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ABSTRACT

Many domains, like social and document networks, model relationships as graphs
with rich node attributes and large node counts. However, modern graph genera-
tors cater to the discreteness of edge connectivity, at the expense of only allowing
categorical node labels, and are limited to relatively small graphs, like molecules,
due to scalability challenges. To overcome such challenges, we propose MAGiIC,
a framework that enables graph diffusion with mixed-type node attributes and im-
proves scalability even in unattributed graph scenarios. At the core of MAGIC,
a novel mixed-type diffusion joins discrete diffusion for the graph structure with
continuous diffusion for node attribute embeddings in a single model. It enables
the generation of nodes with rich attributes while maintaining the graph struc-
ture quality benefits of discrete diffusion. Alongside it, we propose an invertible
coarsening algorithm and a structure-aware attribute encoder that boost scalability,
reducing diffusion memory and computation costs. We evaluate MAGIC against
baselines combining unattributed graph and tabular generation on three datasets
with rich node attributes. Our solution is on average 12.9x better at capturing
attribute—structure interaction and 25.2% better at downstream machine learning
tasks. Concurrently, we maintain competitive synthesis quality for simple graphs
with single categorical node labels. Moreover, MAGiC'’s coarsening (and attribute
encoder) consistently reduces inference time by 2.5 for simple and rich graphs.

1 INTRODUCTION

Graphs are essential in modeling relationships between entities, like social users (Rozemberczki &
Sarkar, [2021)), hyperlinked documents (Hu et al., 2020), or financial transactions (Altman, 2021},
in many data-intensive applications. Alongside structural relationships, nodes and edges often store
additional information as attributes, increasing the complexity and power of graph representations.
Figure [I] shows an example graph with rich node attributes, where nodes have multiple categorical
and continuous attributes. Crucially, the graph’s node attributes and structural connectivity depend
on each other. For instance, users from the same ‘“Region” attribute are more likely to be connected.

State-of-the-art graph generators employ diffusion models for maximum synthesis quality (Cao
et al.| [2024). In images, pixels model inherently continuous color scales, making them a good fit for
continuous diffusion models (Ho et al.| 2020). However, graph structures are discrete (edges exist
or do not) and sparse (most possible node pairs are not connected), requiring a different approach.
Discrete diffusion models (Vignac et al.,|2023}|Chen et al.,[2023}; Qin et al.,2024), emerge as a better
option to preserve key global graph structural properties. However, discrete noising limits the type of
node attributes to categorical only. As such, they focus on use-cases like molecular-generation where
nodes have strictly categorical, i.e., discrete, labels. Moreover, diffusion graph models are generally
expensive to scale regarding computation and memory, as they work directly in the adjacency matrix
space, scaling quadratically with node count. State-of-the-art attributed models (Vignac et al., 2023}
Jo et al., [2024])) limit their evaluation to graphs with under two hundred nodes. Existing work on re-
ducing memory usage comes at the cost of extra processing time or quality drop, and only considers
nodes with no attributes or discrete labels (Bergmeister et al.,2024; Kong et al., 2023).

We propose MAGIC, the first Mixed-type Attributed Graph Diffusion model with Coarsening for
generating graphs with rich node attributes at scale via lower computation and memory costs. To
jointly model rich node attributes, represented as continuous embeddings, and the discrete graph
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Figure 1: Social network example: multi-attributed nodes are users; edges are friendship relations.
Users mainly connect with others from the same “Region” (shown as highlighted attribute).

structure, MAGIC harnesses mixed-type diffusion, combining continuous and discrete diffusion pro-
cesses, for nodes and edges, respectively. To improve scalability, MAGIiC consists of a novel in-
vertible coarsening technique that compresses the graph structure into a smaller attributed graph
with reduced memory footprint and lower computational cost, allowing lossless reconstruction. Fi-
nally, to efficiently handle high-dimensional node attributes, MAGiC encodes them into smaller
latent-space embeddings via a structure-aware variational autoencoder (sVAE). To avoid potential
negative biases related to the input order of nodes or edges, we prove the permutation invariance of
all MAGiC’s components.

We evaluate MAGIC against joint graph and tabular diffusion models on four groups of metrics
targeting graph structure, attribute quality, inter-dependency between structure and attributes, and
downstream task performance. MAGIC outperforms the baselines in all metric groups, capturing
on average attribute-structure interaction 12.9x better and improving the accuracy of downstream
machine learning tasks by an average of 25.2%. It also reduces memory consumption and accelerates
synthesis by 2.5x compared to the baselines, even in unattributed settings.

In summary, our contributions are as follows:

* A novel mixed-type graph diffusion model that jointly optimizes the synthesis of discrete
graph structure and continuous node attribute embeddings.

* An invertible coarsening scheme that, together with a structure-aware attribute encoder,
reduces memory and computational costs of handling graph representations.

* Proofs for permutation symmetry properties of MAGiC, which ensure learning and synthe-
sis are independent of node and edge ordering.

 Evaluation on three datasets with rich node attributes against existing graph diffusion base-
lines augmented with tabular attribute generators.

We provide our anonymized code at: anonymous . 4open.science/r/MAGiC-5615,

2 BACKGROUND AND RELATED WORK

Graph synthesizers span various generative modeling techniques, including variational autoen-
coders (VAEs), generative adversarial networks (GANs), and autoregressive or diffusion models.
Approaches leveraging VAEs, such as GraphVAE (Simonovsky & Komodakis), 2018)), struggle to
harness the latent space for graphs with more than a couple of dozen nodes. Earlier autoregressive
models, like GraphRNN (You et al.|, 2018)), iteratively synthesize arbitrarily large graphs, but their
reliance on node order negatively affects output quality. GAN formulations, like SPECTRE (Mar-
tinkus et al., [2022), cannot match the quality of diffusion-backed models, and an inherently greater
difficulty in training a discriminator/generator pair reduces their applicability. Graphs often exhibit
hierarchical properties, which some models explicitly exploit within their modeling techniques. For
instance, HiGen (Karami, |2024)) and HGGT (Jang et al., 2024) are transformer-based models that de-
compose the adjacency matrix based on clusters of connected nodes or recursive splits. To maximize
generation quality, we formulate MAGIC as a diffusion model.

Diffusion models Ho et al.|(2020) have recently been at the forefront of high-quality synthetic data
generation for many modalities, including graphs (Zhu et al., 2022)). For graph diffusion models,
the noise type is an important differentiator, which can be continuous (Jo et al., [2022), as for most
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other modalities (Fuest et al., |2024), or discrete (Chen et al.| 2023 [Haefeli et al.| [2022). The latter
matches the discrete nature of graph connectivity, better modeling properties like sparsity. [Shi et al.
(2025), One of the few other mixed-type formulations, models numerical and categorical tabular
data with continuous and discrete diffusion, respectively. MAGIC adapts mixed-type diffusion for
generic graph generation.

