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Figure 1: We introduce SyncHuman, a full-body human reconstruction model using synchronized
2D and 3D diffusion model. Given a single image of a clothed person, our method generates detailed
geometry and lifelike 3D human appearances across diverse poses.

Abstract

Photorealistic 3D full-body human reconstruction from a single image is a critical
yet challenging task for applications in films and video games due to inherent
ambiguities and severe self-occlusions. While recent approaches leverage SMPL
estimation and SMPL-conditioned image generative models to hallucinate novel
views, they suffer from inaccurate 3D priors estimated from SMPL meshes and
have difficulty in handling difficult human poses and reconstructing fine details.
In this paper, we propose SyncHuman, a novel framework that combines 2D
multiview generative model and 3D native generative model for the first time,
enabling high-quality clothed human mesh reconstruction from single-view im-
ages even under challenging human poses. Multiview generative model excels at
capturing fine 2D details but struggles with structural consistency, whereas 3D
native generative model generates coarse yet structurally consistent 3D shapes. By
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integrating the complementary strengths of these two approaches, we develop a
more effective generation framework. Specifically, we first jointly fine-tune the
multiview generative model and the 3D native generative model with proposed
pixel-aligned 2D-3D synchronization attention to produce geometrically aligned
3D shapes and 2D multiview images. To further improve details, we introduce
a feature injection mechanism that lifts fine details from 2D multiview images
onto the aligned 3D shapes, enabling accurate and high-fidelity reconstruction.
Extensive experiments demonstrate that SyncHuman achieves robust and photo-
realistic 3D human reconstruction, even for images with challenging poses. Our
method outperforms baseline methods in geometric accuracy and visual fidelity,
demonstrating a promising direction for future 3D generation models.

1 Introduction

Reconstructing 3D clothed humans from a single RGB image is a fundamental yet challenging task.
It has broad applications in AR/VR, virtual try-on, gaming, and film production [33|[36]]. Compared
to parametric body reconstruction [54], clothed human reconstruction [83] requires capturing not
only the underlying body shape but also the diverse topology, geometry, and dynamics of garments.

Recent progress in implicit representations and generative models has led to significant advances in
this area. PIFu [43]] pioneered this direction with predicted neural implicit field, followed by methods
such as ICON [63]], ECON [62], and PaMIR [82]], which introduced improvements in SMPL priors,
normal estimation, and feature representation, respectively. With the advancement of generative
models techniques [30} 311 24], recent works 13,78}, 25] have introduced multiview generative model
for novel-view human image prediction, enhancing 3D reconstruction fidelity, detail preservation,
and robustness.

However, accurately reconstructing 3D clothed humans from a single 2D image is still challenging,
especially for images with challenging poses. The reason is that most methods [[13 [25]] strongly rely
on human shape priors, i.e., SMPL estimation, to provide structural information to generate multiview
images. Unfortunately, existing single-view human pose estimation methods [[7, [72, 1} |39, 3] often
lack sufficient accuracy, especially when dealing with occlusions or challenging poses, as shown
in Fig. 2] (a). Moreover, the estimated SMPL meshes represent only naked human bodies and fail
to accurately model loose clothing. Thus, conditioned on inaccurate SMPL meshes, the multiview
generative models often generate images with incorrect body topologies and mismatched details,
leading to reconstruction artifacts, as shown in Fig. |Z| (b).
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low-fidelity shapes that poorly match the input estimation [39], 2D multiview generative model
image characteristics. Enhancing both the geo- (MVD) PSHuman [25], native 3D generative
metric detail and input-consistency of 3D-native model Trellis [61] and our method. 2D MVD
generation outputs remains an open challenge.  produces high-quality details but has geometry
artifacts when conditioned on inaccurate SMPL
meshes. Native 3D generative model produces
correct coarse structure but loses fine details and fi-
delity. Our method combines the strengths of both
2D and 3D generative models to produce detailed
3D human meshes with high fidelity.
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In this paper, we propose SyncHuman, a novel
framework that combines 2D multiview gener-
ative model and native 3D generative model for
the first time, leveraging their complementary
strengths to address these challenges, as shown
in Fig. 2] (d). Instead of simply relying on the
SMPL estimation, we utilize the more accurate



3D shapes generated by the native 3D generative model to guide the generation of 2D multiview
images, greatly improving the multiview consistency. At the same time, the detailed multiview images
also guide the 3D generative model to carve the 3D shapes with detail and high fidelity.

In implementation, SyncHuman consists of two main components. First, we design a unified
2D-3D cross-space generative model with two branches, i.e., a 2D multiview generation branch
and a 3D sparse structure generation branch, which interact via 2D-3D synchronization attention
layers. The 2D-3D attention layers align the multiview images with the generated 3D shapes, which
simultaneously utilize the 3D shapes to improve the cross-view consistency and employ the multiview
images to enhance the fidelity of the generated 3D shapes. Next, to obtain high-quality 3D meshes,
we design a multiview guided decoder to incorporate the pixel-aligned information of generated
multiview images into the 3D generation during the decoding process, which not only carves fine
geometric detail but also greatly improves the texture fidelity.

