Under review as a conference paper at ICLR 2026

TOWARDS SCALABLE AND ROBUST FILTRATION
LEARNING FOR POINT CLOUDS VIA PRINCIPAL PER-
SISTENCE MEASURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Topological features in persistent homology extracted via a filtration process have
been shown to enhance the performance of machine learning tasks on point clouds.
The performance is highly related to the choice of filtration, thereby underscoring
the critical significance of filtration learning. However, current supervised filtra-
tion learning method for point clouds can not scale well. We identify that this
shortcoming stems from the utilization of Persistence Diagrams (PD) for encod-
ing topological features, such as connected components, rings or voids, etc. To
address this issue, we propose to use Principal Persistence Measure (PPM), an ex-
isting statistical approximation of PD, as an alternative representation and adapt
existing network for PPM-based filtration learning. Experimental results on point
cloud classification task demonstrate the effectiveness, scalability and robustness
of our PPM-based framework.

1 INTRODUCTION

Topological information is shown to be effective in machine learning tasks on point clouds across
many fields, such as biology (Kovacev-Nikolic et al., 2016} |Liu et al., [2022; Meng et al., |2020; Xia
et al., 2018; Xia & Wei, 2015) and chemistry (Hiraoka et al., [2016; [Lee et al.l [2017; [Townsend
et al., |2020). Topological features of a point cloud are built from a nested sequence of simplicial
complexes (Salnikov et al., 2018) called filtration. The birth (b; € R) and death (d; € R) of a cycle,
e.g., a ring (1-dimensional cycle) or a void (2-dimensional cycle), of the sequence are encoded in
Persistence Diagram (PD) D = {r; = (b;,d;) € Q|1 <1i < N(D)}, where each r € D is defined
as a topological feature corresponding to the cycle, Q@ = {(t1,t3) € R?|ty > ¢} is an open
half-plane and N (D) is the number of topological features. PD can be transformed into a vector and
fed into a machine learning model as input. A brief illustration of PD-based pipeline for point cloud
[ﬂis shown in Figure a,b,d,f).

In the pipeline, despite different learnable vectorization methods like (Carriere et al.| (2020); |Kim
et al.| (2020); Reinauer et al.|(2021)), it is shown in|Nishikawa et al.|(2023)) that the final performance
is highly affected by the choice of the filtration. In addition, although there are different unsupervised
filtration choices like Rips (Hausmann et al.| [1995), DTM (Fasy et al. [2018)) and A-filter (Zhang
et al., 2023)), supervised filtration learning (Nishikawa et al., 2023)) for point cloud often produces
better results. We will refer this PD-based pipeline with filtration learning as PD-FL for short.

Based on weighted filtration, PD-FL (Nishikawa et al.| [2023)) develops a neural network architecture
with isometry-invariance to learn the weight in an end-to-end way. However, since the computation
algorithm E] of filtration-induced PD is highly nontrivial to parallelize and can only be conducted
by either pure CPU implementations (Bauer, 2021} |[Pérez et al., 2021) or a CPU-GPU hybrid one

"Note that this pipeline can also be used for graph data, where the filtration usually employs unsuper-
vised characteristics of a graph like degree (vertex-level), Ricci curvature (edge-level)(Ballester & Rieck, [2023]
O’Bray et al.|[2021} Southern et al.,[2023)) or outputs of supervised learnable networks (Hofer et al.,[2020; [Horn
et al.} 2022} Immonen et al.| 2023; Mukherjee et al.l 2024} [Zhang et al.| [2022). In this paper, we focus on the
pipeline for point cloud.

2As pointed by [Zomorodian & Carlsson| (2004), time complexity for computing PD in the worst case is
O(m?), where m is the number of simplices in the filtration. If we want topological feature corresponding to

Under review as a conference paper at ICLR 2026

(AIDOS-Lab; [Zhang et al.l |2020), this network suffers from high time cost and can not scale for a
large point cloud.

In order to address this issue, we propose to replace PD in the pipeline with Principal Persistence
Measure (PPM) (Gomez & Mémoli, 2024} Tung et al., 2025)), which is a statistical approximation
of PD, for the following two reasons: 1) As shown in Tung et al.| (2025), PPM can be computed
entirely on GPU in a parallel way, making it ideal for a scalable filtration learning framework.
2) PPM can capture topological information in a point cloud. PPM has been used in [Tung et al.
(2025) for latent space matching in Generative Adversarial Networks (Goodfellow et al., [2020).
Although PPM is a rather vague approximation of PD and may not demonstrate all the possible
topological features in a point cloud because the sampling mechanism favors points in dense region,
the experiments in Figure 2 of [Tung et al.|(2025)) demonstrate that a smaller distance (measured by
Persistence Weighted Gaussian Kernel (Kusano et al., 2016 based Maximum Mean Discrepancy)
between two PPMs indicates a smaller Wasserstein distance between the PDs. This shows that
topological information can be obtained through PPM.

The main contributions of this work are threefold:

1. Propose to use Principal Persistence Measure (PPM) in filtration learning framework
(Nishikawa et all |2023) to addresses the scalability limitation of PD-based approach and
adapt existing framework for PPM-based Filtration Learning (PPM-FL).

2. Establish the theoretical guarantee on the robustness of PPM against outliers and perform
corresponding experimental validation.

3. Demonstrate the effectiveness and scalability of our proposed PPM-FL in point cloud classi-
fication task on public datasets.

The notations are summarized in Table [Tl

Table 1: Notations.

Notation Type Description

X Point Cloud Finite point cloud sampled from a k-dimensional manifold M C R¢

X3 Sublevel Set Sublevel set of X at scale n for filter function g : X — R+

ICZX) Filtration Nested sequence of topological spaces { X }o<y<oo

D Persistence Diagram (PD) ~ Multiset of topological features D = {r; = (b;,d;) € Q | 1 < i <
N(D)}, where b; is birth, d; is death of a cycle

Q Open Half Plane Q= {(t1,t2) €R? | ta > 11}

T Topological Feature r, €D CQ

N(D) Count Number of topological features in PD

q Homology Dimension Dimension of cycles

w(-) Weight Function Weight function for weighted filtration

Xy Subset Collection X = Uie[M X ; where Xsi C X is arandom subset of size 2q + 2

M Count Number of random subsets in PPM

I Empirical EPD Average measure of PDs from random subsets: i = ﬁ Zgl I

i Sampled PD Dirac measure for PD of subset X? (sampled PD): y; = Zj.vz(lDl) Or;s
0y, is the Dirac point mass at topological feature 7;

P, Contaminated Distribution P, = (1 —€) - P +€- U, P is inlier density, U is outlier density and e

is the outlier percentage

2 BACKGROUND

We provide the relevant information about Persistence Diagram and weighted filtration (refer to
Chazal & Michel| (2021) for a comprehensive introduction).

1-dimensional cycle (ring), we need to consider up to 2-simplices in the complex. The number of simplices is
O(n®) and the computational cost can be up to O(n”), where n is the size of the point cloud.

Under review as a conference paper at ICLR 2026

b~/\
ﬁak K,\E> g

n = 0.50 n=0.89 n=172 DN
c e —

n=170 n=193 n=1.98

T 1e
Birth

Figure 1: PD (a,b,d,f) and PPM-based (a,c,e,f) pipeline for point cloud. (a) Original point cloud
X. Note that this can also be a distance matrix, since in the construction of simplicial complexes
of the filtration, a pairwise connection is added if the pairwise distance is lower than a threshold 7.
This can be equivalently expressed that for balls centered at each point with radius of 7/2, if two
balls touch, an edge between two balls’ centers is added. (b) An example filtration (Rips filtration)
at values of 17 of X. The union of balls is intended to show the process of the Rips filtration: when
two balls touch (pairwise distance < 7)), an edge is added. According to Nerve theorem (Mona &
Hintz, |2023), X,, = U,ex B(x,7/2) is actually homotopy equivalent to Céch complex. While the
Rips filtration serves as a practical approximation of the Céch filtration, it does not strictly reflect
the topology of the union of balls. (c) An example filtration (Rips filtration) at various values of
n of one subset of X. The distances of the bold lines are ¢, and ¢4. (d) 1-dimensional Persistence
Diagram of X. (e) 1-dimensional Principal Persistence Measure of X. The red point corresponds
to the topological feature obtained via the red subset in (c). (f) Vectorization of PD or PPM.

