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ABSTRACT

Many domains, like social and document networks, model relationships as graphs
with rich node attributes and large node counts. However, modern graph genera-
tors cater to the discreteness of edge connectivity, at the expense of only allowing
categorical node labels, and are limited to relatively small graphs, like molecules,
due to scalability challenges. To overcome such challenges, we propose MAGiC,
a framework that enables graph diffusion with mixed-type node attributes and im-
proves scalability even in unattributed graph scenarios. At the core of MAGiC,
a novel mixed-type diffusion joins discrete diffusion for the graph structure with
continuous diffusion for node attribute embeddings in a single model. It enables
the generation of nodes with rich attributes while maintaining the graph struc-
ture quality benefits of discrete diffusion. Alongside it, we propose an invertible
coarsening algorithm and a structure-aware attribute encoder that boost scalability,
reducing diffusion memory and computation costs. We evaluate MAGiC against
baselines combining unattributed graph and tabular generation on three datasets
with rich node attributes. Our solution is on average 12.9× better at capturing
attribute–structure interaction and 25.2% better at downstream machine learning
tasks. Concurrently, we maintain competitive synthesis quality for simple graphs
with single categorical node labels. Moreover, MAGiC’s coarsening (and attribute
encoder) consistently reduces inference time by 2.5× for simple and rich graphs.

1 INTRODUCTION

Graphs are essential in modeling relationships between entities, like social users (Rozemberczki &
Sarkar, 2021), hyperlinked documents (Hu et al., 2020), or financial transactions (Altman, 2021),
in many data-intensive applications. Alongside structural relationships, nodes and edges often store
additional information as attributes, increasing the complexity and power of graph representations.
Figure 1 shows an example graph with rich node attributes, where nodes have multiple categorical
and continuous attributes. Crucially, the graph’s node attributes and structural connectivity depend
on each other. For instance, users from the same “Region” attribute are more likely to be connected.

State-of-the-art graph generators employ diffusion models for maximum synthesis quality (Cao
et al., 2024). In images, pixels model inherently continuous color scales, making them a good fit for
continuous diffusion models (Ho et al., 2020). However, graph structures are discrete (edges exist
or do not) and sparse (most possible node pairs are not connected), requiring a different approach.
Discrete diffusion models (Vignac et al., 2023; Chen et al., 2023; Qin et al., 2024), emerge as a better
option to preserve key global graph structural properties. However, discrete noising limits the type of
node attributes to categorical only. As such, they focus on use-cases like molecular-generation where
nodes have strictly categorical, i.e., discrete, labels. Moreover, diffusion graph models are generally
expensive to scale regarding computation and memory, as they work directly in the adjacency matrix
space, scaling quadratically with node count. State-of-the-art attributed models (Vignac et al., 2023;
Jo et al., 2024) limit their evaluation to graphs with under two hundred nodes. Existing work on re-
ducing memory usage comes at the cost of extra processing time or quality drop, and only considers
nodes with no attributes or discrete labels (Bergmeister et al., 2024; Kong et al., 2023).

We propose MAGiC, the first Mixed-type Attributed Graph Diffusion model with Coarsening for
generating graphs with rich node attributes at scale via lower computation and memory costs. To
jointly model rich node attributes, represented as continuous embeddings, and the discrete graph
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Figure 1: Social network example: multi-attributed nodes are users; edges are friendship relations.
Users mainly connect with others from the same “Region” (shown as highlighted attribute).

structure, MAGiC harnesses mixed-type diffusion, combining continuous and discrete diffusion pro-
cesses, for nodes and edges, respectively. To improve scalability, MAGiC consists of a novel in-
vertible coarsening technique that compresses the graph structure into a smaller attributed graph
with reduced memory footprint and lower computational cost, allowing lossless reconstruction. Fi-
nally, to efficiently handle high-dimensional node attributes, MAGiC encodes them into smaller
latent-space embeddings via a structure-aware variational autoencoder (sVAE). To avoid potential
negative biases related to the input order of nodes or edges, we prove the permutation invariance of
all MAGiC’s components.

We evaluate MAGiC against joint graph and tabular diffusion models on four groups of metrics
targeting graph structure, attribute quality, inter-dependency between structure and attributes, and
downstream task performance. MAGiC outperforms the baselines in all metric groups, capturing
on average attribute-structure interaction 12.9× better and improving the accuracy of downstream
machine learning tasks by an average of 25.2%. It also reduces memory consumption and accelerates
synthesis by 2.5× compared to the baselines, even in unattributed settings.

In summary, our contributions are as follows:

• A novel mixed-type graph diffusion model that jointly optimizes the synthesis of discrete
graph structure and continuous node attribute embeddings.

• An invertible coarsening scheme that, together with a structure-aware attribute encoder,
reduces memory and computational costs of handling graph representations.

• Proofs for permutation symmetry properties of MAGiC, which ensure learning and synthe-
sis are independent of node and edge ordering.

• Evaluation on three datasets with rich node attributes against existing graph diffusion base-
lines augmented with tabular attribute generators.

We provide our anonymized code at: anonymous.4open.science/r/MAGiC-5615.

2 BACKGROUND AND RELATED WORK

Graph synthesizers span various generative modeling techniques, including variational autoen-
coders (VAEs), generative adversarial networks (GANs), and autoregressive or diffusion models.
Approaches leveraging VAEs, such as GraphVAE (Simonovsky & Komodakis, 2018), struggle to
harness the latent space for graphs with more than a couple of dozen nodes. Earlier autoregressive
models, like GraphRNN (You et al., 2018), iteratively synthesize arbitrarily large graphs, but their
reliance on node order negatively affects output quality. GAN formulations, like SPECTRE (Mar-
tinkus et al., 2022), cannot match the quality of diffusion-backed models, and an inherently greater
difficulty in training a discriminator/generator pair reduces their applicability. Graphs often exhibit
hierarchical properties, which some models explicitly exploit within their modeling techniques. For
instance, HiGen (Karami, 2024) and HGGT (Jang et al., 2024) are transformer-based models that de-
compose the adjacency matrix based on clusters of connected nodes or recursive splits. To maximize
generation quality, we formulate MAGiC as a diffusion model.