We conduct extensive experiments on multiple datasets to evaluate the effectiveness of SyncHu-
man. The results demonstrate that the proposed method outperforms previous single-view human
reconstruction methods [62, [13] [25] while even achieving higher fidelity and texture quality than
the large-scale 3D generative models [61] trained with datasets hundreds of times larger than ours.
SyncHuman unifies 2D multiview generative model and native 3D generative model within a unified
framework, enabling higher-quality image-to-3D generation with improved fidelity. This demon-
strates significant potential for future 3D generation model development.

2 Related works

Single image human reconstruction. Prior to the advent of generative approaches, single-
image human reconstruction primarily followed either explicit or implicit representation paradigms.
Explicit methods, including voxel-based techniques [55) [83]], visual hull approaches [34], and
depth/normal [8, |50} [10] prediction frameworks, offer computational efficiency but often sacrifice
local geometric details. The explicit normal integration in ECON [62]] made a significant advancement
in reconstruction robustness for the explicit paradigm. In contrast, implicit methods emerged as the
dominant approach due to their continuous representation capabilities. The field was revolutionized
by PIFu [45]16] 167]], which established pixel-aligned implicit functions for detailed geometry recov-
ery from single images. Subsequent approaches enhance the robustness [[11} 163} 182, 68] through
parametric body model integration and additional supervision from surface normals [46] and depth
information [70} [81]]. Most recent works [77, 78, 18} 169, 42, 41]] incorporate transformer architec-
ture and utilize large-scale human datasets to reduce inductive bias, enhancing the generalization
capability. While these methods demonstrate exceptional performance in handling complex clothing
and topological variations, they remain inherently constrained by their reliance on the input image,
struggling with photorealistic appearance and detail recovery.

3D Generation. 3D generation has been significantly advanced by generative models, which can
be roughly categorized into multiview generation approaches and native 3D generation methods.
Multiview generation techniques [49} 31} [30L 241 251 [17, 156 1851 1521 1651 164} 157, 1591 153]] typically
employ a two-stage pipeline: first generating consistent multiview images, followed by either
optimization-based reconstruction [37] or feed-forward generation [22| 23]]. The multiview gen-
eration stages involve fine-tuning an image generative model [43]] or video generative models [2]]
by incorporating view-aware attention layers to ensure cross-view consistency. Native 3D gener-
ative models [80L 61} 127, [79, 5L [71} 160, 26] operate directly in 3D representation spaces (e.g., 3D
Volume [61] or Signed Distance Field [38]), typically comprising a large variational autoencoder
combined with a latent diffusion transformer (DiT) [40]. Trained on extensive 3D datasets, these
models demonstrate exceptional geometric quality and strong generalization capabilities. Building
upon these foundations, our work adapts and fine-tunes such a native 3D generator specifically for
human body shape while preserving its generalization capacity.

Generative Human Reconstruction Generative models, such as Stable Diffusion, have emerged as
a powerful tool for 3D human reconstruction. Pioneering works [28l,[16} [15]] employ score distillation
sample (SDS) to optimize textured human mesh per case, which is time-consuming and typically
only text-constrained. Feed-forward methods [13| 4] leverage pose-guided ControlNet [74] to predict
plausible back views for neural reconstruction or Gaussian splatting, but their robustness suffers from
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Figure 3: Overview. Given a single human image, SyncHuman first generates multiview color
and normal maps, along with an aligned sparse voxel grid, which is further transformed into a set
of structured latents. Then, we propose to inject the high-quality images into the 3D latents via a
Multiview Guided Decoder and output the detailed high-fidelity textured human mesh.

limited multiview cues. Other approaches [20} 25]] address this problem by fine-tuning 2D generative
models to produce sparse multiview human generations. Despite improved performance, these models
struggle with cross-view consistency, leading to inevitable appearance artifacts. Human3Diff [[66]]
attempts to enhance multiview coherence by integrating 3D representations as intermediate constraints
during the denoising process. However, reliance on 2D denoising generative models often leads to
anatomically implausible human structures due to the absence of body prior. Unlike prior work, this
study aims to align the pretrained 2D multiview and 3D native generative models, enabling producing
geometrically consistent and robust 3D human models without reliance on any human prior.

3 Method

Overview. SyncHuman aims to reconstruct a 3D clothed human mesh from a single color image. As
shown in Fig.[3] given a full-body human image, we first propose a 2D-3D Cross-Space generative
model (Section [3.T) to synthesize multiview color and normal maps, along with an aligned sparse
3D voxel grid, which is further transformed to an aligned structured latent through a pretrained flow
transformer. Then, a Multiview Guided Decoder (Section@) is introduced to decode the structured
latents into a high-quality, detailed, textured mesh with the help of generated multiview images.

