
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS SCALABLE AND ROBUST FILTRATION
LEARNING FOR POINT CLOUDS VIA PRINCIPAL PER-
SISTENCE MEASURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Topological features in persistent homology extracted via a filtration process have
been shown to enhance the performance of machine learning tasks on point clouds.
The performance is highly related to the choice of filtration, thereby underscoring
the critical significance of filtration learning. However, current supervised fil-
tration learning method for point clouds can not scale well. We identify that this
shortcoming stems from the utilization of Persistence Diagrams (PD) for encoding
topological features, such as connected component, ring or void, etc. To address
this issue, we propose to use Principal Persistence Measure (PPM), a statistical ap-
proximation of PD, as an alternative representation and adapt existing network for
PPM-based filtration learning. Experimental results on point cloud classification
task demonstrate the effectiveness, scalability and robustness of our PPM-based
framework.

1 INTRODUCTION

Topological information is shown to be effective in machine learning tasks on point clouds across
many fields, such as biology Kovacev-Nikolic et al. (2016); Liu et al. (2022); Meng et al. (2020);
Xia et al. (2018); Xia & Wei (2015) and chemistry Hiraoka et al. (2016); Lee et al. (2017); Townsend
et al. (2020). The topological features of a point cloud are built from a nested sequence of simplicial
complexes (Salnikov et al., 2018) called filtration. The birth (bi ∈ R) and death (di ∈ R) of a cycle,
e.g., a ring (1-dimensional cycle) or a void (2-dimensional cycle), of the sequence are encoded in
Persistence Diagram (PD) D = {ri = (bi, di) ∈ Ω|1 ≤ i ≤ N(D)}, where each r ∈ D is referred
as a topological feature corresponding to the cycle, Ω = {(t1, t2) ∈ R2|t2 > t1} is an open half-
plane and N(D) is the number of topological features. PD can be transformed into a vector and fed
into a machine learning model as input. A brief illustration of PD-based pipeline for point cloud 1

is shown in Figure 1(a,b,d,f).

In the pipeline, despite different learnable vectorization methods like Carrière et al. (2020); Kim
et al. (2020); Reinauer et al. (2021), it is shown in Nishikawa et al. (2023) that the final performance
is highly affected by the choice of the filtration. In addition, although there are different unsupervised
filtration choices like Rips Hausmann et al. (1995), DTM Fasy et al. (2018) and Λ-filter Zhang et al.
(2023), supervised filtration learning Nishikawa et al. (2023) for point cloud often produces better
results. We will refer this PD-based pipeline with filtration learning as PD-FL for short.

Based on weighted filtration, PD-FL (Nishikawa et al., 2023) develops a neural network architecture
with isometry-invariance to learn the weight in an end-to-end way. However, since the computation
algorithm 2 of filtration-induced PD is highly nontrivial to parallelize and can only be conducted
by either pure CPU implementations Bauer (2021); Pérez et al. (2021) or a CPU-GPU hybrid one

1Note that this pipeline can also be used for graph data, where the filtration usually employs unsuper-
vised characteristics of a graph like degree (vertex-level), Ricci curvature (edge-level)Ballester & Rieck (2023);
O’Bray et al. (2021); Southern et al. (2023) or outputs of supervised learnable networks Hofer et al. (2020);
Horn et al. (2022); Immonen et al. (2023); Mukherjee et al. (2024); Zhang et al. (2022). In this paper, we focus
on the pipeline for point cloud.

2As pointed by Zomorodian & Carlsson (2004), time complexity for computing PD in the worst case is
O(m3), where m is the number of simplices in the filtration. If we want topological feature corresponding to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: PD (a,b,d,f) and PPM-based (a,c,e,f) pipeline for point cloud. (a) Original point cloud X .
Note that this can also be a distance matrix, since in the construction of simplicial complexes of the
filtration, a pairwise connection is added if the pairwise distance is lower than a threshold η. This
can be equivalently expressed that for balls centered at each point with radius of η/2, if two balls
touches, a connection between two balls’ centers is added. (b) An example filtration (Rips filtration)
at values of η of X . (c) An example filtration (Rips filtration) at various values of η of one subset
of X . The distances of the bold lines are tb and td. (d) 1-dimensional Persistence Diagram of X .
(e) 1-dimensional Principal Persistence Measure of X . The red point corresponds to the topological
feature obtained via the red subset in (c). (f) Vectorization of PD or PPM.

Lab; Zhang et al. (2020), this network suffers from high time cost and can not scale for a large point
cloud.

In order to address this issue, we propose to replace PD in the pipeline with Principal Persistence
Measure (PPM) Gómez & Mémoli (2024); Tung et al. (2025), which is a statistical approximation
of PD. As shown in Tung et al. (2025), PPM can be computed entirely on GPU in a parallel way,
making it ideal for a scalable filtration learning framework. The main contributions of this work are
threefold:

1. Propose to use Principal Persistence Measure (PPM) in filtration learning framework
Nishikawa et al. (2023) to addresses the scalability limitation of PD-based approach and adapt
existing framework for PPM-based Filtration Learning (PPM-FL).

2. Establish the theoretical guarantee on the robustness of PPM against outliers and perform
corresponding experimental validation.

3. Demonstrate the effectiveness and scalability of our proposed PPM-FL in point cloud classi-
fication task on public datasets.

2 BACKGROUND

We provide the relevant information about Persistence Diagram and weighted filtration (refer to
Chazal & Michel (2021) for a comprehensive introduction).

2.1 PERSISTENCE DIAGRAM

Let g : X → R+ denote a function on space X , where R+ stands for positive real numbers, X is
a finite and open subset of Euclidean space. Function g is computed based on a finite point cloud
X sampled from manifold M ⊂ X . At scale η ≥ 0, the sublevel set X g

η = {x ∈ X | g(x) ≤ η}
encodes the topological information in X . For γ ≤ η, we can have the nested sublevel sets X g

γ ⊆
X g

η . By increasing scale η from 0, we obtain a filtration K(X) = {X g
η }0≤η<∞, a nested sequence

of topological spaces.

1-dimensional cycle (ring), we need to consider up to 2-simplices in the complex. The number of simplices is
O(n3) and the computational cost can be up to O(n9), where n is the size of the point cloud.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

A cycle is considered ‘born’ at b ∈ R when it first emerges in X g
b , and it ‘dies’ at d ∈ R when it

ceases to exist in X g
p for any p > d. 0-dimensional cycles are connected components; 1-dimensional

cycles are rings or loops; 2-dimensional cycles are voids, etc. This homology dimension is denoted
as q. Topological feature r = (b, d), which corresponds to a cycle, is presented in the form of PD
D = {ri = (bi, di) ∈ Ω|1 ≤ i ≤ N(D)}, where N(D) is the number of topological features. An
example using Rips filtration Hausmann et al. (1995) g(·) = 2minx∈X ℓ(·, x), where ℓ is Euclidean
distance, and corresponding PD are provided in Figures 1(b) and 1(d).