2.1 PERSISTENCE DIAGRAM

Let g : X — RT denote a function on space X, where RT stands for positive real numbers, X
is a bounded and open subset of Euclidean space. Function g is computed based on a finite point
cloud X sampled from manifold M C X'. This manifold assumption means that the finite point
cloud X is sampled from an underlying k-dimensional manifold M, where M C R? is a smooth,
low-dimensional subspace embedded in a higher-dimensional Euclidean space R?. At scale > 0,
the sublevel set X = {x € X | g(x) < n} encodes the topological information in X'. For v < 1,
we can have the nested sublevel sets XY C X¢. By increasing scale 7 from 0, we obtain a filtration
K(X) = {XJ }o<n<co, a nested sequence of topological spaces.

A cycle is considered ‘born’ at b € R when it first emerges in X, and it ‘dies’ at d € R when it
ceases to exist in XJ for any p > d. 0-dimensional cycles are connected components; 1-dimensional
cycles are rings or loops; 2-dimensional cycles are voids, etc. This homology dimension is denoted
as ¢. Topological feature » = (b, d), which corresponds to a cycle, is presented in the form of PD
D = {r; = (b;,d;) € Q1 < i < N(D)}, where N (D) is the number of topological features. An
example using Rips filtration (Hausmann et al.,|1995)) g(-) = 2 min,¢x (-, z), where ¢ is Euclidean
distance, and corresponding PD are provided in Figures [T(b) and [[(d). In practice, we usually set
the maximum threshold for the filtration to be a finite value or just remove the point with infinite
death time since it exists for all point clouds and has no practical value.

2.2 WEIGHTED FILTRATION

In Rips filtration, at scale 7, the sublevel set is X, = J .y B(x,7/2), where B(x,7/2) is the
ball centered at 2z with radius 1/2. Each ball has the same radius. Weighted filtration aims to put
weight on each point’s corresponding radius. For weighted filtration, at scale 7, the sublevel set is
Xy = U,ex B(x,n—w(x)), where w(-) : X — Ris the weight function. Current work (Nishikawa
et al.| 2023)), i.e., PD-FL, designed a network to learn this weight function w. In order to align with
the setting in PD-FL and ensure a fair comparison, our work is also based on the weighted filtration.

Under review as a conference paper at ICLR 2026

3 RELATED WORK

3.1 FILTRATION LEARNING

Supervised filtration learning is first introduced for graph dataﬂby designing learnable vertex filter
function (Hofer et al., 2020). It is then studied for more extensive and general purposes on graph
data (Horn et al., [2022; Immonen et al., 2023; Mukherjee et al.|[2024; |Zhang et al.,[2022). Filtration
learning for point cloud is rarely developed. Existing work (Nishikawa et al.l 2023)) built a network
via weighted filtration, i.e., given a point cloud X C R?, one can define the radius value 7, (n) at
scale np for z € X as ry(n) = n —w(x) if n > w(x), otherwise r;(n) = —oo, where w is the
weight function. DTM (Fasy et al., 2018) is a special case of this weighted filtration where w is
distance-to-measure function.

It is required in [Nishikawa et al.| (2023) that for filtration learning, the weight function w(-) =
f(X,-) : RY — R needs to meet the following three conditions:

1. f should be determined by the whole point cloud X and does not depend on the order of the
points in X;

2. f should be isometry-invariant, i.e, for any isometric transformation 7°, any point cloud X,
andz € X, f(TX,Tz) = f(X,x);

3. The output of the f (X, z) should have both of global information X and pointwise informa-
tion of x.

A network E] that relies on deepsets (Zaheer et al., [2017) and takes distance matrix as input is de-
signed to satisfy the conditions above. Once the filtration is determined by this network, PD of the
entire point cloud is computed and then can be vectorized as input to a Multi-Layer Perceptron for
classification task. Although this network outperforms unsupervised filtration like Rips and DTM,
it relies on CPU for the computation of PD and the substantial time cost (Zomorodian & Carlsson),
2004) for computing PD prevents its scalability.

3.2 PRINCIPAL PERSISTENCE MEASURE

One way to reduce the time cost of computing PD of the entire point cloud is to use statistical
approximation: for multiple random subsets E] (with fixed size) of the entire point cloud X, a PD
D; = {r; = (b;j,d;) € Q|1 < j < N(D;)} is obtained for each random subset X! C X. The
statistical approximation, i.e., Expected PD (EPD) (Chazal & Divoll 2018)), takes a distributional

view and represents each PD of subset X as a measure p1; = Z;V:(?) 0, supported on §) where J,.;
is Dirac point mass at ;. The empirical EPD is then the average /i = - Zi\il i, where M is the
number of random subsets.

Principal Persistence Measure (PPM) (Gomez & Mémoli, 2024) is a special case of Expected PD
where each subset X! has fixed size 2¢+ 2 where ¢ is the homology dimension (¢ = 0 for connected
component, ¢ = 1 for rings, etc.). It is guaranteed that each PD on 2¢ + 2 points has at most one
single topological feature r1 = ({p,t4) when ¢ > 1, i.e., |[N(D;)| < 1, which can be efficiently
computed as follows: given any z € X7, let (1) 2(?) € X7 be the points such that d(x, z(1)) >
d(z,z?) > d(x,a) forany a € X!\ {z("), 2(2)} where d is a distance function (filtration), then

_ d(z,z?), min d(z, 2D)).
r1 (Q% (2,2)g@ (2,2"))

PPMs have stability with respect to Wasserstein distance, as shown in Theorem[A.2] The computa-
tion of PPM can be easily implemented in a parallel way and conducted on GPU and the existence
of r; is discussed in Theorem By considering random subsets, the computation of PPM costs
less time than computing PD on the entire point cloud.

3Filtration Learning on graph data is scalable due to the simplicity of computing PD on graph. In the
filtration, the addition of an edge either connects two connected components or creates a ring.

“The full architecture of network (Nishikawa et al.,2023) is shown in Appendix

>Each point in the subset is i.i.d. sampled from the entire point cloud.

Under review as a conference paper at ICLR 2026

In order to improve scalability, we propose to use PPM, instead of PD, to encode topological infor-
mation and adapt existing network (Nishikawa et al., 2023) for PPM-based filtration learning, which
learns from multiple subsets.

4 FILTRATION LEARNING FOR PPM

We propose the filtration learning framework for PPM (PPM-FL) based on a weighted filtration.
PPM-FL, which concentrates on learning from multiple subsets, is adapted from the network in
Nishikawa et al.| (2023) for learning from the entire point cloud.

Different from the three conditions mentioned in [Nishikawa et al.| (2023)), here weight function w
should be related to X, = Uie[M]{Xg}, with each subset X! C X of size 2q + 2, where ¢ is the
homology dimension, instead of the whole point cloud X. This gives the following three adapted
requirements for the weight function w(-) = (X, -):

1. The output of f(Xj,z) should be determined by each subset X # and does not depend on the
order of the points. The closer a subset X is to z, the greater its impact on x should be.

2. f should be isometry-invariant, i.e., for any isometric transformation 7', any point cloud X,
Xsand z € X, f(TX,,Tz) = f(X,, z), where TX, £ U;ean{T X!}

3. The output of f(X,, z) should have both of global information X, and pointwise information
of x.

DS: DeepSets
FC: Fully-Connected Network
DK: Distributional Kernel Weighted Summation

[t D [rxD) [EC[o | 7]

|91(9«“j,Xs2)| h(X?) IF—C’ v}

D(X,X}) D(X,X}) . .
DS 1 yi - [
=25 ga(z;, X3) - = DK
—— 0@ X) | | \oooooommmmmmmemeemmeeeen 1 -'U'
. 1 > 2 FC - J
Z; e 91 (25 X h(xX3) I—*Ij Y

DS . foo

| DS :
| %0 |G
a1(zj, X3) | h(X}) ‘ |gl(-’l3j7X£V[1 h(XiVI) |'F—C'uﬂ _

Figure 2: PPM-based Filtration Learning Framework. Value v; is the output of f (Xs,zj). D
represents a distance matrix for two point clouds X and Y, D(X,Y) = (d(z;, yj))zjl)gl,_jl:‘yl €
RIXIXIY] where d is Euclidean distance.