3.1 2D-3D Cross-Space Generative Model

Multiview generative models have shown powerful novel-view generation and generalization capabil-
ity. Given a human image as input, they could hallucinate multiple views with high-resolution details
such as identity, skin texture, and clothing wrinkles, but often struggle with cross-view consistency.
In contrast, native 3D generative models naturally maintain 3D structural consistency, yet typically
lack fidelity. In this section, we introduce 2D-3D Cross-Space Generative Model, which combines
the strengths of 2D multiview generative models and native 3D generative models.

Multiview Generative Model. Taking the input image I as the front view, we use the network
structure from PSHuman [25]] to generate color and normal maps on four predefined orthogonal
viewpoints, front, back, left, and right, which employs an efficient row-wise multiview attention to
enhance cross-view consistency. This module could be formulated as

Inv = Guv (1), ey

where Iyy is the generated multiview images and normal maps. Previous methods [25] 78] [13]
usually use the estimated 3D SMPL meshes to improve the multiview consistency in Iy, but often



Figure 4: 2D-3D synchronization attention. 2D to 3D attention: each 3D voxel feature is
orthogonally projected onto front, back, left, and right view planes to retrieve corresponding 2D
features, and refines the voxel feature with cross-attention. 3D to 2D attention: each 2D multiview
feature is projected into 3D space to attend to a column of voxel features, enhancing the 2D features.
This mutual refinement ensures that 2D generative model and 3D generative model align with each
other in a shared 3D space.

suffer from inaccurate SMPL estimation. Thus, we introduce the native 3D generative model to
provide 3D structural guidance for the multiview generation in the following.

3D structure Generative Model. Our native 3D generative model follows Trellis [61]. A 3D noise
grid is first used to produce a sparse structure latent through a DiT-based flow transformer Ggria. The
sparse structure latent is subsequently decoded into an occupied voxel grid Vg via a Conv-based
decoder Dyoxel,

Vgrid = Dyoxel (ggrid (I)) ) (2)

where the input image I is fed into the generative model layer by cross-attention layers. The sparse
structure generated by Trellis [[61] produces reasonable 3D shapes but loses fidelity and details. We
add a novel 2D-3D synchronization attention to improve the fidelity and retrieve more details from
multiview images when transforming the 3D structure to textured meshes.

2D-3D synchronization attention. We introduce a 2D-3D synchronization attention mechanism
between the 2D multiview generative model and the 3D generative model to let them benefit each
other in the generation. This consists of 2D to 3D attention and 3D to 2D attention layers as follows.

(1) 2D to 3D attention. As shown in Fig. |4 for each 3D voxel feature, we first sample the
corresponding 2D features on generated four normal maps. Then, the 3D voxel feature is used as
the query token, and the concatenated 2D features from four views serve as keys and values for
cross-attention. The cross-attended features are processed by an output MLP with zero initialization,
and the resulting features are added to the original 3D voxel feature for refinement.

(2) 3D to 2D attention. Then, for each 2D feature on multiview images, we query the corresponding
3D voxel columns as in Fig.[d Then, the 2D feature is used as the query while the 3D voxel feature
serves as keys and values for cross-attention. The cross-attended features are processed by an output
layer with zero initialization, and the results are added to the 2D features.

Discussion. Our method establishes an explicit correspondence between the 2D and 3D generative
models, which benefits each branch. Through this synchronized attention, 3D generative model
provides 3D structural guidance for the 2D generative model to improve the multiview consistency
while the 2D generative model regularizes the 3D generative model to generate shapes that are more
aligned with the input image with better fidelity. This integration enables our model to combine
the advantages of both approaches: the 2D generative model provides detailed, high-fidelity results,
while the 3D generative model ensures structural integrity and robust handling of complex human
poses.

2D-3D joint training. We employ the flow matching [29]] objective to train our 2D-3D cross-space
generative model with the training loss defined by

L= [[o3d(@?, 1) — @3 — || + v (@, 1) — (a3 - )|, 3)



where €24 and €37 is the 2D noise maps and 3D noise grid, 22¢ and 23 is the latent features at timestep
t and vgd and vgd are the corresponding predicted velocity during denoising process, respectively.
Note that the multiview generative model is based on the Stable Diffusion 2.1 [44], and we retarget it
to the same flow matching model as Trellis for jointly training.

3.2 Multiview Guided Decoder (MVGD)

This section utilizes the generated multiview images and sparse voxels to recover textured 3D meshes.

Structured latent generation. We first apply another DiT-based generative model Gien in Trel-
lis [61]], which is named as Structured Latents Generative Model in Fig. [3] to generate a set of
structured latents Vi,ene. Each of them is attached to a previously generated 3D voxel. These struc-
tured latents can be processed by either a mesh decoder D,,, or a 3D Gaussian Splatting [19] (3DGS)
decoder D, to generate a mesh or a 3DGS representation. For simplicity, we unify these decoders as
D,. However, directly decoding these latent to mesh or 3DGS leads to a lack of reconstruction details,
particularly noticeable in areas such as the face and clothing wrinkles, as demonstrated in Fig.
To address this, we propose a multiview feature injection mechanism to incorporate the generated
high-resolution multiview images into the original decoder.

