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ABSTRACT

Self-supervised learning has become a central strategy for representation learn-
ing, but the majority of successful architectures assume regularly-sampled inputs
such as images, audios. and videos. In many scientific domains—e.g., astro-
physics, data arrive instead as long, irregular, and multimodal sequences which
existing methods struggle to natively support. We introduce the Diffusion Autoen-
coder with Perceivers (daep), a diffusion autoencoder architecture designed for
such settings. Our method tokenizes heterogeneous measurements, compresses
them with a Perceiver encoder, and reconstructs them with a Perceiver-IO diffu-
sion decoder, enabling scalable learning in diverse data settings. We also adapt
masked autoencoders (MAE) with a Perceiver architecture, establishing a strong
baseline in the same architectural family. Across spectroscopic, photometric, and
multimodal astronomical datasets, daep achieves lower reconstruction error and
produces smoother, more discriminative latent spaces than VAE and perceiver-
MAE baselines, particularly when preserving high-frequency structure is critical
for downstream objectives. These results establish daep as an effective framework
for scientific domains where data arrives as irregular, heterogeneous sequences.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a powerful paradigm for representation learning,
driving major advances in language, vision, and audio domains (Jing & Tian, 2020). These suc-
cesses, however, typically rely on data defined on regular grids—for example, pixels in images or
fixed-rate samples obtained in audio and video.

In many scientific and real-world applications, data instead arrive as long, irregularly sampled se-
quences. Biomedical records contain patient measurements collected at uneven intervals (Krishnan
et al., 2022), financial markets respond to discrete and unpredictable news events, and in astro-
physics, and both photometric and spectroscopic observations in astrophysics are obtained on irreg-
ular grids due to observational constraints. Developing SSL methods that can natively handle such
irregular, multimodal inputs is therefore an important open challenge across domains.

Astronomical surveys provide an especially demanding benchmark for this setting. Large-scale
projects such as SDSS (York et al., 2000), DESI (Abareshi et al., 2022), ATLAS (Tonry et al.,
2018), ZTF (Bellm et al., 2018; Masci et al., 2018; Graham et al., 2019; Dekany et al., 2020), and
YSE (Jones et al., 2021; Aleo et al., 2023) deliver petabyte-scale, irregularly sampled measurements
of time-varying phenomena across multiple modalities (images, light curves, and spectra). These
datasets are widely used in astrophysics (Zhang et al., 2024; Rizhko & Bloom, 2025) and provide a
natural stress-test for scalable SSL architectures on irregular, multimodal data.

Reconstruction-based SSL has proven particularly effective in recent years. Diffusion models
achieve state-of-the-art sampling in the image domain (Ho et al., 2020; Dhariwal & Nichol, 2021),
but their latent spaces can be elusive (Kwon et al., 2022). Diffusion autoencoders (Preechakul et al.,
2022) address this by coupling an encoder with a diffusion decoder, producing both meaningful
features and high-quality reconstructions. However, existing approaches are tailored to regularly-
sampled modalities such as images and do not transfer directly to irregular, long, multimodal se-
quences.
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In this paper we introduce the Diffusion AutoEncoder with Perceiver (daep), a architecture designed
for self-supervised learning of long, irregular, and multimodal sequences. Our proposed architecture
combines three components: (i) a Perceiver encoder that flexibly handles variable-length tokenized
inputs across modalities, (ii) a compact latent bottleneck for representation learning, and (iii) a
Perceiver-IO diffusion decoder that reconstructs the original sequence without assuming a regular
grid. This design allows daep to scale to datasets with millions of heterogeneous data samples, while
producing both high-fidelity reconstructions and semantically-structured latent spaces.

To contextualize our approach, we also develop a masked autoencoder (MAE) baseline using the
same Perceiver backbone, enabling a controlled comparison between masking-based and diffusion-
based objectives in the irregular-sequence regime. Across spectroscopic, photometric, and multi-
modal astronomical datasets, daep achieves comparable or lower reconstruction error and stronger
downstream classification performance than VAE and Perceiver-MAE baselines, with particular im-
provements in reconstructing critical high-frequency data features. While motivated by astrophysi-
cal data, the architecture is domain-agnostic and can be used for representation learning in health-
care, finance, and other areas where irregular multimodal sequences are frequently obtained.

