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Abstract

Causal inference with many potential concurrent causes presents significant chal-
lenges across various fields, from biomedicine to policy analysis. The core chal-
lenge lies in understanding how combinations of potential causes influence an
outcome, which becomes exponentially more complex as the number of potential
concurrent causes increases. To address this challenge, we propose to incorpo-
rate structural prior information that describes the interrelations between causes.
Specifically, we use a large language model (LLM) to systematically curate this
structural information, effectively reducing the complexity of the causal inference
task. We validate our method using both a semi-synthetic dataset and a real-world
case study from the film industry.1

1 Introduction

Causal inference from observational data is a critical but challenging task. Traditional settings often
focus on binary or continuous treatments [30, 10] while a lot of real-world situations involve complex
treatments made up of many concurrent causes. This complexity arises in fields such as medicine,
where the combined effects of multiple drugs are evaluated [41], or political science, where multiple
policies are studied [6]. In the film industry, producers must understand how different combinations
of actors (i.e. a cast) impact the box office performance, where each actor is a concurrent cause
and a specific cast constitutes a treatment, with return on investment (ROI) as the outcome. This
illustrative example will be used throughout the paper to demonstrate our methodology.

Many challenges arise in these novel settings. As the number of potential concurrent causes m
increases, the possible combinations grow exponentially, making it infeasible to consider each combi-
nation independently. To mitigate this, a common approach is to assume a multilinear relationship
between concurrent causes and the outcome [38, 31, 25]. However, this approach is complicated by
imbalanced data, where certain causes are observed more frequently, resulting in a higher variance
for less common causes. Furthermore, the fundamental problem of causal inference—the inability to
observe counterfactual outcomes—becomes more intractable as the number of causes grows, further
complicating the estimation of causal effects.

To address these challenges, a potential way is to incorporate prior knowledge to guide the estimation
process. Large language models (LLM), which have shown exceptional reasoning abilities in recent
years, present a promising solution for systematically curating this prior knowledge by extracting and
synthesizing information from vast text corpora, such as Wikipedia. Inspired by recent work on the
decomposition of complex tasks into simpler pairwise comparisons [44, 28], we propose a method
that takes advantage of LLMs to construct a similarity graph representing the interrelationships

1Our experiment code is openly available at
https://anonymous.4open.science/r/causal-inference-with-graph-prior-59B5.

NeurIPS 2024 Workshop on Causality and Large Models (CaLM).
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Figure 1: Overview of the proposed methodology for analyzing film ROI (outcome), where actors are
considered as concurrent causes. LLMs are used to extract structured actor information from raw text
sources (e.g., Wikipedia). Next, we prompt LLMs to retrieve and rank actor pairs based on similarity,
constructing a similarity graph where nodes represent actors and edges indicate the belief that one
actor can be replaced by another without impacting the film’s ROI. We assess the reliability of these
similarity judgments using FActScore [24]. Finally, the similarity graph serves as prior information
to regularize causal inference.

between potential concurrent causes. This graph serves as a structural prior that regularizes the
estimation process in causal inference. Our methodology is illustrated in Figure 1.

2 Method

2.1 Causal inference with many potential concurrent causes

Traditional approaches of causal inference from observational data aim to estimate the distribution
of potential outcomes Y given a binary treatment T , where T can take values t ∈ {0, 1}, in the
presence of n confounders x ∈ Rn. The potential outcome function Yi(t) represents the outcome
of subject i under treatment t. When multiple concurrent causes are considered, the treatment t is
extended to a binary vector v ∈ {0, 1}m, where m represents the number of potential concurrent
causes2. Consequently, the dataset consists of tuples D = {(vi,xi, yi)}Ni=1, where N denotes the
number of observations.