Multiview feature injection. Specifically, we extract DINOV?2 [35] features of generated multiview
images, and process them with several trainable MLP layers. For each 3D voxel, we query the
corresponding four-view image features and concatenate them with the generated structure latent.
The concatenated features are first passed through a MLP, and the resulting representations are subse-
quently fed into the original decoder D, to produce a high-quality mesh and 3DGS representation.
This simple but efficient feature injection allows for preserving the geometry fidelity and appearance
realism to a great extent, as shown in Fig. [8| We render images from 3DGS and then bake onto the
mesh to obtain the final textured human mesh M. The overall decoding process can be formulated as

M= Do (glalent(Ia Vgrid), IMV) . (4)

Training Loss. We train the multiview guided decoder for the 3DGS branch and the mesh branch
separately. For the 3DGS branch, we use L1 loss, Structural Similarity Index (SSIM), Learned
Perceptual Image Patch Similarity (LPIPS) loss between renderings and ground-truth images, and
a regularization loss to avoid extremely large or small opacity. For the mesh branch, we render
the foreground mask, depth maps, and normal maps from the generated 3D meshes. Then, we
compute the L1 or Huber loss between the ground truth and the renderings to train the decoder. More
architectural design and training details are given in the supplementary material.

4 Experiments

4.1 Experiment Setup

Dataset. Our models are trained on several widely used 3D human scanning datasets, including
THuman?2.1 [70], CustomHumans [[12]], THuman3.0 [51]], and 2K2K [10]]. To construct training
images, we render 8 ground-truth images using orthographic cameras with evenly distributed azimuth
angles and a fixed 0° elevation with a resolution of 768 x 768. For quantitative evaluation, we utilize
100 scans from X-Humans [47] and 150 scans from CAPE [32]. X-Humans contains 233 sequences
of high-quality textured scans from 20 participants. We randomly selected 5 textured scans from
each of the 20 participants in the X-Humans dataset, resulting in 100 test samples. Following ICON’s
partitioning criteria, we subdivide CAPE into "CAPE-FP" (50 samples) and "CAPE-NFP" (100
samples) to test the generalization ability in real-world examples. We conduct comparison with the
baseline methods on the aforementioned X-Humans subset and CAPE subset, and perform ablation
experiments on the same X-Humans subset.

Metric. To evaluate reconstruction capability, we employ three primary metrics: 1-directional
point-to-surface (P2S), L, Chamfer Distance (CD), and Normal Consistency (NC). For geometry
evaluation, we align the centers of the reconstructed mesh and the ground truth mesh and then scale
them so that the coordinate range of the longest axis is 1. For appearance evaluation, we render front,
back, left, and right views and compute PSNR [58]], structural similarity index (SSIM) [75]], and
perceptual image patch similarity (LPIPS) [76].
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Figure 5: Geometry comparisons between ECON [81]], Human3Diff [66], SIFU [[78], PSHuman [25]
and ours. Our method could reconstruct 3D shapes with complete body structure and rich details.
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Figure 6: Appearance qualitative comparisons between GTA [81]], Human3Diff [66]], SIFU [78]],
PSHuman [23]] and our method.
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Table 1: Quantitative comparison of geometry and appearance on the CAPE-NFP [32]], CAPE-FP [32],
X-Humans [32]] datasets. Our method achieves superior performance on all metrics than baseline
methods.

Method CAPE-NFP CAPE-FP X-Hi
Cham.] P2S] NCT | Cham] P2S] NCT | Cham] P2S] NCT PSNRT SSIMT LPIPS]

ICON [63] 1.5966 14171 0.7974 | 1.2698 1.2018 0.8330 | 1.4971 1.3920 0.8133 - - -
ECON 1.8335 1.5391 0.7731 | 1.3729 1.2962 0.8225 | 1.6425 1.4398 0.8054 - - -
GTA [T7] 1.6311 15053 0.7890 | 1.2980 1.2457 0.8277 | 1.5050 1.4662 0.8044 20.0084 0.8502 0.1129
SIFU 1.6573  1.5130 0.7895 | 1.2759 1.2275 0.8289 | 1.5391 1.4331 0.8093 20.6747 0.8455 0.1104
SiTH [13] 1.6461 1.2043 0.7914 | 1.0377 09767 0.8516 | 1.5104 14345 0.7972 19.8245 0.8204 0.1182
Human3Diff 1.5991 1.2016 0.7427 | 0.9666 0.9340 0.7914 | 1.5034 14219 0.7468 19.7181 0.8065 0.1334
PSHuman 1.3726  0.9863 0.8276 | 0.7764 0.6527 0.8850 | 1.4377 1.1385 0.8393 20.8405 0.8523  0.0980
TRELLIS 2.0877 1.5678 0.7521 | 1.1155 1.0663 0.8353 | 2.0043 1.5053 0.7718 17.0786 0.7238  0.1529
OURS 0.9127 0.8113 0.8483 | 0.6409 0.5962 0.8958 | 0.8353 0.7593 0.8872 21.8385 0.8741 0.0786
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Figure 7: Ablation study of the 2D-3D synchronization attention for a joint 2D-3D modeling between
PSHuman [23], fine-tuned Trellis [61]], and our model.