2 BACKGROUND

Diffusion models. Diffusion models are score-based generative models that achieve state-of-the-
art performance in domains such as image and video generation. These models learn a gradual
denoising process that transforms pure noise into data. Generation proceeds by removing Gaussian
noise drawn from the prior N (0, I) into a clean data sample after T denoising steps. Ho et al.
(2020) proposed to learn a noise model ϵθ(xt, t) that predicts the noise added at diffusion time t to
the corrupted data xt. The model is trained by minimizing ||ϵθ(xt, t) − ϵt||, where ϵt is the true
noise added to clean data x0 to produce xt. During generation, the corruption process is inverted
to produce a trajectory xT , xT−1, . . . , x0, typically with large T . Song et al. (2020) introduced a
deterministic variant, the denoising diffusion implicit model (DDIM), which enables generation in
fewer steps using the trained noise prediction model. When conditioning variables z are available,
the noise model can be extended as ϵθ(xt, z, t) and trained with the same loss ||ϵθ(xt, z, t)− ϵt||22.

Diffusion autoencoders. Diffusion autoencoders were originally proposed for the image domain by
Preechakul et al. (2022). They encode data and reconstruct it using a conditional diffusion model.
Because the encoding guides every denoising step, diffusion autoencoders capture fine-grained detail
more effectively than, for example, variational autoencoders (Kingma & Welling, 2013). However,
the original design relied on U-Nets (Preechakul et al., 2022; Dhariwal & Nichol, 2021), which are
better suited to regular modalities such as images. Formally, the model encodes tokenized data into
a latent representation z = Encθ(x), and a conditional score model ϵθ(xt, z, t) decodes data via a
diffusion process. Training minimizes the score-matching loss ||ϵθ(xt,Encθ(x), t)− ϵt||22.

Perceiver. Perceiver and Perceiver-IO (Jaegle et al., 2021b;a) provide a general framework to (1)
encode irregularly sampled sequences into a latent representation and (2) query outputs from this
latent space. This makes them a natural fit for integration with diffusion transformers (Dhariwal &
Nichol, 2021), enabling scalable representation learning with diffusion autoencoders.

Masked autoencoders. Masked autoencoders (MAEs) (He et al., 2022) are another approach to
representation learning with an autoencoding loss. Instead of reconstructing the full data from the
latent alone, MAEs mask a subset of the input and decode conditioned on both the latent repre-
sentation and the unmasked portion. Formally, the data are split into two parts: a masked portion
xm and an unmasked portion xu. The latent representation is obtained by encoding the unmasked
portion, z = Encθ(xu), and the decoder learns a function Decθ(xu, z) by minimizing the masked
reconstruction loss ||xm − Decθ(xu,Encθ(xu))||22. This model is not a full decoder as in daep since
it needs access to the portions of the measurements we would like to reconstruct rather than having
only access to e.g., positional information.

Related work. Autoencoding and dimensionality reduction have a long history in representation
learning. Early models that remain widely used include variational autoencoders (VAEs; Kingma &
Welling, 2013) and their variants, such as hierarchical VAEs (Vahdat & Kautz, 2020) and Vector-
Quantized VAEs (Van Den Oord et al., 2017; Razavi et al., 2019). These models are still common
in physics applications, though they often suffer from posterior collapse (Van Den Oord et al., 2017;
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Higgins et al., 2017) and are generally less expressive than GANs (Goodfellow et al., 2020) or
diffusion models (e.g., DDPM; Ho et al., 2020).

Researchers have explored combining VAEs with diffusion models to improve generative quality,
for example by learning a diffusion prior (Wehenkel & Louppe, 2021) or training diffusion models
on VAE latent spaces (Kwon et al., 2022; Yan et al., 2021). Beyond VAEs, masked autoencoders
(MAEs; He et al., 2022) have recently gained attention as efficient learners for images and videos,
but primarily for regularly sampled modalities. MAEs reconstruct masked regions from unmasked
context, a strategy well suited to modalities with strong local structure such as images or audio (and
diffusion models can themselves be interpreted as a form of MAE; Wei et al. 2023); this strategy
is less effective for data with long-range dependencies, particularly where data is sparse. Despite
their impressive performance in image and audio domains, these methods also struggle to encode
high-frequency structure in irregularly-sampled sequences with large number of tokens.

