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ABSTRACT

Deep Unfolding-based Networks (DUNs) have attracted attention due to their high
performance and a certain degree of interpretability. However, existing DUNs
often lack flexibility in handling details and features in different images during
reconstruction, as they typically involve multiple iterative modules cascading
through the same structure for each iteration. To address this limitation, we propose
DUMOE, a novel sparsely-activated Deep Unfolding Mixture-of-Experts (MoE)
architecture for Compressive Imaging (CI). By integrating the deep unfolding
paradigm into the MoE, we enable DUMOE to adaptively reconstruct various
images by utilizing different experts at each iteration stage. Specifically, we unfold
traditional SpaRSA iterations into experts within DUMoE and employ top-1 switch
routing to save computational consumption and enhance flexibility. Additionally,
we introduce the Degradation-Aware Mask within the self-attention mechanism
to prioritize image degradation caused by dimensionality reduction in CI, thereby
enhancing reconstruction fidelity. Moreover, we incorporate the Multi-Scale Gate
to improve the DUMOE’s adaptability to image features at different scales and
facilitate information transmission across iteration stages. Extensive experiments
across various CI recovery tasks, including natural image compressive sensing,
magnetic resonance imaging, and snapshot compressive imaging, demonstrate the
superior performance and effectiveness of DUMOoE. To the best of our knowledge,
we are the first to leverage the deep unfolding paradigm within the MoE framework.

1 INTRODUCTION

Compressive Imaging (CI) is an imaging methodology that leverages signal sparsity or compress-
ibility principles to enable high-fidelity image reconstruction using markedly fewer samples than
conventional methods (Candes & Wakin| (2008))). This capability allows CI to dramatically reduce
sampling complexity and data storage requirements, while concurrently enhancing imaging speed
and efficacy. Therefore, CI finds extensive applications across diverse domains, particularly in natural
Image Compressive Sensing (ICS) (Kulkarni & Turagal (2015)); Zhang & Ghanem| (2018)); Zha et al.
(2023))), CS Magnetic Resonance Imaging (CS-MRI) (Lustig et al.[ (2007} |2008); |Yang et al.| (2016)),
and Snapshot Compressive Imaging (SCI) (Ma et al.{(2019); [Yuan et al.|(2021)); |Cheng et al.| (2023))).
Specifically, assuming that x € RY denotes the vector of representation coefficients of original
signal, A € RM*N ()M < N) denotes the linear sampling matrix, and y € R is the measurement
obtained from underdetermined system y = Ax, traditional CI recovery problem can be formulated
as follows:

1
mxin§||Axfy||,%2 + TR(x), (1)

Existing methods for CI recovery problem can be classified into three categories: traditional opti-
mization methods, purely Deep Learning (DL)-based networks, and Deep Unfolding-based Networks
(DUN:E). First, traditional optimization methods, such as Iterative Shrinkage/Thresholding Algorithm
(ISTA) (Beck & Teboulle| (2009)), Alternating Direction Method of Multipliers (ADMM) (Boyd
(2010)), Fixed-Point Continuation (FPC) (Hale et al.| (2008))), Sparse Reconstruction by Separable
Approximation (SpaRSA) (Wright et al.| (2009)), and others (Bioucas-Dias & Figueiredo| (2007);
Goldstein & Osher] (2009); (Chambolle & Pock! (2011)); |Donoho et al.| (2009))), typically rely on
iterative steps to gradually optimize results and achieve (sub)optimal outcomes with theoretical
guarantees. However, these methods often require hand-crafted parameters fine-tuning, exhibit
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limited representation ability across various data, and demand significant computational time to attain
satisfactory results. Second, purely DL-based networks (Kulkarni et al.|(2016);/Gan et al.|(2023a}b);
Shen et al.| (2024)) leverage DL modules such as convolutional neural networks (CNNs), Vision Trans-
former (ViT) (Dosovitskiy et al.| (2021)), and their combinations to learn the mapping relationship
between measurements and ground truth images, thus achieving superior reconstruction performance.
However, these methods do not possess theoretically proven properties and interpretability, as they
often lack insights and knowledge from the CI domain. Third, DUNs (Zhang & Ghanem|(2018)); Gan
et al.| (2024b);|Yang et al.|(2020)) are inspired by traditional iterative optimization algorithms like
ISTA, ADMM and FPC. They integrate DL. modules into the iterative steps of these optimization
algorithms, creating cascaded networks with multiple stages, where each stage represents an iteration
within the optimization algorithm. This integration not only leads to fast and accurate CI recovery
but also introduces domain-specific prior knowledge inherent to the CI domain.

However, existing DUNs often employ multiple iterative modules cascading through the same module
for each iteration, limiting flexibility when handling fine-grained details in diverse images. To over-
come this limitation, we propose DUMOE, a sparsely-activated Deep Unfolding Mixture-of-Experts
(MoE) framework for CI tasks. Initially, we transform the iterative steps of the SpaRSA algorithm
into deep unfolding modules, integrating them as experts within DUMOoE. During reconstruction,
rather than utilizing all experts, we adopt the top-1 switch routing, thereby reducing computational
overhead and enhancing the model’s flexibility to handle details and features in distinct images.
Additionally, we introduce the Degradation-Aware Mask into the self-attention mechanism to enhance
DUMOE’s focus on image areas susceptible to degradation in various CI tasks. Furthermore, we
integrate U-Block into the Gate modules to leverage multi-scale features for experts selection and
enhanced image reconstruction, and improve feature transmission during the reconstruction.

Our contributions can be summarized as follows:

(i) We propose DUMOE, a novel sparse MoE framework integrated with deep unfolding SpaRSA.
Within DUMoE, we unfold the iterations of traditional SpaRSA into experts, i.e., Deep Unfolding
SpaRSA Experts, which are sparsely-activated based on the top-1 switch routing. To the best of our
knowledge, we are the first to leverage the deep unfolding paradigm within the MoE framework,
yielding state-of-the-art (SOTA) results across various CI tasks.

(i) We introduce the Degradation-Aware Mask within the self-attention mechanism of DUMOE,
enhancing its adaptability to image degradation in diverse CI tasks. This refinement allows DUMoE
to focus more attentively on degraded image details, resulting in higher-quality reconstructed images.

(iii) We incorporate a Multi-Scale Gate into DUMOoE, which enhances the capacity of model to capture
fine-grained feature across different image scales, and facilitates the transmission of multi-scale
features at different stages, leading to significant improvements in reconstruction performance.

Comprehensive comparative analyses between DUMOE and other SOTA methods across ICS, CS-
MRI, and SCI, highlight the excellent performance of our proposed DUMOoE, demonstrating its
effectiveness in various CI tasks.

2 RELATED WORKS

In recent, various DUNs have emerged in the fields of ICS, CS-MRI, and SCI, showing significant
advancements in image reconstruction. In ICS, researchers have devised DUNs to reconstruct natural
images from limited measurements. For instance, Zhang and Ghanem introduced ISTA-Net™ (Zhang
& Ghanem| (2018), which integrates CNNs into ISTA’s iterative steps and utilizes them for sparse
transform-related proximal mapping. Besides, based on the FPC algorithm, Wang and Gan proposed
UFC-Net (Wang & Gan| (2024)), which introduces the convolution-guided attention and auxiliary
iterative reconstruction block to enhance feature extraction and preservation. Other methods include
DPC-DUN (Song et al.|(2023b)), NesTD-Net (Gan et al.| (2024a)), and LTWIST (Gan et al.| (2024b))),
among others (Chen & Zhang| (2022); |Zhang et al.| (2020); |You et al.| (2021); [Chen et al.| (2022)); Mou
et al.[(2022); 'Song et al.| (2023a);|Chen et al.| (2023a)); \Song et al.|(2023c);|Song & Zhang|(2023)). In
CS-MRI, methods like ADMM-CSNet (Yang et al.|(2020)), HITDUN (Zhang et al.[(2022))), MAPUN
(Song et al.| (2023a)), along with others (Zhang & Ghanem| (2018)); Neyra-Nesterenko & Adcock
(2022);|Gan et al.|(2024bza); [Wang & Gan|(2024)) have been developed to reconstruct high-quality
images from partial Fourier data, enabling faster imaging and reduced data acquisition. ADMM-
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Figure 1: The overall structure of DUMoE. DUMOE contains an embedding block, n iteration stages,
and a post-block. Here, y represents the measurement and x ; denotes the output of DUMOoE.