Attributed graphs require incorporating node/edge attribute generation for synthetic graphs, in-
creasing the problem complexity. Hence, such generators are limited to smaller graphs, even if
they only integrate single-label nodes or edges. DiGress (Vignac et al., [2023) proposes a dis-
crete denoising diffusion approach that predicts individual nodes and edges to generate graphs at
scales up to two hundred nodes. Alternatives focused on scalability are also limited to categorical
node labels. GraphMaker (Li et al., [2024)) investigates discrete diffusion on larger graph structures.
GraphARM (Kong et al. |2023)) mixes discrete diffusion with autoregressive generation to improve
sampling time, but the latter introduces an inherent bias related to node ordering. Jo et al.| (2024)
applies diffusion based on a mixture of bridge processes conditioned on the training samples. Its
architecture allows synthesizing low-dimensionality discrete and continuous node attributes, but
its overall generation quality is lower than recent discrete diffusion models (Qin et al.,|[2024). With
MAGIC, we allow generating graphs with rich node attributes and improve scaling for larger graphs.

Coarsening is a technique for reducing graph dimensionality while preserving key properties. Many
versions consist of fixed algorithms (Purohit et al., [2014), but newer works explore variants that
are learnable through neural networks (Cai et al.l [2021). All such methods operate on the graph
structure, for example, striving to preserve similar spectral properties (Jin et al., [2020), and some
additionally incorporate node attributes (Kumar et al.,[2023)). Coarsening is mainly used for analysis
tasks on graphs, like prediction, meaning that only a unidirectional mapping is necessary. MAGIiC is
the first to employ coarsening to create an encoding that remains a valid graph with a corresponding
lossless inverse coarsening.

3 MAGIC

At the heart of MAGIC is a mixed-type diffusion model, Q) in Figure that captures node attributes
and structural connectivity in a unified manner. The invertible coarsening O and structure-aware
attribute encoder Q) act as preprocessing steps boosting the efficiency of diffusion. By simultane-
ously optimizing the denoising and embedding processes over both modalities, MAGIC accurately
captures critical dependencies between node features and graph connectivity, essential for generating
realistic attributed graphs. Formally, we tackle the generation of undirected graphs with rich node at-
tributes G” = (V, M) where V € R" %" are the n’ node attributes encoded as embeddings of size
r,and M € {0, 1}”/X”' is the adjacency matrix. For training, first, our structure-aware attribute
encoder reduces the size of node attributes, transforming G” into G* = (Z, M) with Z € R"’XS,
and s < r. Then, the invertible coarsening maps G* to G = (X, E) where X € R"*/ are the at-
tributes of n < n’ nodes represented via embeddings of size f = 2r, and E € £"*" is an adjacency
matrix of edges of possible types £ (including no edge). Finally, the mixed-type diffusion learns to
synthesize compact graphs G. During sampling, MAGIC generates G, uncoarsens it, and decodes
it back to the initial G”. Figure 2] shows the integration of MAGIC’s three key components:

 Mixed-type Diffusion (D — a joint continuous-discrete denoising process over node em-
beddings and graph structure.

* Invertible Coarsening (2) — a lossless bidirectional compression of the graph into a smaller
one for efficient diffusion.

* Structure-Aware Attribute Encoder (3 — a variational encoder for node attributes that
complement coarsening and harnesses node neighbor information.

These components make MAGiIC suitable for generating graphs with richer node attribute sets com-
pared to previous diffusion-based generators, while improving scalability. While we focus on in-
tegration with our mixed-type diffusion model, coarsening and sVAE are usable with any attributed
graph generator. In Section we first discuss the details of mixed-type diffusion, as the main
component of our framework. We then describe the invertible coarsening in Section [3.2] followed
by the structure-aware attribute encoder in Section Finally, in Section we cover theoret-
ical results regarding symmetry properties of the different components, and their interaction. We
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Figure 2: MAGiC overview: (D attribute encoder, Q) coarsening, 3 mixed-type diffusion

summarize all notation from the manuscript in Appendix [A] and include additional implementation
notes in Appendix [B.T]

3.1 MIXED-TYPE GRAPH DIFFUSION

We describe a mixed-type diffusion process that synthesizes graphs G = (X, E) with nodes
X € R"*/, and edges E € £"*™. This formulation addresses a core modeling challenge: the dis-
crete graph structure and continuous embeddings of rich node attributes each benefit from a noising
approach tailored to their own modalities. Naively applying Gaussian noise to discrete edge con-
nectivity compromises graph structure generation quality. Meanwhile, discrete diffusion is naturally
unfit for continuous embeddings. Our solution unifies continuous diffusion for node embeddings
with discrete diffusion for edge types. Optimizing both diffusion steps with a single model allows
for capturing critical attribute-structure interactions and maintains a valid graph representation at
each denoising step. Moreover, it makes training and generation more efficient due to the inherent
parameters sharing, modeling common knowledge between nodes and edges.

Our formulation is a denoising diffusion probabilistic model DDPM (Ho et al.,[2020). A forward
process injects noise into each clean graph G° = (X% E°) over T consecutive time steps, producing
increasingly corrupt versions (G!, ..., GT) approaching a noise distribution. A noisy graph G =
(X!, E!) has X! € R"*/ and E! € [0, 1]"*™*I€l. Et is an expanded noisy adjacency matrix, with
entries e‘;j € [0,1]/¢! encoding probability distributions over edge types between nodes i and j. G°
is equivalent to G, with X° = X and E° a one-hot encoding of E. A neural network ¢g with
parameters 6 learns to approximate the reverse process of denoising G* into G,

Forward Diffusion: The forward noising process is a composition of two independent Markov
chains for node embeddings X! and edge types E!. For node embeddings X, we apply variance-
preserving Gaussian noise at each time step transition t—1 — ¢ in a standard DDPM fashion. Thus,
following Ho et al.| (2020), for a noise schedule oy € (0,1), @; = H:f:l a;, and noise € ~ N'(0, I)
sampled from a standard Gaussian distribution, we have a closed-form transition from X to X;:

(ax(X' X)) =NVa, X, 1-a)]) + (X' =va X' +V1—ae) (1)

For edges E! € [0, 1]"X"X|‘g |, we follow the discrete forward noising variant from [Vignac et al.
(2023). As with nodes, each edge e;; is noised independently. The matrix Q € [0, 1]/¢xI¢l
encodes the transition distribution between edge types as a function of the target noise distribution
mpg (the prior distribution of edge types in training data), and «;. Like node embeddings, we can

sample any E from the initial data E in a closed form via Q' = [['_, Q':

ge(E' | E) =[] (; Q") )

i,j
The joint distribution is thus:
9c(G'| G°) = ¢x(X" | X?) ¢u(E" | E?)