2.2 WEIGHTED FILTRATION

In Rips filtration, at scale η, the sublevel set is Xη =
⋃

x∈X B(x, η/2), where B(x, η/2) is the
ball center at x with radius η/2. Each ball has the same radius. Weighted filtration aims to put
weight on each point’s corresponding radius. For weighted filtration, at scale η, the sublevel set is
Xη =

⋃
x∈X B(x, η−w(x)), where w(·) : X → R is the weight function. Current work Nishikawa

et al. (2023), i.e., PD-FL, designed a network to learn this weight function w.

3 RELATED WORK

Supervised filtration learning is first introduced for graph data by designing learnable vertex filter
function Hofer et al. (2020). It is then studied for more extensive and general purposes on graph data
Horn et al. (2022); Immonen et al. (2023); Mukherjee et al. (2024); Zhang et al. (2022). Filtration
learning for point cloud is rarely developed. Existing work Nishikawa et al. (2023) built a network
via weighted filtration, i.e., given a point cloud X ⊂ Rd, one can define the radius value rx(η) at
scale η for x ∈ X as rx(η) = η − w(x) if η > w(x), otherwise rx(η) = −∞, where w is the
weight function. DTM Fasy et al. (2018) is a special case of this weighted filtration where w is
distance-to-measure function.

It is required in Nishikawa et al. (2023) that for filtration learning, the weight function w(·) =
f(X, ·) : Rd → R needs to meet the following three conditions:

1. f should be determined by the whole point cloud X and does not depend on the order of the
points in X;

2. f should be isometry-invariant, i.e, for any isometric transformation T , any point cloud X ,
and x ∈ X , f(TX, Tx) = f(X,x);

3. The output of the f(X,x) should have both of global information X and pointwise informa-
tion of x.

A network 3 that relies on deepsets Zaheer et al. (2017) and takes distance matrix as input is de-
signed to satisfy the conditions above. Once the filtration is determined by this network. PD of the
entire point cloud is computed and then can be vectorized as input to a Multi-Layer Perceptron for
classification task. Although this network outperforms unsupervised filtration like Rips and DTM,
it relies on CPU for the computation of PD and the substantial time cost Zomorodian & Carlsson
(2004) for computing PD prevents its scalability.

One way to reduce the time cost of computing PD of the entire point cloud is to use statistical
approximation: for multiple random subsets 4 (with fixed size) of the entire point cloud X , a PD
Di = {rj = (bj , dj) ∈ Ω|1 ≤ j ≤ N(Di)} is obtained for each random subset Xi

s ⊂ X . The
statistical approximation, i.e., Expected PD (EPD) Chazal & Divol (2018), takes a distributional
view and represents each PD of subset Xi

s as a measure µi =
∑N(Di)

j=1 δrj supported on Ω where δrj
is Dirac point mass at rj . The empirical EPD is then the average µ̄ = 1

M

∑M
i=1 µi, where M is the

number of random subsets.

Principal Persistence Measure (PPM) Gómez & Mémoli (2024) is a special case of Expected PD
where each subset Xi

s has fixed size 2q+2 where q is the homology dimension (q = 0 for connected
component, q = 1 for rings, etc.). It is guaranteed that each PD on 2q + 2 points has at most one

3The full architecture of network Nishikawa et al. (2023) is shown in the Appendix A.3.
4Each point in the subset is i.i.d. sampled from the entire point cloud.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

single topological feature, i.e., |N(Di)| ≤ 1, which can be efficiently computed as follows: given
any x ∈ Xi

s, let x(1), x(2) ∈ Xi
s be the points such that d(x, x(1)) ≥ d(x, x(2)) ≥ d(x, a) for any

a ∈ Xi
s \ {x(1), x(2)} where d is a distance function (filtration), then

r1 = (max
x∈Xi

s

d(x, x(2)), min
x∈Xi

s

d(x, x(1))).

The computation of PPM can be easily implemented in a parallel way and conducted on GPU.

PPM has been used in a recent work Tung et al. (2025) for latent space matching in Generative
Adversarial Networks Goodfellow et al. (2020). Although PPM is a rather vague statistical approx-
imation of PD and may not demonstrate all the possible topological features in a point cloud be-
cause the sampling mechanism favors points in dense region, the experiments in Tung et al. (2025)
demonstrate that a smaller distance (measured by Persistence Weighted Gaussian Kernel Kusano
et al. (2016) based Maximum Mean Discrepancy) between two PPMs indicates a smaller Wasser-
stein distance between the PDs.

In order to improve scalability, we propose to use PPM, instead of PD, to encode topological infor-
mation and adapt existing network Nishikawa et al. (2023) for PPM-based filtration learning, which
learns from multiple subsets.

4 FILTRATION LEARNING FOR PPM

We propose the filtration learning framework for PPM (PPM-FL) based on a weighted filtration.
PPM-FL, which concentrates on learning from multiple subsets, is adapted from the network in
Nishikawa et al. (2023) for learning from the entire point cloud.

Different from the three conditions mentioned in Nishikawa et al. (2023), here weight function w
should be related to Xs = ∪i∈[M]{Xi

s}, with each subset Xi
s ⊂ X of size 2q + 2, where q is the

homology dimension, instead of the whole point cloud X . This gives the following three adapted
requirements for the weight function w(·) = f̄(Xs, ·):

1. The output of f̄(Xs, x) should be determined by each subset Xi
s and does not depend on the

order of the points. The closer a subset Xi
s is to x, the greater its impact on x should be.

2. f̄ should be isometry-invariant, i.e., for any isometric transformation T , any point cloud X ,
Xs and x ∈ X , f̄(TXs, Tx) = f̄(Xs, x), where TXs ≜ ∪i∈[M]{TXi

s}
3. The output of f̄(Xs, x) should have both of global information Xs and pointwise information

of x.

Figure 2: PPM-based Filtration Learning Framework. Value vj is the output of f̄(Xs, xj). D

represents a distance matrix for two point clouds X and Y , D(X,Y) = (d(xi, yj))
i=|X|,j=|Y |
i=1,j=1 ∈

R|X|×|Y |, where d is Euclidean distance.

In order to deal with set Xs = ∪i∈[M]{Xi
s}, we model the weight function f̄ in a simple summation

form, i.e., f̄(Xs, ·) =
∑M

i=1 K(Xi
s, ·)f(Xi

s, ·), where f is used to output the weight (vij) of the j-th

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

point xj in X w.r.t. subset Xi
s, i.e., vij = f(xj , X

i
s). Function K measures the similarity between

the input and subset Xi
s to meet requirement 1: the closer Xi

s is to x, the greater its impact on x.
The filtration learning framework for PPM, as shown in Figure 2, is then adapted from Nishikawa
et al. (2023) to meet the three new requirements:

1. Following Nishikawa et al. (2023), the independence on the order of points is guaranteed by
following DeepSets Zaheer et al. (2017) architecture g1, g2 and h:

g1(xj , X
i
s) = ϕ(2)(op({ϕ(1)(d(x, xj))|x ∈ Xi

s}));

g2(x
k
s , X

i
s) = ϕ(4)(op({ϕ(3)(d(x, xk

s))|x ∈ Xi
s}));

h(Xi
s) = ϕ(5)(op({g2(x,Xi

s)|x ∈ Xi
s})),

where xk
s is the k-th 5 point in a subset Xi

s, d is Euclidean distance, ϕ(i)s are all fully-
connected neural networks and op is the permutation invariant operator.
For each xj ∈ X , after the weight vij w.r.t. the i-th subset Xi

s is obtained, the final weight value
vj is the distributional kernel weighted summation of each vij , i.e., vj =

∑M
i=1 K(xj , X

i
s)v

i
j ,

where K(xj , X
i
s) =

1
|Xi

s|
∑

x∈Xi
s
κ(x, xj) and κ(x, xj) = exp(

−∥x−xj∥2
2

2σ2).