CSNet (Yang et al.[(2020)) unfolds and generalizes the ADMM algorithm into a deep architecture,
while HITDUN (Zhang et al.| (2022)) facilitates multichannel information transmission between
unfolding iterative stages. In the domain of SCI, methods like ADMM-Net (Ma et al.| (2019)),
DGSMP (Huang et al.|(2021)), GAP-Net (Meng et al.| (2023)), and others (Cai et al.[(2022c); |L1 et al.
(2023b)); Dong et al.| (2023); |Qin et al.| (2024)); Zhao et al.|(2024)), aim to recover 3D hyperspectral
images (HSI) from 2D measurements containing spectral channel information. For example, Ma et al.
proposed ADMM-Net (Ma et al.|(2019)), which transforms the ADMM algorithm into a layerwise
structure to learn the sparse representation domain through network training. Besides, Meng et al.
introduced GAP-Net (Meng et al.[(2023))), which unfolds the generalized alternating projection (GAP)
algorithm, utilizing CNNs as denoisers projecting the estimate back to the desired signal space.

Recently, Mixture-of-Experts (MoE) has garnered considerable attention in both Natural Language
Processing (Shazeer et al.| (2017); |Dryden & Hoefler| (2022); [Fedus et al.|(2022); [Zoph et al.| (2022);
Mustafa et al.|(2022)) and Computer Vision (Riquelme et al.|(2021); [Puigcerver et al.|(2022); |L1 et al.
(2023a));/Chen et al.| (2023b)); [Wang et al.|(2023); Ye & Xu|(2023)). Typically, an MoE layer comprises
many experts sharing the same network architecture, alongside a sparse gating or routing function
that directs individual inputs to the top- K experts among all candidates (Shazeer et al.|(2017); Fedus
et al.| (2022))). This approach only requires the computation of K experts for a new input, resulting in
fast inference times. For instance, Williams et al. introduced the Switch Transformer (Fedus et al.
(2022))), a model with sparsely-activated experts, which replaces the dense feed-forward network
(FFN) layer in the Transformer with a sparse Switch FFN layer and enables stability in the training
process of large sparse models.

3 PROPOSED METHOD

3.1 SAMPLING PROCESS

Different CI tasks involve diverse sampling processes. Thus, we offer a broad overview here, with
detailed task-specific descriptions in Appendix Let Fa (+) denote the sampling function and x
be the original images. The generalized sampling process can be formulated as:

y = Fa(x), @

where y denotes the obtained measurement derived from x.

3.2 RECONSTRUCTION STAGE

As shown in Fig.[T]and Fig. 2] the reconstruction stage includes an embedding module, n iteration
stages and a post-block. First, assuming Fa () represents the initialization function, the process of
obtaining an initial estimate x(*) € R€*#*W from the measurement y can be expressed as:

x© = Fa(y), 3)

where Cj denotes the basic channel count, set to 1 for images in ICS and CS-MRI tasks, and 28
for SCI tasks. The embedding module starts with a 3 x 3 convolution to increase the channel
count from Cj to C1, followed by a Depth-wise Channel Attention Block (DCAB). The post-block
structure mirrors that of the embedding module, albeit in reverse order. Each iteration stage integrates
Degradation-Aware Self-Attention, Multi-Scale Gate, and three Deep Unfolding SpaRSA Experts.
In the first stage, the channel count is C, while from the 2-nd to the (n — 1)-th stage, it is C, with
weights shared across them. Moreover, the channel count of n-th iteration stage is C3 = C7 + Cs.
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Figure 2: Detailed structure of DUMOoE: (a) The k-th iteration stage in DUMOoE; (b) Deep Unfolding
SpaRSA Experts (DUSE); (c) Multi-Scale Gate (MSGate); (d) Degradation-Aware Self-Attention
(DA-SA); (e) Degradation-Aware Mask (DAM); (f) Depth-wise Channel Attention Block (DCAB).

3.2.1 DEGRADATION-AWARE SELF-ATTENTION

In CI tasks, the reduction in data dimensionality during the sampling process can lead to inevitable
loss of information, resulting in image quality degradation characterized by blurring, noise, and
distortion. To address this challenge, we introduce a Degradation-Aware Mask (DAM) into self-
attention mechanism, proposing Degradation-Aware Self-Attention (DA-SA), as shown in Fig. [Ze
and Fig.[2jd. The DAM incorporates two domains of degradation perception: the image-level domain
and the measurement-level domain. Specifically, given (%) as the input of the DAM in k-th iteration
stage, x(F) undergoes a DCAB and a 1 x 1 convolution to reduce the channel count to Cj, yielding the

current estimated image i(()k). On one hand, we quantify the image-level degradation dgk), resulting
from reduced-dimensional sampling in CI as follows:
4 =% - Fa(Fa(xy"). “

(k)
2

On the other hand, we obtain the degradation d.; ’ in the measurement-level domain by subtracting the

initial measurement y from the measurement of iék), which serves as a data fidelity term to maintain

consistency between the measurement of current estimated image and the original measurement:
E = —(k
) = Faly - Fa(x{")). 5)

Subsequently, we concatenate the dgk) and dék) along the channel dimension, and use a 1 x 1
convolution and DCAB to increase the channel count, which is succeeded by a Sigmoid function to
obtain degradation weights for the degraded regions of the images. We then perform a Hadamard
product between x(*) and the obtained degradation weights, followed by a residual connection to
obtain the output of the DAM, denoted as d®) . d*) then undergoes a 1 x 1 convolution to further
increase the channel count to C}, x N, where C}, denotes the number of channels per head and
Ny, represents the number of heads. Subsequently, the obtained features are combined with Value
V in DA-SA using a Hadamard product to prioritize attention to the degraded parts and details in
the images. The integration of DAM enhances the DUMOoE’s ability to perceive degraded details,
consequently improving feature extraction capabilities and resulting in more representative features.

3.2.2 MULTI-SCALE GATE

It is crucial to effectively utilize multi-scale features for recovering fine image details
(2022)); [Cai et al| (2022b)) in CI tasks. Hence, we introduce a U-Block within the gating module
and utilize features at different scales to compute gate scores for expert selection. The structure of
Multi-Scale Gate (MSGate) is shown in Fig. [2k. Specifically, we employ a 2 x 2 convolution with
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stride of 2 to halve the scale of X(*) and double the number of channels. After applying residual
connections at the same scale, we utilize a 2 x 2 transpose convolution to increase the image scale
and reduce the number of channels, resulting in three different scales of x(F) xgkﬂ), and ng+1)’
which are then individually passed through Adaptive Average Pooling (AAP) and concatenated
along the channel dimension before being inputted into the Gate. The Gate consists of two linear
layers with GELU activation in between, followed by a Softmax operation to obtain corresponding
gate scores wF) = {wgk),wék), wék)}. Furthermore, instead of utilizing all three experts, we
adopt the top-1 switch routing introduced by |Fedus et al.|(2022)) to sparsify the gating modules and
reduce computational overhead. At last, the output is obtained by multiplying the gate score of the

corresponding expert with the output of that expert.