Our goal is to estimate the average treatment effect (ATE) µ(v) = E[Yi(v)] for any treatment v.
However, a naive Monte Carlo estimate of µ(v) are biased due to the fundamental problem of causal
inference, expressed as

E[Yi(v)|T = v] ̸= E[Yi(v)]. (1)

Given the assumptions of no unmeasured confounders, the Stable Unit Treatment Value Assumption
(SUTVA), and overlap (a.k.a. positivity) [11], the ATE µ(v) can be identified using a plug-in
estimator:

τ(v) = E[E[Yi(v)|X,V = v]] = µ(v). (2)

2While our method is presented using binary causes and a continuous outcome, it can be generalized to
accommodate continuous causes and discrete outcomes.
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In practice, we approximate the inner expectation with a parametric function fθ, often assumed to be
linear [38, 31, 25], and estimate τ(v) via Monte Carlo sampling:

τ̂(v) =
1

k

k∑
j=1:xj∼X

fθ(xj ,v), where fθ(x,v) = E[Yi(v)|X,V = v] = θ⊤x x+ θ⊤v v (3)

Here k is the sample size, and X represents the empirical distribution of covariates x in D. To learn
fθ, a straightforward method is to use ordinary least square (OLS) linear regression, which serves as
our baseline.

2.2 Structural Prior Knowledge

Definition In practice, we often have access to prior information regarding the similarity between
potential concurrent causes. This information is based on the belief that substituting one cause
for another is unlikely to significantly affect the potential outcome. For instance, as illustrated in
Figure 1, replacing Tom Cruise with Brad Pitt may not drastically alter a film’s box office. This
pairwise similarity relationship can be effectively represented by an undirected graph G = (V,A)
predetermined by domain expertise. Here, the node set V = {v1, . . . , vm} comprises all potential
causes, and the edges are encoded in an adjacency matrix A. We use an unweighted graph in the
demonstration.

Graph-Based Regularization We use Laplacian regularization, a graph-based regularization
technique that incorporates graph structure information into training, to regularize the linear regression
in Eq 3. Laplacian regularization has wide applications in multiple machine learning fields, such as
semi-supervised learning and graph learning [47, 46, 2, 40]. It introduces an explicit regularization
term into the objective function, leveraging the graph Laplacian, L = D−A, where D is the diagonal
degree matrix, to promote parameter similarity among strongly connected nodes. Therefore, the new
objective is

L =
1

N

N∑
i=1

(fθ(xi,vi)− yi)
2 + λθTv Lθv (4)

Here, λ controls the strength of regularization. Intuitively, the Laplacian regularization penalizes the
parameter discrepancies between connected nodes, thereby enforcing smoothness in the parameter
space in accordance with the graph structure.

2.3 Prior Knowledge Generation with LLMs

Relying on domain experts to curate prior knowledge is often inefficient due to the significant time
and financial costs involved. Inspired by recent advancements that leverage LLMs for atomic tasks
such as pairwise comparison [44, 28], we propose LLMs to automate the curation of this prior
knowledge. We illustrate our method through the aforementioned film example in Figure 1.

Information Retrieval and Intrinsic Feature Extraction To minimize hallucination, we integrate
a simplified version of retrieval-augmented generation (RAG) for prior knowledge generation. We
retrieve and process a collection of documents for each actor using the Wikipedia API. During the
generation phase, these preprocessed documents are provided to LLMs accordingly. This approach
enhances reproducibility and stability of the experiment and can be generalized or extended to
other applications where domain-specific background information is accessible. However, the raw
data retrieved from Wikipedia is not guaranteed to be free from confounding effects. For instance,
actor biographies may include information about their collaborations with other actors, which could
introduce bias. To address this issue, we employ LLMs to clean the prior information by filtering out
extraneous details and preserving only those intrinsic characteristics. Only this refined information is
used in subsequent steps.

Graph Construction and Factual Validation A straightforward graph construction process would
involve pairwise evaluations of all actors. To reduce the number of API calls, we first prompt LLMs to
retrieve the kretrieval most similar candidates for each actor without providing biographical information.
Subsequently, biographical information is added, and LLMs are prompted again to narrow down
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MSE (SE.)