3 DIFFUSION AND MASKED AUTOENCODER WITH PERCEIVER

In this section, we introduce our diffusion autoencoder with perceiver (daep1 ) and the correspond-
ing masked autoencoder. A unimodal daep has three components: a tokenizer, an encoder, and a
diffusion decoder. The corresponding masked autoencoder has a tokenizer, an encoder, and a direct
decoder.

Tokenizers. We represent raw data as a sequence of tokens in the model dimension. Data are treated
as a collection of measurements at specific locations with accompanying metadata. Formally, we
define (v, s,m), where v denotes measurement values (e.g., the flux of an astrophysical source),
s provides positional information (e.g., wavelength, time, or photometric filter), and m encodes
observational metadata (e.g., which telescope was used, observation time of spectra). We adapt the
perceiver strategy (Jaegle et al., 2021b) by linearly projecting v, using fixed sinusoidal embeddings
followed by a small MLP for continuous parts of s (e.g., time), inspired by Peebles & Xie (2023);
and categorical embeddings for discrete parts (e.g., photometric filters). We concatenate value and
positional embeddings and project them to the model dimension. Metadata are represented as extra
tokens and appended to the sequence.

Values Positions Meta info

Value embedding

Linear projection Sinusoidal-MLP Sinusoidal-MLP/Class embeddings

Positional embedding Meta embedding
Concat-
project 

Value-positional tokens Meta info tokens

Concat in sequence

Tokenized measurements

Figure 1: Schematic of tokenizers for general irregularly measured sequences.

Unimodal encoders for both diffusion and masked decoders. We use perceiver encoders (Jaegle
et al., 2021b) to map token sequences into compact bottleneck representations, denoted Encθ. Input
tokens act as Keys and Values in cross-attention, while bottleneck representations serve as Queries.
Self-attention is applied only among bottleneck sequences. We repeat these perceiver blocks several
times, optionally sharing weights. This design handles variable-length sequences with linear cost
in sequence length, making it efficient for processing long and irregular data. Finally, we project
bottleneck sequences from the model dimension to a fixed bottleneck dimension. We illustrate the
encoder in fig. 2. Since perceivers do not require fixed-length input, they can process both masked
inputs for MAE training and full data for daep training.

Perceiver-IO–based decoder. Our diffusion decoder builds on diffusion transformers (Peebles &
Xie, 2023), particularly cross-attention conditioning. Diffusion time is encoded with fixed sinu-
soidal embeddings passed through an MLP, as in Peebles & Xie (2023), and concatenated with the
conditioning representation for the score model. The score model ϵθ(xt, z, t), which predicts added
noise, is a perceiver-IO: noisy data are tokenized, concatenated with conditioning tokens, and used
as Keys and Values in cross-attention. A latent sequence serves as Queries with self-attention, then

1Code available here.
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acts as Keys and Values in a second cross-attention stage with positional information as Queries. We
repeat these blocks, optionally sharing weights. The schematic is shown in fig. 2. While Jaegle et al.
(2021a) recommend latent lengths of 128–512, this may exceed the input sequence length in some
tasks. In such cases, we use a single-stage perceiver decoder without a latent sequence, directly
connecting noisy tokens to noise prediction through cross-attention.

Because the perceiver-IO architecture is agnostic to both input and query length, the same decoder
can be used for the masked autoencoder task as Decθ(xumsk, z). In this case, we input the tokenized
full data sequence with masked locations replaced by a learnable mask token, concatenate with
the conditioning z (but no diffusion time t), and query using positional information from masked
locations only.

Tokens Initial Bottleneck

Cross 
attention

K
V

Q

Self attention

N

Perceiver 
Encoder Projection

Data

Encoding

Tokens Initial latent seq

Cross 
attention

K
V

Q

Self attention

N

Perceiver-IO
Score 

Noisy data Conditioning & time

condition tokens

Latent seq

K
V

Cross 
attention

Query

Query tokens

Q

Projection

Noise prediction

Figure 2: Schematic of the perceiver encoder and perceiver-IO score/decoder model used in daep
and mae.

