2],
we have:

∆t+1 ≤ (2− ηlµ)∆t + η2l B (28)

where B = σ2 + 6LΓ + 8
(
ζ2S + (β2

S + 1)G2
)
(E − 1)2 + 2ϕ(

ηg

ηl
)2(ΩϕG2 + ζ ′2)

Next, we will prove ∆t ≤ v
γ+t where v = max

{
β2B
βµ−4 , (γ + 1)∆1

}
. For a diminishing stepsize,

ηl =
β

2(t+γ) for some β > 1
µ and γ > 0 such that ηl ≤ 1

4L . We prove ∆t ≤ v
γ+t by induction.
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Firstly, the definition of v ensures that it holds for t = 1. Assume the conclusion holds for some t, it
follows that

∆t+1 ≤ (2− ηtµ)∆t + η2tB

≤
(
2− βµ

2(t+ γ)

)
v

2(t+ γ)
+

β2B

4(t+ γ)2

=
4(t+ γ)− 4

4(t+ γ)2
v +

[
β2B

4(t+ γ)2
− βµ− 4

4(t+ γ)2
v

]
≤ v

t+ γ + 1

By the L-smoothness of H(·),

E
[
H
(
w̄(t,0)

)]
−H∗

= E
[
H
(
w̄(t,0)

)]
−H(wr∗) +H(wr∗)−H∗

≤ L

2
∆t +

L

2
∥wr∗ −w∗∥2

≤ L

2

(
v

γ + t
+ ∥wr∗ −w∗∥2

)

H.2 PROOF FOR THEOREM B.7
To prove Lemma 5.6, we begin to introduce and prove the following additional lemmas:
Additional Lemmas
Lemma H.2. Under Assumption B.2 and Assumption B.5, the expected norm of the gradient correc-
tion term at round t is bounded as follows:

E
[∥∥∥gc(w̄(t,E))

∥∥∥2] ≤ ϕ
(
ζ ′2 + (β′2 + 1)ϵ

∥∥∇F−J (w̄t,0)
∥∥2)

, where ϕ = λ2P 2
J (1 + cos2 θ). cos2 θ represents cos2 θ represents the similarity between the

objectives of the remaining and unlearned clients.

Lemma H.3 (Per Round Unlearning). For each iteration t in the unlearning process:
E
[
F−J (wt+1)− F−J (wt)

]
≤ E

[〈
−ηlg

t
S ,∇F−J (wt)

〉]
+

Lη2l
2

E
[∥∥gt

S
∥∥2]︸ ︷︷ ︸

A1:remaining clients training

+ E
[〈
−ηggc

t,∇F−J (wt)
〉]

+
Lη2g
2

E
[∥∥gct∥∥2]︸ ︷︷ ︸

A2:global correction

Lemma H.4. Assume Assumption B.1 holds. Given a set of clients S, it follows that

E
∥∥Gt

S − gt
S
∥∥2 ≤

∑
i∈S

α2
iσ

2
i,t,

where Gt
S = E [gt

S ].

Proof. (Theorem B.7)
Based on Lemma H.3, we can decomposed the convergence of unlearning verficiation V =
E[F−J (wt+1)− F−J (wt)] into two primary components A1 and A2:

1

2
E
[
F−J (wt+1)− F−J (wt)

]
≤ A1,

1

2
E
[
F−J (wt+1)− F−J (wt)

]
≤ A2

These components A1 represent the impact of training with the remaining clients, and A2 represents
the global correction.
Derivation for component A1:
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For A1, it is related to unlearning with the remaining clients. By iterative derivation, we have
1

2
E
[
F−J (wt+1)

]
− F−J (wt) ≤ A1 =

ηl
2
E
[∥∥gt

S −∇F−J (wt)
∥∥2]− ηl

2

∥∥Gt
S
∥∥2 − ηl

2

∥∥∇F−J (wt)
∥∥2 + Lη2l

2

∥∥gt
S
∥∥2

=
ηl
2
E
[∥∥gt

S −∇F−J (wt)
∥∥2]+ Lη2l

2
E
[∥∥Gt

S − gt
S
∥∥2]

+
ηl
2
(ηlL− 1)

∥∥Gt
S
∥∥2 − ηl

2

∥∥∇F−J (wt)
∥∥2

≤(Assumption 5.1 & Lemma H.4)
ηl
2

(
ζ2S + β2

S
∥∥∇F−J (wt)

∥∥2)+ Lη2l
2

σ2

+
ηl
2
(ηlL− 1)(β2

S + 1)
∥∥∇F−J (wt)

∥∥2 + ηl
2
(ηlL− 1)ζ2S

, where σ2 =
∑

i∈S α2
iσ

2
i,t by Lemma H.4.