Model No Control Control

Linear Regression 0.349 (0.001) 0.115 (0.003)
Laplacian Reg Linear Regression 0.231 (0.001) 0.018 (0.002)

Table 1: Performance comparison between the proposed method and the baseline under an ideal
synthetic scenario (rich observations and accurate prior). Standard errors (in parentheses) are
computed across 5 random seeds. The “Control” column indicates results when confounder control is
applied using a plug-in estimator, while “No Control” represents the setting without this adjustment.

and re-rank these candidates to obtain at most krank final choices. A detailed example of this process
can be found in Appendix D. To ensure the faithfulness of this process, we solicit both a similarity
score and an explanation for each proposed similarity from the LLM. We then use FActScore [24]
to evaluate the extent to which the rationale is supported by evidence from the curated documents,
ensuring that the generated knowledge is accurate and reliable.

3 Semi-Synthetic Experiment Validation

In this section, we evaluate the effectiveness of the proposed regularization technique using a semi-
synthetic dataset. Our goal is to estimate the underlying parameters, θv, assuming a linear data
generation process. Since obtaining ground truth in real-world scenarios is challenging, we create a
semi-synthetic dataset based on the TMDB5000 dataset3 for quantitative validation.

Settings The original TMDB5000 dataset includes data of 901 actors, each having appeared in at
least 9 movies, along with revenue information for 2,828 movies. The movies in this dataset span
18 genres and are delivered in 58 languages. In our semi-synthetic dataset, we utilize the genre
information as confounders, thus representing each film i with covariates xi ∈ {0, 1}18. We then
generate the treatments vi based on the confounders xi, and create the true parameters θ from a
uniform distribution. The outcomes yi are generated using a linear relationship as defined in Eq.3.
The graph prior is constructed according to pairwise similarity within θv + ϵ, where ϵ is noise that
controls the accuracy of the prior. Further details on the data generation process can be found in
Appendix C. We report the mean squared error (MSE) between the learned parameters “θv and the
true parameters θv .
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Figure 2: The effects of dataset properties on performance of the models. Error bars indicate the
standard error derived by 5 different random seeds. Left: The performance of the models vs. the
number of observation. Right: The performance of graph regularization method vs. the level of noise.
The x-axis indicates the standard error of noise σθ.

Results We evaluate our methods under three scenarios. (a) In the ideal scenario, the number
of observations N = 2, 828 is large, and the prior information (represented by G) is accurate. As
shown in Table 1, the proposed method significantly outperforms the baseline, yielding more accurate

3https://www.kaggle.com/tmdb
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Figure 3: Left: Graph prior generated by LLM, showing connections among 901 actors. The presence
of an edge indicates the two connected actors are similar. Node colors indicate learned parameters
(green: positive; red: negative). Right: Coefficients learned by two methods. Despite a very small
regularization, certain data points are affected significantly.

estimates of θv regardless of whether confounder control is applied. (b) Next, we vary the number
of observations to evaluate the performance of both methods under sparse data conditions. Figure 2
(Left) shows that our method consistently outperforms the baseline. The graph prior proves especially
useful when the number of observations is moderate, as nodes with limited data benefit from similar
neighboring nodes. However, when the number of observations is reduced to as few as 100, the
performance gap between the two methods narrows due to the limited data available for accurate
prediction. Conversely, when the number of observations is abundant, the performance of graph
regularization saturates, reducing the disparity between the methods. (c) Finally, we investigate
the robustness of the graph regularization method under varying levels of noise in the graph prior.
Specifically, we examine scenarios where the noise standard deviation σϵ is adjusted. Given that the
standard deviation of θv is σθ = 1/

√
3 ≈ 0.58, the injected noise is substantial compared to the scale

of the ground truth parameters. As seen in Figure 2 (Right), our approach continues to outperform
basic linear regression until σϵ reaches 0.4, demonstrating its resilience in noisy environments.

4 Real-World Case Study

In this section, we demonstrate the effectiveness of the proposed pipeline through a real-world case
study using the original TMDB5000 dataset.

4.1 Prior Knowledge Generation with LLMs

Graph Construction and Validation We follow the pipeline described in Sec 2.3 to generate
the graph prior. For each actor, intrinsic features such as gender, birth, race, acting styles, and
background information are extracted from Wikipedia. We set kretrieval = 10 and krank = 5 during
graph construction, utilizing the gpt-4o-2024-05-13 model for all experiments4.