Diffusion models Ho et al. (2020) have recently been at the forefront of high-quality synthetic data
generation for many modalities, including graphs (Zhu et al., 2022). For graph diffusion models,
the noise type is an important differentiator, which can be continuous (Jo et al., 2022), as for most
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other modalities (Fuest et al., 2024), or discrete (Chen et al., 2023; Haefeli et al., 2022). The latter
matches the discrete nature of graph connectivity, better modeling properties like sparsity. Shi et al.
(2025), One of the few other mixed-type formulations, models numerical and categorical tabular
data with continuous and discrete diffusion, respectively. MAGiC adapts mixed-type diffusion for
generic graph generation.

Attributed graphs require incorporating node/edge attribute generation for synthetic graphs, in-
creasing the problem complexity. Hence, such generators are limited to smaller graphs, even if
they only integrate single-label nodes or edges. DiGress (Vignac et al., 2023) proposes a dis-
crete denoising diffusion approach that predicts individual nodes and edges to generate graphs at
scales up to two hundred nodes. Alternatives focused on scalability are also limited to categorical
node labels. GraphMaker (Li et al., 2024) investigates discrete diffusion on larger graph structures.
GraphARM (Kong et al., 2023) mixes discrete diffusion with autoregressive generation to improve
sampling time, but the latter introduces an inherent bias related to node ordering. Jo et al. (2024)
applies diffusion based on a mixture of bridge processes conditioned on the training samples. Its
architecture allows synthesizing low-dimensionality discrete and continuous node attributes, but
its overall generation quality is lower than recent discrete diffusion models (Qin et al., 2024). With
MAGiC, we allow generating graphs with rich node attributes and improve scaling for larger graphs.

Coarsening is a technique for reducing graph dimensionality while preserving key properties. Many
versions consist of fixed algorithms (Purohit et al., 2014), but newer works explore variants that
are learnable through neural networks (Cai et al., 2021). All such methods operate on the graph
structure, for example, striving to preserve similar spectral properties (Jin et al., 2020), and some
additionally incorporate node attributes (Kumar et al., 2023). Coarsening is mainly used for analysis
tasks on graphs, like prediction, meaning that only a unidirectional mapping is necessary. MAGiC is
the first to employ coarsening to create an encoding that remains a valid graph with a corresponding
lossless inverse coarsening.

3 MAGIC

At the heart of MAGiC is a mixed-type diffusion model, 1 in Figure 2, that captures node attributes
and structural connectivity in a unified manner. The invertible coarsening 2 and structure-aware
attribute encoder 3 act as preprocessing steps boosting the efficiency of diffusion. By simultane-
ously optimizing the denoising and embedding processes over both modalities, MAGiC accurately
captures critical dependencies between node features and graph connectivity, essential for generating
realistic attributed graphs. Formally, we tackle the generation of undirected graphs with rich node at-
tributes Gr = (V, M) where V ∈ Rn′×r are the n′ node attributes encoded as embeddings of size
r, and M ∈ {0, 1}n′×n′

is the adjacency matrix. For training, first, our structure-aware attribute
encoder reduces the size of node attributes, transforming Gr into Gs = (Z, M) with Z ∈ Rn′×s,
and s≪ r. Then, the invertible coarsening maps Gs to G = (X, E) where X ∈ Rn×f are the at-
tributes of n < n′ nodes represented via embeddings of size f = 2r, and E ∈ En×n is an adjacency
matrix of edges of possible types E (including no edge). Finally, the mixed-type diffusion learns to
synthesize compact graphs G. During sampling, MAGiC generates G, uncoarsens it, and decodes
it back to the initial Gr. Figure 2 shows the integration of MAGiC’s three key components:

• Mixed-type Diffusion 1 – a joint continuous-discrete denoising process over node em-
beddings and graph structure.

• Invertible Coarsening 2 – a lossless bidirectional compression of the graph into a smaller
one for efficient diffusion.

• Structure-Aware Attribute Encoder 3 – a variational encoder for node attributes that
complement coarsening and harnesses node neighbor information.

These components make MAGiC suitable for generating graphs with richer node attribute sets com-
pared to previous diffusion-based generators, while improving scalability. While we focus on in-
tegration with our mixed-type diffusion model, coarsening and sVAE are usable with any attributed
graph generator. In Section 3.1 we first discuss the details of mixed-type diffusion, as the main
component of our framework. We then describe the invertible coarsening in Section 3.2, followed
by the structure-aware attribute encoder in Section 3.3. Finally, in Section 3.4, we cover theoret-
ical results regarding symmetry properties of the different components, and their interaction. We
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Figure 2: MAGiC overview: 1 attribute encoder, 2 coarsening, 3 mixed-type diffusion

summarize all notation from the manuscript in Appendix A, and include additional implementation
notes in Appendix B.1.

3.1 MIXED-TYPE GRAPH DIFFUSION

We describe a mixed-type diffusion process that synthesizes graphs G = (X, E) with nodes
X ∈ Rn×f , and edges E ∈ En×n. This formulation addresses a core modeling challenge: the dis-
crete graph structure and continuous embeddings of rich node attributes each benefit from a noising
approach tailored to their own modalities. Naively applying Gaussian noise to discrete edge con-
nectivity compromises graph structure generation quality. Meanwhile, discrete diffusion is naturally
unfit for continuous embeddings. Our solution unifies continuous diffusion for node embeddings
with discrete diffusion for edge types. Optimizing both diffusion steps with a single model allows
for capturing critical attribute-structure interactions and maintains a valid graph representation at
each denoising step. Moreover, it makes training and generation more efficient due to the inherent
parameters sharing, modeling common knowledge between nodes and edges.

Our formulation is a denoising diffusion probabilistic model DDPM (Ho et al., 2020). A forward
process injects noise into each clean graph G0 = (X0,E0) over T consecutive time steps, producing
increasingly corrupt versions (G1, ...,GT ) approaching a noise distribution. A noisy graph Gt =
(Xt,Et) has Xt ∈ Rn×f and Et ∈ [0, 1]n×n×|E|. Et is an expanded noisy adjacency matrix, with
entries etij ∈ [0, 1]|E| encoding probability distributions over edge types between nodes i and j. G0

is equivalent to G, with X0 = X and E0 a one-hot encoding of E. A neural network ϕθ with
parameters θ learns to approximate the reverse process of denoising Gt into G0.