2. The isometry-invariance is guaranteed by using the distance matrix as input.

3. The global and pairwise information are stored in h and g1 respectively.

Once all the weights are obtained, the weighted filtration is used to compute the PPM of the point
cloud 6. The space cost of PPM-FL is O((2q + 2)nM + (2q + 2)2M), where q is the homology
dimension, M is the number of subset in PPM and n is the point cloud size.

As for the approximation ability, for weight function f̄(Xs, ·) =
∑M

i=1 K(Xi
s, ·)f(Xi

s, ·), function f
is able to approximate any continuous function, as shown in Theorem 4.1 of Nishikawa et al. (2023).

PPM can be then vectorized 7 by a supervised method PersLay Carrière et al. (2020) for a potential
task. For example, if the task is point cloud classification, we can input the resulting vector into
MLP that employs a cross entropy loss function. Due to the parallel implementation of PPM, this
PPM-based pipeline can be deployed on GPU to scale on a large point cloud.

5 ROBUSTNESS OF PPM AGAINST OUTLIERS

Here we demonstrate the robustness of PPM against outliers. We start by considering the robustness
of a general case of PPM, i.e., Expected Persistence Diagram (EPD), where the size of random subset
Xs is denoted as n, and then extend the result to PPM. Let M denote the underlying manifold
of point cloud X; P denote the density of the distribution on k-dimensional M; and U denote
the density of the distribution of outliers, such as a uniform distribution. Following the setting in
Vishwanath et al. (2020), the outlier-contaminated distribution Po is expressed as

Po = (1− ϵ)P + ϵU,

where ϵ is the percentage of outliers. Then we have the following lemma on the robustness of EPD
under the assumption that filtration K meets K1-K5 requirements in Section 3 of Chazal & Divol
(2018).

5This index k is used to differentiate two different point in subset Xi
s. We just assume a random order here

since the framework is permutation invariant.
6Note that we could use the framework in Nishikawa et al. (2023), which uses the distance matrix of the

entire point cloud to learn the weights. But the space cost would be O(n2), which is one order of magnitude
higher than PPM-FL’s O((2q + 2)nM + (2q + 2)2M).

7Despite many methods for vectorization for PD or PPM, including supervised Carrière et al. (2020); Kim
et al. (2020); Reinauer et al. (2021) and unsupervised ones Adams et al. (2017); Bubenik et al. (2015); Chung
& Lawson (2022), we choose to use PersLay Carrière et al. (2020) , a supervised vectorization that uses similar
structure like Deepsets for simplicity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 5.1. For EPD EXs∼Pn [ν(Xs)] with density µ1 and EXs∼Pn
o
[ν(Xs)] with density µ2, where

ν(Xs) is the measure form of PD D(K(Xs)) , i.e., ν(Xs) =
∑

r∈D(K(Xs))
δr, it holds that

∥µ1 − µ2∥1 ≤ CnHk(M)npn−1(ϵ)ϵ,

where Cn is the expected number of points in the PD built with the filtration K on n i.i.d. points
on M, Hk(M) is k-dimensional Hausdorff measure 8 of M and pn−1(ϵ) is a polynomial of order
n− 1 with bounded coefficients.

The proof is provided in the Appendix B.
Theorem 5.2. For PPM EXs∼P 2q+2 [ν(Xs)] with density µ1 and EXs∼P 2q+2

o
[ν(Xs)] with density

µ2, it holds that
∥µ1 − µ2∥1 ≤ Hk(M)2q+2p2q+1(ϵ)ϵ,

where Hk(M) is k-dimensional Hausdorff measure of M and p2q+1(ϵ) is a polynomial of order
2q + 1 with bounded coefficients.

Proof. Following Lemma 5.1, PPM is a special case of EPD where the size of each subset is n =
2q+2, q is homology dimension. Combined with the fact that each subset of size 2q+2 has at most
1 topological feature, i.e., Cn ≤ 1, we can have the result above.

Theorem 5.2 indicates that a small number of outliers in the point cloud will not severely disturb
PPM. The experimental demonstration of PPM’s robustness with the learned filtration in point cloud
classification task is provided in Section 6.2. We discuss the relation between Theorem 5.2 and
existing results in Divol & Lacombe (2021b) in Appendix D.4.

6 EXPERIMENTS

We compare PPM-FL with PD-FL 9 on the protein Kovacev-Nikolic et al. (2016) and Model-
Net10 Wu et al. (2015) datasets used previously in similar evaluations Nishikawa et al. (2023).
We also conduct an ablation study to compare PPM-FL with the unsupervised Rips filtration to
demonstrate the effectiveness of PPM-FL. PPM-based approach can not use DTM since there are
only 2q + 2 points in each random subset. In addition, we validate the robustness and scalabil-
ity of PPM-FL. All the classification results are obtained through 3-fold cross validation. All
the experiments are conducted on a Ubuntu 20.04 system with 2TB RAM, AMD EPYC 7763
64-Core 1500 MHZ CPU and NVIDIA A6000 GPU. The network is implemented with PyTorch
2.0.1. The code implementation of PD-FL is from https://github.com/git-westriver/
FiltrationLearningForPointClouds. The details of the experiment setting are pro-
vided in the Appendix C. Code is provided at https://anonymous.4open.science/r/
PPM-FL-415C.

6.1 COMPARISON WITH PD-FL

Following the same setting in Nishikawa et al. (2023) on the protein dataset, we employ the pipeline
shown in Figure 1 with filtration learning, which uses the topological information only for classifi-
cation. The results are shown in Table 1. The accuracies of PPM-FL over different homology di-
mensions are significantly higher than PPM-Rips 10 and the standard deviation of PPM-FL is lower.

8Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer
dimensions. Let k be a non-negative integer. For A ⊂ M, and δ > 0, consider Hδ

k(A) =

inf{
∑

i α(k)(
diam(Ui)

2
)k, A ⊂

⋃
i Ui and diam(Ui) < δ}, where α(k) is the volume of the k-dimensional

unit ball and diam represents diameter. The k-dimensional Hausdorff measure on M of A is defined by
Hk(A) = limδ→0 H

δ
k(A).

9Here PD-FL means the PD-based Filtration Learning Nishikawa et al. (2023). The experiments on com-
paring PD-based filtration learning (PD-FL) with Rips (PD-Rips) and DTM (PD-DTM) filtration for PD have
already been conducted in Nishikawa et al. (2023). PD-Rips produces similar results to that of PD-DTM. And
PD-FL outperforms PD-Rips and PD-DTM. Hence, we just use PD-FL as baseline in our work.

10In the original PD-FL work Nishikawa et al. (2023), it has been demonstrated that the Rips and DTM yield
comparable results when applied to both the protein and the ModelNet10 dataset. For the sake of simplicity
and to streamline our analysis, we will solely compare our proposed method with Rips.