Graph Validation We use FActScore [24] as a measurement of the trustworthiness of the LLM-
generated graph prior. It decomposes the LLM generation into atomic facts and checks the average
groundedness of each atomic fact against a trusted corpus. In our case, we evaluates the FActScore of
the reasoning provided along with the similarity judgement. Using the RAG, our final average score
for the generation is 89.5%, indicating most of the statements are supported by facts5.

4The prompt and sample response from the LLM are provided in Appendix D.
5The implementation details of FActScore are shown in Appendix E.
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Figure 4: Ego networks of actors with high discrepancy in coefficients. Node colors indicate learned
parameters (same as Figure 3). Left: 1-hop ego graph centered on Keira Knightley. Right: 2-hop ego
graph centered on Method Man.

Results The extracted graph prior is visualized in Figure 3 (Left), comprising 2078 edges with an
average node degree of 2.31. Notably, the graph features three major components corresponding to
male, female, and child actors, suggesting that it effectively captures essential information on actor
similarity. A few isolated nodes are also present, such as Aasif Mandvi, who is the only actor in the
dataset with an Indian background, demonstrating his irreplaceability.

4.2 Comparison Study

Settings Utilizing the generated graph prior, we apply Laplacian regularization to linear regression
and compare it with standard linear regression without regularization. A small regularization weight
of λ = 0.001 is chosen to ensure that the scale of the learned coefficients remains largely unaffected.

Results Figure 3 (Right) shows the disparity in the learned coefficients between the two methods,
with a Pearson correlation of 0.97. Despite the minimal regularization applied, there is a noticeable
difference in the coefficients attributed to specific actors. We present case studies of two actors
with notable coefficient discrepancies between standard and Laplacian-regularized linear regressions.
Figure 4 (Left) shows Keira Knightley’s ego graph, where her positive coefficient in the standard
regression is significantly reduced under the graph-regularized model by 0.099. This reduction
reflects the lower coefficients of her neighbors, with regularization penalizing her value accordingly.
In contrast, Method Man’s coefficient increases with regularization by 0.071, influenced by positive
coefficients of nearby actors like RZA and Richard T. Jones, shown in Figure 4 (Right). Notably,
Method Man is recognized more for his contributions to hip hop than acting, leading to fewer
collaborations with prominent directors. The directors of his notable films, including Mike Devine
and Jonathan Levine, are not widely recognized. This highlights a possible neglect of important
confounding variables, such as a movie’s director, underscoring the necessity for additional control
measures in the analysis.

5 Discussion

Conclusion We propose a graph-based method for causal inference with multiple concurrent causes.
By using LLMs to extract prior knowledge and construct the graph, we enhance the model’s ability
to capture complex relationships that traditional methods overlook. This approach demonstrates the
value of LLMs in enriching causal inference with structured, context-aware insights.

Limitations and Future Work One limitation of the current approach lies in the similarity judgment
by LLM, which requires inputting the full list of actors into the LLM’s context window. For larger
datasets, this can exceed the LLM’s context limit, though this issue could potentially be mitigated
by splitting the list across multiple windows. Additionally, the proposed method assumes a linear
data generation process, which may not fully capture the complexities of real-world scenarios. A
promising direction for future work is to extend the approach by using the graph prior for data
augmentation, enabling the model to better handle non-linear relationships and more intricate causal
structures.
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A Visualization of Graph Prior

We use graph-tool’s Hierarchical community detection algorithm to plot the visualization of the
extracted graph prior, shown in Figure 5.