Forward Diffusion: The forward noising process is a composition of two independent Markov
chains for node embeddings Xt and edge types Et. For node embeddings Xt, we apply variance-
preserving Gaussian noise at each time step transition t−1→ t in a standard DDPM fashion. Thus,
following Ho et al. (2020), for a noise schedule αt ∈ (0, 1), ᾱt =

∏t
i=1 αi, and noise ϵ ∼ N (0, I)

sampled from a standard Gaussian distribution, we have a closed-form transition from X0 to Xt:(
qX(Xt | X0) = N (

√
ᾱt X

0, (1− ᾱt) I)
)
↔

(
Xt =

√
ᾱt X

0 +
√
1− ᾱt ϵ

)
(1)

For edges Et ∈ [0, 1]n×n×|E|, we follow the discrete forward noising variant from Vignac et al.
(2023). As with nodes, each edge eij is noised independently. The matrix Qt ∈ [0, 1]|E|×|E|

encodes the transition distribution between edge types as a function of the target noise distribution
mE (the prior distribution of edge types in training data), and αt. Like node embeddings, we can
sample any Et from the initial data E0 in a closed form via Q̄t =

∏t
i=1 Q

i:

qE(E
t | E0) =

∏
i,j

(
e0ij Q̄

t
)

(2)

The joint distribution is thus:

qG(Gt | G0) = qX(Xt | X0) qE(E
t | E0)

We follow the consensus from existing diffusion works (Yang et al., 2024) where the forward process
should be as localized as possible and converge to a simple to model target noise distribution even
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Algorithm 1 Mixed-type Diffusion Train Step

Input: model ϕθ, graph G = (X, E)
1: t ∼ U(1, . . . , T ); ϵ ∼ N (0, In)
2: Xt =

√
ᾱt X+

√
1− ᾱt ϵ {Equation (1)}

3: Et
ij ∼

∏
i,j

(
eij Q̄

t
)

{Equation (2)}
4: ϵ̂, p̂E ← ϕθ(X

t, Et)
5: Lcont ← ∥ϵ̂− ϵ∥22 {Equation (5)}
6: Ldisc ←

∑
i,j CE(p̂i,j ,Ei,j) {Equation (6)}

7: Optimize θ via Lcont + λ Ldisc

Algorithm 2 Mixed-type Diffusion Sampling

Input: model ϕθ

1: XT ∼ N (0, I); ET
ij ∼

∏
i,j mE

2: for t← T, . . . , 1 do
3: ϵ̂, p̂E ← ϕθ(X

t, Et)
4: z ∼ N (0, I)
5: Xt−1 ← Equation (3)
6: Et−1 ∼ Equation (4)
7: end for
8: Return (X0,E0)

when working with homogeneous data structures. For instance, noise in image generation is applied
independently per pixel, and the noise distribution is a Gaussian. Doing so helps to keep training
efficient, as noise is fast, and ensures the model starts denoising from an easy-to-model distribution.
In our case, keeping the two noise processes independent retains such properties.

Reverse Diffusion and Training Objective: Given a noisy node representation at step t and ϵ
dictating the added noise, the representation at t−1 is (Ho et al., 2020):

Xt−1 =
Xt

√
αt
− (1− αt) ϵ√

αt (1− ᾱt)
+

√
(1− ᾱt−1) (1− αt)

1− ᾱt
z (3)

where z ∼ N (0, I) for t > 1 else 0 dictates the partial noise added back to the representation. For
edges, taking Qt′ as the transpose of Qt and edge type e ∈ E , we have (Vignac et al., 2023):

qE(e
t−1
ij | etij , eij = e) ∝ etijQ

t′ ⊙ e0ijQ̄
t−1

When considering all possible edges and their types E , we obtain a proper probability distribution:

qE(E
t−1 | Et) =

∏
i,j

∑
e∈E

q(et−1
ij | etij , eij = e) pij(e) (4)

The denoising network ϕθ approximates the joint reverse process pθ(G
t−1 | Gt) = pθ(X

t−1 |
Gt) pθ(E

t−1 | Gt). Since ϕθ accounts for dependencies between nodes and edges, it entangles the
approximated reverse process over the two components. For node embeddings, we optimize:

Lcont = Et,X0,ϵ

[
∥ϵ̂− ϵ∥22

]
(5)

For edge types, we formulate the problem as multi-class classification with cross-entropy (CE) loss:

Ldisc = Et,E0

∑
i,j

CE(p̂i,j ,Ei,j)

 (6)

The mixed diffusion training objective combines both losses Lmixed = Lcont + λ Ldisc where λ > 0
balances the relative importance of the continuous and discrete components. The joint objective and
the shared network architecture capture crucial attribute-structure interactions.

Modelling Setup: Algorithm 1 describes a training step in the model. We noise the input graph G
up to an arbitrary time step t. Note that Et should be symmetrized such that Et

ij = Et
ji. Then, given

the noisy graph, the model predicts the noise added to nodes and the probability distribution for each
edge’s type. Finally, the model’s parameters get optimized in accordance with Lmixed. Algorithm 2
contains sampling details. We first sample fully noised node attributes G from the Gaussian prior
and a one-hot encoded discrete adjacency matrix from the prior of edge types within training data.
Then, over T steps, we use the trained model’s prediction to partially denoise both components until
reaching a new clean synthetic graph from the training distribution.

3.2 INVERTIBLE COARSENING

The computational complexity and memory footprint of diffusion models scale quadratically with
the number of nodes, limiting their applicability to large-scale graph generation. Simultaneously,
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Figure 3: Coarsening overview

node attributes’ computational complexity and memory footprint scale linearly with their size. We
cannot apply current graph coarsening techniques to graph diffusion, as their design is limited to irre-
versible (unidirectional) mapping, preventing reconstruction of the larger initial graph. We improve
the scalability of graph diffusion with an invertible coarsening mechanism that shrinks the input
graph by merging adjacent nodes and storing reconstruction information as expanded node attributes
and additional node types. Reducing the number of nodes at the cost of more features enables fur-
ther compression given by the sVAE (see section 3.3), creating even more space for computation
and memory costs improvements.