6

https://github.com/git-westriver/FiltrationLearningForPointClouds
https://github.com/git-westriver/FiltrationLearningForPointClouds
https://anonymous.4open.science/r/PPM-FL-415C
https://anonymous.4open.science/r/PPM-FL-415C

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This comparison with PPM-Rips demonstrates the advantage of the supervised filtration learning
over the unsupervised filtration like Rips.

Table 1: Accuracy of the binary classification task of protein structure. We compared our method
PPM-FL with PPM-Rips and PD-FL. PPM-Rips denotes using the Rips filtration instead of the fil-
tration learning for PPM. The PersLay vectorization is learned in an end-to-end way. Homology di-
mension q stands for the dimension of PDs (PPMs). q = 0&1 means that we use both 0-dimensional
and 1-dimensional PD or PPM, and the feature input to the MLP is the concatenation of the vector-
ization of 0-dimensional and 1-dimensional PDs (PPMs) via PersLay.

q = 0 q = 1 q = 0&1

PD-FL 65.80 ± 1.76 82.10 ± 1.66 81.70 ± 1.31
PPM-Rips 64.09 ± 7.78 65.40 ± 2.12 71.50 ± 1.31
PPM-FL 84.00 ± 1.39 80.20 ± 1.76 84.60 ± 1.22

When compared with PD-FL, PPM-FL produces better results in q = 0 and q = 0&1, but slightly
worse in q = 1. This suggests that although PPM is a rather vague statistical approximation of PD,
both of them are effective in extracting meaningful topological features from the protein dataset for
classification. This could imply that the key aspect for achieving good performance in this context
is not solely the precise topological information but rather the ability to appropriately integrate
topological information with the classification model.

For the ModelNet10 dataset, we use the version which contains 10 classes, with 100 instances in
each class. Each instance is a point cloud of shape 128 × 3. Here we employ the same two-phase
process in Nishikawa et al. (2023) by combining topological embedding with a DNN-based method.
For a point cloud X , let Ψtopo(X) ∈ RL1 be the topological embeddings from PD-FL or PPM-FL,
ΨDNN(X) ∈ RL2 be the feature from a DNN-based method. Let ℓ be the loss function and m be
the number of classes. The two-phase training classifiers proposed by Nishikawa et al. (2023) are
specified as follows:

1. Phase 1 classifier receives feature from ΨDNN as C1 : RL2 → Rm, wher e m is the number of
classes. C1 and ΨDNN are jointly learned by minimizing

∑
j ℓ(C1(ΨDNN(Xj), yj).

2. Phase 2 classifier C2 : RL1+L2 → Rm. We fix the parameters of the learned ΨDNN in the 1st
phase and learn C2 and Ψtopo by minimizing

∑
j ℓ(C2([ΨDNN(Xj)

⊺,Ψtopo(Xj)
⊺]⊺), yj).

The final classification is conducted through C2 with the concatenated features from ΨDNN and Ψtopo
on the test set. For the choices of DNN method, we consider DeepSets Zaheer et al. (2017), PointNet
Qi et al. (2017) and PointMLP Ma et al.. The results of the two-phase process are shown in Table 2.

Table 2: Results for the classification task on the ModelNet10 dataset. Two-phase training process is
utilized here. The first phase we use DeepSets and PointNet. The results of PointMLP are discussed
in the Appendix D.1. The first phase directly uses point cloud as input and does not have the notion
of homology dimension since it does not involve topological summary like PD or PPM. So there is
no result for each homology dimension in the first phase.

1st Phase 2nd Phase

DeepSets PD-FL PPM-Rips PPM-FL

66.23 ± 3.19
q = 0 67.40 ± 2.31 67.30 ± 2.41 67.90 ± 3.01
q = 1 68.20 ± 2.37 67.50 ± 2.17 66.90 ± 2.17

q = 0&1 67.40 ± 0.82 67.10 ± 1.42 67.50 ± 2.88
PointNet PD-FL PPM-Rips PPM-FL

67.23 ± 1.80
q = 0 68.60 ± 3.09 67.10 ± 2.21 68.70± 2.23
q = 1 68.90 ± 2.64 67.10 ± 2.21 69.60 ± 1.33

q = 0&1 69.00 ± 5.57 67.30 ± 2.02 69.80 ± 0.77

When using DeepSets in the first phase, PD-FL, PPM-Rips and PPM-FL can all improve the clas-
sification accuracy in the second phase. Except for the case of q = 1 where PD-FL outperforms

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

PPM-Rips and PPM-FL, PPM-FL achieves comparable results with PD-FL and PPM-Rips. This
demonstrates the effectiveness of topological info when combined with the DNN method.

When using PointNet in the first phase, PPM-Rips makes no improvement on the classification ac-
curacy. PPM-FL produces comparable results as that of PD-FL: both of them improve the accuracy
in the second phase. The highest accuracy (69.80 ± 0.77) is obtained via PointNet + PPM-FL
(q = 0&1) with homology dimensions q = 0&1.

The additional results of PointMLP are discussed in the Appendix D.1. The ablation study of the
Gaussian weight is provided in Appendix D.3. Table 7 shows the effectiveness of our proposed
Gaussian weight: by prioritizing nearer subsets, the Gaussian weight effectively amplifies mean-
ingful topological features, thereby enhancing the method’s performance in capturing the intrinsic
structure of the data.

It is worth noted that using all the homology dimensions is a rather safe choice to get high accuracy.
Hence we will use all the homology dimensions in the following experiments.

6.2 ROBUSTNESS

Here we show the robustness of PPM against outliers in the point cloud. For the ModelNet10 dataset,
we use the model trained on outlier-free point clouds; and for each point cloud in the test set, we add
outliers from uniform distribution at percentage ϵ. We choose the two-phase process where the first
phase uses DeepSets and the second phase uses all the homology dimensions q = 0&1, since in this
case PPM-FL and PD-FL produces similar results when there is no outliers on the test set, ensuring
a fair comparison.

Figure 3: Average classification accuracy under different outlier percentages (ϵ).

The average accuracies of PPM-FL and PD-FL under different outlier percentages ϵ are shown in
Figure 3. PPM-FL and PD-FL produce similar results when the number of outliers is small, i.e.,
ϵ ≤ 5.0%. When the number of outliers increases, i.e., ϵ > 5.0%, the accuracy of PD-FL drops
quickly while PPM-FL remains accuracy above 55%. This result validates the robustness against
outliers of PPM shown in Section 5.

6.3 SCALABILITY W.R.T. POINT CLOUD SIZE

We demonstrate the scalability of PPM-FL w.r.t. the point cloud size n. The settings in each phase
here is the same as that in last subsection on robustness. The number of the point clouds in the
dataset is fixed. We consider all the homology dimensions 0 and 1 in the second phase. We fix the
batch size and report the average time of each epoch in the second phase in Table 3. In the first
phase, we use the same pretrained model for PPM-FL and PD-FL.