B Related Work

Multiple Causal Inference Multiple causal inference is a topic of interest, spurred by a plethora of
applications that have garnered attention in the machine learning community, inclusive of genome-
wide association studies (GWAS), recommender systems, and polypharmacy [39, 32, 29, 31].
Numerous studies have been conducted in the realm of causal inference with multiple ver-
sions of treatments, where a single chosen treatment is administered to a subject per observa-
tion [3, 43, 10, 45, 22, 21, 29, 35, 17]. Alternatively, some studies focus on combinatorial treatments,
where multiple treatments can be administered concurrently to a subject [15, 38, 27, 31]. The latter
type of study is generally more complex due to the expanded treatment space and is therefore more
challenging to approach. Our work also falls into this category. [31] explores the extension of
G-computation, inverse propensity score estimation, and the double robust estimator with respect to
four concurrent treatments. [39] proposes a novel algorithm "deconfounder" to tackle the problem
of unobserved confounders in multiple causal inference scenarios. [27] seeks to address severe data
scarcity by utilizing data augmentation techniques.

Causal Inference Incorporating Graph Structure A substantial body of work on causal inference
involves the integration of graph structures or graph data. Some studies consider subject networks
and corresponding network effects that potentially violate the basic assumptions of causal inference
from observational data [12, 1, 7, 18, 13, 26, 34, 8]. For instance, [12] elucidates the limitations of
standard graph machine learning models in estimating causal effects on networked observational data.
Other research efforts have focused on estimating the causal effects of graph-structured treatments.
As an example, [9] takes into account the graph structure of drug chemicals and employs a Graph
Neural Network (GNN) to learn the representation of graph treatments. However, none of the existing
work explores the setting where multiple treatments are modeled through a graph structure to estimate
causal effects.

LLMs and Graph Creation As large language models emerge these years, they are applied to
various downstream tasks, including graph construction in different contexts. One such kind of
graphs are the knowledge graphs [14, 23], where LLMs serve as domain experts to develop ontology
and build graphs that represent real-world knowledge. In causal inference, previous studies also
leverage LLMs to explore causal relationships for directed acyclic graphs (DAG) engineering [19].
For instance, [16] opens the frontier by utilizing LLMs to determine pair-wise causal relationships.
Despite the the high accuracy of this approach, it actually has some drawbacks, such as cyclic graph
structure [36], the O(N2) compleity [4] and false information [20, 33]. To mitigate these problems,
other works also investigate the role of LLMs in causal discovery [42, 20, 37, 5], which focuses on
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Figure 5: Graph prior that represents actor similarity relationships, generated using prior knowledge
from ChatGPT, showing connections among 901 actors. Each edge indicates a similarity between the
connected actors. Blue nodes represent male actors, red nodes represent female actors, and green
nodes represent child actors. Two isolated nodes are highlighted in yellow and olive.
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Figure 6: Statistical Distribution Characteristics of the Synthetic Dataset. The dataset mirrors real-
world distributions, with both the number of actors and ground truth outcomes adhering to a normal
distribution. Furthermore, the distribution of movies per actor indicates that most actors participate in
a limited number of movies, paralleling real-world trends.

recovering instead of generating causal graphs. While most of the previous research is focusing on
causal discovery, our research is trying to expand the boundaries of LLMs in graph-guided causal
estimation, as a reliable foundation model for structural prior retrieval.

C Constructing the Semi-synthetic Dataset

When generating the semi-synthetic dataset, we use the genres of a movie in the original dataset as
the confounder, i.e. x ∈ {0, 1}18. The actors are the causes and the outcome of interest Y is the
ROI of a movie. Only the confounders are from the real-world distribution, both treatments and
outcomes are generated. We suppose there are m = 1000 actors in total so a treatment is a binary
vector v ∈ {0, 1}1000 indicating whether 1000 actors are in the movie or not. The relation of the
confounder genre and the cause actors is defined by a preference matrix W :

pv = α · softmax(Wx) (5)

where W ∈ Rn×m and each element of it follows the normal distribution N (0, 1). The probability
of an actor j appeared in the movie is then P [vj = 1] = pvj . We sample the actors of a movie from
the Bernoulli distribution B(pvj ) accordingly. α is the expected number of actors per movie so that
given a movie, E[

∑m
j=1 vj ] = α. We set α to be 10 in our experiments to be reasonably close to a

real-world setting. The ground truth causal and confounder effect θv and θx are generated from a
uniform distribution U(−1, 1). We then define the linear outcome model:

yi = θTv vi + θTx xi + ϵy (6)

as we assume the linear model and ϵy ∼ N (0, 1). With the ground truth causal effect, we use the
Gaussian kernel to to measure the similarity between the actors to create a binary graph prior A:

Aij = 1

ñ
exp

(θ̃vi − θ̃vj )
2

2σ2
v

≥ T

ô
(7)

where σv and T are parameters to control the density of the graph. In particular, the prior is usually
expected to be noisy. Therefore, we set σ̃v = σv + ϵ where ϵ ∼ N (0, σϵ) and control σϵ to inject
noise of different scale in our semi-synthetic setting.
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D Prior Information Graph Construction Detail

D.1 Prompts

The following section shows the complete prompts used to generate the prior information graph in
this paper.

D.1.1 Intrinsic Feature Extraction

You will be provided with an introduction of <ACTOR_NAME > and your
task is to summarize the following information from the text:

1. gender
2. birth
3. race
4. acting styles
5. other background information that demonstrates the intrinsic

characteristics.

Each section should be less than a few sentences. Think step by step
and present your final answer in JSON format.

# Information

The information for <ACTOR_NAME > is provided here:
<DESCRIPTION >

# JSON Format

The JSON format should be as follows:
{

"name": "<name >",
"birth": "<birthday >"
"gender ": "<gender >",
"race": "<race >",
"styles ": "<styles >",
"background ": "<background >"

}

# Example of an output JSON

{
"name": "Actor A",
"birth": "October 1, 1970"
"gender ": "male",
"race": "white",
"styles ": "Method acting , Classical theatre , Comedy",
"background ": "Actor A was born in a small town in the Midwest. He

discovered his passion for acting in high school theatre and
went on to study drama at a prestigious performing arts school.
Known for his versatility , he has performed in a variety of
roles ranging from Shakespearean plays to modern comedies ."

}

D.1.2 Candidates Retrieval

# Context

You are an expert in the film industry , with a deep understanding of
actors and actresses , including their characteristics and
connections within the industry. Your task is to identify which 5
actors or actresses are most similar to <ACTOR_NAME >, excluding <
ACTOR_NAME > themselves. This is to suggest that a director could
potentially replace <ACTOR_NAME > with one of these five

12



individuals without significantly impacting the movie ’s outcome.
Consider factors such as their acting style , genres they typically
work in, gender , age , nationality , ethnicity , and other relevant

traits. Additionally , you may weigh their professional experiences
and past collaborations. These suggestions are merely guidelines;
you may rely on other evidence if you believe it more accurately

supports your analysis.

We provide the information for <ACTOR_NAME >:
<DESCRIPTION >

Please follow the steps below:
1. Provide a description of <ACTOR_NAME > with at least three sentences

. Outline your criteria for similarity , explaining what factors
you believe are most critical for this comparison.

2. From the provided ’Actor List ’, preliminarily select 10 candidates.
At this stage , a detailed explanation for each choice is not

required , and they do not need to be ranked or meticulously
filtered for relevance.

Verify the presence of your candidates in the ’Actor List ’. If any
selected individuals do not appear on this list , they should be
excluded from further consideration.

Return the final result in JSON format.

# JSON Format

The JSON format should be as follows:
[{" name": <name >, "id": <id >}, ...]

# Actor List

<ACTOR_LIST >

Figure 7: Illustration of leveraging LLM (ChatGPT) to generate a graph prior for actors from
TMDB5000. A three-step dialogue is used to identify five actors similar to Tom Cruise. The
prompting process are detailed in Appendix D

D.1.3 Candidates Reranking
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# Context

You are an expert in the film industry , with a deep understanding of
actors and actresses , including their characteristics and
connections within the industry. Your task is to identify which 5
actors or actresses are most similar to <ACTOR_NAME > from the
candidates list , excluding <ACTOR_NAME > themselves. This is to
suggest that a director could potentially replace <ACTOR_NAME >
with one of these five individuals without significantly impacting
the movie ’s outcome. Consider factors such as their acting style ,
genres they typically work in , gender , age , nationality ,

ethnicity , and other relevant traits. Additionally , you may weigh
their professional experiences and past collaborations. These
suggestions are merely guidelines; you may rely on other evidence
if you believe it more accurately supports your analysis.