Given a graph Gs = (Z, Es) with nodes Z ∈ Rn′×s and binary adjacency matrix Es ∈ {0, 1}n′×n′
,

the coarsening function C : Gs 7→ G produces a compressed graph G = (X,E) with merged nodes
X ∈ Rn×f and attributed edges E ∈ Nn×n, where n ≈ n′

2 , and f = 2s. The inverse function
C−1 : G 7→ Gs maps G to Gs, up to node permutation. Appendix B.2 describes the coarsening
and inverse coarsening steps more formally, along with pseudocode.

Node Merging: The coarsening procedure operates through a greedy node merging algorithm based
on the embedding similarity of neighbor nodes. Figure 3a visualizes the process. We define a
distance metric D(zi, zj) = ∥zi − zj∥1 over pairs of node embeddings zi and zj from Gs. We
merge neighboring node pairs (zi, zj) in ascending order of D, with each merged node represented
as:

xk = Concat(zi, zj) ∈ Rf (7)
We zero-pad embeddings of unpaired nodes to maintain consistent dimensionality. We show in
Appendix C, as part of Proposition 4, that coarsening is permutation invariant.

Edge Encoding: The critical challenge for our invertible coarsening is preserving the original con-
nectivity information within the compressed representation. Since we merge nodes in pairs, each
coarsened edge eij from E models the connections among two pairs of original nodes (four nodes
total). Within a pair, the edge between its nodes is implicit. Between two pairs, we encode connec-
tivity as the binary encoding of the four potential edges in a categorical edge attribute eij ∈ N15:

eij =

3∑
k=0

bk · 2k (8)

where bk ∈ {0, 1} indicates the presence of the k-th edge between nodes (see Figure 3b example).

Inversion: The inverse coarsening C−1 operates by decomposing each merged node xk into its con-
stituent embeddings (zi, zj) and decoding each edge attribute eij to recover the original connectivity
pattern. Specifically, we know each merged node splits into two connected nodes. We reverse the
binary encoding between pairs of merged nodes to find the connectivity between initial nodes from
different pairs. As such, in Appendix C we prove that:
Proposition 1. MAGiC’s coarsening is invertible, up to node permutation.

Specifically, for graphs with the unique distances property (Definition 1), inverse coarsening is injec-
tive: each permutation π over a coarsened G maps to a unique uncoarsened Gs. For an uncoarsened
graph Gu without the property, C−1(C(Gs)) will still be a permutation π of Gs, albeit not unique.
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3.3 STRUCTURE-AWARE ATTRIBUTE ENCODER

On top of the computational cost reduction given by the graph coarsening procedure, we build a
structure-aware Variational Autoencoder (sVAE) for node attribute compression. sVAE compresses
node embeddings V ∈ Rn′×r into a latent space Z ∈ Rn′×s with s ≪ r. In contrast to attribute-
only autoencoders, using a graph-specific network architecture allows us to preserve both individual
node characteristics and neighborhood dependencies in the latent representations.

The encoder Encθ : (V, M) 7→ (µZ, σ2
Z) and decoder Decθ : (Z, M) 7→ V̂ neural networks

learn probabilistic mappings between data and latent space. The tuple (µZ, σ
2
Z) gives the mean and

variance of the Gaussian latent distribution. Both the encoder and decoder use graph convolutional
layers (Hamilton et al., 2017). Doing so allows sVAE to incorporate structure-related information
during encoding and decoding. Appendix B.3 provides further architectural details.

In standard variational autoencoder fashion (Kingma & Welling, 2014), the training objective com-
bines reconstruction fidelity with Kullback-Leibler (KL) regularization to ensure that the latent dis-
tribution approximates a standard Gaussian prior:

LsVAE = EµZ,σZ,V,M
[
∥Decθ(µZ, M)−V∥22

]
+ β · KL

[
N (µZ, diag(σ2

Z)) ∥ N (0, I)
]

where the hyperparameter β controls regularization strength. sVAE is naturally permutation equiv-
ariant, as it merely reduces the dimensionality of input data.

3.4 SYMMETRY PROPERTIES

Model behavior should be unaffected by the order of nodes and edges within graphs, such that
the model can learn effectively without seeing many permutations of each training graph. MAGiC
achieves this by having a permutation invariant model architecture and loss. As such, all permuta-
tions of an input graph lead to a unique permutation for the corresponding reconstructed graph, and
they have the same loss value. Thus, in Appendix C, we prove that:
Proposition 2. MAGiC’s end-to-end architecture is permutation invariant for graphs with the
unique distances property (Definition 1).

For it, we first prove the invariance of our reversible coarsening (Proposition 4) and the equivariance
of the mixed-type diffusion (Proposition 5). Following an invariant step with an equivariant one,
which matches the input permutation in the output, yields an invariant outcome. We also show that:
Proposition 3. MAGiC’s mixed diffusion loss is permutation invariant.

As our sVAE loss is a per-node aggregation, it is also naturally invariant. Consequently, both opti-
mization functions used in our end-to-end model obey invariance.

4 EVALUATION

We evaluate MAGiC on six publicly available datasets: three with rich node attributes, one molec-
ular, and two unattributed. Namely, we measure the performance of synthesizing multi-attributed
(Table 1), single-attributed (Table 2), and unattributed (Table 3) graphs. Evaluation setup details are
in Appendix D.1. We additionally highlight qualitative results in Appendix D.2.

Baselines: Since MAGiC is the first work investigating graph generation with multiple heteroge-
neous attributes, we propose multiple baselines that combine two popular generators for tabular data
(i.e., node features), the VAE-based TVAE (Xu et al., 2019) and diffusion-based TabDDPM (Kotel-
nikov et al., 2023), with a modern diffusion graph synthesizer as DiGress (Vignac et al., 2023).
We also include tests with the standalone Mixed Diffusion to assess performance without sVAE
and coarsening. We include GruM (Jo et al., 2024) alongside DiGress as baselines for experiments
on single-attributed molecular graphs. We add two extra structure-only generators as baselines for
unattributed graph tests: EDGE (Chen et al., 2023) and GraphLE (Bergmeister et al., 2024).