Training and sampling for daep. We train with the score-matching loss ||ϵθ(xt,Encθ(x0), t) −
ϵt||22 from DDPM (Ho et al., 2020), using 1,000 denoising steps. At inference time, we adopt
deterministic DDIM (Song et al., 2020) for faster sampling with 200 steps. Similar to Preechakul
et al. (2022), our model is not inherently generative, since it requires the bottleneck representation of
the input data for conditioned decoding. However, following Preechakul et al. (2022) and Wehenkel
& Louppe (2021), we can train another DDIM to sample from the bottleneck distribution, enabling
prior generation.

Training the masked autoencoder. We train with a masked reconstruction loss ||xmsk −
Decθ(xumsk,Encθ(xumsk))||22. In experiments, we train two variants with different masking ratios
of the input: mae-75% masks 75% of measurement values, and mae-30% masks 30% of measure-
ment values during training. For reconstruction tasks, we provide 10% of the tokens as unmasked
to ensure a relatively fairer comparison with daep and VAEs that does not have access to raw mea-
surements.

VAE baselines. For benchmarking, we train a β-VAE (β = 0.1) with the same perceiver encoder
and decoder as both daep and mae. The benchmark models are trained with a weighted sum of the
KL-divergence and the L2 reconstruction loss.

4 UNIMODAL EXPERIMENTS

4.1 HIGH-RESOLUTION SPECTRA OF VARIABLE STARS.

Data source. We used data from v2.0 DR9 of the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST; Cui et al., 2012), specifically the dataset consolidated by Rizhko & Bloom
(2025). The dataset contains spectra of variable stars with an average of ∼2,500 flux measurements,
and a maximum of ∼4,000 per star. In total, we use 17,063 spectra for training and 2,225 for testing.
Full architectural details are provided in appendix A.2.

Reconstruction. In this task, we let the model reconstruct the observed data. For MAE models,
we encode the full observed data and provide 10% of unmasked tokens during decoding. We show
two enlarged test examples in fig. 3, with additional examples in fig. 12. Quantifying residual
distributions as a function of wavelength is non-trivial because spectra are not aligned on a uniform
grid. Instead, we plot all test residuals in fig. 4, with summary metrics in table 1. Both daep and
MAE with perceivers achieve superior reconstruction than the baseline β-VAE, with daep showing
fewer residuals in lower-wavelength regions and capturing finer spectral features. Interestingly, for
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these long sequences, VAEs—even with small β values—tend to reproduce only the low-frequency
stellar continuum, while daep and mae recover higher-frequency structure in the data.

Downstream classification task. We classify variable stars into ten classes using linear probing on
30% of the test set. For MAE, we unmask all measurements during probing. Accuracy and F1 scores
are reported in table 1. Both daep and MAE outperform VAE, with daep achieving the highest F1

score, indicating stronger representation learning.
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Figure 3: Two example reconstructions of variable star spectra. daep captures finer spectroscopic
features, while the VAE mainly reproduces the continuum, likely due to posterior collapse. Both
daep and MAE successfully capture small-scale spectral features.
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Figure 4: Residuals for test spectra in the LAMOST dataset. Both daep and MAE show smaller
residuals than VAE. daep also preserves higher-resolution structure, with fewer residual spikes (e.g.,
near 7000 Å) compared to MAE. The red line marks 0 residual while the orange line marks a residual
of ±0.1.

Method Abs. reconstruction error ↓ Linear probing Accu. ↑ Linear probing F1 ↑
daep 0.038 (0.034) 0.57 (0.003) 0.25 (0.003)
VAE 0.076 (0.075) 0.54 (0.002) 0.24 (0.004)
mae-75% 0.036 (0.034) 0.55 (0.002) 0.23 (0.002)
mae-30% 0.036 (0.029) 0.56 (0.002) 0.23 (0.003)

Table 1: Reconstruction and downstream linear probing metrics on LAMOST spectra. Best-
performing models are boldfaced; underlined results indicate models whose 1,std interval overlaps
with the best mean.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 LOW-RESOLUTION SPECTRA OF SUPERNOVAE.