We follow the consensus from existing diffusion works (Yang et al.,[2024)) where the forward process
should be as localized as possible and converge to a simple to model target noise distribution even
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Algorithm 1 Mixed-type Diffusion Train Step _ Algorithm 2 Mixed-type Diffusion Sampling

. _ Input: model ¢g
Input: model ¢y, graph G = (X, E) i 1
t~UL ..., T); e ~N(0, L) : X5~ N(O, 1); Ejj ~ [, jmp

1
1:
2 Xt=a; X+vI—a,e {Equation ()} % forAt = T, ..., 1td0 ,
ww, AL (e @) (Raon ) 2 55 < K ED
4 & pp  ¢g(X', EY) 5. Xl iEquation (&)
5: Leont < ||€ — €3 {Equation (5)} 6: E'! ~ Equation @)
6: Edisc — Zi,j CE(IA)i_’j, Ei,j) {Equation 1@' 7. end for
7: Optimize 6 via Leone + A Laise 8

: Return (X%, E?)

when working with homogeneous data structures. For instance, noise in image generation is applied
independently per pixel, and the noise distribution is a Gaussian. Doing so helps to keep training
efficient, as noise is fast, and ensures the model starts denoising from an easy-to-model distribution.
In our case, keeping the two noise processes independent retains such properties.

Reverse Diffusion and Training Objective: Given a noisy node representation at step ¢ and €
dictating the added noise, the representation at t—1 is (Ho et al., [2020):

o X (-a)e | \/(1 —a) (1-a)
var Vo (1-a)

where z ~ N(0, I) for t > 1 else 0 dictates the partial noise added back to the representation. For

edges, taking Q!’ as the transpose of Q! and edge type e € &, we have (Vignac et al., 2023):

3)

t—1 / 0 At—1
qr(e;; | egjv eij =€) X egj Yo eith

When considering all possible edges and their types £, we obtain a proper probability distribution:

qe(E T E) =[] alel; " el ey =€) pij(e) S
i, e€&
The denoising network ¢y approximates the joint reverse process pp(G'~! | Gt) = pp(XP71 |

G!) pp(E!~1 | G?). Since ¢y accounts for dependencies between nodes and edges, it entangles the
approximated reverse process over the two components. For node embeddings, we optimize:

Leont = Et,XO,e [Hé - 6”3] 5
For edge types, we formulate the problem as multi-class classification with cross-entropy (CE) loss:

Laise = E¢ go Z CE(pij, Ei ;) (6)
,J
The mixed diffusion training objective combines both losses Lixed = Leont + A Ldise Where A > 0

balances the relative importance of the continuous and discrete components. The joint objective and
the shared network architecture capture crucial attribute-structure interactions.

Modelling Setup: Algorithm [I]describes a training step in the model. We noise the input graph G
up to an arbitrary time step ¢. Note that E* should be symmetrized such that Ef. = E’.. Then, given
the noisy graph, the model predicts the noise added to nodes and the probability distribution for each
edge’s type. Finally, the model’s parameters get optimized in accordance with L,yigeq. Algorithm 2]
contains sampling details. We first sample fully noised node attributes G from the Gaussian prior
and a one-hot encoded discrete adjacency matrix from the prior of edge types within training data.
Then, over 7" steps, we use the trained model’s prediction to partially denoise both components until
reaching a new clean synthetic graph from the training distribution.

3.2 INVERTIBLE COARSENING

The computational complexity and memory footprint of diffusion models scale quadratically with
the number of nodes, limiting their applicability to large-scale graph generation. Simultaneously,
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Figure 3: Coarsening overview

node attributes’ computational complexity and memory footprint scale linearly with their size. We
cannot apply current graph coarsening techniques to graph diffusion, as their design is limited to irre-
versible (unidirectional) mapping, preventing reconstruction of the larger initial graph. We improve
the scalability of graph diffusion with an invertible coarsening mechanism that shrinks the input
graph by merging adjacent nodes and storing reconstruction information as expanded node attributes
and additional node types. Reducing the number of nodes at the cost of more features enables fur-
ther compression given by the sVAE (see section [3.3)), creating even more space for computation
and memory costs improvements.

Given a graph G* = (Z, E) with nodes Z € R™ ** and binary adjacency matrix E* € {0,1}" %"
the coarsening function C : G* — G produces a compressed graph G = (X, E) with merged nodes

X € R™*/ and attributed edges £ € N"*", where n ~ "7/, and f = 2s. The inverse function
C~!: G~ G* maps G to G°, up to node permutation. Appendix describes the coarsening
and inverse coarsening steps more formally, along with pseudocode.

Node Merging: The coarsening procedure operates through a greedy node merging algorithm based
on the embedding similarity of neighbor nodes. Figure [3a] visualizes the process. We define a
distance metric D(z;, z;) = ||z — #;|[1 over pairs of node embeddings z; and z; from G°. We
merge neighboring node pairs (z;, z;) in ascending order of D, with each merged node represented
as:

xy, = Concat(z;, z;) € R/ @)
We zero-pad embeddings of unpaired nodes to maintain consistent dimensionality. We show in
Appendix [C] as part of Proposition ] that coarsening is permutation invariant.

Edge Encoding: The critical challenge for our invertible coarsening is preserving the original con-
nectivity information within the compressed representation. Since we merge nodes in pairs, each
coarsened edge e;; from E models the connections among two pairs of original nodes (four nodes
total). Within a pair, the edge between its nodes is implicit. Between two pairs, we encode connec-
tivity as the binary encoding of the four potential edges in a categorical edge attribute e;; € N'°:

3
eij =) br-2" ®)
k=0
where by, € {0, 1} indicates the presence of the k-th edge between nodes (see Figure [3blexample).

Inversion: The inverse coarsening C~' operates by decomposing each merged node x, into its con-
stituent embeddings (z;, z;) and decoding each edge attribute e;; to recover the original connectivity
pattern. Specifically, we know each merged node splits into two connected nodes. We reverse the
binary encoding between pairs of merged nodes to find the connectivity between initial nodes from
different pairs. As such, in Appendix [C|we prove that:

Proposition 1. MAGIiC’s coarsening is invertible, up to node permutation.