4.2 Comparison with baseline methods

Baselines. We conducted a comprehensive comparison of our method against state-of-the-art single-
view human reconstruction approaches, including classic implicit function based methods (ICON [63],
GTA [[77]], SiFU [778])), explicit work (ECON [62])), and other baselines with generative priors (
SiTH [13]], Human3Diff [66] and PSHuman [23]]). All evaluations are conducted with the official
open-source codes, applying a unified evaluation method. More comparisons and visual results are
provided in the Appendix.

Comparison of geometry quality. Combining the advantages of accurate 3D coarse structure from
the native 3D generative model and the rich details of the multiview generative model, our method
outperforms existing approaches in geometry quality as shown in Tab.[I] The qualitative comparison
in Fig. [5| highlights that our method also handles complex human poses correctly, demonstrating
significant improvements in structural integrity, correctness, and detail richness over baseline methods.

Comparison of appearance quality. We render four views with resolution of 768 for each sample
and evaluate the appearance quality by reporting average PSNR, SSIM, and LPIPS. The results
presented in Tab. [T|demonstrate that our method significantly outperforms existing approaches on
all metrics. As illustrated by the qualitative results in Fig. [6] our method generates high-quality
appearances on novel viewpoints, delivering natural and photorealistic reconstruction quality. In
contrast, existing methods exhibit notable limitations in both unseen views and occluded regions,
including blurred colors and artifacts.
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Figure 8: Ablation of different decoder settings. “original decoder” means the pretrained Trellis [61]
decoder, while “original decoder (tuned)” and “multiview guided” are trained on the same human
scans.All models use the same structured latents but decode them with different decoders.



Table 2: Ablation study of 2D-3D cross-space generative model on X-Humans subset.

Method PSNRT SSIM{ LPIPS| Cham.Dist, P2S| NC1
Trellis 17079 0724  0.153 2.004 1505  0.772
Trellis [61] (tuned)  20.344  0.844  0.101 1.135 1.041  0.848
PSHuman 20.840  0.852 0.098 1.438 1138 0.839
Ours 21838  0.874  0.0786 0.835 0.759  0.887

Table 3: Ablation study of our multiview guided decoder (MVGD) on X-Humans [47] subset. All
models employ the same structured latents but different decoders.

Method PSNR1T SSIM1t LPIPS]| Cham.Dist| P2S| NC+1
original decoder 21.083 0.862 0.092 0.895 0.820 0.875
original decoder (tuned)  21.362 0.866 0.090 0.887 0.810 0.877
MVGD 21.838 0.874 0.0786 0.835 0.759 0.887

4.3 Ablation Study

2D-3D cross-space generative model. We ablate the effectiveness of 2D-3D cross-space generative
model on a X-Humans subset by removing the 2D-3D synchronization attention. For a fair compar-
ison, we fine-tuned all the models on the same dataset. Compared with PSHuman (2D multiview
generative model + remeshing) and Trellis (a native 3D generation model), this cross-space attention
significantly enhances geometric accuracy and texture fidelity, as shown in Tab. 2]and Fig.[7}

Multiview guided decoder (MVGD). To evaluate the effect of MVGD, we compare three types
of structured latent decoders: (1) the original Trellis decoder, (2) the Trellis decoder fine-tuned on
human scans, and (3) the decoder guided with multiview images (our MVGD).

We conduct the comparison on the same X-Humans subset, evaluating both geometry and appearance.
We apply mesh normalization and ICP registration to align the output meshes with the round truth
scans to ensure a fair comparison. For each mesh, we render four views with a 768 resolution
and report the average PSNR, SSIM, and LPIPS. The results in Tab. [3]show that multiview guided
decoding significantly enhances geometric accuracy and texture quality. Fig.[]also clearly illustrates
that incorporating multiview image information improves the details and fidelity.

Comparison between our structure and SMPL estimation. To demonstrate that our structure
handles some complex human poses better than the SMPL estimation, Fig. 9 shows the SMPL
estimation from 4D-Humans [9] and the 3D structure generated by our method given the same input
image. The SMPL estimation has obvious errors like self-intersection, while the structure generated
by our method aligns better with the inputs without artifacts.

Input Our Structure

Figure 9: Robustness Analysis of the Generated Structure. The results demonstrate the robust
reconstruction capabilities of our approach.



5 Limitation and Conclusion

In this work, we propose SyncHu-
man, a novel framework for robust
3D human generation from a single
image. By introducing a 2D-3D cross-
space generative model, we gener-
ate high-fidelity 3D structures and
cross-view consistent multiview im-

ages. Then, we employ a multiview Input Generated
guided decoder to obtain detailed and
structurally completed 3D human tex-
tured meshes. Extensive experiments

Figure 10: Unnatural textures under non-uniform lighting.

demonstrate that SyncHuman can generate 3D humans with intricate geometric details and lifelike
appearances, outperforming existing methods.