Data source. Next, we use data from the Zwicky Transient Facility Bright Transient Survey (ZTF-
BTS; Bellm et al., 2018). The spectra were obtained from multiple different facilities and corrected
for redshift, resulting in irregular grids in measurement position (wavelength). We encoded the
spectra into four latent tokens of dimension four.

Reconstruction. As before, we let the model reconstruct the observed data. For MAE-based mod-
els, we encode the full observed data and provide 10% of unmasked tokens during decoding. We
provide two test examples in fig. 5, with additional examples in fig. 14. The population-level recon-
struction error is visualized in fig. 6. For this task, daep produces smaller residuals than both VAE
and MAE models across the full wavelength range, consistent with the metrics in table 2. This may
be due to the diffusion decoder’s ability to better handle noise and data artifacts, which contaminate
the low-resolution ZTF spectra more severely than the LAMOST spectra.
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Figure 5: Reconstruction of SEDM spectra for ZTF supernovae from four latent tokens of dimension
four using daep and baseline models.
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Figure 6: Residuals for test spectra from the ZTF BTS sample. daep achieves consistently lower
reconstruction residuals across the considered wavelength range compared to the VAE and MAE
baselines. Red line marked 0 residual while orange line marked at ±0.1.

Downstream classification task. Next, we perform linear probing on a three-way classification
task to distinguish type Ia, type Ib/c, and other supernovae. For MAE, we unmask all measurements
during probing. Results are reported in table 2. daep achieves both the highest classification accuracy
and the highest F1 score.

4.3 PHOTOMETRY OF SUPERNOVAE.

Data source. We used photometry from ZTF BTS (Bellm et al., 2018). Supernova flux was mea-
sured in two photometric filters or “bands” — green (g) and red (r) — along with spectra, all sampled
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Method Abs. reconstruction error ↓ Linear probing Accu. ↑ Linear probing F1 ↑
daep 0.040 (0.028) 0.82 (0.009) 0.45 (0.020)
VAE 0.070 (0.047) 0.81 (0.002) 0.40 (0.009)
mae-75% 0.047 (0.026) 0.79 (0.002) 0.34 (0.010)
mae-30% 0.066 (0.032) 0.79 (0.001) 0.30 (0.003)

Table 2: Reconstruction and downstream classification metrics for ZTF BTS spectra. Reconstruc-
tion metrics are averaged over events; classification metrics are averaged over 10 probe/evaluation
splits. Best models are boldfaced; underlined results overlap with the best mean within 1 standard
deviation.

irregularly in time. We encoded this photometry (collectively denoted the supernova “light curve”)
into a two-token sequence of dimension two.

Reconstruction. In this task, we let the model reconstruct the observed data. For MAE-based
models, we again provide 10% unmasked tokens during decoding. Example reconstructions are
shown in fig. 7, with more in fig. 16. Residuals are plotted in fig. 8. daep achieves more accurate
reconstructions than VAE, as also reflected in table 3. Interestingly, daep tends to overestimate
brightness before peak (< 0 days), an effect not observed in other models, but still achieves the
highest-fidelity reconstruction.
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Figure 7: Light curve reconstruction from two latent tokens of dimension two using daep and base-
lines. (App. mag. stand for apparent magnitude).
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Figure 8: Residuals for test light curves from ZTF photometry. daep achieves smaller residuals
overall than both VAE and MAE, but systematically overestimates the brightness before peak light.
Red line marked 0 residual while orange line marked at ±0.1.

Downstream classification. We perform linear probing on a three-class task to classify supernovae
as type Ia, type Ib/c, or other. For MAE, we use full measurements during encoding; other models
use the latent. Results are shown in table 3. In this task, MAE achieves the best performance, likely
because it better encodes general trends, while photometry contains fewer high-frequency features
for daep to capture.
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Method Abs. reconstruction error ↓ Linear probing Accu. ↑ Linear probing F1 ↑
daep 0.078 (0.038) 0.82 (0.023) 0.41 (0.061)
VAE 0.11 (0.064) 0.77 (0.040) 0.41 (0.052)
mae-75% 0.10 (0.083) 0.88 (0.014) 0.55 (0.024)
mae-30% 0.091 (0.066) 0.89 (0.003) 0.63 (0.044)

Table 3: Reconstruction and downstream classification metrics for ZTFBTS photometry. Re-
construction metrics are averaged over events; classification metrics are averaged over 10
probe/evaluation splits. Best models are boldfaced; underlined results overlap with the best mean
within 1 std.