3.2.3 DEEP UNFOLDING SPARSA EXPERTS

The detailed structure of Deep Unfolding SpaRSA Experts (DUSE) is presented in Fig.[Zb. Specifi-

1
cally, we define f(x) = B |Ax — y||7,. and we can transfer Eq. (1) into following iterative steps:

. M)
xF*+1) ¢ argmin (z — x(k))Vf(x(k)) + THZ - x(k)||?2 + T(k)R(Z), 6)

where \(¥) is the penalty term, and A(*) and 7(¥) are learnable parameters independent for each stage.
Then we merge the first two terms in Eq. (6) and reformulate it into following two subproblems:

1
(k) — (k) _ (k)
u X NG Vf(x\"), @)
1 (k)
(k+1) ; — uk)2 R
x € arg min §||z u )ng + NG (z). (8)
Specifically, Eq. (7)) represents a gradient descent term:
1
() — (k) _ _— AT (k) _
u'v =x )\(k)A (Ax y), ©)]

while Eq. (8] can be viewed as a denoising problem solvable using the proximal mapping operator.
Here, we employ ¢1-norm as the prior term to induce sparsity in the transformation domain, i.e.,
R(z) = || ¥z||s,, where ¥ € RY*N denotes an orthonormal sparse basis. Thus, Eq. (8) can be

reformulated as:
(k1) in - W+ T g 0
x € argzmln §||z —u'V|7, + NG Iz, . (10)

Theorem 1. Let z € RY, and let ¥ € RY*N be an orthonormal matrix, i.e., $TWO = I where
I denotes the identity matrix. Then, Parseval’s Theorem states that the Euclidean norm of z is
equivalent to the Euclidean norm of its transform ¥z, which can be mathematically expressed as:

l2ll7, = 2"z = (2)" (¥z) = || @27, (1)
According to Theorem|I] the following can be derived:
1 1 1
Slz —uiZ, = Sz — a7, = S[|%z — Tu®|7,. (12)

By substituting Eq. (I2)) into Eq. (I0), we arrive at the following expression:
(k+1) .. w2 . T
X € arg min §||\I’z —wu'?|7, + W”‘I’ZHZr (13)

By differentiating Eq. (I3)) and setting the derivative equal to zero, we obtain:

X (k)
(Oz — Tu®) + ngn(\llz) =0. (14)
Thus, it follows that:
(k)

_ k) T
Wz = soft(Pu 7)\(k)), (15)
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Table 1: Average PSNR (dB) (upper) and SSIM (lower) performance comparisons of DUMOoE and
other ICS methods on various datasets at different sampling ratios (0.01, 0.04, 0.10 and 0.25).

| Urban100 | General 100 | Setld | McMI8

Methods 501 004 000 025 Ave | 001 004 010 025 Ave | 001 004 000 025 Ave | 001 004 010 025 Ave
ISTANet™ | 1667 1966 2351 2891 2219 | 1745 2156 2649 3244 2449 | 1822 2208 2600 30.62 2423 | 1999 2427 2854 3399 2670
(CVPR20I8) | 03734 05370 07201 08834 0.6285 | 04131 0624 08036 09237 06911 | 04014 05708 07289 08700 06428 | 04942 06577 08104 09237 07215
AMP-Net 1962 2281 2604 3089 2484 | 2271 2696 3082 3601 2913 | 2164 2550 2877 3321 2728 | 2378 2790 3168 3688  30.06
(TIP2021) | 05025 06825 08151 09202 07301 | 06282 07695 08722 09508 08052 | 05433 07007 08183 09144 07442 | 06426 07879 08860 09560 08181
CASNet 2008 2373 2740 3219 2585 | 2348 2850 3278 3807 3071 | 2203 2604 2937 3395 2785 | 2423 2848 3247 3777 3074
(TIP2022) | 05366 07412 08606 09396 07695 | 06480 08171 09099 09657 05352 | 05600 07330 08467 09308 07676 | 0.6538 08166 09100 0.9659 0.8366
DGUNet" | 2015 24 2501 3277 2625 | 2286 2792 3241 3755 3018 | 2186 2588 2934 3370  27.69 | 2305 2816 3232 3774 3032
(CVPR2022) | 05335 07478 08709 09452 07744 | 06190 08078 09073 09645 08247 | 0.5409 07250 08455 09294 07602 | 0.6267 08091 09070 09655 0.8271
FSOINet 1987 23.60 2753 3262 2593 | 2327 2839 3270 3813 3062 | 2200 2608 2935 3405 2787 | 2410 2850 3247 3785 3073
(ICASSP2022) | 05223 07376 08627 09430 07664 | 0.6363 08135 09085 09660 0.8311 | 0.5538 07324 08451 09309 07636 | 06464 08157 09097 09663 08345
TransCS 1898 2327 2677 3177 2520 | 2166 275 3139 3708 2934 | 2091 2550 2881 3337 2705 | 2281 2794 3188 3727 299
(TIP2022) | 04398 07117 08418 09332 07316 | 05415 07843 08918 09604 07945 | 04853 07133 08343 09244 07393 | 05736 07976 08998 09627 0.8084
AutoBCS 1923 2250 2536 2960 2417 | 2224 2710 3076 3592 2900 | 2093 2507 2800 3214 2653 | 2326 2754 3LI13 3625 2955
(TCYB2023) | 04991 07029 08242 09187 07362 | 0.6164 07964 08927 09581 08159 | 0.5343 07153 08286 09203 07496 | 0.6248 08002 08973 09608 0.8208
SODAS-Net | 17.13 2085 2623 3186 2402 | 1952 2499 3058 3606 2779 | 1879 2319 2754 3239 2548 | 2084 2541 3016 3555  27.99
(TIM2023) | 03947 0.5874 08084 09257 06791 | 05003 06998 08602 09454 07537 | 04349 06139 07812 08977 06819 | 05340 07079 08583 09434 07609
TCS-Net 1961 2293 2587 3013 2464 | 2258 2657 2990 3463 2842 | 2164 2525 2809 3223 2683 | 2363 2754 3097 3589 2951

(TCI2023) 04945 07036  0.8291  0.9241 07378 | 0.5978 07712 0.8748 09504 07986 | 0.5219 0.7073  0.8283 0.9206 0.7445 | 0.6144 0.7907 0.8913 09579 0.8136

CSformer 20.14 24.03 27.30 31.83 25.83 23.35 27.81 31.60 36.51 29.82 22.07 25.87 28.79 3295 2742 23.66 28.12 31.69 36.60 30.02
(TIP 2023) 0.5298  0.7377  0.8483 09347 0.7626 | 0.6394 0.7986 0.8880 0.9558 0.8205 | 0.5493 0.7160 0.8214 09174 0.7510 | 0.6526 0.8030 0.8907 0.9570  0.8258