Limitations. Our method inherits certain constraints from the training data. First, since our training
dataset is rendered with uniform light source, reconstructed textures may exhibit artifacts under
extreme lighting conditions (e.g., localized overexposure or shadows, as shown in Fig. [T0) Moreover,
our multiview generation model is fine-tuned from SD 2.1 using only ~5,000 human scans, so
its generation quality is still constrained. It will be promising to scale up our model using video
generative models or large-scale multiview human datasets in future work.
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guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We discuss the training and test details in the section on experiments and supplementary.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: The reported quantitative evaluations are listed in Tab.[I] Tab. 2] and Tab.[3]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

¢ The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

« Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We train SyncHuman with 8 H800 GPUs.
Guidelines:

¢ The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

¢ The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer:[Yes]
Justification: This work conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: The paper includes the Broader Impacts statement in subsection Ethics Statement in
Supp.
Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: To mitigate the risks associated with our technology, we are implementing the following
safeguards:Implementing an email checking system that requires users to acknowledge and agree to
user guidelines before accessing our model.Integrating pre-trained facial recognition and human body
detection models to identify and flag potentially sensitive content.Incorporating safeguard strategies in
Stable Diffusion to filter sensitive and harmful input images, including Content Filtering, NSFW (Not
Safe For Work) Detection, Watermarking and Tracing.Our code and pre-trained model will be released
under strict licenses (like Ethical Source License) that explicitly prohibit illegal or unethical use.
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Guidelines:

¢ The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: This paper cites the related datasets and codes used in our work.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

¢ The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.
* At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Although the method involves 3D human models, we rely on datasets collected before this
work; we refer to them for their specifics[1,2,3,4,5,6]. [1] Function4D: Real-time Human Volumetric
Capture from Very Sparse RGBD Sensors [2] High-fidelity 3D Human Digitization from Single 2K
Resolution Images [3] Learning Locally Editable Virtual Humans [4]DeepCloth: Neural Garment
Representation for Shape and Style Editing [5S]Learning to Dress 3D People in Generative Clothing
[6]X-Avatar: Expressive Human Avatars

Guidelines:
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16.

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: Our method does not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Details

A.1 Training Details

2D-3D Cross-Space Generative Model. Our 2D-3D Cross-Space generative model was trained on 8 NVIDIA
H800 GPUs. For the multiview generative model branch, we adopt the architecture of PSHuman [25] but retrain
it using flow matching from the open-source pre-trained text-to-image generation model, SD2.1-unclip [43]. We
train the multiview generation branch separately with a batch size of 32 for a total of 30,000 iterations. We adopt
an adaptive learning rate schedule, initializing the learning rate at 1e-4 and decreasing it to 5e-5 after 2,000
steps. For 2D-3D Cross-Space generative model, we initialize the network weights using: the fine-tuned weights
from our multiview generation branch (as described above), a pre-trained image-to-3D model (Trellis [61]).
Additionally, we perform zero-initialization on the output layer of the 2D-3D synchronization attention module.
We train the 2D-3D Cross-Space generative model with a batch size of 32 for a total of 50,000 iterations. We
adopt an adaptive learning rate schedule, initializing the learning rate at 2.5e-5 and decreasing it to 1.25e-5 after
2,000 steps. To enable class-free guidance (CFG) [14]] during inference, we randomly omit the image condition
at a rate of 0.05 during training.

Multiview Guided Decoder. Our Multiview Guided Decoder was trained on 1 NVIDIA H800 GPU. We train
the decoder with a batch size of 4 for a total of 14,000 iterations, using a learning rate of le-4.

The loss design largely adheres to Trellis [61]’s setup. For the GS decoder, the loss includes reconstruction loss
and regularization loss, with regularizations employed for the volume and opacity of the Gaussians to prevent
their degeneration, specifically to avoid them becoming excessively large or transparent. Lrecon is composed of
L1 (L1 loss), Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS). The
full training objective is defined as follows:

[:GS = ['rec(m + Acvol + ['04 (5)

where:
Lrecon = L£1 + 0.2(1 — SSIM) + 0.2 - LPIPS,

1 L K
k
ﬁvol: WZZH827

=1 k=1 (6

LS
Lo=—2> > (1-af),
LK i=1 k=1
where L is the total number of active voxels.For each active voxel, K Gaussians are predicted,s and « are the
scale and opacity of Gaussian, respectively.