5 MULTIMODAL WITH MODALITY DROPPING

Modality mixing and training for multimodal data. To learn joint representations from multiple
modalities, we use a late-mixing strategy. The goal is to have a latent representation that sum-
marize all modalities in hand. This cannot directly be done with e.g., mixture of expert VAE or
contrastive learning where each modality has own encoding. Each modality is first encoded with a
perceiver encoder, a learnable modality embedding is then added to all tokens from that modality,
and concatenated along the sequence dimension. A second perceiver encoder then acts as a “mixer”
to produce a single compact bottleneck sequence. Because the perceiver encoder does not require
fixed-length input, we employ modality dropping (Neverova et al., 2015; Liu et al., 2022) during
training so the multimodal model can accommodate missing modalities. All modalities are decoded
using modality-specific diffusion decoders. A schematic of this architecture with two modalities is
shown in fig. 9.
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Figure 9: Late mixing and modality dropping for the multimodal daep model.

Simulated supernova spectra and photometry.

Method MSE -10 days MSE 0 days MSE 10 days MSE 20 days MSE 30 days
mmVAE 0.080 (0.05) 0.0057 (0.005) 0.0053 (0.0051) 0.0064 (0.009) 0.1108 (0.021)
daep 0.16 (0.10) 0.017 (0.015) 0.012 (0.011) 0.011 (0.013) 0.019 (0.027)
contrastive 0.55 (0.43) 0.073 (0.032) 0.10 (0.050) 0.090 (0.048) 0.11 (0.057)

Table 4: Performance of the cross-modality inference task from photometry to spectra on the sim-
ulated dataset. We boldface the best-performing model and underline those whose 1 std interval
contains the best mean. Our method performs similarly to mmVAE and outperforms contrastive
search.

We use simulated type Ia supernova data from the radiative transfer models in Goldstein & Kasen
(2018) and Shen & Gagliano (2025a). The dataset contains full spectral energy distributions for
5,000 simulated events. Shen & Gagliano (2025a) simulated idealized photometry with six filters
from the Vera C. Rubin Observatory LSST (Ivezić et al., 2019). Each light curve is paired with
five spectra taken at −10, 0, 5, 10, 20, and 30 days after peak brightness. We focus on the cross-
modality inference task of reconstructing spectra from photometry. This task is a common one
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Figure 10: Performance of cross-modality inference with daep, mmVAE, and contrastive nearest-
neighbor search. Our method achieves similar reconstruction to mmVAE, and better than contrastive
search. Our method’s CI widths exhibit better coverage than mmVAE at all phases relative to explo-
sion.

in astrophysics: photometry is easy to obtain but spectra require significantly higher integration
times, and spectroscopic datasets are therefore significantly more sparse. Since MAEs cannot handle
completely missing modalities, we benchmark against (1) a mixture-of-experts VAE and (2) the
contrastive-learning-based nearest-neighbor search from Shen & Gagliano (2025a).

We evaluate model performance using residuals, confidence interval (CI) coverage, and CI width as
a function of wavelength and observation time, as shown in fig. 10 and table 4. Our method per-
forms similarly to mmVAE, with slightly better coverage. Both substantially outperform contrastive
search. This is likely because photometry contains less information than spectra, leading to modality
collapse in weaker baselines (a similar conclusion is made by the authors of Zhang et al. 2024 using
a comparable dataset).

6 DISCUSSION

In this work, we have presented an architecture for reconstruction-based SSL on multivariate se-
quential datasets. Although we validate daep primarily on astrophysical datasets, the architecture is
domain-agnostic and directly applicable to other irregular, multimodal domains such as healthcare,
finance, and sensor networks. The combination of perceiver tokenization and diffusion decoding
enables scalable self-supervised learning on data that existing SSL methods cannot readily accom-
modate.

Our comparisons with perceiver-based MAEs reveal that decoder context plays a critical role: MAEs
benefit from access to unmasked tokens, yet daep performs comparably or better without such con-
text, and outperforms MAEs without decoder access. This highlights daep’s ability to compress
high-frequency information into a latent bottleneck. We also find that daep reconstructions more
faithfully capture high-frequency spectral features, essential for enabling downstream tasks reliant
on fine detail (e.g., the identification of short-duration signal anomalies).