OCTUF 19.88 23.68 21.79 3299 26.08 23.31 28.35 32.77 38.26 30.67 21.94 26.04 29.47 34.18 27.91 23.87 28.33 3249 3793 30.66
(CVPR 2023) 05167 0.7328  0.8621 09445 0.7640 | 0.6346 0.8122 0.9084 0.9666 0.8305 | 0.5500 0.7302 0.8454 09312 0.7642 | 0.6409 0.8120 0.9093 09667  0.8322
DPC-DUN 17.31 2236 26.96 32.36 24.75 19.95 26.61 3117 36.50 28.56 19.04 2432 28.03 3278 26.04 21.10 2651 30.67 35.86 28.54
(TIP 2023) 04216  0.6768 0.8361 0.9323 07167 | 0.5363 07531 0.8716 0.9481 07773 | 04551 0.6630 0.7950 09023 0.7038 | 0.5553 0.7539 0.8701 09462 0.7814
MTC-CSNet 19.63 22.66 25.81 30.15 24.56 22.96 27.26 31.33 36.33 29.47 21.68 25.19 28.47 32.64 27.00 23.71 27.62 31.50 36.68 29.88
(TCYB 2024) | 04906 0.6858 0.8284 0.9228 0.7319 | 0.6122 07843  0.8970 0.9596 0.8133 | 0.5295 0.7018 0.8333 09226 0.7468 | 0.6227 0.7884 0.8999 0.9623  0.8183
NesTD-Net 2013 2394 2780 3302 2622 | 2314 2858 32.85 38.42 30.74 22.32 26.31 29.62 34.33 28.15 24.41 28.70 32.73 37.98 30.96
(TIP 2024) 0.5288  0.7432  0.8681 0.9448 0.7712 | 0.6165 082 09123 09670 0.8292 | 0.5600 0.7393  0.8504 09330 0.770 0.6535 0.8218 09125 09664 0.8385
LTwIST 19.46 23.01 26.76 31.79 25.26 22.69 27.53 31.91 3731 29.86 21.49 25.47 28.88 3342 2731 2344 27.64 31.73 36.97 29.95
(TCSVT 2024) | 04886 0.7061  0.8463 0.9349 0.7440 | 0.5989 0.7935 0.8990 0.9616 0.8133 | 0.5190 07112 0.8352 09249 0.7476 | 0.6108 0.7918 0.8995 09611 0.8158
UFC-Net 19.69 2337 27.55 32.82 25.86 23.08 27.92 3231 3775 30.27 21.79 25.67 29.10 33.81 27.59 2373 27.95 31.97 37.24 30.22
(CVPR2024) | 0.5041 07195 0.8583 0.9423 07561 | 0.6145 07988 0.9014 09624 0.8193 | 0.5324 07163 0.8363 09259 07527 | 0.6240 0.7984  0.9011 09619 0.8214
DUMoE 20.33 24.48 28.43 3342 26.67 24.02 28.96 33.15 38.45 3115 22.40 26.44 29.83 3442 28.27 24.42 28.85 32.90 38.09 31.07
(Our Method) | 0.5420 0.7614 0.8773  0.9481 0.7822 | 0.6545 0.8261 0.9149 0.9676 0.8408 | 0.5643 0.7407 0.8516 0.9334 0.7725 | 0.6562 0.8245 0.9146 0.9676  0.8407

where soft denotes the soft thresholding function, defined as soft(x, ) = sgn(x) max{|x| — 6,0}.
Consequently, the closed-form solution of Eq. (I3) is given by:

TR
However, obtaining x(*+1) in Eq. remains challenging when W is non-orthogonal or represents
a nonlinear transform (Zhang & Ghanem|(2018))). To address this, we substitute ¥ with a learnable,

deep learning-based structure D, as presented in Eq. (I7), which allows for learning a sparse
representation of z, enhancing both model flexibility and adaptability.

xFH) = T soft (@u® (16)

(k)
’ W ) ) )
where D denotes the left inverse of D. Here, both D and D are depth-wise convolutions with a
3 x 3 kernel. It is worth noting that the image-level feature transmission in DUNSs often results in
information loss (Zhang et al.|(2022)); |Song et al.| (2023c))) during the reconstruction. Therefore, we
use the Sigmoid function and residual connections to achieve the weighted feature fusion and obtain
the output of the DUSE, denoted as %(k+1) in the k-th iteration stage.

xF+D) = D(soft(D(u®) (17)

3.3 Loss FUNCTION

We adopt different loss functions, denoted as Lgeyiation, t0 quantify the deviation between the recon-
structed image and the corresponding ground truth image for various CI tasks. For instance, we
utilize the ¢5-norm loss for ICS and CS-MRI tasks, and the Charbonnier loss (Charbonnier et al.
(1994)) for SCI tasks. Furthermore, to promote load balance and competition across different DUSE
(Fedus et al.|(2022))), we employ the coefficient of variation to measure the dispersion of gate scores
of DUSE in each iteration stage:

2

1 & std(w®)
Lo,==> Slw) ) (18)
1

von mean(w(*))
where n denotes the number of iteration stages and w(*) = {wgk), wék), wgk)} represents the gate
scores in the k-th iteration stage. Consequently, the loss function of DUMOE is formulated as follows:

Ltolal = Edeviation + 77£C'Ua (19)
where 7 is the weight of L, . In our experiments, we set 77 to 1 x 1073,
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Figure 3: Comparisons of visual results and corresponding PSNR (dB)/SSIM/LPIPS (Zhang et al.
(2018))) performance between DUMOE and other advanced ICS methods at sampling ratios of 0.04
and 0.10. Key details are highlighted with arrows. Please zoom in for better comparisons.

4 EXPERIMENTS

In this section, we conduct extensive experiments across three CI tasks: ICS, CS-MRI, and SCI.
We set the default number of iteration stages to n = 5 and corresponding channels to C; = 32,
C5 = 48, and C3 = 80. Besides, we highlight the best and second-best results in the tables using
red and blue colors, respectively. Further implementation details for each CI task are provided in
Appendix[A.4] Additionally, more experiments as well as supplementary visualizations are available

in Appendix |[A.3]
4.1 NATURAL IMAGE COMPRESSIVE SENSING

We conduct qualitative comparisons between DUMOE and sixteen ICS methods, including ISTA-
Nett (Zhang & Ghanem|(2018)), AMP-Net (Zhang et al.[(2021)), CASNet (Chen & Zhang| (2022)),
DGUNet™ (Mou et al.|(2022)), FSOINet (Chen et al.[(2022))), TransCS (Shen et al.[(2022))), AutoBCS
(Gan et al.|(2023a)), SODAS-Net (Song & Zhang|(2023)), TCS-Net (Gan et al.[(2023b)), CSformer
(Ye et al.|(2023)), OCTUF (Song et al.| (2023c)), DPC-DUN (Song et al.| (2023b)), MTC-CSNet
(Shen et al.[(2024)), NesTD-Net (Gan et al.[|(2024a)), LTWIST (Gan et al.|(2024b)), and UFC-Net
(Wang & Gan|(2024)), across four widely-used benchmark datasets: Urban100 (Huang et al.|(2015))),
General100 (Dong et al.|(2016)), Set14 (Zeyde et al.|(2012)), and McM18 (Zhang et al.| (2011)).

Tab. [T] demonstrates that DUMOE consistently outperforms other methods in terms of PSNR and
SSIM across all tested datasets and various sampling ratios. Specifically, on the Urban100 at a
sampling ratio of 0.10, DUMOE surpasses OCTUF, LTwWIST, DPC-DUN, MTC-CSNet, NesTD-Net
and UFC-Net by approximately 0.64 dB (2.30%), 1.67 dB (6.24%), 1.47 dB (5.45%), 2.62 dB
(10.15%), 0.63 dB (2.27%), and 0.88 dB (3.19%) in terms of PSNR, respectively. Similarly, regarding
SSIM, DUMGE leads by around 0.0152 (1.76%), 0.0310 (3.66%), 0.0412 (4.93%), 0.0489 (5.90%),
0.0092 (1.06%), and 0.0190 (2.21%), respectively. Moreover, Fig. [3] shows that DUMOoE consistently
achieves superior performance in terms of human perception quality compared to methods such as
NesTD-Net, LTWIST, UFC-Net, and others. Even at low sampling ratios of 0.04 and 0.10, DUMoE
excels in recovering fine-grained image details with reduced noise, distortion, blurring, and absence
of blocking artifacts. This underscores the effectiveness of DUMOE in reconstructing images with
higher human perception quality and overall image quality. For additional experiments at high
sampling ratios, please refer to Appendix [A.5.1]