Thus,

E
[
F−J (wt+1)

]
− F−J (wt) ≤

(
η2l L(β

2
S + 1)− ηl

2

)∥∥∇F−J (wt)
∥∥2 + η2l L

(
σ2 + ζ2S

)
Taking ηl =

1
LT and T ≥ 2β2

S + 2 , we have:

E
[
F−J (wT )

]
− F−J (wr∗) ≤

(
1− 1

2LT
+

β2
S + 1

LT 2

)T

(F−J (wo)− F−J (wr∗))︸ ︷︷ ︸
D1

+ 2
σ2 + ζ2S

(T − 2β2
S − 2)

(
1−

(
1− T − 2β2

S − 2

2LT 2

)T
)

︸ ︷︷ ︸
D2

(29)

Bounding D2: We will employ the inequality (1− a)T ≤ 1− aT for a ≤ 1. Here, a =
T−2β2

S−2
2LT 2 .

Then, we verify that a ≤ 1 by considering 2LT 2 − T + 2β2
S + 2 ≥ 0.

If L(β2
S + 1) ≥ 1

16 , then, a ≤ 1 holds for T ≥ 1. If L(β2
S + 1) < 1

16 , then, considering T ≥ 1+∆
4L ,

where ∆ =
√
1− 16L(β2

S + 1), we have a ≤ 1.

Considering T ≥ 1+∆
4L and we obtain

(
1− T−2β2

S−2
2LT 2

)T
≥ 1− T−2β2

S−2
2LT , and

1

(T − 2β2
S − 2)

(
1−

(
1− T − 2β2

S − 2

2LT 2

)T
)

≤ 1

2LT
(30)

By taking T ≥ max{2β2
S + 2, 1+∆

4L } with ∆ =
√
max{0, 1− 16L(β2

S + 1)}, and integrating the
bounds derived in Equation (30) into Equation (29), we have:

E
[
F−J (wT )

]
− F−J (wr∗) ≤

(
1− 1

2LT
+

β2
S + 1

LT 2

)T

(F−J (wo)− F−J (wr∗))

+
σ2 + ζ2S
LT

= 2χ1. (31)
Here, χ1 is defined as

1

2

(
1− 1

2LT
+

β2
S + 1

LT 2

)T

(F−J (wo)− F−J (wr∗)) +
(σ2 + ζ2S)

2LT
.
Derivation for component A2:
By Lemma H.3:
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1

2
E
[
F−J (wt+1)− F−J (wt)

]
≤ A2 =

Lη2g
2

E
[∥∥∥gc(w̄(t,E))

∥∥∥2]− ηgE
[〈

gc(w̄
(t,E)),∇F−J (w̄(t,0))

〉]
=

1

2
(Lη2g − ηg)E

[∥∥∥gc(w̄(t,E))
∥∥∥2]+ ηg

2
E
[∥∥∥gc(w̄(t,E))−∇F−J (w̄(t,0))

∥∥∥2]− ηg
2

∥∥∥∇F−J (w̄(t,0))
∥∥∥2

≤(1)
1

2
Lη2gζ

′′2 +
1

2

(
Lη2g(β

′′2 + 1)− 2ηg
) ∥∥∥∇F−J (w̄(t,0))

∥∥∥2
where ζ

′′2 = ϕζ ′2, β
′′2 = ϕϵβ′2 + ϕϵ+ 1.

The last inequality holds for:

E
[∥∥∥gc(w̄(t,E))−∇F−J (w̄(t,0))

∥∥∥2] ≤ E
[∥∥∥gc(w̄(t,E))

∥∥∥2]+ ∥∥∥∇F−J (w̄(t,0))
∥∥∥2

≤
Lemma H.2

ϕ
(
ζ ′2 + (β′2 + 1)ϵ

∥∥∇F−J (w̄t,0)
∥∥2)+ ∥∥∥∇F−J (w̄(t,0))

∥∥∥2
≤ ϕζ ′2 +

(
ϕϵβ′2 + ϕϵ+ 1

) ∥∥∇F−J (w̄t,0)
∥∥2

≤ ζ
′′2 + β

′′2
∥∥∥∇F−J (w̄(t,0))

∥∥∥2
where ζ

′′2 = ϕζ ′2, β
′′2 = ϕϵβ′2 + ϕϵ+ 1.