While daep is more flexible than existing approaches, diffusion decoding is computationally heavier
than masking, and our experiments focus on astronomy. Future work will broaden the evaluation to
clinical, financial, and multimodal sensor datasets, and explore hybrid objectives that combine diffu-
sion reconstruction with predictive or contrastive tasks (Huang et al., 2023) for better cross modality
alignment, as well as using measurement noise aware losses. Beyond representation learning, daep
may also serve as a generative model for simulating complex irregular multimodal phenomena and
augmenting existing datasets. We plan to explore these extensions in future work.
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REPRODUCIBILITY STATEMENT

We detailed models and training in appendix A to reproduce our results.
We further open our code in https://anonymous.4open.science/r/
Perceiver-diffusion-autoencoder-45B0.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 TOKENIZER DETAILS

Spectra flux Wavelength Phase

Flux embedding

Linear projection Sinusoidal Sinusoidal

Wavelength 
embedding

phase 
embedding

Concat-
project 

Flux/wavelength 
tokens phase token

Concat in sequence

Spectra tokens

Photometry Time Band

Flux embedding

Linear projection Sinusoidal Class embedding

Time embedding Band embedding

Conca-
project 

Photometry 
tokens

Figure 11: Tokenizers used in our empirical studies, from left to right: spectra (flux across wave-
lengths) and light curves (brightness in different colors over time).

A.2 LAMOST MODEL DETAILS

Data preprocessing We enforced a 3-σ quality cut, i.e., only measurements exceeding 3 times the
measurment error are kept for modeling. After all quality cuts, we have 17,063 training stars. We
took arcsinh of flux before modeling and after generation we calculate the original flux. Flux and
wavelength are standardized to a z-score using the mean and standard deviation of the full training
set after calculating arcsinh of flux.

Architectural details Training details We used a learning rate of 2.5× 10−4 for both models and

model bottleneck len bottleneck dim enc. layers dec. layers model dim # heads hidden seq len
daep 4 8 4 4 128 8 256
mae 4 8 4 2 128 8 256
VAE 4 8 4 4 128 8 256

Table 5: Architectural choices used in LAMOST experiments.

trained for 2000 epochs and 200 epochs respectively for daep and VAE, confirming that the training
loss converged for both models. We set β = 0.1 for the VAE.

A.3 ZTF MODEL DETAILS

Light curve preprocessing We first enforced a 3-σ cut on measurements, then used a Gaussian
process to find the peak time of red band as the 0 phase We align time to be relative to the peak time.
We only kept events whose light curves have measurement before and after the peak.

Spectra preprocessing We enforce a 3-σ quality cut for both spectra and light curve, i.e., only
measurements exceeding 3 times the measurement error are kept for modeling. After all cuts, we
have 2,934 events left in the training set. We take the base-10 logarithm of the flux before modeling,
and after generation we calculate the original flux. We also apply a median filter to filter out noise.
Flux and wavelength values are then standardized to a z-score using the mean and standard deviation
of the full training set.

Architectural details

Training details In contrast from our LAMOST experiment, we augment our data by 5 folds, adding
noise to flux measurement and randomly masking measurements due to the small dataset size. We
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model bottleneck len bottleneck dim enc. layers dec. layers model dim # heads
daep 4 4 4 4 128 8
mae 4 4 4 2 128 8
VAE 4 4 4 4 128 8

Table 6: Architectural choices used in our ZTF supernova spectra experiments. We used a single-
stage decoder (skipping the latent sequence) since the sequence is short.

model bottleneck len bottleneck dim enc. layers dec. layers model dim # heads
daep 2 2 4 4 128 4
mae 2 2 4 2 128 4
VAE 2 2 4 4 128 4

Table 7: Architectural choices used in ZTF light curve experiments. We used a single-stage decoder
(skipping the latent sequence) since the sequence is short.

used same learning rate of 2.5× 10−4 for both models and trained for 2000 epochs and 200 epochs
respectively for daep and VAE, confirming that the training loss converged for both models. We set
β = 0.1 for the VAE.