4.2 COMPRESSIVE SENSING MRI

As shown in Tab. |2} we compare DUMOoE with eleven CS-MRI methods, including ISTA-Net™ (Zhang
& Ghanem|(2018))), RDN (Sun et al.| (2018))), DC-CNN (Schlemper et al.|(2018))), CDDN (Zheng et al.
(2019)), ADMM-CSNet (Yang et al.| (2020)), NESTANets (Neyra-Nesterenko & Adcock| (2022)),
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Table 2: Average PSNR (dB) and SSIM performance comparisons of DUMOE and other CS-MRI
methods on Brain dataset at various sampling ratios (0.05, 0.10, 0.20, 0.30 and 0.40).

| 005 | o010 | 02 | 030 | 040 | A
Methods | PSNR  SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM
Zero-filled 2420 05417 | 2681 06030 | 3041 07229 | 3301 08023 | 35.14 0.8568 | 2991 0.7053
ISTA-Net* (CVPR2018) | 3128 08547 | 3462 09035 | 3857 09478 | 4090 09631 | 4262 0.9724 | 3760 0.9283
RDN (AAAI2018) 3095 0.8421 | 3438 0.8998 | 3847 0.9474 | 40.82 0.9630 | 42.50 09719 | 37.42 0.9248
DC-CNN (TMI 2018) 3081 08370 | 3433 08957 | 3843 09467 | 4053 09526 | 4202 09717 | 3722 0.9207
CDDN (NeurlPS2019) | 31.58 08513 | 34.67 09014 | 3865 09476 | 4095 09633 | 4274 09731 | 3772 0.9273

ADMM-CSNet (TPAMI 2020) | 31.37 0.8608 | 34.45 0.8985 | 38.52 09471 | 40.81 09629 | 42.71 09729 | 37.57 0.9284
NESTANets (STSPDA 2022) | 26.65 0.6044 | 30.79 0.7670 | 3520 0.8866 | 38.07 0.9314 | 40.16 0.9523 | 34.17 0.8283
HiTDUN (J-STSP 2022) 3272 0.8770 | 3535 09104 | 39.02 09510 | 41.21 0.9651 | 42.87 0.9737 | 38.23 0.9354

PUERT (J-STSP 2022) 3151 0.8542 | 3484 0.9068 | 38.78 0.9495 | 41.01 0.9642 | 42.73 09732 | 37.77 0.9296
LTwIST (TCSVT 2024) 3130 0.8536 | 34.11 09043 | 36.68 0.9361 | 39.46 0.9523 | 4147 0.9663 | 36.60 0.9225
NesTD-Net (TIP 2024) 3371  0.8934 | 36.15 09243 | 39.43 09536 | 41.32 0.9658 | 42.90 0.9740 | 38.70  0.9422
UFC-Net (CVPR 2024) 3263 0.8779 | 34.68 0.9064 | 38.85 0.9502 | 41.04 0.9644 | 42.73 0.9732 | 37.99 0.9344
DUMOE (Our Method) | 3428 09047 | 3639 09274 | 39.65 0.9555 | 41.57 0.9668 | 43.11 0.9746 | 39.00 0.9458

Table 3: PSNR (dB)/SSIM performance comparisons of DUMOoE and other SCI methods on 10
simulation scenes.

Methods ‘ Scenel Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scenel0 ‘ Avg.

GAP-TV (ICIP 2017) 28.16/0.913  23.90/0.818 20.44/0.762 23.33/0.872 28.11/0.920 27.69/0.885 20.62/0.811 24.68/0.831 22.84/0.800 23.02/0.843 | 24.28/0.845
DeSCI (TPAMI 2019) 28.30/0.910  27.46/0.901  31.98/0.955 32.56/0.971 28.06/0.933 27.43/0.914 25.51/0.945 24.51/0.876 31.80/0.935 22.29/0.822 | 27.99/0.916
Lambda-Net (ICCV 2019) | 29.71/0.830  27.70/0.742  29.53/0.846  37.53/0.911 26.60/0.790 27.25/0.787 26.61/0.782 26.20/0.781 28.54/0.798  26.14/0.701 | 28.58/0.797
ADMM-Net (ICCV 2019) | 34.09/0.924  33.58/0.904 35.02/0.935 41.24/0.972 31.79/0.926 32.52/0.929 32.38/0.901 30.68/0.912 33.70/0.921 30.64/0.905 | 33.56/0.923
TSA-Net (ECCV 2020) | 32.31/0.898 31.07/0.863 32.30/0.918 39.53/0.959 29.44/0.887 31.06/0.905 30.26/0.883 29.31/0.893 31.62/0.912 29.20/0.867 | 31.61/0.899
DGSMP (CVPR 2021) 33.35/0.920 31.66/0.892  32.93/0.925 40.39/0.970 29.46/0.894 32.74/0.938 31.14/0.898 31.32/0.932 31.53/0.925 31.51/0.934 | 32.60/0.923
MST-L (CVPR 2022) 35.43/0.946  36.11/0.949  36.39/0.955 42.05/0.977 32.94/0.950 34.71/0.957 34.08/0.932 32.88/0.953 35.04/0.947 32.74/0.946 | 35.24/0.951
HDNet (CVPR 2022) 35.10/0.940  35.65/0.943  36.04/0.948 42.47/0.978 32.67/0.950 34.46/0.956 33.64/0.930 34.86/0.947  32.34/0.943 | 34.97/0.948
CST-L+ (ECCV 2022) 35.87/0.954 36.84/0.958 38.20/0.966  42.53/0.982 33.11/0.958 35.76/0.967 34.73/0.947 . 36.31/0.961  33.04/0.952 | 36.07/0.961
BiSRNet (NeurIPS 2023) | 30.87/0.853 29.22/0.795 28.97/0.830 35.87/0.909 28.20/0.828 30.19/0.860 27.81/0.806 28.71/0.845 29.39/0.834 27.84/0.810 | 29.71/0.837
RDFNet (TCI 2023) 33.40/0.950  32.38/0.954  34.47/0.961 37.70/0.976  32.67/0.957 35.80/0.963 27.67/0.939 33.09/0.956 34.66/0.958 31.54/0.949 | 33.34/0.956
GAP-Net (IICV 2023) 33.62/0.926  30.08/0.914  33.07/0.944  40.94/0.966 30.77/0.925 33.60/0.936 27.41/0.915 31.25/0.918 33.56/0.937 30.36/0.914 | 32.47/0.929
EDUNet (NN 2024) 36.48/0.951  37.65/0.961  37.19/0.963  42.85/0.981 34.29/0.962 35.70/0.966 35.37/0.949  34.18/0.962 36.81/0.960 33.46/0.951 | 36.40/0.961
DWMT (AAAI 2024) 36.46/0.957 37.75/0.963 38.47/0.965 44.23/0.984 33.99/0.963 36.17/0.970 35.22/0.949 34.56/0.968 37.41/0.965 34.00/0.959 | 36.83/0.964

DUMOE (Our Method) | 36.73/0.959  38.87/0.971 40.46/0.974 45.69/0.989 34.87/0.969 36.58/0.973 35.88/0.952 34.78/0.971 38.79/0.971 33.74/0.959 | 37.64/0.969

HiTDUN (Zhang et al.[(2022)), PUERT (Xie et al.|(2022)), NesTD-Net (Gan et al.[(2024a))), LTWIST
(Gan et al.|(2024b)), and UFC-Net (Wang & Gan|(2024)) on the widely-used Brain dataset (Yang
et al.| (2020)) using Pseudo Radial masks as sub-sampling matrix. Specifically, at a sampling ratio of
0.05, DUMOE significantly outperforms NesTD-Net, LTWIST, and UFC-Net, with improvements of
approximately 0.57 dB (1.69%), 2.98 dB (9.52%), and 1.65 dB (5.06%) in PSNR, respectively, and
leads by around 0.0113 (1.26%), 0.0511 (5.99%), and 0.0268 (3.05%) in terms of SSIM, respectively.
For additional visualizations, please refer to Appendix [A.5.2}