Specifically, for graphs with the unique distances property (Definition[T), inverse coarsening is injec-
tive: each permutation 7 over a coarsened G maps to a unique uncoarsened G ;. For an uncoarsened
graph G* without the property, C~1(C(G*)) will still be a permutation 7 of G, albeit not unique.
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3.3 STRUCTURE-AWARE ATTRIBUTE ENCODER

On top of the computational cost reduction given by the graph coarsening procedure, we build a
structure-aware Variational Autoencoder (sVAE) for node attribute compression. sVAE compresses
node embeddings V' € R™ %" into a latent space Z € R™ *$ with s < 7. In contrast to attribute-
only autoencoders, using a graph-specific network architecture allows us to preserve both individual
node characteristics and neighborhood dependencies in the latent representations.

The encoder Encg: (V, M) — (uz, 0%) and decoder Decy: (Z, M) +— V neural networks
learn probabilistic mappings between data and latent space. The tuple (uz, og) gives the mean and
variance of the Gaussian latent distribution. Both the encoder and decoder use graph convolutional
layers (Hamilton et al., 2017)). Doing so allows sVAE to incorporate structure-related information
during encoding and decoding. Appendix [B.3|provides further architectural details.

In standard variational autoencoder fashion (Kingma & Welling} |2014)), the training objective com-
bines reconstruction fidelity with Kullback-Leibler (KL) regularization to ensure that the latent dis-
tribution approximates a standard Gaussian prior:

Lovag = EF=7%V M || Decy (uz, M) — VI[3] + 8- KL [N (uz, diag(oz)) || N (0, T)]

where the hyperparameter S controls regularization strength. sVAE is naturally permutation equiv-
ariant, as it merely reduces the dimensionality of input data.

3.4 SYMMETRY PROPERTIES

Model behavior should be unaffected by the order of nodes and edges within graphs, such that
the model can learn effectively without seeing many permutations of each training graph. MAGiC
achieves this by having a permutation invariant model architecture and loss. As such, all permuta-
tions of an input graph lead to a unique permutation for the corresponding reconstructed graph, and
they have the same loss value. Thus, in Appendix [C] we prove that:

Proposition 2. MAGIC’s end-to-end architecture is permutation invariant for graphs with the
unique distances property (Definition|]).

For it, we first prove the invariance of our reversible coarsening (Propositiond) and the equivariance
of the mixed-type diffusion (Proposition [5). Following an invariant step with an equivariant one,
which matches the input permutation in the output, yields an invariant outcome. We also show that:

Proposition 3. MAGIiC’s mixed diffusion loss is permutation invariant.

As our sVAE loss is a per-node aggregation, it is also naturally invariant. Consequently, both opti-
mization functions used in our end-to-end model obey invariance.

4 EVALUATION

We evaluate MAGIC on six publicly available datasets: three with rich node attributes, one molec-
ular, and two unattributed. Namely, we measure the performance of synthesizing multi-attributed
(Table[T), single-attributed (Table 2, and unattributed (Table[3)) graphs. Evaluation setup details are
in Appendix We additionally highlight qualitative results in Appendix

Baselines: Since MAGIC is the first work investigating graph generation with multiple heteroge-
neous attributes, we propose multiple baselines that combine two popular generators for tabular data
(i.e., node features), the VAE-based TVAE (Xu et al.,|2019) and diffusion-based TabDDPM (Kotel-
nikov et al., [2023), with a modern diffusion graph synthesizer as DiGress (Vignac et al., [2023).
We also include tests with the standalone Mixed Diffusion to assess performance without sSVAE
and coarsening. We include GruM (Jo et al., [2024) alongside DiGress as baselines for experiments
on single-attributed molecular graphs. We add two extra structure-only generators as baselines for
unattributed graph tests: EDGE (Chen et al.,|[2023)) and GraphLE (Bergmeister et al., | 2024)).

Metrics: Alongside sampling time, our main results investigate the graph Structure Quality, node
Attribute Quality, and their interaction. We measure structure quality via Maximum Mean Distance
(MMD) over four metrics: node degree (Deg.), Laplacian spectrum (Spec.), clustering coefficient
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Structure Quality | Attribute Quality T Tgt. Col. Downstr. Sample  Effective
Dataset/Method Deg. Spec. Clus. Orb. Shape Pair Trend MMD | Util. Time | Nodes
DiGress+TVAE 344 039 257 124 .867 913 281 .0 742 160
= DiGress+TabDDPM 317 .036 240 215 907 971 323 .0 741 160
2 Mixed Diffusion 010 .009 .060 .055 .945 957 .002 796 748 160/160
5 MAGiC .049 .038 .176 .056 .866 930 .024 .685 294 94.9/160
MAGIC (Large) 020 .017 .177 .050 .858 940 .009 127 784 155.0/260
DiGress+TVAE 307 .073 280 491 952 793 202 .0 741 160
_ DiGress+TabDDPM  .194 194 263 395  .835 710 .101 .580 742 160
S Mixed Diffusion 005 .007 .196 .077 .821 .823 .002 .642 748 160
@ MAGiC .014 .030 .157 .036 .760 .567 .004 .616 305 94.4/160
MAGiIC (Large) 006 .020 .162 .075 .768 .520 .001 .599 826 153.5/260
DiGress+TVAE 042 .032 >1 413 946 975 .016 777 1272 160
E DiGress+TabDDPM  .039  .032 967 .385 .500 .529 .046 469 1272 160
3 Mixed Diffusion 002 .006 .116 .082 .874 .966 .002 703 1280 160
£ MAGiC 015 .035 .183 .155 .607 752 .009 741 479 94.2/160
=0
O  MAGIC (Large) 010 .025 441 .071 561 .623 .002 706 1277 153.7/260

Table 1: Main results on multi-attributed graphs in terms of graph quality (for structure, attributes,
and their combination), downstream tasks, and sampling time (in seconds).

(Clus.), and four-node orbit counts (Orb.). Node attribute quality treats nodes as tabular rows,
comparing column distributions (Shape) and pairwise correlations (Pair Trend). To assess struc-
ture—attribute interaction, we use Target Column MMD (Tgt. Col. MMD) and downstream node
classification accuracy (Downstr. Util.). For computational and memory costs, we measure sample
time (in seconds) and the number of nodes in diffusion. Finally, for unattributed graphs, we report
sampling time and Structure MMD; for molecular data, we check Valid, Unique, and Novel ratios.

Datasets: We construct experiments for larger graphs with rich node attributes over three public
real-world networks. For smaller, single- and un-attributed settings, we use one molecular and
two synthetic datasets from previous works, respectively. The chosen multi-attributed sources each
contain a single graph with thousands of nodes representing a social (Twitch (Rozemberczki &
Sarkar, |2021)) and Event (Carroll et al.l [2013))) or citation (OGBN-arxiv (Hu et al.| 2020)) network.
To create our multi-graph datasets, we sample 200 subgraphs of 160 or 260 nodes from each of
the three networks, depending on the experiment. The single-attributed dataset is QM9 (Wu et al.,
2017), containing over 100K small molecules with up to 9 nodes each.