Metrics: Alongside sampling time, our main results investigate the graph Structure Quality, node
Attribute Quality, and their interaction. We measure structure quality via Maximum Mean Distance
(MMD) over four metrics: node degree (Deg.), Laplacian spectrum (Spec.), clustering coefficient

7
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Dataset/Method Structure Quality ↓ Attribute Quality ↑ Tgt. Col.
MMD ↓

Downstr.
Util. ↑

Sample
Time ↓

Effective
NodesDeg. Spec. Clus. Orb. Shape Pair Trend

DiGress+TVAE .344 .039 .257 .124 .867 .913 .281 .0 742 160
DiGress+TabDDPM .317 .036 .240 .215 .907 .971 .323 .0 741 160
Mixed Diffusion .010 .009 .060 .055 .945 .957 .002 .796 748 160/160
MAGiC .049 .038 .176 .056 .866 .930 .024 .685 294 94.9/160Tw

itc
h

MAGiC (Large) .020 .017 .177 .050 .858 .940 .009 .727 784 155.0/260

DiGress+TVAE .307 .073 .280 .491 .952 .793 .202 .0 741 160
DiGress+TabDDPM .194 .194 .263 .395 .835 .710 .101 .580 742 160
Mixed Diffusion .005 .007 .196 .077 .821 .823 .002 .642 748 160
MAGiC .014 .030 .157 .036 .760 .567 .004 .616 305 94.4/160E

ve
nt

MAGiC (Large) .006 .020 .162 .075 .768 .520 .001 .599 826 153.5/260

DiGress+TVAE .042 .032 >1 .413 .946 .975 .016 .777 1272 160
DiGress+TabDDPM .039 .032 .967 .385 .500 .529 .046 .469 1272 160
Mixed Diffusion .002 .006 .116 .082 .874 .966 .002 .703 1280 160
MAGiC .015 .035 .183 .155 .607 .752 .009 .741 479 94.2/160

O
gb

n-
ar

xi
v

MAGiC (Large) .010 .025 .441 .071 .561 .623 .002 .706 1277 153.7/260

Table 1: Main results on multi-attributed graphs in terms of graph quality (for structure, attributes,
and their combination), downstream tasks, and sampling time (in seconds).

(Clus.), and four-node orbit counts (Orb.). Node attribute quality treats nodes as tabular rows,
comparing column distributions (Shape) and pairwise correlations (Pair Trend). To assess struc-
ture–attribute interaction, we use Target Column MMD (Tgt. Col. MMD) and downstream node
classification accuracy (Downstr. Util.). For computational and memory costs, we measure sample
time (in seconds) and the number of nodes in diffusion. Finally, for unattributed graphs, we report
sampling time and Structure MMD; for molecular data, we check Valid, Unique, and Novel ratios.

Datasets: We construct experiments for larger graphs with rich node attributes over three public
real-world networks. For smaller, single- and un-attributed settings, we use one molecular and
two synthetic datasets from previous works, respectively. The chosen multi-attributed sources each
contain a single graph with thousands of nodes representing a social (Twitch (Rozemberczki &
Sarkar, 2021) and Event (Carroll et al., 2013)) or citation (OGBN-arxiv (Hu et al., 2020)) network.
To create our multi-graph datasets, we sample 200 subgraphs of 160 or 260 nodes from each of
the three networks, depending on the experiment. The single-attributed dataset is QM9 (Wu et al.,
2017), containing over 100K small molecules with up to 9 nodes each.

4.1 GRAPHS WITH RICH NODE ATTRIBUTES

Table 1 compares MAGiC with combinations of state-of-the-art graph and tabular generators. We
also measure the performance of Mixed Diffusion standalone to ablate the joint effect of coarsening
and sVAE. Baselines generate 160-node graphs; for MAGiC only, we also include 260-node results.

Dataset/Method Utility ↑
Valid Unique Novel

DiGress 98.19 96.67 25.58
GruM 99.69 96.90 24.15

Q
M

9

Mixed Diffusion 99.46 96.82 36.10

Table 2: Results on molecular graphs (single-
label edges and nodes). We report baseline mea-
surements from Jo et al. (2024).

The table shows MAGiC and Mixed Diffu-
sion outperforming the baselines on modeling
structure–attribute interactions, with MAGiC
also being 2.5× faster in sampling. MAGiC
consistently outperforms the baselines, with an
average of 12.9× for target column MMD and
25.2% for downstream utility. The same pattern
extends to structure quality metrics. This result
reaffirms that incorporating node attributes into
the diffusion model enhances edge connectivity
modeling. Furthermore, conflicting information
from independent structure and attribute generation can be highly detrimental. As observable in the
downstream utility results, baselines sometimes can not predict any test node data correctly.

Meanwhile, on node attribute metrics, baselines aided by tabular synthesizers deliver performance
comparable to Mixed Diffusion. When strictly measuring the statistical properties of attributes,
all nodes are considered independent data points. Thus, the tabular models can more effectively
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focus their learning efforts on a narrower problem without relationships between individual samples.
Nevertheless, Mixed Diffusion fares best under two out of six total experiments and remains second
best in three out of the other four, with small gaps compared to the best baseline. Altogether, Mixed
Diffusion is best at accounting for structure and node features interaction, with MAGiC always being
a close second. MAGiC’s coarsening reduces node counts by > 40% in all cases, leading, together
with sVAE, to ≈ 2.5× faster sampling. We fix the model parameters across all methods and batch
sizes to the lowest common denominator across all datasets. However, MAGiC allows higher batch
sizes within the same memory budget to further increase its relative efficiency.

Scalability: In Table 1, we additionally demonstrate the scalability of MAGiC on large multi-
attributed graphs of 260 nodes, i.e., Magic (Large). Comparing the results for 260 nodes against
the ones for 160 shows that MAGiC scales well, obtaining similar quality on larger graphs as on the
smaller counterparts. Moreover, its run time on the larger graphs is very similar to that of baselines
in the case of smaller graphs. The coarsening rate remains on par with previous tests at ≈ 40%.

4.2 SINGLE-ATTRIBUTED AND UNATTRIBUTED GRAPHS

Single-attributed graphs: We run Mixed Diffusion on a molecular dataset to check the method’s
standalone performance and observe quality in line with the state-of-the-art in Table 2. We do not
run MAGiC, as the size of the molecules is not large enough to justify coarsening use. In QM9,
Mixed Diffusion achieves performance similar to the state-of-the-art under the ratio of valid and
unique molecules out of the valid ones, with scores > 99% and > 96% respectively. Notably,
MAGiC increases the ratio of novel generated molecules from 25.58% to 36.1%. We attribute this
to the higher diversity in the overall generation process due to the continuous diffusion component
on nodes. Note that the relatively low novelty scores come from QM9 modeling a smaller family of
molecules, many of which are already in the training data.