In order to deal with set X = U;ean{X i1, we model the weight function £ in a simple summation
form, i.e., f(Xs,-) = oM, K(X;',)f(X;7). where is used to output the weight (v5) of the j-th
point z; in X w.r.t. subset X, i.e., vj = f(X¢, ;). Function K measures the similarity between

the input and subset X! to meet requirement 1: the closer X! is to x, the greater its impact on z.
The filtration learning framework for PPM, as shown in Figure [2] is then adapted from Nishikawa
et al.[(2023) to meet the three new requirements:

1. Following Nishikawa et al.[(2023)), the independence on the order of points is guaranteed by
following DeepSets (Zaheer et al.,[2017) architecture g1, g2 and h:

g1(x5, X1) = ¢ (op({oV (d(x, z)))|w € X1}));
g2(af, X7) = ¢ (op({¢”) (d(x, 27) |z € X1}));

h(X{) = 6® (op({g2(, X))l € X1})),

Under review as a conference paper at ICLR 2026

where % is the k-th [f| point in a subset X?, d is Euclidean distance, ¢(s are all fully-
connected neural networks and op is the permutation invariant operator.

Foreach z; € X, after the weight v;- w.r.t. the i-th subset X is obtained, the final weight value

v; is the distributional kernel weighted summation of each v, i.e., v; = Y00 | K (a7, Xl
. 1 MNep—axall?

where K(Z‘]’X;) = W EIEX; K(l’,xj) and H(Jf,.’Ej) — exp(%)

2. The isometry-invariance is guaranteed by using the distance matrix as input.

3. The global and pairwise information are stored in i and g; respectively.

Once all the weights are obtained, the weighted filtration is used to compute the PPM of the point
cloudﬂ The space cost of PPM-FL is O((2q + 2)nM + (2q + 2)?>M), where g is the homology
dimension, M is the number of subset in PPM and n is the point cloud size.

As for the approximation ability, for weight function f (X,) = E?; K(X%,) f(XE,), function f
is able to approximate any continuous function, as shown in Theorem 4.1 of|[Nishikawa et al|(2023).

PPM can be then Vectorizedﬂby a supervised method PersLay (Carriere et al.,[2020) for a potential
task. For example, if the task is point cloud classification, we can input the resulting vector into
MLP that employs a cross entropy loss function. Due to the parallel implementation of PPM, this
PPM-based pipeline can be deployed on GPU to scale on a large point cloud.

5 ROBUSTNESS OF PPM AGAINST OUTLIERS

Here we demonstrate the robustness of PPM against outliers. We start by considering the robustness
of a general case of PPM, i.e., Expected Persistence Diagram (EPD), where the size of random subset
X, is denoted as n, and then extend the result to PPM. Let M denote the underlying manifold
of point cloud X; P denote the density of the distribution on k-dimensional M; and U denote
the density of the distribution of outliers, such as a uniform distribution. Following the setting in
Vishwanath et al.| (2020); |Cai et al.[(2025), the outlier-contaminated distribution P, is expressed as

P,=(1-¢)-P+e-U,

where € is the percentage of outliers. X is a sample of P,. Then we have the following lemma on
the robustness of EPD under the assumption that filtration XC meets K1-K5 requirements in Section
3 of (Chazal & Divol|(2018)).

We have the following assumptions on PP and U

1. We assume that P and U share the same support. Regarding the manifold’s support, U is a
(maybe uniform) distribution over the entire support of M, including regions where the inlier
density P are very low and points have little chance to be sampled from this low density area.
An example is shown in Figure 16 in |Gomez & Mémoli| (2024). The support of P is the
circular area and the low density region lies at the inner part of the ring.

2. Pand U are both lower and upper bounded in the support, i.e. there exist constants ¢ > ¢ > 0
such that ¢ > P(x) > cand ¢ > U(x) > ¢ for any x in the support. This assumption is
identical to assumption 2(ii) in|Cai et al.|(2025)), which shares the same contamination model
P,=(1—-¢€¢-P+e-U.

Lemma 5.1. For EPD Ex, . pn[v(Xs)| with density py and Ex . pn [V (X)] with density iz, where

v(X,) is the measure form of PD D(K(X)) , i.e., v(Xs) = 3_,cp(c(x.)) O it holds that

|1 — pallt < CrHp(M)"pp_i(€)e,

SThis index k is used to differentiate two different point in subset X . We just assume a random order here
since the framework is permutation invariant.

"Note that we could use the framework in [Nishikawa et al|(2023), which uses the distance matrix of the
entire point cloud to learn the weights. But the space cost would be O(n?), which is one order of magnitude
higher than PPM-FL’s O((2q + 2)nM + (2q + 2)>M).

8Despite many methods for vectorization for PD or PPM, including supervised (Carriére et al., [2020; Kim
et al., [2020; |Reinauer et al.,|2021)) and unsupervised ones (Adams et al.| 2017; Bubenik et al.| 2015} |Chung &
Lawson, |2022), we choose to use PersLay (Carriere et al.l 2020) , a supervised vectorization that uses similar
structure like Deepsets for simplicity.

Under review as a conference paper at ICLR 2026

where C,, is the expected number of points in the PD built with the filtration KC on n i.i.d. points
on M, Hi(M) is k-dimensional Hausdorﬁmeasureﬂof./\/l and p,,—1(€) is a polynomial of order
n — 1 with bounded coefficients.

The proof is provided in Appendix [B]

Theorem 5.2. For PPM Ex . p2q+2[v(X5)] with density py and By peat2[v(X;)] with density
o, it holds that
ln = p2lls < Hu(M)**pagia(e)e,

where Hy (M) is k-dimensional Hausdorff measure of M and paq+1(€) is a polynomial of order
2q + 1 with bounded coefficients.

Proof. Following Lemma [5.1} PPM is a special case of EPD where the size of each subset is n =
2q+ 2, q is homology dimension. Combined with the fact that each subset of size 2q + 2 has at most
1 topological feature, i.e., C;, < 1, we can have the result above. O

Theorem indicates that a small number of outliers in the point cloud will not severely disturb
PPM. The relation between the upper bound and outlier distribution U is discussed in Appendix
The experimental demonstration of PPM’s robustness with the learned filtration in point cloud
classification task is provided in Section We discuss the relation between Theorem and
existing results in|Divol & Lacombe] (2021b) in Appendix

6 EXPERIMENTS

We compare PPM-FL with PD—FLFEIOH the protein (Kovacev-Nikolic et al.,2016) and ModelNet10
(Wu et al., 2015)) datasets used previously in similar evaluations (Nishikawa et al.| |2023). We also
conduct an ablation study to compare PPM-FL with the unsupervised Rips filtration to demonstrate
the effectiveness of PPM-FL. PPM-based approach can not use DTM since there are only 2¢q +
2 points in each random subset. In addition, we validate the robustness and scalability of PPM-
FL. In summary, while both PPM-FL and PD-FL produce comparable results in point cloud
classification task, PPM-FL is more robust to outliers and has better scalability than PD-FL.

All the classification results are obtained through 3-fold cross validation. All the experi-
ments are conducted on a Ubuntu 20.04 system with 2TB RAM, AMD EPYC 7763 64-Core
1500 MHZ CPU and NVIDIA A6000 GPU. The network is implemented with PyTorch 2.0.1.
The code implementation of PD-FL is from https://github.com/git-westriver/
FiltrationLearningForPointClouds. The details of the experiment setting are pro-
vided in Appendix Code is provided at https://anonymous.4open.science/r/
PPM-FL—-415C|

6.1 COMPARISON WITH PD-FL

Following the same setting in|Nishikawa et al.[(2023)) on the protein dataset, we employ the pipeline
shown in Figure [T| with filtration learning, which uses the topological information only for classifi-
cation. The results are shown in Table 2] The accuracies of PPM-FL over different homology di-
mensions are significantly higher than PPM-Rips E] and the standard deviation of PPM-FL is lower.

“Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer
dimensions. Let k be a non-negative integer. For A C M, and § > 0, consider H} (4) =
inf{}", a(k)(%)k, A C |, U; and diam(U;) < &}, where a(k) is the volume of the k-dimensional
unit ball and diam represents diameter. The k-dimensional Hausdorff measure on M of A is defined by
Hi(A) = lims 0 H3(A).

'"Here PD-FL means the PD-based Filtration Learning (Nishikawa et al., 2023). The experiments on com-
paring PD-based filtration learning (PD-FL) with Rips (PD-Rips) and DTM (PD-DTM) filtration for PD have
already been conducted in |Nishikawa et al.| (2023). PD-Rips produces similar results to that of PD-DTM. And
PD-FL outperforms PD-Rips and PD-DTM. Hence, we just use PD-FL as baseline in our work.