4.1 GRAPHS WITH RICH NODE ATTRIBUTES

Table [T compares MAGIC with combinations of state-of-the-art graph and tabular generators. We
also measure the performance of Mixed Diffusion standalone to ablate the joint effect of coarsening
and sVAE. Baselines generate 160-node graphs; for MAGiC only, we also include 260-node results.

The table shows MAGIC and Mixed Diffu-
sion outperforming the baselines on modeling Dataset/Method Utility 1

structure—attribute interactions, with MAGIC Valid Unique Novel
also 'belng 2.5x faster in samphpg. MAG1C DiGress 9819 9667 2558
consistently outperforms the baselines, with an GruM 9969 9690 72415
average of 12.9x for target column MMD and Mixed Diffusion  99.46  96.82  36.10
25.2% for downstream utility. The same pattern —
extends to structure quality metrics. This result
reaffirms that incorporating node attributes into
the diffusion model enhances edge connectivity
modeling. Furthermore, conflicting information
from independent structure and attribute generation can be highly detrimental. As observable in the
downstream utility results, baselines sometimes can not predict any test node data correctly.

QM9

Table 2: Results on molecular graphs (single-
label edges and nodes). We report baseline mea-
surements from Jo et al.| (2024).

Meanwhile, on node attribute metrics, baselines aided by tabular synthesizers deliver performance
comparable to Mixed Diffusion. When strictly measuring the statistical properties of attributes,
all nodes are considered independent data points. Thus, the tabular models can more effectively



Under review as a conference paper at ICLR 2026

focus their learning efforts on a narrower problem without relationships between individual samples.
Nevertheless, Mixed Diffusion fares best under two out of six total experiments and remains second
best in three out of the other four, with small gaps compared to the best baseline. Altogether, Mixed
Diffusion is best at accounting for structure and node features interaction, with MAGIC always being
a close second. MAGIC’s coarsening reduces node counts by > 40% in all cases, leading, together
with sVAE, to =~ 2.5x faster sampling. We fix the model parameters across all methods and batch
sizes to the lowest common denominator across all datasets. However, MAGIC allows higher batch
sizes within the same memory budget to further increase its relative efficiency.

Scalability: In Table [, we additionally demonstrate the scalability of MAGIC on large multi-
attributed graphs of 260 nodes, i.e., Magic (Large). Comparing the results for 260 nodes against
the ones for 160 shows that MAGIC scales well, obtaining similar quality on larger graphs as on the
smaller counterparts. Moreover, its run time on the larger graphs is very similar to that of baselines
in the case of smaller graphs. The coarsening rate remains on par with previous tests at ~ 40%.

4.2 SINGLE-ATTRIBUTED AND UNATTRIBUTED GRAPHS

Single-attributed graphs: We run Mixed Diffusion on a molecular dataset to check the method’s
standalone performance and observe quality in line with the state-of-the-art in Table 2] We do not
run MAGIC, as the size of the molecules is not large enough to justify coarsening use. In QMO9,
Mixed Diffusion achieves performance similar to the state-of-the-art under the ratio of valid and
unique molecules out of the valid ones, with scores > 99% and > 96% respectively. Notably,
MAGIC increases the ratio of novel generated molecules from 25.58% to 36.1%. We attribute this
to the higher diversity in the overall generation process due to the continuous diffusion component
on nodes. Note that the relatively low novelty scores come from QM9 modeling a smaller family of
molecules, many of which are already in the training data.

Unattributed graphs: Finally, in Table [3| we
run MAGIC on unattributed graphs to isolate and  Dataset/Method
assess the impact of the structure coarsening.
Despite a performance drop compared to the best

Structure Quality | Sample
Deg. Clus. Orb. Spec. Time|

DiGress .0007 .0780 .0079 .0098 127

. ! ; = EDGE 0761 3229 7737 0957 1
baselines, MAGIC can model the inherent sta- S GruM 0005 .0353  .0009 .0062 156
tistical properties of different graph types. Un- ~ & GraphLE ~ .0005 0626 0017 .0075 40
like for multi-attributed experiments, given the M.AGIC D032 10 1815 G50t ¥
comparison across different graph diffusion ar- E]‘)Cg]e;s % '(1]‘1"1;3 'gggi 'gggf 6?
chitectures, we set the largest possible batch size 2 Grum 0007 0492 0448 0050 717

w

for each specific instance to time the sampling GraphLE 0119 0517 .0669 .0067 3231
procedure. Under MMD, GruM is the best per- MAGIC 0256 0501 0543 0077 195
forming method, with GraphLE, DiGress, and . .
MAGiC following, while EDGE is last by a wide ~1able 3: Unattributed graph results. Sampling
margin. Time-wise, EDGE is orders of magni- {me is in seconds. For othel'r metrics, we report
tude faster but also has the worst quality out- basehne values from |Bergmeister et al.|(2024) or,
put. Aside from it, MAGIC is the fastest method, in the case of GruM, Jo et al.|(2024).

with a lead that becomes even greater as the average graph size increases from Planar to SBM.
Specifically, compared to the second fastest method, GraphLE, MAGiC goes from being 1.15X to
3.67x faster. In the bigger dataset, our method also decreases its disadvantage in terms of MMD,
performing better than the aforementioned counterpart in two of the four categories. In summary,
MAGIC balances synthesis quality while retaining a significant computational cost reduction.

5 CONCLUSION

We present MAGIC, the first diffusion framework for efficiently synthesizing graphs with rich node
attributes. It features a mixed-type graph diffusion model for attribute and structure generation,
alongside an invertible coarsening and structure-aware attribute encoder for lowering computation
and memory requirements in diffusion. During evaluation, MAGIC captures attribute and edge
interdependencies 12.9x better and improves performance on downstream tasks by 25.2%, while
reducing memory utilization and sampling time by 2.5x compared to baselines. By supporting
arbitrary node attributes and efficient synthesis, MAGIC addresses the issue of privacy-preserving
data-sharing for complex domains like social and document networks.
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ETHICS AND REPRODUCIBILITY STATEMENT

Ethics: Our proposed graph generative model has broad applications in modeling human interac-
tions on social media, professional networks, or social contagion situations; it also allows modeling
molecular structures, relevant for tasks like drug and material science discovery. As a generative
model, our solution can alleviate the need for third parties to tap into confidential or privacy-sensitive
data directly when answering questions about it (e.g., examine the spread of a disease among differ-
ent user groups) or help improve productivity (e.g., propose new drug candidates to investigate).

The manuscript includes input from LLMs for minor rephrasing, grammar, and spelling checks.