Please follow the steps below:
1. Narrow your selection down to the 5 most suitable candidates based

on the initial criteria.
2. Present your final selection in JSON format , listing each actor ’s

name , ID (as indicated in the ’Actor List ’), similarity score (on
a scale of 1-10), and a brief explanation of why each actor or
actress is considered similar to <ACTOR_NAME >.

# JSON Format

The JSON format should be as follows:
[

{
"name": "<name >",
"id": <id>,
"similarity_score ": <similarity_score >,
"explanation ": "..."

},
...

]

# Example of Scoring Standard

An example is provided below to indicate how the similarity score
should be

interpreted. This is only a guide , and you may use your own judgment
to assign

scores.

[
{

"name": "Actor A",
"id": 123,
"similarity_score ": 3,
"explanation ": "Actor A shares the action genre with <ACTOR_NAME >

but has a distinctly different acting style , focusing more on
physical prowess than nuanced emotional expression.
Additionally , there ’s a significant age difference , limiting
role interchangeability ."

},
{

"name": "Actor B",
"id": 456,
"similarity_score ": 5,
"explanation ": "Actor B and <ACTOR_NAME > have both thrived in

drama films and share a similar acting range. However , Actor B
has primarily been cast in supporting roles , and their

physical appearance is quite different , which might affect

14



audience acceptance in leading roles traditionally played by <
ACTOR_NAME >."

},
{

"name": "Actor C",
"id": 789,
"similarity_score ": 8,
"explanation ": "Actor C is very similar to <ACTOR_NAME > in age ,

acting style , and the types of characters portrayed ,
particularly in romantic comedies. While there ’s a slight
difference in their career trajectories , Actor C could
seamlessly step into roles typically associated with <
ACTOR_NAME >."

},
{

"name": "Actor D",
"id": 1011,
"similarity_score ": 10,
"explanation ": "Actor D is almost indistinguishable from <

ACTOR_NAME > in terms of physical appearance , acting range , and
genre specialization. They have even been considered for the

same roles in the past , making Actor D an ideal substitute for
<ACTOR_NAME > in virtually any project ."

}
]

# Candidate list
Make your selection based on the list below. The descriptions for the

actors are also provided for your reference:
<candidates_info >

D.2 EXAMPLE RESPONSE

{
"name": "Sam Worthington",
"birth": "August 2, 1976",
"gender ": "male",
"race": "white",
"styles ": "Method acting , Action roles , Dramatic roles",
"background ": "Sam Worthington is an Australian actor born to

English parents in Surrey , UK , and moved to Australia as an
infant. He studied drama but did not finish high school and
began his career through construction work before gaining a
scholarship to the National Institute of Dramatic Art. Known for
his lead roles in the Avatar franchise and Terminator Salvation

, Worthington has received critical acclaim in both film and
television , and is also recognized for his work in video games."

}

### Description of Sam Worthington

Sam Worthington is an Australian actor born on August 2, 1976, known
for his method acting and roles in action and dramatic films. He
gained international fame for his lead roles in the "Avatar"
franchise and "Terminator Salvation ." Worthington ’s background
includes a mix of English and Australian influences , and he has
received critical acclaim in both film and television , as well as
recognition for his work in video games.

### Criteria for Similarity

1. ** Acting Style **: Method acting , action roles , dramatic roles.
2. ** Genres **: Primarily action and drama.
3. ** Gender **: Male.
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4. **Age Range **: Born between 1970 and 1985.
5. ** Nationality/Ethnicity **: Preferably Australian or actors with a

similar Western background.
6. ** Professional Experience **: Experience in high -profile action and

dramatic films , possibly with some involvement in franchises or
video games.

7. **Past Collaborations **: Actors who have worked with similar
directors or in similar types of projects.