For the mesh decoder, we utilize Nvdiftrast [21]] to render the extracted mesh along with its attributes, producing
a foreground mask M, a depth map D, a normal map IN,, directly derived from the mesh, an RGB image C,
and a normal map IN from the predicted normals, a normal map IN front directly derived from the mesh from the
front view, an RGB image C™™ from the front view. The training objective is then defined as follows:

L"M - L"geo + 0~4£color + ['regy (7)

where Lgeo and Leolor are written as:
»Cgeo = Ll(M) + 1OL‘/Huber(D) + [/recon(Nm) + Olﬁrecon(Ng?m) (8)
Lecolor = Erecon(c) + Lrecon (N) + 0-1£recon(cfmm) )

Here, Lrccon is defined identically to Eq. (7). Finally, L., consists of three terms:
L:rcg - Cconsist + ['dev + 0-01£tsdf7 (10)

where Leonsist penalizes the variance of attributes associated with the same voxel vertex, Lqey is a regularization.

A.2 Detailed Network Structure

2D-3D synchronization attention. In the 3D branch, we inserted two 2D-to-3D attention blocks after the 8th
and 16th transformer blocks respectively. Similarly, for the 2D branch, we added two 3D-to-2D attention blocks
following the 3rd CrossAttnDownBlockM V2D and the UpBlock2D modules.

(1)2D-to-3D attention. Each 3D voxel feature u; € R% with coordinates (23, yi, i) is orthographically
projected onto four view normal map planes (front, back, left, right) to obtain corresponding 2D pixel features:

p; = my(u;), v € front, back, left, right (1n

where p? € R% is the projected 2D features, and ,(-) is the orthogonal projection function.
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The 3D voxel feature u; and 2D pixel feature p; are respectively passed through the MLP transformation:
i = MLP,(u;) k! = MLPy(p!) v/ =MLP,(p}) (12)

Using 3D voxel feature as queries and concatenating four 2D pixel features along the sequence dimension as
keys and values, compute the cross-attention:

front back left ight
K; = Concat (kk K )

Vi _ Concat (v?‘om’ Vliazuck7 V;efl7 V;ight) (13)
KT

u; = u; + MLP (Softmax (qle ) Vi)
Vd

Here, u] represents the updated 3D voxel feature.

(2)3D-to-2D attention. Let the input consist of 2D pixel features p; € R% from a color map or a normal map,
with a corresponding 3D voxel space represented by U € R¥*¥ xZXdu_yhere d,, and d., denote the feature
dimensions of 2D pixels and 3D voxels, respectively.

Each 2D pixel feature p; corresponds to a ray in a 3D space. Sampling H 3D voxel features along this ray forms
a 3D voxel feature sequence:

Ui ={ui;}ihy, wiy € R™ (14)
Where u;_; is the 3D voxel feature at the j-th depth position along the projection ray of 2D pixel feature p;. H
is the length of the 3D voxel feature sequence.

The 2D pixel feature p; is mapped to a query vector, while each 3D voxel feature u;,; is mapped to a key and a
value vector:
qi = MLPy(p:) ki; = MLPx(u;;) vi; =MLPy(u; ;) (15)

By concatenating all key vectors and value vectors across the sequence of 3D voxel features, we construct the
complete key and value matrices as:

K; = [k¢,1,k~;,27 e ,ki,H] S RHXd7 VvV, = [Vi,17v7:,27’ .. ,Vi,H} e RHXd (16)

Compute the attention output with the 2D pixel feature q; as the query, and the 3D voxel feature K; and V; as
the key and value:

KT
p; = pi + MLP (Softmax (qi;% ) Vz‘) a7

Here, p; represents the updated 2D pixel feature.
Multiview Guided Decoder (MVGD). The 3d sparse structureViq is first processed by the Structured Latents
generative model, which denoises it into a structured latent z. For multiview color and normal images, we first
upsample the images, then we extract multilevel local patch features using the DINOv2 backbone from layers
l€{4,11,17,23} per image:

F{" = DINOv2,(I'") € RV >V >4, (18)

The features from different layers are concatenated and then processed through a MLP to form the final
representation:

F; = MLP(Concat (F(*, F{"), ', FP)) € RV (19)
Given a voxel position p = (z, y, 2), its projection onto the i-th view yields the corresponding pixel coordinates:
mi(p) = (us,vi), whereu;,v; €0,1,...,V —1. (20)

The corresponding image features are then retrieved via direct indexing:
fi(p) = Fi[us, vi] € R%. @1

The injection feature is constructed by concatenating the structured latent at position p (zp € R%) with
multiview pixel-aligned features obtained from the color and normal maps of 4 views (8 feature vectors in total).
Formally,

Zinj = Concat(zp, f1(p), . . ., fs(p)) € R4*=T8%4, )
This injection feature is then processed by an MLP to refine the structured latent representation:

7, = zp + MLP(zi,;) € R%. (23)

We insert a multiview injection module after each self-attention in the decoder. We apply the same multiview
feature injection mechanism to both the mesh decoder and the GS decoder, resulting in refined mesh and GS
representations.
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Figure 11: Qualitative comparison of SyncHuman with Gaussians-based methods (LHM, IDOL) and
a native 3D model (Hunyuan3D 2.5). SyncHuman achieves visually high-fidelity results.