Reproducibility: To ensure the reproducibility of our research, we include the code for the proposed
model, configuration files, and datasets in an anonymized repository.
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A  NOTATION SUMMARY

Table 4] summarizes the notation used throughout the manuscript to describe the graph representa-
tions at different stages in the MAGiC framework.

Notation Description

G" = (VeR"*" M e {0,1}"*"")  original graph with rich node attributes
G* = (ZeR"*5, M € {0,1}" %) graph encoded via sVAE (s < )

& set of edge types (including no edge)
G = (X e R/ E e &nxn) coarsened graph n ~ ', f = 2r
T total number of diffusion time steps
G! = (Xt ¢ R"*/ Et € [0,1]"*"*I€l)  graph G with one-hot encoded edges after ¢ noise steps
er; €0,1] I£] edge-type distribution between nodes i and j
e~N(0, I) node noise sample
o node signal rate at time ¢
Qy node cumulative signal rate up to time ¢
Q! € [0, 1]/¢1xI€] edge transition matrix at time ¢
Q! € [0, 1]I¢1xI€] edge cumulative transition matrix up to time ¢
9c/x/E(") forward diffusion process for graphs/nodes/edges
oo() learnt reverse diffusion process
coarsening function
C coarsening function
T; node 7 embedding
Encgy/Decy SVAE encoder/decoder
m permutation of a graph

Table 4: Summary of the main notation used in the main text.

B MODEL DETAILS
Below, we provide details on the coarsening algorithm and learning setup of MAGIC.

B.1 IMPLEMENTATION NOTES

The following describes our procedure for training a model that harnesses mixed-type diffusion as
a backbone, alongside coarsening and structure-aware node attribute encoding via sVAE. Before
training the diffusion model, we pretrain the sVAE used to reduce attribute dimensionality, then
apply the sVAE, followed by the coarsening to the training data in preparation. Thus, the diffusion
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Algorithm 3 Graph Coarsening

Input: G = (Z € R™*5, M € {0,1}"" ")
X+, Mo
for m;; < edges in M sorted by D(z;, z;) do
ifz; € ZNz; € Zthen
X < X U Concat(z;,z;)
77 \ {Zi7 Zj}
else
m«+«<mu mij
end if
end for
for z; € Z sorted by D(z;,0) do
X + X U Concat(z;, 0)
: end for
LR oXIxIX]|
: for m;; < M do
a < ParentID(z;, X), b < ParentID(z;, X)
E.» < Eq + EncodeEdge(m,;;) { Figure [3b]}
: end for
: return X, E

PRDIUN R

— e
A A S N

loss is optimized directly in the reduced embedding space, and the mapping to the original space
only happens when a complete output is required, like during evaluation. In doing so, we avoid
involving the inverse coarsening and sVAE decoder while training the mixed-type diffusion model
S0 as not to increase training costs.

B.2 COARSENING ALGORITHM

Algorithm [3] describes the coarsening steps. We begin by sorting edges based on the distance be-
tween their constituent nodes in non-decreasing order (line 2). Based on the resulting order, we
greedily merge connected node pairs (lines 3—-8). We then create zero-padded pairs with all nodes
that have not been merged (lines 10-11). Finally, with all the pairs in place, we create edges between
all newly created nodes according to Figure [3b|(lines 14—16).

Algorithm [4] provides more details on the decoarsening. We first split each aggregated node repre-
sentation into two nodes (line 3), adding them and their edge to the original graph while skipping
any dummy zero-filled nodes (lines 4-8). Subsequently, we decode the edge type to expand each
edge in the compressed graph to the original graph edges it aggregates, adding them to the new
graph structure (lines 10-14).

B.3 SVAE

Figure [] visualizes the architecture of sVAE for the case of two encoding and decoding layers,
respectively. Each layer takes as input a representation of the node attributes after the previous
step, along with the connectivity information of the graph. As is typical in VAEs, the encoder
Ency estimates the parameters of a prior distribution, which, in our case, are the mean and variance
of a Gaussian. Consequently, the decoder Decy expects a sample drawn from a Gaussian latent
distribution as input. Furthermore, we change between a sigmoid or softmax activation function
for each attribute based on whether it represents a numerical value or part of a one-hot encoded
categorical. If node attributes do not originally encode a tabular data row, we consider each feature
a unique numerical column.

C PROOFS

For an input graph G = (X € R"*/ M € E™*") with n nodes, let the bijection 7 : {0,1,...,n—
1} — {0,1,...,n — 1} be a permutation of G’s nodes. As such, 7! is the inverse permutation
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Algorithm 4 Inverse Graph Coarsening
Input: latent graph G = (X € R"*/ | E € NJ*")

: M« 0,Z<+9

2: for x; in X do

30 (2i,25) «— Xi

4: Z<+—7U {Zi}
5. ifz; # O then

6: Z+—7 U {Zj}
7: Mij =1

8: endif

9: end for
10: for e;; < E do
11:  for (a,b) € DecodeEdge(e; ;) do
12: Mab =1
13:  end for
14: end for
15: return Z, M

Softmaz, if f categorical

Activation(f) = { Sigmoid,  if f numerical

SAGEConv SAGEConv
Layer Layer
A A

Figure 4: sVAE architecture with two encoder and decoder layers each.

obeying 7 1(n(i)) =i Vi€ {0,1,...,n — 1}. Applying 7 to G gives 7.G = (7. X, 7.E) where
(W.X)i = Xﬂfl(i) and (W.M)ij = Mﬂ,—l(z’)ﬂ.—l(j) Vi j € {0, 1,....n— 1}.

Given the distance metric D(x;, ;) from the main text, we define:

Definition 1 (Unique distances property). The unique distances property denotes any graph in which
all neighboring node pairs (z;, ;) have:

(i) unique distances as defined by D(x;, x;), allowing unique inter-pair ordering;
(ii) D(z;,0) # D(x;,0), allowing unique intra-pair ordering.

A function mapping between two graphs is permutation equivariant if its output permutes in ac-
cordance with its input. Contrastingly, it is permutation invariant if its output remains unchanged
regardless of how the input node ordering.

Proposition 4. The composition of MAGiC’s sVAE encoder and coarsening is permutation invariant
for graphs with the unique distances property.

Proof Proposition 4] The composition of MAGIiC’s sVAE encoder and coarsening is permutation
invariant if both sampling from the sVAE encoder Ency output and coarsening C are invariant or one
is invariant while the other one is equivariant.
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The structure-aware encoder forming Ency updates only the representations of nodes, mirroring
any permutation of the input nodes in the output. Also, sampling from the latent distribution only
changes the node embedding content, not node order. Thus, sVAE (and its sampling) is equivariant.