A.4 MULTIMODAL SPECTRA AND PHOTOMETRY

Data preprocessing. We did not perform further processing beyond those described in Shen &
Gagliano (2025b).

Architectural details We have the first stage encoder for both light curves and spectra to have a
model dimension of 256, 4 layers, 4 heads, and 64 tokens after encoding. The modality mixer has
4 layers and 4 heads and model dimension 256, and during encoding we allow the concatenated
sequence to attend to itself. We encode to a bottleneck sequence of 4 tokens of dimension 4 each.

Training details. In each batch, we randomly dropped each data modality with probability 0.2,
making sure that at least one modality is retained. We trained with a learning rate 2.5 × 10−4 and
for 2000 epochs, confirming convergence of the loss.
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B FURTHER EXPERIMENTAL RESULTS

B.1 LAMOST SPECTRA

In fig. 12, we show additional spectra reconstructions using daep and VAE baselines. Our method
consistently captures higher-frequency information details compared to the VAE baseline.
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Figure 12: Reconstructions of additional LAMOST variable star spectra. Our method (red) captures
more high-frequency absorption features than the VAE baseline with the same-sized bottleneck rep-
resentation (blue).

In fig. 13, we compare the latent representations of LAMOST spectra (after t-SNE) from daep, mae
and VAE, colored by variable star classification.
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Figure 13: Latent representations of LAMOST spectra from training (upper) and test (lower) sets.
The latent space for daep appears more well-regularized compared to a VAE of comparable dimen-
sionality.
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B.2 ZTF SPECTRA

In fig. 14, we show additional spectroscopic reconstructions for ZTF BTS supernovae. Our method
captures finer details and produces better-covered posteriors than the VAE baseline.

4000 5000 6000 7000 8000

1.5

1.0

0.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
1.0

0.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

1.5

1.0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

0.4

0.2

0.0

0.2

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
3.0

2.5

2.0

lo
g1

0 
flu

x
4000 5000 6000 7000 8000

1.5

1.0

0.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
1.50

1.25

1.00

0.75

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

1.2

1.0

0.8

0.6

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

0.4

0.2

0.0

lo
g1

0 
flu

x
4000 5000 6000 7000

0.5

0.0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

0.25

0.50

0.75

1.00

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
2.0

1.5

1.0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

1.0

0.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

3

2

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
0.8

0.6

0.4

lo
g1

0 
flu

x

3000 4000 5000 6000 7000 80001.0

0.5

0.0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

1

0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
Wavelength (Å)

3.0

2.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000
2.0

1.5

1.0

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

1.0

0.5

0.0

0.5

lo
g1

0 
flu

x

4000 5000 6000 7000 8000

2.5

2.0

lo
g1

0 
flu

x

ground truth daep VAE mae75 mae30

Figure 14: Additional ZTF spectra reconstructions with daep and VAE. Our method captures finer
details and maintains better posterior coverage.

In fig. 15, we compare latent representations of the ZTF spectra (after t-SNE) from daep, mae and
VAE, colored by event type. Interestingly, the daep latent space appears more continuous than either
the MAE or the VAE with β = 0.1.
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Figure 15: Latent representations of ZTF spectra from training (upper) and test (lower). The latent
space for daep appears more well-regularized compared to a VAE of comparable dimensionality.

B.3 ZTF LIGHT CURVES

In fig. 16, we show a series of ZTF light curve reconstructions for daep alongside the VAE and
MAE baselines. Our method performs superior reconstructions compared to the baseline models,
particularly the MAE with 75% of the input data masked.

In fig. 17, we show the light curve latent representations after t-SNE for all three models considered
in this work. As with the ZTF spectra, daep’s latent space appears more continuous than either
MAE/VAE baselines (though type Ib/c supernovae do not appear as well-separated as in the MAE
space, as indicated by the higher mean F1 score from mae30 listed in table 3.).
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Figure 16: Additional examples of ZTF light curve reconstructions.
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Figure 17: Latent representations of ZTF photometry from training (upper) and test (lower). The
latent space for daep appears more well-regularized compared to a VAE of comparable dimension-
ality.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C USE OF LARGE LANGUAGE MODELS (LLM)

We used LLM (ChatGPT) for grammar checks and polishing only.
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