Dataset/Method Structure Quality ↓ Sample
Time ↓Deg. Clus. Orb. Spec.

DiGress .0007 .0780 .0079 .0098 127
EDGE .0761 .3229 .7737 .0957 1
GruM .0005 .0353 .0009 .0062 156
GraphLE .0005 .0626 .0017 .0075 40Pl

an
ar

MAGiC .0054 .1045 .1615 .0304 34

DiGress .0018 .0485 .0415 .0045 663
EDGE .0279 .1113 .0854 .0251 1
GruM .0007 .0492 .0448 .0050 717
GraphLE .0119 .0517 .0669 .0067 3231SB

M

MAGiC .0256 .0501 .0543 .0077 195

Table 3: Unattributed graph results. Sampling
time is in seconds. For other metrics, we report
baseline values from Bergmeister et al. (2024) or,
in the case of GruM, Jo et al. (2024).

Unattributed graphs: Finally, in Table 3, we
run MAGiC on unattributed graphs to isolate and
assess the impact of the structure coarsening.
Despite a performance drop compared to the best
baselines, MAGiC can model the inherent sta-
tistical properties of different graph types. Un-
like for multi-attributed experiments, given the
comparison across different graph diffusion ar-
chitectures, we set the largest possible batch size
for each specific instance to time the sampling
procedure. Under MMD, GruM is the best per-
forming method, with GraphLE, DiGress, and
MAGiC following, while EDGE is last by a wide
margin. Time-wise, EDGE is orders of magni-
tude faster but also has the worst quality out-
put. Aside from it, MAGiC is the fastest method,
with a lead that becomes even greater as the average graph size increases from Planar to SBM.
Specifically, compared to the second fastest method, GraphLE, MAGiC goes from being 1.15× to
3.67× faster. In the bigger dataset, our method also decreases its disadvantage in terms of MMD,
performing better than the aforementioned counterpart in two of the four categories. In summary,
MAGiC balances synthesis quality while retaining a significant computational cost reduction.

5 CONCLUSION

We present MAGiC, the first diffusion framework for efficiently synthesizing graphs with rich node
attributes. It features a mixed-type graph diffusion model for attribute and structure generation,
alongside an invertible coarsening and structure-aware attribute encoder for lowering computation
and memory requirements in diffusion. During evaluation, MAGiC captures attribute and edge
interdependencies 12.9× better and improves performance on downstream tasks by 25.2%, while
reducing memory utilization and sampling time by 2.5× compared to baselines. By supporting
arbitrary node attributes and efficient synthesis, MAGiC addresses the issue of privacy-preserving
data-sharing for complex domains like social and document networks.
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ETHICS AND REPRODUCIBILITY STATEMENT

Ethics: Our proposed graph generative model has broad applications in modeling human interac-
tions on social media, professional networks, or social contagion situations; it also allows modeling
molecular structures, relevant for tasks like drug and material science discovery. As a generative
model, our solution can alleviate the need for third parties to tap into confidential or privacy-sensitive
data directly when answering questions about it (e.g., examine the spread of a disease among differ-
ent user groups) or help improve productivity (e.g., propose new drug candidates to investigate).

The manuscript includes input from LLMs for minor rephrasing, grammar, and spelling checks.

Reproducibility: To ensure the reproducibility of our research, we include the code for the proposed
model, configuration files, and datasets in an anonymized repository.
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International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Mary-
land, USA, volume 162 of Proceedings of Machine Learning Research, pp. 15159–15179. PMLR,
2022. URL https://proceedings.mlr.press/v162/martinkus22a.html.

Manish Purohit, B. Aditya Prakash, Chanhyun Kang, Yao Zhang, and V. S. Subrahmanian. Fast
influence-based coarsening for large networks. In Sofus A. Macskassy, Claudia Perlich, Jure
Leskovec, Wei Wang, and Rayid Ghani (eds.), The 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,
pp. 1296–1305. ACM, 2014. doi: 10.1145/2623330.2623701. URL https://doi.org/10.
1145/2623330.2623701.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. Defog: Discrete flow matching
for graph generation. CoRR, abs/2410.04263, 2024. doi: 10.48550/ARXIV.2410.04263. URL
https://doi.org/10.48550/arXiv.2410.04263.

Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity
preserving and structural role-based node embeddings. CoRR, abs/2101.03091, 2021. URL
https://arxiv.org/abs/2101.03091.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
a mixed-type diffusion model for tabular data generation. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net,
2025. URL https://openreview.net/forum?id=swvURjrt8z.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
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A NOTATION SUMMARY

Table 4 summarizes the notation used throughout the manuscript to describe the graph representa-
tions at different stages in the MAGiC framework.

Notation Description

Gr = (V ∈ Rn′×r, M ∈ {0, 1}n′×n′
) original graph with rich node attributes

Gs = (Z ∈ Rn′×s, M ∈ {0, 1}n′×n′
) graph encoded via sVAE (s≪ r)

E set of edge types (including no edge)
G = (X ∈ Rn×f , E ∈ En×n) coarsened graph n ≈ n′

2 , f = 2r
T total number of diffusion time steps
Gt = (Xt ∈ Rn×f ,Et ∈ [0, 1]n×n×|E|) graph G with one-hot encoded edges after t noise steps
etij ∈ [0, 1]|E| edge-type distribution between nodes i and j
ϵ ∼ N (0, I) node noise sample
αt node signal rate at time t
ᾱt node cumulative signal rate up to time t
Qt ∈ [0, 1]|E|×|E| edge transition matrix at time t
Q̄t ∈ [0, 1]|E|×|E| edge cumulative transition matrix up to time t
qG/X/E(·) forward diffusion process for graphs/nodes/edges
ϕθ(·) learnt reverse diffusion process
C coarsening function
C coarsening function
xi node i embedding
Encθ/Decθ sVAE encoder/decoder
π permutation of a graph

Table 4: Summary of the main notation used in the main text.

B MODEL DETAILS

Below, we provide details on the coarsening algorithm and learning setup of MAGiC.