"In the original PD-FL work (Nishikawa et al.,2023), it has been demonstrated that the Rips and DTM yield
comparable results when applied to both the protein and the ModelNet10 dataset. For the sake of simplicity
and to streamline our analysis, we will solely compare our proposed method with Rips.

https://github.com/git-westriver/FiltrationLearningForPointClouds
https://github.com/git-westriver/FiltrationLearningForPointClouds
https://anonymous.4open.science/r/PPM-FL-415C
https://anonymous.4open.science/r/PPM-FL-415C

Under review as a conference paper at ICLR 2026

This comparison with PPM-Rips demonstrates the advantage of the supervised filtration learning
over the unsupervised filtration like Rips.

Table 2: Accuracy of the binary classification task of protein structure. We compared our method
PPM-FL with PPM-Rips and PD-FL. PPM-Rips denotes using the Rips filtration instead of the fil-
tration learning for PPM. The PersLay vectorization is learned in an end-to-end way. Homology di-
mension ¢ stands for the dimension of PDs (PPMs). ¢ = 0&1 means that we use both 0-dimensional
and 1-dimensional PD or PPM, and the feature input to the MLP is the concatenation of the vector-
ization of O-dimensional and 1-dimensional PDs (PPMs) via PersLay.

q=0 g=1 q = 0&1
PD-FL 65.80+1.76 82.10+1.66 81.70+1.31
PPM-Rips 64.09+7.78 6540+2.12 71.50+1.31
PPM-FL. 84.00+1.39 80.20+1.76 84.60+1.22

When compared with PD-FL, PPM-FL produces better results in ¢ = 0 and ¢ = 0&1, but slightly
worse in ¢ = 1. This suggests that although PPM is a rather vague statistical approximation of PD,
both of them are effective in extracting meaningful topological features from the protein dataset for
classification. This could imply that the key aspect for achieving good performance in this context
is not solely the precise topological information but rather the ability to appropriately integrate
topological information with the classification model.

For the ModelNet10 dataset, we use the version which contains 10 classes, with 100 instances in
each class. Each instance is a point cloud of shape 128 x 3. Here we employ the same two-phase
process inNishikawa et al.| (2023)) by combining topological embedding with a DNN-based method.
For a point cloud X, let W50 (X) € R%1 be the topological embeddings from PD-FL or PPM-FL,
Upnn(X) € RE2 be the feature from a DNN-based method. Let ¢ be the loss function and m be
the number of classes. The two-phase training classifiers proposed by [Nishikawa et al.| (2023)) are
specified as follows:

1. Phase 1 classifier receives feature from Upny as C; : REX2 — R™, wher e m is the number of
classes. C'; and Upny are jointly learned by minimizing Zj 2(C1(¥pan(X;), yj)-

2. Phase 2 classifier Cy : RE1TL2 5 R™. We fix the parameters of the learned Upny in the 1st
phase and learn Cy and Vo, by minimizing Zj (Co([PonN (X5)T, Wiopo (X;5)T]T), y5)-

The final classification is conducted through Cs with the concatenated features from Wpny and
Wiopo 0N the test set. For the choices of DNN method, we consider DeepSets (Zaheer et al., [2017),
PointNet (Q1 et al.| 2017) and PointMLP (Ma et al., 2022). The results of the two-phase process are
shown in Table[3

Table 3: Accuracies for the classification task on the ModelNet10 dataset. Two-phase training
process is utilized here. The first phase we use DeepSets and PointNet. The results of PointMLP are
discussed in Appendix [D.T} The first phase directly uses point cloud as input and does not have the
notion of homology dimension since it does not involve topological summary like PD or PPM. So
there is no result for each homology dimension in the first phase.

Ist Phase || 2nd Phase

DeepSets PD-FL PPM-Rips PPM-FL
q=0 67.40+231 67.30+241 67.90+3.01
66.23 +£3.19 qg=1 68.20+2.37 67.50+2.17 6690+2.17
q=0&1 6740+0.82 67.10+x1.42 67.50+2.88

PointNet PD-FL PPM-Rips PPM-FL
q=20 68.60+3.09 67.10+2.21 68.70+2.23
67.23 +1.80 qg=1 6890+2.64 67.10+2.21 69.60+1.33
q=0&1 69.00+557 67.30£2.02 69.80+0.77

Under review as a conference paper at ICLR 2026

When using DeepSets in the first phase, PD-FL, PPM-Rips and PPM-FL can all improve the clas-
sification accuracy in the second phase. Except for the case of ¢ = 1 where PD-FL outperforms
PPM-Rips and PPM-FL, PPM-FL achieves comparable results with PD-FL. and PPM-Rips. This
demonstrates the effectiveness of topological info when combined with the DNN method.

When using PointNet in the first phase, PPM-Rips makes no improvement on the classification
accuracy. PPM-FL produces comparable results to that of PD-FL: both of them improve the accuracy
in the second phase. The highest accuracy (69.80 + 0.77) is obtained via PointNet + PPM-FL with
homology dimensions g = 0&1.

The additional results of PointMLP are discussed in Appendix [D.1] The ablation study of the Gaus-
sian weight is provided in Appendix Table 8] shows the effectiveness of our proposed Gaussian
weight: by prioritizing nearer subsets, the Gaussian weight effectively amplifies meaningful topo-
logical features, thereby enhancing the method’s performance in capturing the intrinsic structure of
the data.

It is worth noting that using all the homology dimensions is a rather safe choice to get high accuracy.
Hence we will use all the homology dimensions in the following experiments.

6.2 ROBUSTNESS

Here we show the robustness of PPM against outliers in the point cloud. For the ModelNet10 dataset,
we use the model trained on outlier-free point clouds; and for each point cloud in the test set, we add
outliers from uniform distribution at percentage . We choose the two-phase process where the first
phase uses DeepSets and the second phase uses all the homology dimensions ¢ = 0&1, since in this
case PPM-FL and PD-FL produces similar results when there is no outliers on the test set, ensuring
a fair comparison.

70
T
60
0
g 50
3
o
<<
40
Lo — PDFL
PPM-FL
0.0% 5.0% 10.0% 15.0% 20.0% 40.0%

3

Figure 3: Average classification accuracy under different outlier percentages (¢). The actual accura-
cies, corresponding standard deviations and analysis are provided in Appendix|D.5}

The average accuracies of PPM-FL and PD-FL under different outlier percentages e are shown in
Figure 3] PPM-FL and PD-FL produce similar results when the number of outliers is small, i.e.,
€ < 5.0%. When the number of outliers increases, i.e., € > 5.0%, the accuracy of PD-FL drops
quickly while PPM-FL remains accuracy above 55% when ¢ < 18.5%. This result validates the
robustness against outliers of PPM shown in Section [3}

6.3 SCALABILITY W.R.T. POINT CLOUD SIZE

We demonstrate the scalability of PPM-FL w.r.t. the point cloud size n. The settings in each phase
here are the same as that in last subsection on robustness. The number of the point clouds in the
dataset is fixed. We consider both homology dimensions 0 and 1 in the second phase. We fix the
batch size and report the average time of each epoch in the second phase in Table] In the first
phase, we use the same pretrained model for PPM-FL and PD-FL.

Under review as a conference paper at ICLR 2026

Table 4: Actual time cost (s) per-epoch under different numbers n of points in the point cloud
and numbers of random subsets M in PPM. Our aim is to compare the real-world usage of these
methods on the ModelNet10 dataset. Thus, PPM-FL is conducted on GPU and PD-FL is on pure
CPU or CPU-GPU Hybrid. The computation of PD-FL (CPU) is through the GUDHI library (Maria
et al.,[2014). The computation of PD-FL (CPU-GPU Hybrid) is through the torch-topological library
(AIDOS-Lab).

PPM-FL (GPU)
M=100 M=200 M=400

n=64 56.61 £1.08 112.79+1.41 210.17+2.50 41.46 £2.55 5.59+£0.23
n=128 5891+3.11 118.79+122 218.26+1.35 187.56 + 2.87 29.46 £2.42
n=256 65.85+1.04 129.19+1.15 23942+1.01 1101.85+11.46 15795 £1.95
n=512 7795+1.77 15432+158 273.47+126 755632+66.11 607.95+13.20

PD-FL (CPU) PD-FL (Hybrid)

For PPM-FL, when the number of random subsets M is fixed, the time cost increases very modestly
as n grows. When the number of points in each point cloud n is fixed, the time cost is linear w.r.t.
M.

Compared with PD-FL (CPU), PPM-FL’s time cost is similar to that of PD-FL (CPU) when point
cloud size n is very small. PD-LF (Hybrid) is one order of magnitude faster than PD-FL (CPU).
But when n is very large (n > 512), PD-LF (Hybrid) is slower than PPM-FL (GPU). The time
cost of PD-FL, whether on CPU or hybrid, increases very rapidly when n grows. This demonstrates
PPM-FL possesses better scalability than PD-FL.