Choosing ηg = 1
LT , similar to previous derivation for component A1, we have:

E
[
F−J (wT )

]
− F−J (wr∗) ≤

(
1− 2

LT
+

β
′′2 + 1

LT 2

)T

(F−J (wo)− F−J (wr∗))︸ ︷︷ ︸
B1

+

ζ ′′2

(
1−

(
1− (2T−β

′′2−1)
LT 2

)T
)

2T − β′′2 − 1︸ ︷︷ ︸
B2

(32)

Bounding B2: We will employ the inequality (1− a)T ≤ 1− aT for a ≤ 1. Here, a = 2T−β
′′2−1

LT 2 .
Then, we verify that a ≤ 1 by considering LT 2 − 2T + β

′′2 + 1 ≥ 0.

If L(β′′2 + 1) ≥ 1, then, a ≤ 1 holds for T ≥ 1. If L(β′′2 + 1) < 1, then, considering T ≥ 1+∆′

L ,
where ∆′ =

√
1− L(β′′2 + 1), we have a ≤ 1.

Considering T ≥ 1+∆′

L and we obtain
(
1− 2T−β

′′2−1
LT 2

)T
≥ 1− 2T−β

′′2−1
LT , and

1−
(
1− 2T−β

′′2−1
LT 2

)T
2T − β′′2 − 1

≤ 1

LT
(33)

By taking T ≥ max{ 1
2 (β

′′2 + 1), 1+∆′

L }, where ∆′ =
√
max{0, 1− L(β′′2 + 1)},

and integrating the bounds derived in Equation (33) into Equation (32), we have:

E
[
F−J (wT )

]
− F−J (wr∗) ≤

(
1− 2

LT
+

β
′′2 + 1

LT 2

)T

(F−J (wo)− F−J (wr∗))

+
ζ ′′2

LT
= 2χ2. (34)
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Here, χ2 is defined as

1

2

(
1− 2

LT
+

β
′′2 + 1

LT 2

)T

(F−J (wo)− F−J (wr∗)) +
ζ ′′2

2LT
.

H.3 PROOF FOR LEMMA B.3

Proof. Recall that the gradient correction gt
c = gc(w̄

(t,E)) at each round t after local E epochs as:
gt
c = ht − Projg−J

ht, where ht = λ(1− PJ )gt
−J + λPJ ĝt

J

Thus, under stochastic gradient descent gt
S from the subset of remaining client S:

gc
t = λPJ

(
ĝt
J − cos θ

∥ĝt
J ∥

∥gt
S∥

gt
S

)
The expected norm of gct can be bounded as:

E
[∥∥gct∥∥2] ≤ λ2P 2

J (1 + cos2 θ)︸ ︷︷ ︸
ϕ

E
[∥∥ĝt

J
∥∥2] , (35)

Therefore, by Equation (35) and Assumption B.2, we obtain:

E
[∥∥gct∥∥2] ≤ ϕ

(
ζ ′2 + (β′2 + 1)

∥∥∇F−J (w̄t,E)
∥∥2)

H.4 PROOF FOR THEOREM B.10

Let G = F−J (w) + λ⊤r(w), and (w̄ and λ̄) is a ν-approximate saddle point of G.

F−J (w̄) + Λmax
z∈Z

rz(w̄)+ − ν ≤ F−J (w̄) + λ
T
r(w̄)

= G(w̄,λ)

≤ min
w

G(w,λ) + ν

≤ G
(
wo,λ

)
+ ν

= F−J (wo) + ν

≤ F−J (wo) + ν

Hence,

max
z∈Z

rz(w̄)+ ≤ 1

Λ
(F−J (wo)− F−J (w̄) + 2ν)

= ϵ

We can present ν as ν = Λϵ+F−J (w̄)−F−J (wo)
2 .

Similarily, we can obtain F−J (w̄) − F−J (wr∗) ≤ 2ν. By definition of unlearning verification,
V (w̄) ≤ 2ν.

That requires ν ≤ ϵΛ + F−J (w̄)− F−J (wo), which is equivalent to ϵ ≥ F−J (wo)−F−J (wr∗)
Λ .

I DISCUSSION

In this section, we demonstrate how our proposed mechanism adapts to these common unlearning
algorithms for enhancing the adaptability and robustness of existing methodologies. In the context of
the rapid retaining method Wu et al. (2020a) and knowledge distillation Wu et al. (2022), our proposed
mechanism motivates the incorporation of a control parameter λ to handle stability during unlearning.
Specifically, it could introduce λ multiplying the second term of the right-hand side formulation in
Wu et al. (2020a, Equation 3) or Wu et al. (2020a, Algorithm 1, Line 1). That allows for balancing
between stability and unlearning effectiveness. Specifically, if λ = 1, the case is identical to their
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formulation. However, if λ = 0, it would revert to the original FL training, prioritizing stability over
unlearning effectiveness.
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