### Preliminary Selection of 10 Candidates

1. ** Orlando Bloom ** (ID: 6)
2. ** Christian Bale** (ID: 20)
3. **Tom Hardy** (ID: 24)
4. **Liam Neeson ** (ID: 29)
5. **Ben Mendelsohn ** (ID: 30)
6. **Chris Hemsworth ** (ID: 62)
7. ** Jeremy Renner ** (ID: 66)
8. ** Daniel Craig ** (ID: 15)
9. **Jake Gyllenhaal ** (ID: 298)
10. ** Gerard Butler ** (ID: 421)

### Verification and Final Result

All selected candidates are present in the provided ’Actor List ’. Here
is the final result in JSON format:

‘‘‘json
[

{"name": "Orlando Bloom", "id": 6},
{"name": "Christian Bale", "id": 20},
{"name": "Tom Hardy", "id": 24},
{"name": "Liam Neeson", "id": 29},
{"name": "Ben Mendelsohn", "id": 30},
{"name": "Chris Hemsworth", "id": 62},
{"name": "Jeremy Renner", "id": 66},
{"name": "Daniel Craig", "id": 15},
{"name": "Jake Gyllenhaal", "id": 298},
{"name": "Gerard Butler", "id": 421}

]
‘‘‘

Based on the provided criteria and the candidate list , here are the
five actors most similar to Sam Worthington:

‘‘‘json
[

{
"name": "Chris Hemsworth",
"id": 62,
"similarity_score ": 9,
"explanation ": "Chris Hemsworth and Sam Worthington share a

similar physical presence and have both starred in action -
packed roles. Hemsworth ’s work in the Marvel Cinematic
Universe as Thor aligns well with Worthington ’s roles in
Avatar and Clash of the Titans. Both actors are Australian ,
which adds to their similarity in terms of accent and cultural
background ."

},
{

"name": "Gerard Butler",
"id": 421,
"similarity_score ": 8,
"explanation ": "Gerard Butler and Sam Worthington have both taken

on roles in action and historical epics. Butler ’s performance
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in 300 is comparable to Worthington ’s in Clash of the Titans.
Both actors have a rugged , commanding screen presence and have
worked in similar genres , making Butler a suitable

replacement ."
},
{

"name": "Tom Hardy",
"id": 24,
"similarity_score ": 7,
"explanation ": "Tom Hardy and Sam Worthington share a penchant for

intense , physically demanding roles. Hardy ’s versatility and
experience in action films like Mad Max: Fury Road align well
with Worthington ’s filmography. Although Hardy is known for
his method acting , their overall acting styles and genre
preferences are quite similar ."

},
{

"name": "Jeremy Renner",
"id": 66,
"similarity_score ": 7,
"explanation ": "Jeremy Renner and Sam Worthington have both

excelled in action and thriller genres. Renner ’s roles in the
Bourne series and the Marvel Cinematic Universe showcase his
ability to handle intense , action -oriented characters , similar
to Worthington ’s roles in Avatar and Terminator Salvation ."

},
{

"name": "Jake Gyllenhaal",
"id": 298,
"similarity_score ": 6,
"explanation ": "Jake Gyllenhaal and Sam Worthington both have a

versatile range , though Gyllenhaal leans more towards dramatic
and psychological roles. However , Gyllenhaal ’s performances

in action -thrillers like Source Code and End of Watch
demonstrate his capability to take on roles similar to those
of Worthington ."

}
]
‘‘‘

These actors were selected based on their similarities in acting style
, genre preferences , physical presence , and professional
experiences , making them suitable replacements for Sam Worthington
.

E FActScore Implementation

The FActScore evaluation is basically performed using the original implementation in
https://github.com/shmsw25/FActScore. For each edge in the replacement graph, we retrieve the
documents relevant to the two actors involved from wikipedia database, and prompt GPT-4o-mini for
groundedness evaluation. We just skip the evaluation for certain edge if the document for either of
the involved actor does not exist.

We evaluated 4161 reasonings in total. The average number of atomic facts contained in each edge
reasoning is 11.20. The resulting FActScore is 85.4% with a length penalty γ = 10, which means the
generation will be penalized if it is shorter than 2 sentences. Without this penalty, the FActScore is
89.5%.
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