Table 5: Accuracies of PPM-FL (GPU) under different M's (n = 128, ¢ = 0&1) on the ModelNet10
dataset with the 1st phase model being DeepSets.

M =25 M =50 M =100 M =200 M =400
67.00+£2.53 67.00+1.43 67.60+220 67.50+2.88 67.40+1.92

Table 6: Accuracies of PPM-FL (GPU) under different ns (M = 100, ¢ = 0&1) on the ModelNet10
dataset with the 1st phase model being DeepSets.

n =128 n = 256 n = 512
67.60£2.20 71.65+1.84 69.40+2.94

Some selected accuracy results corresponding to Table 4] are shown in Table[5]and [§] These results
explicitly demonstrate that scalability of PPM-FL is achieved without sacrificing accuracy. And
according to Table empirically, if M (2q + 2) is close to or smaller than n, i.e. only a small subset
of the entire point cloud is sampled, the performance of PPM-FL will degrade. Hence, a default
choice of M would be an integer larger than n/(2¢q + 2) .

7 CONCLUSION

In this study, we propose to use PPM to replace PD in a filtration learning framework. PPM-based
filtration learning (PPM-FL) addresses the scalability limitations of existing PD-based approach for
point clouds. By leveraging PPM, which can be computed entirely on GPU in a parallel manner, we
achieved a more efficient solution for encoding topological features.

Our theoretical analysis establishes the robustness of PPM against outliers, and we experimentally
validate this property in the context of supervised filtration methods. The results show that PPM-
FL maintains more stable performance than PD-FL when the test point cloud is contaminated with
outliers.

Limitation and future works are discussed in Appendix

10

Under review as a conference paper at ICLR 2026

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
stable vector representation of persistent homology. Journal of Machine Learning Research, 18
(8):1-35, 2017.

AIDOS-Lab. Pytorch-topological: A topological machine learning framework for py-
torch. URL https://github.com/aidos—-lab/pytorch-topological?tab=
readme-ov-file.

Rubén Ballester and Bastian Rieck. On the expressivity of persistent homology in graph learning.
arXiv preprint arXiv:2302.09826, 2023.

Ulrich Bauer. Ripser: efficient computation of vietoris—rips persistence barcodes. Journal of Applied
and Computational Topology, 5(3):391-423, 2021.

Mireille Boutin and Gregor Kemper. On reconstructing configurations of points in p 2 from a joint
distribution of invariants. Applicable Algebra in Engineering, Communication and Computing,
15:361-391, 2005.

Peter Bubenik et al. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(1):77-102, 2015.

Yuchao Cai, Hanfang Yang, Yuheng Ma, and Hanyuan Hang. Bagged regularized k-distances for
anomaly detection. Journal of Machine Learning Research, 26(178):1-59, 2025.

Yueqi Cao and Anthea Monod. Approximating persistent homology for large datasets. CoRR,
abs/2204.09155, 2022. URL https://doi.org/10.48550/arXiv.2204.09155/

Mathieu Carriere, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures.
In International Conference on Artificial Intelligence and Statistics, pp. 2786-2796. PMLR, 2020.

Frédéric Chazal and Vincent Divol. The density of expected persistence diagrams and its kernel
based estimation. In SoCG 2018-Symposium of Computational Geometry, 2018.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: Fundamental
and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4:667963, 2021.

Yu-Min Chung and Austin Lawson. Persistence curves: A canonical framework for summarizing
persistence diagrams. Advances in Computational Mathematics, 48(1):6, 2022.

Vincent Divol and Théo Lacombe. Estimation and quantization of expected persistence diagrams.
In International Conference on Machine Learning, pp. 2760-2770. PMLR, 2021a.

Vincent Divol and Théo Lacombe. Understanding the topology and the geometry of the space
of persistence diagrams via optimal partial transport. Journal of Applied and Computational
Topology, 5(1):1-53, 2021b.

Brittany Fasy, Fabrizio Lecci, Larry Wasserman, et al. Robust topological inference: Distance to a
measure and kernel distance. Journal of Machine Learning Research, 18(159):1-40, 2018.

Alessio Figalli. The optimal partial transport problem. Archive for Rational Mechanics and Analysis,
195(2):533-560, 2010.

Mario Gémez and Facundo Mémoli. Curvature sets over persistence diagrams. Discrete & Compu-
tational Geometry, 72(1):91-180, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Jean-Claude Hausmann et al. On the vietoris-rips complexes and a cohomology theory for metric
spaces. Annals of Mathematics Studies, 138:175—-188, 1995.

11

https://github.com/aidos-lab/pytorch-topological?tab=readme-ov-file.
https://github.com/aidos-lab/pytorch-topological?tab=readme-ov-file.
https://doi.org/10.48550/arXiv.2204.09155

Under review as a conference paper at ICLR 2026

Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, and
Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent ho-
mology. Proceedings of the National Academy of Sciences, 113(26):7035-7040, 2016. doi:
10.1073/pnas.1520877113. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1520877113.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning, pp. 4314-4323. PMLR, 2020.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological graph neural networks. In International Conference on Learning Representa-
tions, 2022.

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using per-
sistent homology. Advances in Neural Information Processing systems, 36:63150-63173, 2023.

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Kim, Frédéric Chazal, and Larry Wasserman. Pllay:
Efficient topological layer based on persistent landscapes. Advances in Neural Information Pro-
cessing Systems, 33:15965-15977, 2020.

Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikoli¢, and Giseon Heo. Using persistent homol-
ogy and dynamical distances to analyze protein binding. Statistical Applications in Genetics and
Molecular Biology, 15(1):19-38, 2016.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for
topological data analysis. In International Conference on Machine Learning, pp. 2004-2013.
PMLR, 2016.

Yongjin Lee, Senja D Barthel, Pawel Dtotko, S Mohamad Moosavi, Kathryn Hess, and Berend Smit.
Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 8(1):
1-8, 2017.

Xiang Liu, Huitao Feng, Jie Wu, and Kelin Xia. Dowker complex based machine learning (dcml)
models for protein-ligand binding affinity prediction. PLOS Computational Biology, 18(4):1 —
17, 2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. In International Conference on
Learning Representations, 2022.

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Sim-
plicial complexes and persistent homology. In Mathematical Software—ICMS 2014: 4th Interna-
tional Congress, Seoul, South Korea, August 5-9, 2014. Proceedings 4, pp. 167-174. Springer,
2014.

Zhenyu Meng, D Vijay Anand, Yunpeng Lu, Jie Wu, and Kelin Xia. Weighted persistent homology
for biomolecular data analysis. Scientific Reports, 10(1):1-15, 2020.

Mohnhaupt Mona and S Kali$nik Hintz. The nerve theorem and its applications in topological data
analysis. PhD thesis, Bachelor’s thesis, Swiss Federal Institute of Technology (ETH) Zurich,
2023.

Soham Mukherjee, Shreyas N Samaga, Cheng Xin, Steve Oudot, and Tamal K Dey. D-gril: End-to-
end topological learning with 2-parameter persistence. arXiv preprint arXiv:2406.07100, 2024.

Naoki Nishikawa, Yuichi Ike, and Kenji Yamanishi. Adaptive topological feature via persistent
homology: Filtration learning for point clouds. In Advances in Neural Information Processing
Systems, 2023.

Leslie O’Bray, Bastian Rieck, and Karsten Borgwardt. Filtration curves for graph representation. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1267-1275, 2021.

12

https://www.pnas.org/doi/abs/10.1073/pnas.1520877113
https://www.pnas.org/doi/abs/10.1073/pnas.1520877113

Under review as a conference paper at ICLR 2026

Julidn Burella Pérez, Sydney Hauke, Umberto Lupo, Matteo Caorsi, and Alberto Dassatti. giotto-
ph: a python library for high-performance computation of persistent homology of vietoris-rips
filtrations. arXiv preprint arXiv:2107.05412, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
vision and Pattern Recognition, pp. 652—-660, 2017.

Raphael Reinauer, Matteo Caorsi, and Nicolas Berkouk. Persformer: A transformer architecture for
topological machine learning. arXiv preprint arXiv:2112.15210, 2021.

Vsevolod Salnikov, Daniele Cassese, and Renaud Lambiotte. Simplicial complexes and complex
systems. European Journal of Physics, 40(1):014001, 2018.