For PPM-FL, when the number of random subsets M is fixed, the time cost increases very modestly
as n grows. When the number of points in each point cloud n is fixed, The time cost is linear w.r.t.
M .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Actual time cost (s) per-epoch under different numbers n of points in the point cloud and
numbers of random subsets M in PPM. Our aim is to compare the real-world usage of these methods
on the ModelNet10 dataset. Thus, PPM-FL is conducted on GPU and PD-FL is on pure CPU or
CPU-GPU Hybrid. The computation of PD-FL (CPU) is through the GUDHI library Maria et al.
(2014). The computation of PD-FL (CPU-GPU Hybrid) is through the torch-topological library
Lab.

PPM-FL (GPU) PD-FL (CPU) PD-FL (Hybrid)M=100 M=200 M=400

n=64 56.61 ± 1.08 112.79 ± 1.41 210.17 ± 2.50 41.46 ± 2.55 5.59 ± 0.23
n=128 58.91 ± 3.11 118.79 ± 1.22 218.26 ± 1.35 187.56 ± 2.87 29.46 ± 2.42
n=256 65.85 ± 1.04 129.19 ± 1.15 239.42 ± 1.01 1101.85 ± 11.46 157.95 ± 1.95
n=512 77.95 ± 1.77 154.32 ± 1.58 273.47 ± 1.26 7556.32 ± 66.11 607.95 ± 13.20

Compared with PD-FL (CPU), PPM-FL’s time cost is similar to that of PD-FL (CPU) when point
cloud size n is very small. PD-LF (Hybrid) is one order of magnitude faster than PD-FL (CPU).
But when n is very large (n ≥ 512), PD-LF (Hybrid) is slower than PPM-FL (GPU). The time
cost of PD-FL, whether on CPU or hybrid, increases very rapidly when n grows. This demonstrates
PPM-FL possesses better scalability than PD-FL.

Table 4: Accuracies of PPM-FL (GPU) under different Ms (n = 128, q = 0&1) on the ModelNet10
dataset with the 1st phase model being DeepSets.

M = 25 M = 50 M = 100 M = 200 M = 400

67.00 ± 2.53 67.00 ± 1.43 67.60 ± 2.20 67.50 ± 2.88 67.40 ± 1.92

Table 5: Accuracies of PPM-FL (GPU) under different ns (M = 100, q = 0&1) on the ModelNet10
dataset with the 1st phase model being DeepSets.

n = 128 n = 256 n = 512

67.60 ± 2.20 71.65 ± 1.84 69.40 ± 2.94

Some selected accuracy results corresponding to Table 3 are shown in Table 4 and 5. These results
explicitly demonstrates that scalability of PPM-FL is achieved without sacrificing accuracy. And
according to Table 4, empirically, if M(2q+2) is close to or smaller than n, i.e. only a small subset
of the entire point cloud is sampled, the performance of PPM-FL will degrade. Hence, a default
choice of M would be an integer larger than n/(2q + 2) .

In summary, while both PPM-FL and PD-FL produce comparable results in point cloud classification
task, PPM-FL is more robust to outliers and has better scalability than PD-FL.

7 CONCLUSION

In this study, we propose to use PPM to replace PD in a filtration learning framework. PPM-based
filtration learning (PPM-FL) addresses the scalability limitations of existing PD-based approach for
point clouds. By leveraging PPM, which can be computed entirely on GPU in a parallel manner, we
achieved a more efficient solution for encoding topological features.

Our theoretical analysis establishes the robustness of PPM against outliers, and we experimentally
validate this property in the context of both the unsupervised and supervised filtration methods. The
results show that PPM-FL maintains more stable performance than PD-FL when the test point cloud
is contaminated with outliers.

Limitation and future works are discussed in Appendix D.5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
stable vector representation of persistent homology. Journal of Machine Learning Research, 18
(8):1–35, 2017.

Rubén Ballester and Bastian Rieck. On the expressivity of persistent homology in graph learning.
arXiv preprint arXiv:2302.09826, 2023.

Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes. Journal of Applied
and Computational Topology, 5(3):391–423, 2021.

Mireille Boutin and Gregor Kemper. On reconstructing configurations of points in p 2 from a joint
distribution of invariants. Applicable Algebra in Engineering, Communication and Computing,
15:361–391, 2005.

Peter Bubenik et al. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(1):77–102, 2015.

Yueqi Cao and Anthea Monod. Approximating persistent homology for large datasets. CoRR,
abs/2204.09155, 2022. URL https://doi.org/10.48550/arXiv.2204.09155.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures.
In International Conference on Artificial Intelligence and Statistics, pp. 2786–2796. PMLR, 2020.

Frédéric Chazal and Vincent Divol. The density of expected persistence diagrams and its kernel
based estimation. In SoCG 2018-Symposium of Computational Geometry, 2018.

Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: Fundamental
and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4:667963, 2021.

Yu-Min Chung and Austin Lawson. Persistence curves: A canonical framework for summarizing
persistence diagrams. Advances in Computational Mathematics, 48(1):6, 2022.

Vincent Divol and Théo Lacombe. Estimation and quantization of expected persistence diagrams.
In International Conference on Machine Learning, pp. 2760–2770. PMLR, 2021a.

Vincent Divol and Théo Lacombe. Understanding the topology and the geometry of the space
of persistence diagrams via optimal partial transport. Journal of Applied and Computational
Topology, 5(1):1–53, 2021b.

Brittany Fasy, Fabrizio Lecci, Larry Wasserman, et al. Robust topological inference: Distance to a
measure and kernel distance. Journal of Machine Learning Research, 18(159):1–40, 2018.

Alessio Figalli. The optimal partial transport problem. Archive for Rational Mechanics and Analysis,
195(2):533–560, 2010.

Mario Gómez and Facundo Mémoli. Curvature sets over persistence diagrams. Discrete & Compu-
tational Geometry, 72(1):91–180, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jean-Claude Hausmann et al. On the vietoris-rips complexes and a cohomology theory for metric
spaces. Annals of Mathematics Studies, 138:175–188, 1995.

Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G. Escolar, Kaname Matsue, and
Yasumasa Nishiura. Hierarchical structures of amorphous solids characterized by persistent ho-
mology. Proceedings of the National Academy of Sciences, 113(26):7035–7040, 2016. doi:
10.1073/pnas.1520877113. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1520877113.

10

https://doi.org/10.48550/arXiv.2204.09155
https://www.pnas.org/doi/abs/10.1073/pnas.1520877113
https://www.pnas.org/doi/abs/10.1073/pnas.1520877113

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning, pp. 4314–4323. PMLR, 2020.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological graph neural networks. In International Conference on Learning Representa-
tions, 2022.

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using per-
sistent homology. Advances in Neural Information Processing systems, 36:63150–63173, 2023.

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Kim, Frédéric Chazal, and Larry Wasserman. Pllay:
Efficient topological layer based on persistent landscapes. Advances in Neural Information Pro-
cessing Systems, 33:15965–15977, 2020.

Violeta Kovacev-Nikolic, Peter Bubenik, Dragan Nikolić, and Giseon Heo. Using persistent homol-
ogy and dynamical distances to analyze protein binding. Statistical Applications in Genetics and
Molecular Biology, 15(1):19–38, 2016.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for
topological data analysis. In International Conference on Machine Learning, pp. 2004–2013.
PMLR, 2016.

AIDOS Lab. Pytorch-topological: A topological machine learning framework for py-
torch. URL https://github.com/aidos-lab/pytorch-topological?tab=
readme-ov-file.