B.1 IMPLEMENTATION NOTES

The following describes our procedure for training a model that harnesses mixed-type diffusion as
a backbone, alongside coarsening and structure-aware node attribute encoding via sVAE. Before
training the diffusion model, we pretrain the sVAE used to reduce attribute dimensionality, then
apply the sVAE, followed by the coarsening to the training data in preparation. Thus, the diffusion
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Algorithm 3 Graph Coarsening

Input: G = (Z ∈ Rn×s,M ∈ {0, 1}n′×n′
)

1: X← ∅, M← ∅
2: for mij ← edges in M sorted by D(zi, zj) do
3: if zi ∈ Z ∧ zj ∈ Z then
4: X← X ∪ Concat(zi, zj)
5: Z← Z \ {zi, zj}
6: else
7: M←M ∪mij

8: end if
9: end for

10: for zi ∈ Z sorted by D(zi,0) do
11: X← X ∪ Concat(zi,0)
12: end for
13: E← 0|X|×|X|

14: for mij ←M do
15: a← ParentID(zi,X), b← ParentID(zj ,X)
16: Eab ← Eab + EncodeEdge(mij) { Figure 3b}
17: end for
18: return X,E

loss is optimized directly in the reduced embedding space, and the mapping to the original space
only happens when a complete output is required, like during evaluation. In doing so, we avoid
involving the inverse coarsening and sVAE decoder while training the mixed-type diffusion model
so as not to increase training costs.

B.2 COARSENING ALGORITHM

Algorithm 3 describes the coarsening steps. We begin by sorting edges based on the distance be-
tween their constituent nodes in non-decreasing order (line 2). Based on the resulting order, we
greedily merge connected node pairs (lines 3–8). We then create zero-padded pairs with all nodes
that have not been merged (lines 10–11). Finally, with all the pairs in place, we create edges between
all newly created nodes according to Figure 3b (lines 14–16).

Algorithm 4 provides more details on the decoarsening. We first split each aggregated node repre-
sentation into two nodes (line 3), adding them and their edge to the original graph while skipping
any dummy zero-filled nodes (lines 4–8). Subsequently, we decode the edge type to expand each
edge in the compressed graph to the original graph edges it aggregates, adding them to the new
graph structure (lines 10–14).

B.3 SVAE

Figure 4 visualizes the architecture of sVAE for the case of two encoding and decoding layers,
respectively. Each layer takes as input a representation of the node attributes after the previous
step, along with the connectivity information of the graph. As is typical in VAEs, the encoder
Encθ estimates the parameters of a prior distribution, which, in our case, are the mean and variance
of a Gaussian. Consequently, the decoder Decθ expects a sample drawn from a Gaussian latent
distribution as input. Furthermore, we change between a sigmoid or softmax activation function
for each attribute based on whether it represents a numerical value or part of a one-hot encoded
categorical. If node attributes do not originally encode a tabular data row, we consider each feature
a unique numerical column.

C PROOFS

For an input graph G = (X ∈ Rn×f , M ∈ En×n) with n nodes, let the bijection π : {0, 1, . . . , n−
1} → {0, 1, . . . , n − 1} be a permutation of G’s nodes. As such, π−1 is the inverse permutation

14
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Algorithm 4 Inverse Graph Coarsening

Input: latent graph G = (X ∈ Rn×f ,E ∈ Nn×n
15 )

1: M← 0, Z← ∅
2: for xk in X do
3: (zi, zj)← xk

4: Z← Z ∪ {zi}
5: if zj ̸= 0 then
6: Z← Z ∪ {zj}
7: Mij = 1
8: end if
9: end for

10: for eij ← E do
11: for (a, b) ∈ DecodeEdge(ei,j) do
12: Mab = 1
13: end for
14: end for
15: return Z,M

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

SAGEConv
Layer

Decoder

Encoder

Figure 4: sVAE architecture with two encoder and decoder layers each.

obeying π−1(π(i)) = i ∀ i ∈ {0, 1, . . . , n − 1}. Applying π to G gives π.G = (π.X, π.E) where
(π.X)i = Xπ−1(i) and (π.M)ij = Mπ−1(i)π−1(j) ∀ i, j ∈ {0, 1, . . . , n− 1}.

Given the distance metric D(xi, xj) from the main text, we define:

Definition 1 (Unique distances property). The unique distances property denotes any graph in which
all neighboring node pairs (xi, xj) have:

(i) unique distances as defined by D(xi, xj), allowing unique inter-pair ordering;
(ii) D(xi,0) ̸= D(xj ,0), allowing unique intra-pair ordering.

A function mapping between two graphs is permutation equivariant if its output permutes in ac-
cordance with its input. Contrastingly, it is permutation invariant if its output remains unchanged
regardless of how the input node ordering.

Proposition 4. The composition of MAGiC’s sVAE encoder and coarsening is permutation invariant
for graphs with the unique distances property.

Proof Proposition 4. The composition of MAGiC’s sVAE encoder and coarsening is permutation
invariant if both sampling from the sVAE encoder Encθ output and coarsening C are invariant or one
is invariant while the other one is equivariant.

15
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The structure-aware encoder forming Encθ updates only the representations of nodes, mirroring
any permutation of the input nodes in the output. Also, sampling from the latent distribution only
changes the node embedding content, not node order. Thus, sVAE (and its sampling) is equivariant.

The coarsening of C creates nodes in the output graph by iterating through neighboring input node
pairs from lowest to highest based on D(·, ·). Since all distances between neighbors are assumed to
be different (Definition 1 (i)), the ordering of the pairs is fixed, regardless of the original ordering.
Within each pair, the chosen order for merging nodes affects the value of the merged node’s embed-
ding and its local connectivity. Since nodes within a pair are ordered by D(·, 0), and are assumed
always to have different values (Definition 1 (ii)), the ordering of nodes within a pair is also fixed,
regardless of the original ordering. Thus, coarsening is invariant.

From the above, it follows that, under the specified assumptions on Diff and Mag, the composition
MAGiC’s sVAE encoder and coarsening.

□

Proposition 5. MAGiC’s mixed-type diffusion is permutation equivariant.