Joshua Southern, Jeremy Wayland, Michael Bronstein, and Bastian Rieck. Curvature filtrations
for graph generative model evaluation. Advances in Neural Information Processing Systems, 36:
63036-63061, 2023.

Jacob Townsend, Cassie Putman Micucci, John H Hymel, Vasileios Maroulas, and Konstantinos D
Vogiatzis. Representation of molecular structures with persistent homology for machine learning
applications in chemistry. Nature Communications, 11(1):1-9, 2020.

Wong Hiu Tung, Darrick Lee, and Hong Yan. Towards scalable topological regularizers. In The
Thirteenth International Conference on Learning Representations, 2025.

Cédric Villani. The wasserstein distances. Optimal transport: old and new, pp. 93—111, 20009.

Siddharth Vishwanath, Kenji Fukumizu, Satoshi Kuriki, and Bharath K Sriperumbudur. Robust
persistence diagrams using reproducing kernels. Advances in Neural Information Processing
Systems, 33:21900-21911, 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1912-1920, 2015.

Kelin Xia and Guo-Wei Wei. Multidimensional persistence in biomolecular data. Journal of Com-
putational Chemistry, 36(20):1502-1520, 2015.

Kelin Xia, Zhiming Li, and Lin Mu. Multiscale persistent functions for biomolecular structure
characterization. Bulletin of Mathematical Biology, 80:1-31, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30, 2017.

Hang Zhang, Kaifeng Zhang, Kai Ming Ting, and Ye Zhu. Towards a persistence diagram that
is robust to noise and varied densities. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

Simon Zhang, Mengbai Xiao, and Hao Wang. Gpu-accelerated computation of vietoris-rips persis-
tence barcodes. arXiv preprint arXiv:2003.07989, 2020.

Simon Zhang, Soham Mukherjee, and Tamal K Dey. Gefl: Extended filtration learning for graph
classification. In Learning on Graphs Conference, pp. 16—1. PMLR, 2022.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In Proceedings of the
twentieth Annual Symposium on Computational Geometry, pp. 347-356, 2004.

13

Under review as a conference paper at ICLR 2026

A BACKGROUND

A.1 EXPECTED PERSISTENCE DIAGRAM

APDD = {r; = (b;,d;) € Q1 < i < N(D)} can be equivalently represented as a counting
measure p on 2 givenby A € B — u(A) = ZZN:(ID) or, (4),
where B is the class of all Borel subsets of €) and 9,. denotes the Dirac point mass at € 2. When

each sampled PD is a random draw from a distribution P, its EPD, denoted as E[u], is defined as
A € B — E[u](A) = E[u(A)] (Chazal & Divol,[2018).

Given a finite set {1, pi2, ..., fin, }, consisting of sampled PDs from P, the empirical EPD is defined
as i = 3" | ;. The support of fiis S = U, D;, where D; = {r; = (b;,d;) € Q1 < j <
N(D;)} 1s the support of the sampled PD ;. EPD can be viewed as a distribution (Chazal & Divol,
2018)) of topological features supported on the open half plane 2. Quantization
Lacombe] has been developed to reduce the support size of EPD.

An inherent metric applicable to the space of EPDs (Divol & Lacombel 2021a)) with the same mass,
is Wasserstein distance 2009). In a space of EPDs with different masses, the Optimal
Partial Transport metric (OT),) (Figalli,{2010) is used to allow any mass transportation from or to the
diagonal 0f2.

For the approximation error of EPD, we have the following theorem in[Cao & Monod| (2022):

Theorem A.1 (Cao & Monod|(2022))). Let X C R™ be a finite set of points, and 7 be a probability
measure on X satisfying the (a,b, rq)-standard assumption. Suppose X!,..., XM are M i.i.d.
samples from the distribution 7™ with | X| = n. Let [i be the empirical persistence measure, i.e.,
EPD; denote 3 := 4 — 1. Then the empirical persistence measure approaches the true persistence
measure D(X) (here we omit the symbol filtration choice and D(X) is in measure form: D(X) =
>, 0r) of X in expectation at the following rates:

O(M~?)+0(1) +O0(n™"?) ifp > b;
i oM *) +0(1) + 0(<1°g")1/b ifp < bro < (log")l/b-
E[OTg(lu‘vD(X))} < n =70 an ’
O(M-1/2 logn p/b g . logn 1/b
(M)+O(1)+O<(T) W) lfPSb,TOZ(un) .

A.2 PRINCIPAL PERSISTENCE MEASURE

As a special case of Expected Persistence Diagram, the approximation error and convergence anal-
ysis of the empirical measure to Principal Persistence Measure is theoretically studied in Theorem
3.20 in |Gémez & Mémoli| (2024): the empirical measure converges to PPM almost surely as the
number of subsets M — oo.

For the stability of PPM, we have the following Theorem [A-2] from [Tung et al| (2025).

Theorem A.2 (Tung et al.[(2025)). Let p > 1, and let W), denote the p-Wasserstein metric on R¢
and Q). A key property shown in|Gémez & Mémoli|(2024) Theorem 3.8, Theorem 4.11 is that PPMs
are stable:

W, (PPMy (1), PPMy(v)) < CoWy (1, v),

for all p,v € P,(RY), where Cq > 0 is a constant which depends on homology dimension q and
P.(R?) is the Borel probability measure with compact support on R,

The PPM, (1) here means the Principal Persistence Measure with homology dimension ¢ computed
from points sampled from measure u supported on R™ and the PPM is transformed from the (birth,
death) to (birth, persistence) space ' = {(b,1) € R?}\{l = 0}, where persistence=death-birth > 0.
This is a slightly rotated version of the PPM we considered in the Q = {(t1,t2) € R2[ty > t1}.

For the computation of PPM, we have the following theorem:
Theorem A.3 (Gémez & Mémolil (2024). Ler (X, dx) be a metric space with n points. Then:

14

Under review as a conference paper at ICLR 2026

1. For all homology dimension larger than 5 — 1, the PD obtained via Rips filtration is empty.

2. Ifn is even and homology dimension equals to 5 — 1, then the PD obtained via Rips filtration
consists of a single point r1 = (tp, tq) if and only if ty, < t4, and is empty otherwise.

A.3 NOTES ON DEATH TIME

Death times are finite when the homology dimension is zero and this results a point » = (0, 00) in
the PD, representing the final connected component. In practice, for vectorization, we usually set
the maximum threshold for the filtration to be a finite value or just remove the point with infinite
death time since it exists for all point clouds and has no practical value. So here we focus on the
practice aspect and assume the death time is always finite. We ignore the topological feature with
infinite death time.

A.4 VECTORIZATION VIA PERSLAY

PersLay (Carriere et al., [2020) is a supervised vectorization method for PD, a multiset D = {r; =
(bi,d;) € Q|1 <i < N(D)} on the half plane Q = {(t1,t2) € R?|ty > t;}. PersLay is adapted
from the DeepSets structure (Zaheer et al.,2017) and expressed as follows:

PersLay(D) = op({w(r) - ¢(r)}rep),

where op is any permutation invariant operation (such as minimum, maximum, sum, kth largest
value...), w : R? — R is a weight function for the points in PD, and ¢ : R? — R is a representation
function called point transformation, mapping each point (b;, d;) of a PD to a vector.

Certain choices of w, ¢ and op can transform PersLay into specific methods like Persistence Image
(Adams et al.l|2017)) and Persistence Landscape (Bubenik et al.,|2015). In our work, we follow the
setting in Nishikawa et al.|(2023) and choose w(-) = 1 and ¢ as

¢(7’) = [exp(—w)&xp(_w)r _M)}T

where r = (b, d), p = (b, d — b) and all the ¢;s are the parameters to be learned.

.., exp(

)

Non-DL vectorization. While our current work is more centered on the scalability of our proposed
method within the DL-based context, we recognize the importance of the non-DL perspective. Re-
garding the non-DL based vectorization method, the scalability issue of Expected Persistence Dia-
gram (EPD), a more general form of PPM, has been discussed in detail in|Bubenik et al.|(2015) and
Section 4.3.1 in|Gomez & Mémoli| (2024).

A.5 PERSISTENCE DIAGRAM-BASED FILTRATION LEARNING FRAMEWORK

The PD-based filtration learning framework (PD-FL) (Nishikawa et al., [2023)) is shown in Figure
PD-FL tries to learn the weight function w(-) = fp(X,-) from the entire point cloud X for
weighted filtration. Once the weight is learned, weighted filtration is used to compute PD. Then, PD
is vectorized by PersLay and used in machine learning task like point cloud classification.