4.3 SNAPSHOT COMPRESSIVE IMAGING

We perform qualitative comparisons between DUMOE and fourteen SCI methods, namely GAP-TV
(Yuan|(2016)), DeSCI (Liu et al.|(2019)) Lambda-Net (Miao et al.[(2019)), ADMM-Net (Ma et al.
(2019)), TSA-Net (Meng et al.|(2020)), DGSMP (Huang et al.| (2021)), MST-L (Cai et al.| (2022b))),
HDNet (Hu et al.[(2022)), CST-LT (Cai et al|(2022a)), BiSRNet (Cai et al.|(2023)), RDFNet (Zhou
et al.| (2023)), GAP-Net (Meng et al.|(2023)), EDUNet (Qin et al.| (2024)) and DWMT (Luo et al.
(2024)), using widely-used ten scenes from KAIST dataset (Choi et al.| (2017))). As shown in Tab. E[,
when compared to GAP-Net, RDFNet, EDUNet, and DWMT, DUMOE achieves an average PSNR
improvement of approximately 5.17 dB (15.92%), 4.30 dB (12.90%), 1.24 dB (3.41%), and 0.81
dB (2.20%) across the ten scenes, respectively. Moreover, in terms of average SSIM on ten scenes,
DUMOoE maintains a lead of approximately 0.040 (4.31%), 0.013 (1.36%), 0.008 (0.83%), and 0.005
(0.52%), respectively. For additional visualizations and experiments on real HSI data, please refer to

Appendix [A:53]

5 DISCUSSION

In this section, we delve into several discussions concerning DUMOE, primarily based on ICS
experiments, but the insights are equally applicable to other tasks as well.
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Table 4: Ablation studies on different cases (a) and number of iteration stages (b), as well as
complexity analysis of various methods (c).

(c) Comparisons of various resources required by different methods on a
(a) PSNR (dB), SSIM, parameters (M) and FLOPs (G) for different 256256 image at a sampling ratio of 0.10.
ablation cases on various datasets at a sampling ratio of 0.25.

Inference Inference Model size
£ P; . (M) | FLOPs .
Urban100 General 100 Setl4 McM18 | Methods arams. (M) ‘ OPs (G) time (ms) ‘ memory (MB) (MB)
Cases Params. = FLOPs
PSNR  SSIM | PSNR  SSIM | PSNR  SSIM | PSNR  SSIM CASNet 16.90 205.24 3342 1652 64.77
WioSR | 3339 09479 | 3841 09675 | 3439 09329 | 3812 09675 | 4.17 | 18.72 DGUNet* 6.81 97.79 27+1 1124 26.61
wioDUSE | 3330 09469 | 3834 09674 | 3435 09333 | 3803 09675 | 443 | 150.53 ESOINet 0.64 17.19 842 852 253
wio MSGate | 3115 0.9289 | 3734 09629 | 3324 09252 | 3739 09642 | 118 | 9277
w/o DAM 3321 09465 | 3830 0.9672 | 3429 09325 | 38.02 0.9670 3.92 116.74 grﬂng%ss ;3? %(5)?? lggig() g;? 2707423
uto | . B
DUMoE | 3342 09481 | 3845 09676 | 3442 09334 | 38.09 09676 | 4.17 A\ 14234 SODAS-Net 092 6460 1047 70 35t
(b) PSNR (dB)/SSIM, parameters (M) and FLOPs (G) for different TCS-Net 0.52 7.04 543 1553 323
number of stages in DUMOE on General 100 at a sampling ratio of 0.10. OCTUF 040 21.51 166 824 1.67
g plng DPC-DUN 1.64 65.54 25+5 579 6.43
- MTC-CSNet 0.92 20.61 10+0 605 3.61
Sages | 3 4 5 (defaulty 7 | 5(wloshare weights)  NegTD-Net 5.57 34792 | 82412 1957 2138
PSNR/SSIM | 32.88/0.9128  33.00/09132 33.15/0.9149 33.24/09151 |  32.98/0.9139 LTwIST 23.49 110.46 103+6 707 89.99
Paams. | 401 4.01 401 401 | 5.87 UFC-Net 1.74 115.58 84428 844 7.19
FLOPs | 9LI8 117.76 14131 19046 | 14131 DUMOE | 4.01 | 14131 | 7846 | 1745 | 1546
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Figure 4: Analysis of the representation collapse of the hidden states in MSGate of DUMOE. (a)
and (b) illustrate the spatial structure of the experts using Principal Component Analysis (PCA),
where each data point represents an image to be routed, and its color corresponds to the assigned
DUSE. (c) and (d) show the diversity of these hidden states, computed using Gaussian Kernel Density
Estimation (KDE) and visualized as heatmaps.

5.1 ABLATION STUDY

Different components. We perform ablation experiments to evaluate the contributions of switch
routing strategy, DUSE, MSGate, and DAM within the DUMOE architecture. Specifically, we obtain
the ablation cases by adopting all the experts instead of switch routing (w/o SR), replacing DUSE
with two 3 x 3 convolutions and GELU activation in between (w/o DUSE), replacing MSGate with a
linear layer (w/o MSGate), and removing DAM from DA-SA (w/o DAM).

First, as shown in Tab. #a] DUMOE achieves better or comparable performance with the same param-
eter counts and fewer Floating Point Operations (FLOPs) compared to w/o SR, while also achieving
superior performance with fewer parameters and FLOPs compared to w/o DUSE, demonstrating the
effectiveness of the switch routing strategy and our proposed DUSE.

Furthermore, as illustrated in Fig.[d} we visualize and analyze the hidden states (i.e., the input features
of the gate module) in the MSGate of DUMOE from the aspect of representation collapse (Chi et al.
(2022)). We employ images from the CIFAR-10 and CIFAR-100 test sets (Krizhevsky| (2009)),
comprising a total of 20,000 images, for visualizations and analyses.

Initially, we use Principal Component Analysis (PCA) to extract the first two principal components
from the hidden states. As illustrated in Fig. @a]and Fig. #b] each data point represents an image to be
routed, with its color corresponding to the assigned DUSE. In Fig.[#a the points are predominantly
mixed together, indicative of unbalanced routing. Conversely, in Fig. fb] DUMOoE exhibits a well-
structured feature space with clear cluster distinctions, suggesting successful projection of images by
our MSGate while preserving routing features.

Subsequently, we apply Gaussian Kernel-Density Estimation (KDE) to the hidden states processed
by PCA, using the Scott method as the bandwidth estimator. Compared to Fig. &c] Fig.[Adshowcases
uniformly distributed hidden states, indicating balanced expert assignment and reduced representation
collapse (Chi et al.|(2022)).
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Figure 5: PSNR (dB) for different ablation cases on validation set during the training epochs (a),
different levels of Gaussian noise (b) and pepper-and-salt noise (c) for various methods on Set11.

Finally, as shown in Fig.[5a] compared to other cases, w/o DAM converges more slowly in the initial
epochs and does not perform as well as DUMOE in the final convergence. This demonstrates that DAM
effectively guides DUMOE to focus on degraded image areas while enhancing attention to crucial
details, thus improving feature extraction capabilities. Besides, we provide more visual analyses of
the DAM and feature maps at each stage in Appendix[A.5.4]and Appendix [A.5.3] respectively.

Number of iteration stages. We explore the influence of varying the number of iteration stages in
DUMOE, specifically examining configurations with 3, 4, 5 (default), and 7 stages. As presented in
Tab.[4b] due to the weight sharing across intermediate stages, DUMOoE’s performance is observed
to scale with FLOPs without increasing the parameter counts, underscoring the effectiveness of our
iterative network design. Moreover, compared to the case of w/o sharing weights, DUMOE achieves
superior performance with same FLOPs and fewer parameters.