The coarsening of C creates nodes in the output graph by iterating through neighboring input node
pairs from lowest to highest based on D(+, -). Since all distances between neighbors are assumed to
be different (Definition [I] (i)), the ordering of the pairs is fixed, regardless of the original ordering.
Within each pair, the chosen order for merging nodes affects the value of the merged node’s embed-
ding and its local connectivity. Since nodes within a pair are ordered by D(-, 0), and are assumed
always to have different values (Definition [I] (ii)), the ordering of nodes within a pair is also fixed,
regardless of the original ordering. Thus, coarsening is invariant.

From the above, it follows that, under the specified assumptions on Diff and Mag, the composition
MAGIC’s sVAE encoder and coarsening.

|
Proposition 5. MAGiC’s mixed-type diffusion is permutation equivariant.

Proof Proposition[5| Starting from the input, the diffusion model architecture involves, in sequence:
augmenting the input graph representation with additional structural features, applying a node/edge-
wise multi-layer perceptron block, applying one or more graph transformer blocks, and applying a
final node/edge-wise multi-layer perceptron block. Similar to |[Vignac et al.| (2023), per-node struc-
tural features are permutation equivariant. Likewise, the per-graph structural features are permuta-
tion invariant (trivially, since the graph itself is the only element in the sequence). The multi-layer
perceptron block is permutation equivariant, and so are the individual transformer layers with their
self-attention mechanism.

Thus, the mixed-type diffusion of MAGIC is permutation equivariant.
O

Proof Proposition Let Z, < X, denote that the node embedding Z,, is present in X;. The inverse
coarsening is a function C~! = (X € R™/, E € £7") — R *5, M € {0,1}"*"). Let
G*®* = (Z, M) and G = (X, E) be two undirected graphs such that C(G*) = G. Specifically, in
terms of node features, C transforms:

Z, M;y; Mp: ... Miy

Z, Mi, Mz ... May
Z = . & M= . . . .

Zn’ M1 n’ MQ n' . Mn n’

into:
X =(X1,Xo, ..., Xp, Xpi1, Xpi2,. .., Xpps)" where
pt+s=n
Xi<p = nrgn{Concat(Za7 Zy)|a<b; My =1; Zo,Zy ¢ X<i; D(Z,, 0) < D(Zy, 0)}

Xp<i<n' = Concat(mDin{Za | Zo & X<}, 0)
Va, 3i:7Z, <X;

and:
Eiv Eiv ... Eip
Ei2 Ez22 ... Ez,
E= . . . where
El n E2 n o .. En n

Eij - 20 . Mac + 21 . Mad +22 . Mbc +23 : Mbd,i < jv v (XZ = (Za7 Zb), Xj = (Zc; Zd))

Note: coarsening creates as many pairs p as possible, leaving a minimum number of single nodes s.

Reversing the function starts with finding all the node representations in the coarse input of the
form X, = Concat(Z,, 0) € X, where the Z, entries are the single nodes of Z. The remaining
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node representations X, = Concat(Z,, Z,) € X, contain in Z, and Z, the representations of all
other nodes from Z which have been merged. Consequently, recovering edges starts with adding an
edge M,;, = 1 between all nodes denoting a pair X, = Concat(Z,, Z;) € X. Furthermore, from
adjacency entries for edges E;; # 0, ¢ < j with X; = Concat(Z,, Z), and X; = Concat(Z,., Z,),
all bidirectional edges between Z, / Z; and Z. / Z can be recovered from the corresponding active
bits in the binary encoding of E;;.

Thus, a permutation 7 of the original nodes V and edges M is recovered, meaning that MAGIiC’s
coarsening is invertible up to permutation.

O

Proof Proposition 2] The end-to-end architecture is a composition of the sVAE and coarsening,
alongside the mixed-type diffusion. The first two jointly are invariant by Proposition {] while the
mixed-type diffusion is equivariant by Proposition 3]

The invariant sSVAE and coarsening combination maps all input permutations to a single output
ordering, while the equivariant mixed-type diffusion retains that ordering when applied. As such, all
permutations of the original graph get mapped to a single permutation after the sVAE, coarsening,
and diffusion pipeline, making the end-to-end MAGIC invariant.

]
Proof Proposition[3] The loss’ invariance can be proven by computation:

L((n.& 7.pg), (1.€ ©.E)) = ||7.€¢ — 7.€||* + ACrossEntropy(r.pp, 7. E) def.
= ||€ — €||> + \CrossEntropy(n.pg, n.E) MSE invar.
= ||€ — €||> + \CrossEntropy(pg, E) CrossEntropy invar.
= L((& pgr), (¢ E)) def.

]

D EVALUATION EXTRAS

Below we provide additional details related to evaluation.

D.1 SETUP INFORMATION

We run all our experiments on an Nvidia RTX 4090 GPU with 24 GB of memory. For the Twitch
and Event datasets, our target columns indicate whether a user may earn money from the platform
and whether the gender of a user is marked as female. In OGBN-arxiv, initial node attributes are
128-dimensional embeddings of a scientific article title and abstract. Within the evaluation metrics
for node attributes, we interpret each embedding entry as a numerical column in a tabular data row.
For OGBN-arxiv, the created label denotes whether a paper is registered to one of the top four most
popular categories. Based on preliminary tests, we set MAGiC’s sVAE compression factor f/ = L{J
in all experiments for a good trade-off between compression and quality. For the above datasets with
rich node attributes, we train the diffusion model for each experiment over 5000 epochs and weight
the cross-entropy of edges 5 times higher than the MSE for node attributes in MAGiC and Mixed
Diffusion across all experiments. The training of SVAE happens before that of the diffusion model
for a maximum of 5000 epochs on the same training dataset, with an early stopping applied based
on the validation set loss. On the QM9 molecular datasets, we train our method for 1k epochs. As
for unattributed graphs, we run our method for 100k epochs in planar and 28k in SBM. Further

hyperparameters and experimental configuration settings are present in our codebase.