B More Experiment

B.1 More Results

Comparison with Gaussians-based Methods and Native 3D generative model. To further evaluate the
effectiveness of our method, we conduct a qualitative comparison between SyncHuman and two Gaussians-based
methods (LHM [41]] and IDOL [84])), as well as a more advanced native 3D model, Hunyuan3D 2.5 [79], as
shown in Fig.[TT] All these methods are capable of producing structurally plausible and visually reasonable
results. Since LHM and IDOL are based on Gaussians, they can only produce RGB images through rendering.
For comparison, we render RGB images from the front view. Both LHM and IDOL rely on SMPL, and when
SMPL estimation is inaccurate or fails, the resulting structure is correspondingly erroneous. Furthermore, as
illustrated in Fig.[TT] IDOL and LHM still exhibit limited fidelity. Hunyuan3D 2.5, trained on a large-scale
dataset, is a native 3D model that can also produce reasonable human structures with details. However, as
observed in Fig. [[T] Hunyuan3D 2.5 produces human meshes with less fidelity.
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Figure 12: After alignment using 2D-3D attention, the multi-view projections of the two branches
can almost completely overlap.

Input Ours Without 2D-3D attention

Figure 13: Comparison of the quality of intermediate multi-view generation with and without 2D-3D
attention.

B.2 Ablation of the quality of intermediate multi-view generation and 3D structure
generation

We additionally report the quality of intermediate multi-view generation and 3D structure generation on a small
human scan subset. IOU of the 3D structure generation: 0.5907 (with 2D-3D synchronization attention) vs.
0.4813(without 2D-3D synchronization attention). Color and normal image quality improvements by 3D-2D
attention:

Table 4: Comparison of different methods.

Method PSNRT SSIM{T LPIPS|
w/o att (color) 23.328 0.877 0.078
ours (color) 24.027  0.894 0.070

w/o att (normal) 22.851  0.866 0.097
ours (normal) 23.439  0.882 0.087

Because generating 3D structures or multiview images from single-view inputs has ambiguity, the generation
results are not exactly the same as the ground-truth. However, our 2D-3D attention could produce results
more similar to GT. This demonstrates that our 2D-3D synchronization attention could benefit both branches to
improve the multiview generation quality and 3D structure quality. As in Fig. [I2] after alignment using 2D-3D
attention, the multi-view projections of the two branches can almost completely overlap. And as in Fig.[T3] when
with 2D-3D attention multiview images have a more reasonable human body structure.
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Figure 14: Visualization of the unconditional generation task.

Figure 15: In some cases, the decoded mesh may contain some holes on the surface.

B.3 Inference time.
On a single H800, the inference time is as follows: ours 38.57s vs Trellis 15.68s vs PSHuman 52.98s Our method

is faster than PSHuman as it directly decodes a 3D shape without requiring additional differentiable rendering
optimization. The slower speed compared to Trellis is due to our use of the 2D multi-view generation.

B.4 Unconditional Generation.
We tested our model on the unconditional generation task as in Fig.[T4] The generation quality is worse than the

conditional generation from a single-view image.

C discussion

C.1 Limitations about containing holes in the generation

Our method is based on Trellis [61]], which uses FlexiCube [48] in the trellis mesh decoder branch does not put a
water-tight constraint on the surfaces. Thus, holes may appear on the surface in some cases, as shown in Fig.[T3]
A possible way to make the generated meshes water-tight is to adopt another SDF fitting on the generated mesh.
Alternatively, we may adopt other 3D native generative models using SDFs as targets, like Hunyuan3D or
TripoSG [27], to avoid this problem. We leave this for future work.
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C.2 Differences from SyncDreamer.

Our method fundamentally differs from SyncDreamer in the following two aspects. First, the synchronization
subjects are totally different. SyncDreamer synchronizes the generation of multiview 2D images, whereas our
method synchronizes the 2D generative model and the 3D native generative model. Our method demonstrates that
simultaneously generating multiview images and 3D representations benefits each other and greatly improves
the 3D generation quality. We inject information in both directions, 2D to 3D and 3D to 2D. Second, the
functionality and design of the volume in our method are fundamentally different from those in SyncDreamer.
SyncDreamer constructs a feature volume to share information among different views. In contrast, in our method,
the volume is a meaningful 3D representation generated from noise.

C.3 Ethics Statement

The objective of SyncHuman is to equip users with a powerful tool for creating realistic clothed 3D human
models. By enabling 3D human generation from a single image, our method supports diverse ethnicities
and populations, promoting equitable cultural representation. Our model was trained on the public datasets
THuman2.1 [70]], CustomHumans [[12]], THuman3.0 [51]], and 2K2K [10], and tested on X-Humans [47] and
CAPE [32]. However, there is a potential risk that these generated models could be misused to deceive viewers
(e.g., adult content, political manipulation, exploitation of artists via digital replicas.). It is noted that this issue is
not unique to our methodology but prevalent in other human generative methodologies. Therefore, it is absolutely
essential for current and future research in the field of 3D human generative modeling to address and reassess
these considerations consistently.
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