5.2 COMPLEXITY ANALYSIS

We conduct a thorough analysis of computational efficiency and hardware utilization for DUMoE
and other methods on a 256x256 image with a sampling ratio of 0.10 on the RTX 4090 GPU.
Average inference time (ms) and its standard deviation are computed over 500 passes, with memory
consumption measured using the nvidia-smi command. Model size reflects the storage requirements
of each model, along with reported parameter counts and FLOPs for comparison. As indicated in
Tab. when compared to CASNet, DGUNet™, and NesTD-Net—each achieving several second-best
results in Tab. [I—our proposed DUMOE demonstrates superior performance while featuring fewer
parameters than CASNet, DGUNet™, and NesTD-Net, as well as fewer FLOPs than CASNet and
NesTD-Net. Notably, in comparison to NesTD-Net, DUMOoE achieves superior performance while
reducing parameters by 1.56 M (28.01%), and FLOPs by 206.61 G (59.38%).

5.3 PERFORMANCE UNDER NOISE

We assess the robustness of our DUMOoE under various levels of Gaussian and pepper-and-salt noise
to demonstrate its effectiveness. Specifically, we introduce four levels of Gaussian noise variances
(0.001, 0.002, 0.004, and 0.008) and pepper-and-salt proportions (0.01, 0.02, 0.4, and 0.08) to the
Setl1 (Kulkarni et al.|(2016)) and evaluate the model’s performance on these noisy images. As shown
in Fig. [5b|and Fig.[5d while the performance of each method declines with increasing noise levels,
DUMOGOE consistently outperforms the other methods across all tested noise levels.

6 CONCLUSION

In this paper, we propose DUMOE, a novel sparse Deep Unfolding MoE framework for CI tasks.
DUMOE addresses key challenges in CI recovery problems by integrating innovative components:
the DAM, MSGate, and DUSE. Notably, our work represents the first attempt to study deep unfolding
paradigm within the MoE framework. Extensive experiments across various CI tasks, including ICS,
CS-MRI and SCI, demonstrate the superior performance and effectiveness of our proposed DUMOoE.

10
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A APPENDIX

In this appendix, we provide more details not covered in the main paper, including:

* Introduction of SpaRSA in Appendix [A.T]

* Mathematical descriptions of sampling process for different CI tasks in Appendix [A.Z}

* Mathematical descriptions of initialization process for different CI tasks in Appendix
* Implementation specifics of various experiments in Appendix [A.4]

* Additional experiments and visualizations in Appendix [A.5}

* Limitations of our work in Appendix [A.6}

* Code submission and reproducibility in Appendix[A.7]

A.1 SPARSA

SpaRSA (Wright et al|(2009)) (short for Sparse Reconstruction by Separable Approximation) is a
general approach for solving unconstrained optimization problem as follows:

H;in 0(x) := f(x) + (%), (20)

where f is a smooth function, 7 is the regularization parameter and +y is always non-smooth and
non-convex, which is usually called regularization function and is finite for all x € R . Specifically,
SpaRSA solve Eq. (20) by iterating following equations:

, A
x* D ¢ argmin (z — x®)V f(x®)) + §||z — |75 + 7v(2), (21)
z

where k denotes the k-th iterations and A € R™. Notably, the choice of +y can vary, including £y-norm,
£1-norm, total-variation norm, etc., for different applications, such as image processing and restoration
problems. Compared with algorithms that are specially designed for particular tasks, such as ISTA
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and FPC, SpaRSA serves as an effective and versatile approach to handle these problems and is
computationally competitive. However, being a traditional iterative optimization algorithm, SpaRSA
still requires hand-crafted parameter setting, such as A and 7 for different tasks. By incorporating
DL modules into SpaRSA, we can fully exploit the potential of powerful generalization ability in
SpaRSA with the fast feature learning and correspondence capabilities of DL. Thus, we introduce the
deep unfolding SpaRSA as the experts in our proposed DUMOE framework.

A.2 SAMPLING PROCESS FOR DIFFERENT CI TASKS

ICS: Given an input natural image x € R”*W with height and width of H and W, respectively,
image x is initially partitioned into non-overlapping blocks of size B x B. In cases where the width
or height of x is not perfectly divisible by B, zero-padding is employed to ensure uniform block sizes.
These blocks are then transformed into vectors, and a sampling matrix A € RM*N (M < N)is
applied to yield measurement y € R In our ICS experiments, A is initialized as Gaussian matrix.
Let Fuee(-) : RVXH 5 RB * denote the partitioning and vectorization function, and o represent the
sampling ratio, where M = | N x o] = [ B% x o|. The sampling process in ICS can be represented
as follows:

v = AFvec(x). (22)

CS-MRI: CS-MRI employs a partial Fourier transform matrix as the sampling matrix A = UF,
where U represents a sub-sampling mask, and F' corresponds to the Discrete Fourier Transform
(DFT). In our CS-MRI experiments, we adopt the Pseudo Radial masks as U. Additionally, the size
of U matches that of the input image x, and o denotes the ratio between the number of measurement
points M and the total number of pixels N in x, i.e., o0 = % The sampling process of CS-MRI is
mathematically represented as:

y = Ax = UFx. (23)

SCI: Consider a 3D hyperspectral image (HSI) x € RE>*W>N¢ 'where W, H, and N, represent its
width, height, and number of wavelengths, respectively. The process begins with the application of a
pre-defined coded aperture A € R”*W to modulate the captured HSI, resulting in the transformed
HSI denoted as x’:

X' (5, 5ne) =x(:,5,ne) © Ag, (24)
where © denotes the Hadamard product, and n¢ € [1, ..., N¢] denotes the spectral channels. After
modulation, the modulated HSI x’ is subjected to spatial shifts through a disperser, resulting in a

transformed measurement x” € R *(W+d(Ne=1)) This process induces shear and tilt effects, where
d denotes the step of spatial shifting. The dispersion operation can be expressed as:

x"(u,v,n¢) =x"(z,y + d(Cn — Ce), ne)- (25)

Here, (. represents the reference wavelength, ¢, signifies the wavelength of the n¢-th spectral
channel, (u, v) denotes the coordinate system on the detector array, and d((, — (.) characterizes
the spatial shifting offset of the n,-th channel on x”. As a result, the 2D compressed measurement

y € RIX(W+d(Ne—1)) i acquired through the following summation operation:

Ne¢
y= > x"(:;:n¢)+E. (26)

’n(:l

Here, E signifies the random image noise produced by the photon sensing detector.

A.3 INITIALIZATION PROCESS FOR DIFFERENT CI TASKS

ICS: For initialization, a matrix multiplication is performed using the transpose of the sampling
matrix AT € RVM*M and y to obtain a vector of image blocks. Following this, the function

Fuec(+) : RE F L RWXH g applied to recover the image blocks and assemble them into the initial
estimate x(*). This initialization process can be represented as:

x0 = Fo.(ATy). 27)
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CS-MRI: As for initialization, we apply the inverse DFT, denoted as F, to the acquired measurement
y to obtain the initial estimate x(0) | Therefore, the initialization of CS-MRI can be expressed as:

x(0 = fy. (28)
SCI: Regarding the initialization, we derive x'(*) € R”*WxN¢ by repeating the measurement y
N, times along the channel dimension. Subsequently, the concatenation of x’ (0) and the 3D mask

A € REXWXN¢ in channel dimension is inputted into a convolutional layer with a kernel size of
1 x 1, yielding the initial estimate x(*) € R#*WxNc:

x(© = Conv, (Concat(x'(?), A)). (29)
A.4 IMPLEMENTATION DETAILS FOR DIFFERENT CI TASKS

Table 5: The configurations of pretraining and fine-tuning on the ICS, CS-MRI and SCI tasks.