Yongjin Lee, Senja D Barthel, Paweł Dłotko, S Mohamad Moosavi, Kathryn Hess, and Berend Smit.
Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 8(1):
1–8, 2017.

Xiang Liu, Huitao Feng, Jie Wu, and Kelin Xia. Dowker complex based machine learning (dcml)
models for protein-ligand binding affinity prediction. PLOS Computational Biology, 18(4):1 –
17, 2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual mlp framework. In International Conference on
Learning Representations.

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library: Sim-
plicial complexes and persistent homology. In Mathematical Software–ICMS 2014: 4th Interna-
tional Congress, Seoul, South Korea, August 5-9, 2014. Proceedings 4, pp. 167–174. Springer,
2014.

Zhenyu Meng, D Vijay Anand, Yunpeng Lu, Jie Wu, and Kelin Xia. Weighted persistent homology
for biomolecular data analysis. Scientific Reports, 10(1):1–15, 2020.

Soham Mukherjee, Shreyas N Samaga, Cheng Xin, Steve Oudot, and Tamal K Dey. D-gril: End-to-
end topological learning with 2-parameter persistence. arXiv preprint arXiv:2406.07100, 2024.

Naoki Nishikawa, Yuichi Ike, and Kenji Yamanishi. Adaptive topological feature via persistent
homology: Filtration learning for point clouds. In Advances in Neural Information Processing
Systems, 2023.

Leslie O’Bray, Bastian Rieck, and Karsten Borgwardt. Filtration curves for graph representation. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1267–1275, 2021.

Julián Burella Pérez, Sydney Hauke, Umberto Lupo, Matteo Caorsi, and Alberto Dassatti. giotto-
ph: a python library for high-performance computation of persistent homology of vietoris-rips
filtrations. arXiv preprint arXiv:2107.05412, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer
vision and Pattern Recognition, pp. 652–660, 2017.

11

https://github.com/aidos-lab/pytorch-topological?tab=readme-ov-file.
https://github.com/aidos-lab/pytorch-topological?tab=readme-ov-file.

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Raphael Reinauer, Matteo Caorsi, and Nicolas Berkouk. Persformer: A transformer architecture for
topological machine learning. arXiv preprint arXiv:2112.15210, 2021.

Vsevolod Salnikov, Daniele Cassese, and Renaud Lambiotte. Simplicial complexes and complex
systems. European Journal of Physics, 40(1):014001, 2018.

Joshua Southern, Jeremy Wayland, Michael Bronstein, and Bastian Rieck. Curvature filtrations
for graph generative model evaluation. Advances in Neural Information Processing Systems, 36:
63036–63061, 2023.

Jacob Townsend, Cassie Putman Micucci, John H Hymel, Vasileios Maroulas, and Konstantinos D
Vogiatzis. Representation of molecular structures with persistent homology for machine learning
applications in chemistry. Nature Communications, 11(1):1–9, 2020.

Wong Hiu Tung, Darrick Lee, and Hong Yan. Towards scalable topological regularizers. In The
Thirteenth International Conference on Learning Representations, 2025.

Cédric Villani. The wasserstein distances. Optimal transport: old and new, pp. 93–111, 2009.

Siddharth Vishwanath, Kenji Fukumizu, Satoshi Kuriki, and Bharath K Sriperumbudur. Robust
persistence diagrams using reproducing kernels. Advances in Neural Information Processing
Systems, 33:21900–21911, 2020.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1912–1920, 2015.

Kelin Xia and Guo-Wei Wei. Multidimensional persistence in biomolecular data. Journal of Com-
putational Chemistry, 36(20):1502–1520, 2015.

Kelin Xia, Zhiming Li, and Lin Mu. Multiscale persistent functions for biomolecular structure
characterization. Bulletin of Mathematical Biology, 80:1–31, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30, 2017.

Hang Zhang, Kaifeng Zhang, Kai Ming Ting, and Ye Zhu. Towards a persistence diagram that
is robust to noise and varied densities. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

Simon Zhang, Mengbai Xiao, and Hao Wang. Gpu-accelerated computation of vietoris-rips persis-
tence barcodes. arXiv preprint arXiv:2003.07989, 2020.

Simon Zhang, Soham Mukherjee, and Tamal K Dey. Gefl: Extended filtration learning for graph
classification. In Learning on Graphs Conference, pp. 16–1. PMLR, 2022.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In Proceedings of the
twentieth Annual Symposium on Computational Geometry, pp. 347–356, 2004.

A BACKGROUND

A.1 EXPECTED PERSISTENCE DIAGRAM

A PD D = {ri = (bi, di) ∈ Ω|1 ≤ i ≤ N(D)} can be equivalently represented as a counting
measure µ on Ω given by A ∈ B → µ(A) =

∑N(D)
i=1 δri(A),

where B is the class of all Borel subsets of Ω and δr denotes the Dirac point mass at r ∈ Ω. When
each sampled PD is a random draw from a distribution P , its EPD, denoted as E[µ], is defined as
A ∈ B → E[µ](A) = E[µ(A)] Chazal & Divol (2018).

Given a finite set {µ1, µ2, ..., µn}, consisting of sampled PDs from P , the empirical EPD is defined
as µ̄ = 1

n

∑n
i=1 µi. The support of µ̄ is Sµ̄ = ∪n

i=1Di, where Di = {rj = (bj , dj) ∈ Ω|1 ≤ j ≤
N(Di)} is the support of the sampled PD µi. EPD can be viewed as a distribution Chazal & Divol

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(2018) of topological features supported on the open half plane Ω. Quantization method Divol &
Lacombe (2021a) has been developed to reduce the support size of EPD.

An inherent metric applicable to the space of EPDs Divol & Lacombe (2021a) with the same mass,
is Wasserstein distance Villani (2009). In a space of EPDs with different masses, the Optimal Par-
tial Transport metric (OTp) Figalli (2010) is used to allow any mass transportation from or to the
diagonal ∂Ω.

For the approximation error of EPD, we have the following theorem in Cao & Monod (2022):

Theorem A.1 (Cao & Monod (2022)). Let X ⊂ Rm be a finite set of points, and π be a probability
measure on X satisfying the (a, b, r0)-standard assumption. Suppose X1

s , . . . , X
M
s are M i.i.d.

samples from the distribution π⊗n with |Xi
s| = n. Let µ̄ be the empirical persistence measure, i.e.,

EPD; denote β := p
b − 1. Then the empirical persistence measure approaches the true persistence

measure D(X) (here we omit the symbol filtration choice and D(X) is in measure form: D(X) =∑
r δr) of X in expectation at the following rates:

E[OTp
p(µ̄,D(X))] ≤



O(M−1/2) +O(1) +O
(
n−β

)
if p > b;

O(M−1/2) +O(1) +O

((
logn

n

)1/b)
if p ≤ b, r0 <

(
logn

an

)1/b

;

O(M−1/2) +O(1) +O

((
logn

n

)p/b
1

(logn)2

)
if p ≤ b, r0 ≥

(
logn

an

)1/b

.

As a special case of Expected Persistence Diagram, the approximation error of Principal Persistence
Measure is theoretically studied in Theorem 3.20 in Gómez & Mémoli (2024).