B PROOF AND RELATED ANALYSIS

B.1 ON THE ASSUMPTION OF P AND U IN LEMMA [5.1]1 & THEOREM 5.2
We have the following two assumptions on P and U.

1. We assume that P and U share the same support. Regarding the manifold’s support, U
is a (maybe uniform) distribution over the entire support of M, including regions where
the inlier density P are very low and points have little chance to be sampled from this low
density area. An example is shown in Figure 16 in Gomez & Mémoli| (2024)). The support
of P is the circular area and the low density region lies at the inner part of the ring.

2. P and U are both lower and upper bounded in the support, i.e. there exist constants ¢ >
¢ > O such that¢ > P(x) > cand ¢ > U(x) > ¢ for any x in the support.

15

Under review as a conference paper at ICLR 2026

0 ga(z1) 4—|n > &pSets
92(z2) «—
g2(z3) «—
Distance Matrix
D(X)
ga(zn) «—
h(X x
DeepSets () 91(!)
l Fully-connected network
f9 (X* |)

Figure 4: Persistence Diagram-based Filtration Learning Framework. Functions g;, g2 and h are the
same as those we use in SectionE} This is a direct reuse of Figure 2 in Nishikawa et al.| (2023).

p-0.07

2-0.00 p=0.01

p=0.05 p=0.06

Figure 5: Part of Figure 16 from Gomez & Mémoli| (2024).

The caption of Figure 16 in Gomez & Mémoli| (2024) claims that "Given 0 < p < 1, we sample
X C D? with 1000 points so that each point is uniformly distributed in the interior of D? with
probability p or on its boundary S}, with probability 1 —p”. We can consider P is such a distribution
with a p that is close to 0, but it is not 0. And consider U is a distribution with p that is close to 1,
but it is not 1. So both the supports of P and U are D? U S}, and the value of their pdf is upper and
lower bounded. And it would not cause the pdf being either O or infinite, as shown in the area not
shaded in Figure[§] This aligns with our assumptions above.

B.2 PROOF OF LEMMA[S.]]

Lemmal5.1} For EPD Ex, . p» [v/(X)] with density 11 and Ex, ~ pn [v(X)] with density jio, where
v(X,) is the measure form of PD D(K(X) , i.e., v(Xs) = >, cpic(x.) Or it holds that

11 — p2llr < CoHyg (M) "pr-1(e)e,
where C, is the expected number of points in the PD built with the filtration XC on n i.i.d. uniform
points on M, Hy(M) is k-dimensional Hausdorff measure of M and p,,_;(¢) is a polynomial of
order n — 1 with bounded coefficients.

Proof. For Theorem 7.1 in|Chazal & Divol| (2018)), we have that
1 = palli < CoHikg(M)"|[¢1 — g2]|oc
where ¢1(g2) is the density with respect to the Hausdorff measure Hy, ¢1(x) = II"_, P(x;) and
q2(z) = I, Py(x;), where z = [z],...,xT]T. For the ||g1 — g2| o term, since each z; is i.i.d.
sampled, for x = argmax|q; — g2, it holds that
(@1 — q2)(z) = 1L P(x;) — I1; Po(x;)
I0; Py (;)

=1L P(z;)[1 - WL

16

Under review as a conference paper at ICLR 2026

where under the assumption that each z; is in the support (with positive density) of P and 1 >

gﬁi; > A > 0, we have that

So it holds that
g1 — @20 = la1(z) — g2(2)]
< ILP()[1— (1 - (1= A)e)")
= pn_1(€)e.
Finally, we obtain that
11 — palli < CrHip(M)"pr_1(e)e.

B.3 THE DEPENDENCE ON OUTLIER DISTRIBUTION U

The upper bound in Lemma[5.1]is dependent on U. This dependence is reflected in the coefficients
of the polynomial p,,_1(¢€). As shown in the proof above, the polynomial’s coefficients are derived

from A = inf % (the minimum ratio of outlier to inlier densities over M), which is dependent on
noise U.

For the area where P is dense and U is sparse, a sparser U will result a small A. This will lead to
smaller absolute values of the coefficients in the polynomial p,_1(€), i.e. a smaller upper bound.
This corresponds to the intuition that EPD (or PPM) is more robust to a sparser outlier distribution.

C EXPERIMENT SETTINGS

Optimization. We set the batch size as 128 for protein datasets and 40 for ModelNetl10
dataset. For optimizer, we use Adam. Learning rate is 0.1 for ModelNet and 0.001 for
protein dataset. For scheduler, we use the TransformerLRScheduler implemented in pytorch
(https://github.com/sooftware/pytorch-lr-scheduler/tree/main) and the
number of warm-up epoch is set to be 40. For ModelNetlO, the number of epochs in
the first phase is 1500. For protein dataset and the second phase of ModelNet dataset, we
use the EarlyStopping handler (https://pytorch.org/ignite/generated/ignite.
handlers.early_stopping.EarlyStopping.html) with patience=20 and min_delta =
0.002 for the loss on validation set of size 200.

Principal Persistence Measure. For the computation of PPM, we set M/ = 200 for both protein
and ModelNet10 datasets. For the vectorization method PersLay, the length of vectorization m is
set to be 32 and the permutation invariant operation op is summation.

Networks. For the DNN-based methods (DeepSets, PointNet and PointMLP) in the first phase, we
use the same structure as those in |[Nishikawa et al.| (2023). We set all of the permutation invariant
operators op that appear in PPM-FL and PD-FL are all summation. The dimension of the feature
vectors obtained by PersLay is set as 16, except that when using both homology dimensions, it is
32. The DeepSets-like structures ¢(1) — ¢(®) and fully connected network are the same as those in
Nishikawa et al.| (2023). We initialized the parameters in PPM-FL with normal distribution with a
mean of 0 and a standard deviation of 1.0. Other parameters were initialized with the default settings
of PyTorch.

Datasets. The protein dataset (Kovacev-Nikolic et al.,|2016) does not provide a point cloud. Instead,
a cross-correlation matrix C is provided for each protein. Then the dynamic distance matrix D,
where D; ; = 1— |(Ci, j |, is used to compute PD or PPM. We use a version of this dataset (Nishikawa
et al.,|2023)), which contains two classes of protein, with 500 instances in each class. Each instance is
a distance matrix of shape 60 x 60 and has noise from a uniform distribution with standard deviation
of 0.1 for the off-diagonal elements. For the ModelNet10 dataset, we use the version which contains
10 classes, with 100 instances in each class. Each instance is a point cloud of shape 128 x 3.

17

https://github.com/sooftware/pytorch-lr-scheduler/tree/main
https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html
https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS AND DISCUSSIONS

D.1 RESULTS OF TWO-PHASE TRAINING (POINTMLP + PPM-FL)

For PointMLP, it is claimed in Nishikawa et al.| (2023)) that PD-FL reduces the accuracy of 68.80 to
below or around 60 in the first phase, because PointMLP has already captured information including
topology in the first phase and PD-FL brings in redundant information.

Table 7: Accuracie for the classification task of ModelNet10 dataset when the first phase is
PointMLP.

1st Phase = PointMLP 70.10 +4.70

qg=0 g=1 q=0&1
PPM-Rips 54.20+9.56 57.30+13.37 49.29+11.82
PPM-FL 5270 +8.58 53.90+823 56.59 +13.01

2nd Phase

The results of the two-phase process where the first phase uses PointMLP are shown in Table
Despite the choice of homology dimension, the accuracy of PPM-FL in the second phase is signif-
icantly lower than that in the first phase. This confirms the claim in Nishikawa et al.| (2023) that
PointMLP has already captured information including topology in the first phase and PD-FL brings
in redundant information.

At a higher level, the topological information here is specific pairwise distance that is topologically
meaningful, since the birth and death of a topological feature in PD or PPM are actually pairwise
distances. In PointNet and DeepSets, no pairwise information is needed because both of them use a
network to transform point feature and then use a permutation invariant operator to aggregate these
features as point cloud-level feature. But PointMLP needs pairwise info to define a neighborhood
in order to learn the feature of a local region. This process involves pairwise distances. This could
explain why PPM or PD can only work for PointNet and DeepSets, rather than PointMLP.

D.2 RELATION BETWEEN PPM AND THE DISTRIBUTION OF PAIRWISE DISTANCES.

It is worth mentioning that when homology dimension ¢ = 0 and we use the unsupervised Rips
filtration instead of the filtration learning, PPM represents the distribution of pairwise distances,
which is shown in |Boutin & Kemper| (2005) to almost solve the isometry classification problem for
point clouds. PPM of higher homology dimension can be viewed as a conditional distribution of
pairwise distances that are topologically meaningful for high dimensional cycles.