D.2 QUALITATIVE RESULTS

Table[5]shows real sample graphs from the Twitch and Event datasets. Table[6]and Table[7]showcase
an example graph from the two datasets for our baselines and proposed methods, respectively. We
only show the node feature values of the first 10 nodes for readability. Node colors represent the
relative connectivity density of nodes (blue = lowest, red = highest).
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views ‘mature life_time | created_at | updated_at [dead_account| language affiliate locale birthyear gender joinedAt timezone
18502 False 848 2016-06-11 | 2018-10-08 False EN True en_US 1992 female 2012-10-31 419
| 78310 False 2514 2011-11-23 | 2018-10-12 False DA True | en_US 1991 female 2012-10-31 419
% 937 False 1720 2013-11-07 | 2018-07-24 False EN False [ en_US 1994 female 2012-10-31 419
[3| 1018474 False 2061 2013-02-19 | 2018-10-12 False EN False en_GB 1982 female 2012-10-31 630
| 128355 True 1834 2013-10-03 | 2018-10-12 False EN True u| en_GB 1991 female 2012-10-31 419
(5| 32043 False 1632 2014-04-24 | 2018-10-12 False EN True en_US 1992 female 2012-10-31 419
(71 1861 True 1471 2014-07-21 | 2018-07-31 False ES False U en_US 1992 male 2012-10-31 419
(8| 9743 False 1711 2014-02-03 | 2018-10-12 False EN True en_US 1984 male 2012-10-31 419
1542 True 1928 2013-07-02 | 2018-10-12 False EN True en_US 1992 female 2012-11-24 419
Table 5: Real samples from the Twitch and Event datasets.
Twitch Event
DiGress + TVAE
views ‘mature life_time created_at updated _at |dead_account| language affiliate locale birthyear gender JjoinedAt timezone
2524206 True 1692 2014-01-15 | 2018-10-11 False EN False en_US 1990 female 2012-10-30 419
IR S BTN ETEr e E ) I Toe D To%0 e prEwTEn v
[ 1067194 True 3179 2012-03-09 | 2018-10-01 False EN True 12| id_ID 1991 female 2012-10-26 419
4 0 True 1618 2014-07-16 | 2018-10-11 False ES False & id_ID 1994 male 2012-11-02 419
(5| 21737 True 2273 2012-12-29 | 2018-10-07 False EN True id_ID 1994 female 2012-09-29 419
(6] 129825 False 2173 2012-05-10 | 2018-10-11 False EN False E id_ID 1994 male 2012-09-28 419
[| 756826 False 1565 2013-12-04 | 2018-10-11 False ES False Ul id_ID 1989 male 2012-10-31 419
[9| 464780 True 1142 2015-08-30 | 2018-10-11 False EN False id_ID 1990 male 2012-09-25 419
DiGress + TabDDPM
views ‘mature life_time created_at updated_at |dead_account| language affiliate locale birthyear gender joinedAt timezone
291968 True 405 2017-08-31 | 2018-10-11 False EN True id_ID 1991 female 2012-09-24 608
1] -266251 True 436 2017-07-30 | 2018-10-08 False m True I id_ID 1993 male 2012-11-03 419
[2| 14970085 True 3431 2009-05-18 | 2018-10-12 False EN False 12 en_GB 1995 male 2012-10-31 417
E -63705 True 1368 2015-01-11 | 2018-10-12 False EN True en_GB 1994 male 2012-10-28 419
la| 238326780 False 2623 2011-08-05 | 2018-10-12 False EN False A en_US 1984 female 2012-09-15 261
102892 False 2181 2012-10-12 | 2018-10-02 False EN False id_ID 1995 male 2012-09-29 419
7| 147833 False 2364 2012-05-05 | 2018-10-11 False PL False U en_US 1991 male 2012-11-06 80
(8| 318762 False 1118 2015-09-17 | 2018-10-10 False ES False en_US 1986 male 2012-11-01 -305
R T T T T B T s ooz e preRTE o

Table 6: Samples from the Twitch and Event datasets generated by the two baselines: DiGress +
TVAE and DiGress + TabDDPM
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Twitch Event

Mixed Diffusion
15682"4
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=" w9557 EE % zgydin
4 114G 38727y 35/71&%9_154/71/1259—;‘5 D
7011 G gl Jle— (1P
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13810 7
Views ‘mature life_time | created_at | updated_at dead_account] language affiliate locale birthyear gender joinedAt timezone
3438492 True 1314 2015-01-30 | 2018-10-09 False Fl False id_ID 1996 male 2012-10-14 368
1 9653 True 2232 2012-06-29 | 2018-10-12 False EN True 1| id_ID 1996 male 2012-09-22 356
B 25064 e 551 | 20140425 | 20160012 | Faise E Tue & ) 1989 mle 20121001 364
E 10966 True 1298 2015-03-14 | 2018-09-29 False EN True id_ID 1992 male 2012-11-04 384
bl 114782 False 1755 2013-12-18 | 2018-10-11 False EN True M id_ID 1997 female 2012-09-19 388
(5| 281 False 1957 2013-04-03 | 2018-09-24 False EN False 15| id_ID 1994 female 2012-09-29 343
S53572 | Faise 3017 | 20100629 | 20181008 | Faise EY False o Us 1990 Temale 0121002 EX
s e 590 | 20160924 | 20161011 | False EY Tue i B 1993 male 20121031 3
(8] 4694 False 1917 2013-07-02 | 2018-10-12 False EN False id_ID 1995 male 2012-10-15 361
807004 True 1206 2015-08-10 | 2018-10-11 False FR False id_ID 1994 male 2012-10-28 346
MAGIC
. . 28
20 159 85 é}f
s~ e g
B 213765 2019855" vas2a T VTR (’177%%513
149“14&412%1%1' %ﬁ@}ml — 153-—1524-11%:;5i8 18l oA ‘ﬁwf’]og
s e e - I
130/131/}1:/ gj557/ F— | 57152\153\1 i 2}31)3 716&\1 @ 5 61219293
" ?wﬂglﬁ 155 71 12¥ 6
11 5457 15476 g
1 01
views mature life_time created_at | updated_at |dead_account| language affiliate locale birthyear gender joinedAt timezone
73464 False 1555 2014-08-01 | 2018-10-12 False RU True id_ID 1993 female 2012-10-16 413
575 False 1522 | 2014.08.23 | 2016.10.09 | Faise EY Tue il a0 092 e 20121021 s
B[ soza08 False 2457 | 2012.0114 | 2018.10.09 | Faise E False B ia1D 1993 male 20121009 a8
[ Termeer | rame 643 | 20130978 | 20181011 | Faise EY Faise XS] 593 e 20121011 29
o False 956 | 20160113 | 20161007 | False El e b 0 D 1993 male 20121008 s
(5| 32292 False 1657 2014-04-16 | 2018-10-10 False EN False 15| id_ID 1993 male 2012-10-04 411
(6] 42907 True 1324 2015-02-20 | 2018-10-06 False EN False id_ID 1992 male 2012-10-11 -136
[ 10564 False 102 | 20131117 | 2018.10.09 | Faise E False i a0 1992 Temale 20121020 a0
B Torers | rame 7210 | 70120924 | 20181010 | Faise E Faise ) 593 Temale 0121014 202
1643110 False 2424 2012-02-18 | 2018-10-10 False EN False id_ID 1993 male 2012-10-17 415

Table 7: Samples from the Twitch and Event datasets generated by our two proposed methods:
Mixed Diffusion and the full MAGIC.
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