A.2 VECTORIZATION VIA PERSLAY

PersLay Carrière et al. (2020) is a supervised vectorization method for PD, a multiset D = {ri =
(bi, di) ∈ Ω|1 ≤ i ≤ N(D)} on the half plane Ω = {(t1, t2) ∈ R2|t2 > t1}. PersLay is adapted
from the DeepSets structure Zaheer et al. (2017) and expressed as follows:

PersLay(D) = op({w(r) · ϕ(r)}r∈D),

where op is any permutation invariant operation (such as minimum, maximum, sum, kth largest
value...), w : R2 → R is a weight function for the points in PD, and ϕ : R2 → Rq is a representation
function called point transformation, mapping each point (bi, di) of a PD to a vector.

Certain choices of w, ϕ and op can transform PersLay into specific methods like Persistence Image
Adams et al. (2017) and Persistence Landscape Bubenik et al. (2015). In our work, we follow the
setting in Nishikawa et al. (2023) and choose w(·) = 1 and ϕ as

ϕ(r) = [exp(−∥p− c1∥2

2
), exp(−∥p− c2∥2

2
), ..., exp(−∥p− cm∥2

2
)]⊺,

where all the cis are the parameters to be learned.

Non-DL vectorization. While our current work is more centered on the scalability of our proposed
method within the DL-based context, we recognize the importance of the non-DL perspective. Re-
garding the non-DL based vectorization method, the scalability issue of Expected Persistence Dia-
gram (EPD), a more general form of PPM, has been discussed in detail in Bubenik et al. (2015) and
Section 4.3.1 in Gómez & Mémoli (2024).

A.3 PERSISTENCE DIAGRAM-BASED FILTRATION LEARNING FRAMEWORK

The PD-based filtration learning framework (PD) Nishikawa et al. (2023) is shown in Figure 4. PD-
FL tries to learn the weight function w(·) = fθ(X, ·) from the entire point cloud X for weighted
filtration. Once the weight is learned, weighted filtration is used to compute PD. Then, PD is vec-
torized by PersLay and used in machine learning task like point cloud classification.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: Persistence Diagram-based Filtration Learning Framework. Functions g1, g2 and h are the
same as those we use in Section 4. This is a direct reuse of Figure 2 in Nishikawa et al. (2023).

B PROOF

Lemma 5.1. For EPD EXs∼Pn [ν(Xs)] with density µ1 and EXs∼Pn
o
[ν(Xs)] with density µ2, where

ν(Xs) is the measure form of PD D(K(Xs) , i.e., ν(Xs) =
∑

r∈D(K(Xs)
δr, it holds that

∥µ1 − µ2∥1 ≤ CnHk(M)npn−1(ϵ)ϵ,

where Cn is the expected number of points in the PD built with the filtration K on n i.i.d. uniform
points on M, Hk(M) is k-dimensional Hausdorff measure of M and pn−1(ϵ) is a polynomial of
order n− 1 with bounded coefficients.

Proof. For Theorem 7.1 in Chazal & Divol (2018), we have that

∥µ1 − µ2∥1 ≤ CnHk(M)n∥q1 − q2∥∞,

where q1(q2) is the density with respect to the Hausdorff measure Hkn, q1(x) = Πn
i=1P (xi) and

q2(x) = Πn
i=1Po(xi), where x = [x⊺

1 , ..., x
⊺
n]

⊺. For the ∥q1 − q2∥∞ term, since each xi is i.i.d.
sampled, for x = argmax|q1 − q2|, it holds that

(q1 − q2)(x) = ΠiP (xi)−ΠiPo(xi)

= ΠiP (xi)[1−
ΠiPo(xi)

ΠiP (xi)
],

where under the assumption that each xi is in the dense area (support with positive density) of P
and 1 > U(xi)

P (xi)
≥ ∆ > 0, we have that

ΠiPo(xi)

ΠiP (xi)
= Πi[1− (1− U(xi)

P (xi)
)ϵ]

≥ Πi[1− (1−∆)ϵ]

.

So it holds that
∥q1 − q2∥∞ = |q1(x)− q2(x)|

≤ ΠiP (xi)[1− (1− (1−∆)ϵ)n]

= pn−1(ϵ)ϵ.

Finally, we obtain that
∥µ1 − µ2∥1 ≤ CnHk(M)npn−1(ϵ)ϵ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.1 ON THE ASSUMPTION OF THE SUPPORTS OF P AND U IN THEOREM 5.2

We assume that P and U share the same support. Regarding the manifold’s support, U is a (maybe
uniform) distribution over the entire support of M, including regions where the inlier density P are
very low and points have little chance to be sampled from this low density area. An example is
shown in Figure 16 in Gómez & Mémoli (2024). The support of P is the circular area and the low
density region lies at the inner part of the ring.

In the caption of Figure 16 in Gómez & Mémoli (2024), it claims that ”Given 0 ≤ p ≤ 1, we
sample X ⊂ D2 with 1000 points so that each point is uniformly distributed in the interior of D2

with probability p or on its boundary S1E with probability 1 − p”. We can consider P is such a
distribution with a p that is close to 0, but it is not 0. And consider U is a distribution with p that is
close to 1, but it is not 1. So both the supports of P and U are D2 ∪ S1E and the value of their pdf is
upper and lower bounded. And it would not cause the pdf being either 0 or infinite.

C EXPERIMENT SETTINGS

Optimization. We set the batch size as 128 for protein datasets and 40 for ModelNet10
dataset. For optimizer, we use Adam. Learning rate is 0.1 for ModelNet and 0.001 for
protein dataset. For scheduler, we use the TransformerLRScheduler implemented in pytorch
(https://github.com/sooftware/pytorch-lr-scheduler/tree/main) and the
number of warm-up epoch is set to be 40. For ModelNet10, the number of epochs in
the first phase is 1500. For protein dataset and the second phase of ModelNet dataset, we
use the EarlyStopping handler (https://pytorch.org/ignite/generated/ignite.
handlers.early_stopping.EarlyStopping.html) with patience=20 and min delta =
0.002 for the loss on validation set of size being 200.

Principal Persistence Measure. For the computation of PPM, we set M = 200 for both protein and
ModelNet10 datasets. For the vectorization method PersLay, m is set to be 32 and the permutation
invariant operation op is summation.

Networks. For the DNN-based methods (DeepSets, PointNet and PointMLP) in the first phase, we
use the same structure as those in Nishikawa et al. (2023). We set all of The permutation invariant
operators op that appear in PPM-FL and PD-FL are all summation. The dimension of the feature
vectors obtained by PersLay is set as 16, except that when using both homology dimensions, it is
32. The DeepSets-like structures ϕ(1) − ϕ(5) and fully connected network are the same as those in
Nishikawa et al. (2023). we initialized the parameters in PPM-FL with normal distribution with a
mean of 0 and a standard deviation of 1.0. Other parameters was initialized with the default settings
of PyTorch.

Datasets. The protein dataset Kovacev-Nikolic et al. (2016) does not provide a point cloud. Instead,
a cross-correlation matrix C is provided for each protein. Then the dynamic distance matrix D,
where Di,j = 1− |Ci,j |, is used to compute PD or PPM. We use a version of this dataset Nishikawa
et al. (2023), which contains two classes of protein, with 500 instances in each class. Each instance is
a distance matrix of shape 60×60 and has noise from a uniform distribution with standard deviation
of 0.1 for the off-diagonal elements.