D.3 ABLATION STUDY ON WEIGHT CHOICE: GAUSSIAN OR UNIFORM

We present supplementary experimental results of PPM-FL with Gaussian (Zi]\il K(XHf(Xi)

or Uniform (Zf\il F(X?% -)) weight on the ModelNet10 dataset, under the same setting as that in
Table[3] In the first phase, we use DeepSets. The results are shown in Table[8] For the choice of K
, any differentiable distributional kernel would be fine. For simplicity, we choose to use Gaussian
Distribution Kernel. The hyperparameter o is set to be the median of all the pairwise distances. Our
current results demonstrate effectiveness with this default setting.

Table 8: Accuracies of PPM-FL on ModelNet10 dataset under different weight functions.

q=0 qg=1 q = 0&1

Gaussian 67.90 &+ 3.01 66.90 £2.17 67.50 £ 2.88
Uniform 67.60+1.97 67.00+2.21 66.80+ 1.87

In our pipeline, the first phase uses DeepSets, while the second phase employs PPM-FL with either
a Gaussian or Uniform weight function. As demonstrated in the table below, across different ho-
mology dimensions, PPM-FL utilizing the Gaussian weight either outperforms or achieves similar
results with the Uniform weight variant. This outcome validates the effectiveness of the Gaussian

18

Under review as a conference paper at ICLR 2026

weight function, aligning with the design principle that subsets in closer proximity should have a
more substantial influence. While the performance differences are subtle given the nature of the
dataset, Table[§] shows the effectiveness of our proposed Gaussian weighting.

D.4 RELATION BETWEEN THEOREM AND EXISTING RESULTS IN DIVOL & LACOMBE
(20218).

Here we discuss the difference between our theoretical results (Theorem 5.2) with the two Proposi-
tions (5.4 & 5.5) in Section 5.3 of Divol & Lacombe|(2021Db).

* In Proposition 5.4, the support of distribution P and P’ is MP?, the space of PDs (measures)
with finite persistence. Proposition 5.4 demonstrates that the expectation of P, i.e. EPD,
is stable with respect to the distortion (P’) of P. While our result is about the stability of
EPD with respect to the addition of outliers of distribution P, which is supported on R?
(instead of MP), the space where we sample the subsets.

* Proposition 5.5 demonstrates the stability of EPD with respect to the distribution & sup-
ported on R?. This is similar to our result in Lemma 5.1, with P(P,) corresponding to
£(¢). Compared with Proposition 5.5, our result (Lemma 5.1) takes a specific form of
P, =(1—¢€): P+ e-U (amixture of the original distribution P and outlier distribution
U) and links the upper bound to the mixture proportion €, while Proposition 5.5 generally
gives the upper bound as the bottleneck distance W, (£, £’)). It could be argued that our
result is a specific case of Proposition 5.5 of |Divol & Lacombe|(2021b)).

D.5 RESULTS UNDER DIFFERENT OUTLIER PERCENTAGES

Table 9: Accuracies and standard deviations under different outlier percentages (es). The first phase
uses DeepSets. The second phase uses both homology dimensions ¢ = 0&1.

€ PPM-FL PD-FL | € PPM-FL PD-FL
0.0% 6750288 67.40+0.82 | 10.5% 60.50+1.16 59.20+2.81
0.5% 6740294 6730£0.29 | 11.0% 60.60+0.09 56.90 +1.65
1.0% 67.40+2.13 6680+1.84 | 11.5% 60.60+0.09 56.90+1.65
1.5% 6740213 66.80+1.84 | 12.0% 61.40+1.42 56.60+1.42
20% 66.80+255 6740+1.07 | 125% 58.10+1.45 55.50+2.16
25% 6650+1.25 6620£0.76 | 13.0% 58.10+1.45 5550+2.16
30% 6650+1.25 6620+0.76 | 13.5% 59.40+2.02 56.70+1.59
35% 66.10+1.76 65.50+2.05 | 14.0% 59.40+2.02 56.70+1.59
4.0% 6550+222 63.60+1.53 | 145% 5840+£1.49 5590+2.53
45% 6550222 63.60+£1.53 | 150% 57.60+1.11 53.90+2.66
50% 6490+1.16 6440+191 | 155% 57.60+1.11 53.90+2.66
55% 6460090 63.70£049 | 16.0% 57.10+x1.62 53.50+3.36
6.0% 6460090 63.70+£0.49 | 16.5% 56.40+x1.96 53.70+2.02
6.5% 63.20+x0.61 6390+2.75 | 17.0% 56.40+1.96 53.70+2.02
70% 6320+0.61 63.90£2.75 | 17.5% 56.10+x2.59 51.10+2.94
75% 65.60+1.03 63.50+£2.03 | 18.0% 57.90+091 49.80+4.12
80% 62.10+0.57 59.80+0.61 | 185% 5790091 49.80+4.12
85% 62.10+0.57 59.80+0.61 | 19.0% 53.00+1.09 50.00 +3.09
9.0% 61.80+2.09 60.10%£1.52 | 19.5% 53.00+1.09 50.00 +3.09
95% 6330+1.15 60.10+2.00 | 20.0% 54.30+1.32 49.00+3.79
10.0% 63.30+1.15 60.10+2.00 | 40.0% 34.00+2.11 31.30+5.91

We report accuracies and standard deviations corresponding to Figure [3]in Table[9] Around e = 0,
the accuracies of PPM-FL and PD-FL drop with a similar rate. When ¢ < 1.5%, the accuracy of
PPM-FL almost remains the same while PD-FL drops from 67.40 to 66.80. This demonstrates that
a few outliers have more impact on PD-FL than PPM-FL. PD-FL does not ignore the first outliers

19

Under review as a conference paper at ICLR 2026

while PPM-FL does. The reason behind this may be that when the number of outliers are small, the
outliers have very little chance to be selected in a small subset. When € = 40.0%, both PPM-FL and
PD-FL have very bad performance.

D.6 LIMITATION AND FUTURE WORK.

Limitation. The approximation nature of PPM may lead to the loss of some fine-grained topolog-
ical information. Future work could explore ways to enhance the representational power of PPM
while maintaining its computational efficiency. In addition, Theorem[5.2]on robustness has practical
limitations, as its dependence on g makes it weak for higher homology dimension. This leads to the
result that the fraction of noise has to be very small to control the measure errors. Our experimental
results in Figure 3] align with this: while PPM-FL is not highly robust, it degrades more gradu-
ally than PD-FL as outliers increase (maintaining accuracy above 55% when 18.5% > ¢ > 5%),
showing a modest improvement.

Future Work. Further research could focus on extending the PPM-FL framework to more complex
point cloud tasks, such as 3D object reconstruction or semantic segmentation. In addition, as noted
in Nishikawa et al.| (2023), learned weights are difficult to interpret. For PPM, due to the inherent
nature of subsampling, the interpretability of its learned weights is even lower. Developing methods
capable of learning far more interpretable weight functions will be part of our future work.

E ON THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in the polishing phase of this paper’s preparation.
Specifically, LLMs were employed to optimize linguistic clarity, enhance stylistic coherence, and
correct minor grammatical or syntactical inconsistencies. All core intellectual content, includ-
ing conceptual frameworks, empirical observations, argumentative structure, and citation align-
ment—was developed, curated, and validated exclusively by the human authors.

20

	Introduction
	Background
	Persistence Diagram
	Weighted Filtration

	Related Work
	Filtration Learning
	Principal Persistence Measure

	Filtration Learning for PPM
	Robustness of PPM against Outliers
	Experiments
	Comparison with PD-FL
	Robustness
	Scalability w.r.t. Point Cloud Size

	Conclusion
	Background
	Expected Persistence Diagram
	Principal Persistence Measure
	Notes on Death time
	Vectorization via PersLay
	Persistence Diagram-based Filtration Learning Framework

	Proof and Related Analysis
	On the assumption of P and U in Lemma 5.1 & Theorem 5.2
	Proof of Lemma 5.1
	The dependence on outlier distribution U

	Experiment Settings
	Additional Results and Discussions
	Results of two-phase training (PointMLP + PPM-FL)
	Relation between PPM and the distribution of pairwise distances.
	Ablation study on weight choice: Gaussian or Uniform
	Relation between Theorem 5.2 and existing results in divol2021understanding.
	Results under different outlier percentages
	Limitation and Future Work.

	On the use of Large Language Models