Proof Proposition 5. Starting from the input, the diffusion model architecture involves, in sequence:
augmenting the input graph representation with additional structural features, applying a node/edge-
wise multi-layer perceptron block, applying one or more graph transformer blocks, and applying a
final node/edge-wise multi-layer perceptron block. Similar to Vignac et al. (2023), per-node struc-
tural features are permutation equivariant. Likewise, the per-graph structural features are permuta-
tion invariant (trivially, since the graph itself is the only element in the sequence). The multi-layer
perceptron block is permutation equivariant, and so are the individual transformer layers with their
self-attention mechanism.

Thus, the mixed-type diffusion of MAGiC is permutation equivariant.

□

Proof Proposition 1. Let Za ≺ Xi denote that the node embedding Za is present in Xi. The inverse
coarsening is a function C−1 = (X ∈ Rn×f , E ∈ En×n) → Rn′×s, M ∈ {0, 1}n′×n′

). Let
Gs = (Z, M) and G = (X, E) be two undirected graphs such that C(Gs) = G. Specifically, in
terms of node features, C transforms:

Z =


Z1

Z2

...
Zn′

 & M =


M1 1 M1 1 . . . M1 n′

M1 2 M2 2 . . . M2 n′

...
...

...
...

M1 n′ M2 n′ . . . Mn n′


into:

X = (X1,X2, . . . ,Xp,Xp+1,Xp+2, . . . ,Xp+s)
tr where

p+ s = n′

Xi≤p = min
D
{Concat(Za, Zb) | a < b; Ma b = 1; Za,Zb /∈ Xj≤i; D(Za, 0) < D(Zb, 0)}

Xp<i≤n′ = Concat(min
D
{Za | Za /∈ Xj≤i}, 0)

∀a, ∃! i : Za ≺ Xi

and:

E =


E1 1 E1 1 . . . E1 n

E1 2 E2 2 . . . E2 n

...
...

...
...

E1 n E2 n . . . En n

 where

Eij = 20 ·Mac + 21 ·Mad + 22 ·Mbc + 23 ·Mbd, i < j, ∀ (Xi = (Za, Zb), Xj = (Zc, Zd))

Note: coarsening creates as many pairs p as possible, leaving a minimum number of single nodes s.

Reversing the function starts with finding all the node representations in the coarse input of the
form Xs = Concat(Za, 0) ∈ X, where the Za entries are the single nodes of Z. The remaining
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node representations Xs = Concat(Za, Zb) ∈ X, contain in Za and Zb the representations of all
other nodes from Z which have been merged. Consequently, recovering edges starts with adding an
edge Mab = 1 between all nodes denoting a pair Xs = Concat(Za, Zb) ∈ X. Furthermore, from
adjacency entries for edges Eij ̸= 0, i < j with Xi = Concat(Za, Zb), and Xj = Concat(Zc, Zd),
all bidirectional edges between Za / Zb and Zc / Zd can be recovered from the corresponding active
bits in the binary encoding of Eij .

Thus, a permutation π of the original nodes V and edges M is recovered, meaning that MAGiC’s
coarsening is invertible up to permutation.

□

Proof Proposition 2. The end-to-end architecture is a composition of the sVAE and coarsening,
alongside the mixed-type diffusion. The first two jointly are invariant by Proposition 4, while the
mixed-type diffusion is equivariant by Proposition 5.

The invariant sVAE and coarsening combination maps all input permutations to a single output
ordering, while the equivariant mixed-type diffusion retains that ordering when applied. As such, all
permutations of the original graph get mapped to a single permutation after the sVAE, coarsening,
and diffusion pipeline, making the end-to-end MAGiC invariant.

□

Proof Proposition 3. The loss’ invariance can be proven by computation:

L((π.ϵ̂; π.p̂E), (π.ϵ; π.E)) = ||π.ϵ̂− π.ϵ||2 + λCrossEntropy(π.p̂E , π.E) def.

= ||ϵ̂− ϵ||2 + λCrossEntropy(π.p̂E , π.E) MSE invar.

= ||ϵ̂− ϵ||2 + λCrossEntropy(p̂E ,E) CrossEntropy invar.
= L((ϵ̂; p̂E), (ϵ; E)) def.

□

D EVALUATION EXTRAS

Below we provide additional details related to evaluation.

D.1 SETUP INFORMATION

We run all our experiments on an Nvidia RTX 4090 GPU with 24 GB of memory. For the Twitch
and Event datasets, our target columns indicate whether a user may earn money from the platform
and whether the gender of a user is marked as female. In OGBN-arxiv, initial node attributes are
128-dimensional embeddings of a scientific article title and abstract. Within the evaluation metrics
for node attributes, we interpret each embedding entry as a numerical column in a tabular data row.
For OGBN-arxiv, the created label denotes whether a paper is registered to one of the top four most
popular categories. Based on preliminary tests, we set MAGiC’s sVAE compression factor f ′ = ⌊ f4 ⌋
in all experiments for a good trade-off between compression and quality. For the above datasets with
rich node attributes, we train the diffusion model for each experiment over 5000 epochs and weight
the cross-entropy of edges 5 times higher than the MSE for node attributes in MAGiC and Mixed
Diffusion across all experiments. The training of sVAE happens before that of the diffusion model
for a maximum of 5000 epochs on the same training dataset, with an early stopping applied based
on the validation set loss. On the QM9 molecular datasets, we train our method for 1k epochs. As
for unattributed graphs, we run our method for 100k epochs in planar and 28k in SBM. Further
hyperparameters and experimental configuration settings are present in our codebase.

D.2 QUALITATIVE RESULTS

Table 5 shows real sample graphs from the Twitch and Event datasets. Table 6 and Table 7 showcase
an example graph from the two datasets for our baselines and proposed methods, respectively. We
only show the node feature values of the first 10 nodes for readability. Node colors represent the
relative connectivity density of nodes (blue = lowest, red = highest).
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Twitch Event

Table 5: Real samples from the Twitch and Event datasets.

Twitch Event
DiGress + TVAE

DiGress + TabDDPM

Table 6: Samples from the Twitch and Event datasets generated by the two baselines: DiGress +
TVAE and DiGress + TabDDPM.
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Twitch Event
Mixed Diffusion

MAGiC

Table 7: Samples from the Twitch and Event datasets generated by our two proposed methods:
Mixed Diffusion and the full MAGiC.
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