D ADDITIONAL RESULTS AND DISCUSSIONS

D.1 RESULTS OF TWO-PHASE TRAINING (POINTMLP + PPM-FL)

For PointMLP, it is claimed in Nishikawa et al. (2023) that PD-FL reduces the accuracy of 68.80 to
below or around 60 in the first phase, because PointMLP has already captured information including
topology in the first phase and PD-FL brings in redundant information.

The results of the two-phase process where the first phase uses PointMLP are shown in Table 6.
Despite the choice of homology dimension, the accuracy of PPM-FL in the second phase is signif-
icantly lower than that in the first phase. This confirms the claim in Nishikawa et al. (2023) that
PointMLP has already captured information including topology in the first phase and PD-FL brings
in redundant information.

15

https://github.com/sooftware/pytorch-lr-scheduler/tree/main
https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html
https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Results for the classification task of ModelNet10 dataset when the first phase is PointMLP.

1st Phase PointMLP 70.10 ± 4.70

q = 0 q = 1 q = 0&1

2nd Phase PPM-Rips 54.20 ± 9.56 57.30 ± 13.37 49.29 ± 11.82
PPM-FL 52.70 ± 8.58 53.90 ± 8.23 56.59 ± 13.01

At a higher level, the topological information here is specific pairwise distance that is topologically
meaningful, since the birth and death of a topological feature in PD or PPM are actually pairwise
distances. In PointNet and DeepSets, no pairwise information is needed because both of them use a
network to transform point feature and then use a permutation invariant operator to aggregate these
features as point cloud-level feature. But PointMLP needs pairwise info to define a neighborhood
in order to learn the feature of a local region. This process involves pairwise distances. This could
explain why PPM or PD can only work for PointNet and DeepSets, rather than PointMLP.

D.2 RELATION BETWEEN PPM AND THE DISTRIBUTION OF PAIRWISE DISTANCES.

It is worth mentioning that when homology dimension q = 0 and we use the unsupervised Rips
filtration instead of the filtration learning, PPM represents the distribution of pairwise distances,
which is shown in Boutin & Kemper (2005) to almost solve the isometry classification problem for
point clouds. PPM of higher homology dimension can be viewed as a conditional distribution of
pairwise distances that are topologically meaningful for high dimensional cycles.

D.3 ABLATION STUDY ON WEIGHT CHOICE: GAUSSIAN OR UNIFORM

We present supplementary experimental results of PPM-FL with Gaussian (
∑M

i=1 K(Xi
s)f(X

i
s, ·))

or Uniform (
∑M

i=1 f(X
i
s, ·)) weight on the ModelNet10 dataset, under the same setting as that in

Table 2. The first phase we use DeepSets. The results are shown in Table 7. For the choice of K
, any differentiable distributional kernel would be fine. For simplicity, we choose to use Gaussian
Distribution Kernel. The hyperparameter σ is set to be the median of all the pairwise distances. Our
current results demonstrate effectiveness with this default setting.

Table 7: Accuracies of PPM-FL on ModelNet10 dataset under different weight functions.

q = 0 q = 1 q = 0&1

Gaussian 67.90± 3.01 66.90± 2.17 67.50± 2.88
Uniform 67.60± 1.97 67.00± 2.21 66.80± 1.87

In our pipeline, the first phase uses DeepSets, while the second phase employs PPM-FL with either
a Gaussian or Uniform weight function. As demonstrated in the table below, across different ho-
mology dimensions, PPM-FL utilizing the Gaussian weight either outperforms or achieves similar
results with the Uniform weight variant. This outcome validates the effectiveness of the Gaussian
weight function, aligning with the design principle that subsets in closer proximity should have a
more substantial influence. While the performance differences are subtle given the nature of the
dataset, Table 7 shows the effectiveness of our proposed Gaussian weighting.

D.4 RELATION BETWEEN THEOREM 5.2 AND EXISTING RESULTS IN DIVOL & LACOMBE
(2021B).

Here we discuss the difference between our theoretical results (Theorem 5.2) with the two Proposi-
tions (5.4 & 5.5) in Section 5.3 of Divol & Lacombe (2021b).

• In Proposition 5.4, the support of distribution P and P ′ is Mp, the space of PDs (measures)
with finite persistence. Proposition 5.4 demonstrates that the expectation of P , i.e. EPD,
is stable with respect to the distortion (P ′) of P . While our result is about the stability of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

EPD with respect to the addition of outliers of distribution P , which is supported on Rd

(instead of Mp), the space where we sample the subsets.
• Proposition 5.5 demonstrates the stability of EPD with respect to the distribution ξ sup-

ported on Rd. This is similar to our result in Lemma 5.1, with P (Po) corresponding to
ξ(ξ′). Compared with Proposition 5.5, our result (Lemma 5.1) takes a specific form of
Po = (1 − ϵ)P + ϵU (a mixture of the original distribution P and outlier distribution U)
and links the upper bound to the mixture proportion ϵ, while Proposition 5.5 generally gives
the upper bound as the bottleneck distance W∞(ξ, ξ′)). It could be argued that our result
is a specific case of Proposition 5.5 of Divol & Lacombe (2021b).

D.5 LIMITATION AND FUTURE WORK.

Limitation. The approximation nature of PPM may lead to the loss of some fine-grained topological
information. Future work could explore ways to enhance the representational power of PPM while
maintaining its computational efficiency.

Future Work. Further research could focus on extending the PPM-FL framework to more complex
point cloud tasks, such as 3D object reconstruction or semantic segmentation. In addition, as noted
in Nishikawa et al. (2023), learned weights are difficult to interpret. For PPM, due to the inherent
nature of subsampling, the interpretability of its learned weights is even lower. Developing methods
capable of learning far more interpretable weight functions will be part of our future work.

E ON THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were utilized in the polishing phase of this paper’s preparation.
Specifically, LLMs were employed to optimize linguistic clarity, enhance stylistic coherence, and
correct minor grammatical or syntactical inconsistencies. All core intellectual content, includ-
ing conceptual frameworks, empirical observations, argumentative structure, and citation align-
ment—was developed, curated, and validated exclusively by the human authors.

17

	Introduction
	Background
	Persistence Diagram
	Weighted Filtration

	Related Work
	Filtration Learning for PPM
	Robustness of PPM against Outliers
	Experiments
	Comparison with PD-FL
	Robustness
	Scalability w.r.t. Point Cloud Size

	Conclusion
	Background
	Expected Persistence Diagram
	Vectorization via PersLay
	Persistence Diagram-based Filtration Learning Framework

	Proof
	On the assumption of the supports of P and U in Theorem 5.2

	Experiment Settings
	Additional Results and Discussions
	Results of two-phase training (PointMLP + PPM-FL)
	Relation between PPM and the distribution of pairwise distances.
	Ablation study on weight choice: Gaussian or Uniform
	Relation between Theorem 5.2 and existing results in divol2021understanding.
	Limitation and Future Work.

	On the use of Large Language Models