) | ICS | CS-MRI | SCI
Configuration - - - - - -
| Pretrain | Fine-tune | Pretrain | Fine-tune | Pretrain | Fine-tune
sampling matrix init Gaussian matrix - Pseudo Radial mask - Pre-defined coded aperture
weight init trunc.normal (0.2) - trunc.normal (0.2) - trunc.normal (0.2)
ay, init 0.5 - 0.5 - 0.5
A init le-3 - le-3 - le-3
block size 32 32 - - -
stages count 5 5 5 5 5 5
image size 96x96 96x96 256%256 256x256 256%256 256x256
basic channel count Cjy 1 1 1 1 28 28
stage channel count [C, Cs, C3] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80]
number of heads Ny, 8 8 8 8 8 8
channel per head Cj, 64 64 64 64 64 64
batch size 10 10 2 2 2 2
training epochs 400 400 200 100 400 400
base learning rate 2e-4 4e-5 le-4 4e-5 le-4 2e-5
min learning rate le-6 le-6 le-6 le-6 le-6 le-6
. AdamW
optimizer {Toshehilov & Hutter|(2019}) AdamW AdamW AdamW AdamW AdamW
weight decay 0.05 0.05 0.05 0.05 0.05 0.05
optimizer momentum 0.9, 0.999 0.9,0.999 0.9, 0.999 0.9,0.999 0.9,0.999 0.9,0.999
warmup epochs 5 5 5 5 5 5
warmup schedule linear linear linear linear linear linear
learning rate schedule cosine annealing cosine annealing cosine annealing cosine annealing cosine i cosine i
time consumption about 5 days about 5 days about 30 hours about 15 hours about 9 days about 9 days
implementation Pytorch 2.2.1 (Paszke et al.|(2019])
13th Gen Intel Core 19-T3900KF
GPU RTX 4090 24 GB

ICS: For the ICS task, we employ a training dataset of 40,000 images randomly selected from the
COCO2017 unlabeled image dataset (Lin et al.|(2014)), with an additional 1,000 images reserved
for validation. During training, we apply diverse data augmentation techniques, including random
cropping, scaling, and rotation. Initially, the DUMOoE model is trained with a sampling ratio of 0.25.
Subsequently, fine-tuning is performed at various sampling ratios, leveraging the pretrained DUMoE
weights from the initial training. Notably, the model jointly learns the sampling matrix. Furthermore,
LPIPS scores are computed using VGG as the base network (Zhang et al.| (2018)).

CS-MRI: In the CS-MRI experiments, our dataset consists of 100 training MRI images and 50 test
MRI images sourced from the Brain dataset (Yang et al.[(2020)) as used in previous works (Zhang &
Ghanem!| (2018); [Yang et al.| (2020); \Gan et al.| (2024a))). All images share a uniform size of 256 x256.
During training, random rotation is applied as a data augmentation technique. The DUMOoE model is
first trained with a sampling ratio of 0.10, followed by fine-tuning at various sampling ratios using
the pretrained weights.

SCI: The SCI experiments are conducted using both simulation and real HSI data. Following the
settings of previous works (Ma et al.|(2019); Meng et al.|(2020); Huang et al.[(2021); Hu et al.| (2022);
Cai et al.[(2022b)), we select V: = 28 wavelengths ranging from 450 nm to 650 nm and d = 2
through spectral interpolation manipulation to derive HSIs. For simulations, the CAVE dataset (Park
et al.| (2007)), which contains thirty-two HSIs with a spatial size of 512 x 512, serves as the training
set, while ten scenes from KAIST (Choi et al.|(2017)) are utilized for testing. During training, data
augmentation techniques such as random cropping into 256 <256, slicing, and rotation are employed.
In real data experiments, 11-bit shot noise is introduced into the measurements of CAVE and KAIST
datasets during training to mimic real-world noise disturbances. Fine-tuning is performed based on
the pretrained model using simulation data. Testing is conducted using five real scenes from the real
CASSI system (Meng et al.| (2020)).

Please refer to Tab. [5 for detailed configurations of DUMOE for the ICS, CS-MRI and SCI tasks.
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Table 6: Average PSNR (dB) and SSIM performance comparisons of DUMOoE and other ICS methods
on various datasets at high sampling ratios (0.30, 0.40 and 0.50).

| Urban100 | General 100
Methods [ o030 | o4 | 050 | A | 030 | o4 | 050 | Aw
‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM ‘ PSNR  SSIM

CASNet (TIP 2022) 3335 09509 | 3546 09668 | 37.46 09773 | 3542 09650 | 39.32 09730 | 41.56 0.9827 | 43.74 0.9887 | 41.54 0.9815
DGUNett (CVPR2022) | 33.16 0.9510 | 3524 09666 | 37.65 0.9785 | 3535 0.9654 | 38.87 0.9724 | 41.07 09821 | 4326 0.9884 | 41.07 0.9810
FSOINet (ICASSP 2022) | 33.84 0.9540 | 3593 09688 | 37.80 0.9777 | 3586 0.9668 | 39.40 09735 | 41.62 009831 | 43.69 09887 | 41.57 0.9818

TransCS (TIP 2022) 3201 09384 | 3529 09649 | 37.28 09762 | 34.86 0.9598 | 37.81 0.9669 | 40.74 0.9806 | 42.89 0.9873 | 4048 0.9782

DPC-DUN (TIP 2023) 33.53  0.9449 | 3558 09622 | 37.52 09737 | 3554 09603 | 37.76  0.9590 | 39.95 0.9731 | 42.00 0.9820 | 39.91 0.9713
OCTUF (CVPR 2023) 3421 09555 | 36.25 09669 | 3829 09797 | 36.25 09674 | 39.54 09740 | 41.76 09833 | 43.95 09892 | 41.75  0.9822
NesTD-Net (TIP 2024) | 33.52 0.9516 | 35.96 0.9683 | 38.07 009786 | 3585 0.9662 | 39.34 09732 | 41.78  0.9831 13.97 09891 | 41.70  0.9818
LTWIST (TCSVT 2024) | 33.02 0.9477 | 35.16 0.9643 | 37.12 0.9753 | 35.10 0.9624 | 38.61 0.9699 | 40.85 0.9806 | 42.97 0.9872 | 40.81 0.9792
UFC-Net (CVPR 2024) | 33.78 0.9524 | 3593 0.9679 | 37.98 0.9782 | 3590 0.9662 | 3889 09704 | 41.17 009810 | 4335 09878 | 41.14 0.9797

DUMOE (Our Method) | 34.54 0.9576 | 36.58 0.9706 | 38.49 0.9797 | 36.54 0.9693 | 39.64 0.9743 | 41.96 0.9836 | 44.09 0.9894 | 41.90  0.9824

Original Image Zero-filled [STA-Net” DC-CNN ) ADMM-CSNet HiTDUN PUERT NesTD-Net LTwIST UFC-Net DUMoE
bl 4

_ 2L
B R

5541/0.1398 28.57/0.8502/0.0636 28.31/0.8469/0.0612 28.27/0.8394/0.0608 27.19/0.8560/0.0554 29.07/0.8613/0.0527 29.49/0.8674/0.0483 29.00/0.8600/0.0547 29.87/0.851/0.0467 28.85/0.8566/0.0510 28.86/0.8578/0.0577 30.51/0.8948/0.0433

PSNR/SSIMILPIPS  23.29/0.5299/0.2507 27.13/0.7275/0.1322 27.15/0.7277/0.1307 26.99/0.7211/0.1375 26.70/0.7400/0.1285 27.59/0.7505/0.1277 27.87/0.7665/0.1299 27.37/0.7385/0.1364 27.720.7707/0.1223 27.56/0.7604/0.1483 27.43/0.7385/0.1292 28.23/0.7906/0.1108

Figure 6: Comparisons of visual results with error maps and corresponding PSNR (dB)/SSIM/LPIPS
performance between DUMOE and other advanced CS-MRI methods at a sampling ratio of 0.10.

A.5 ADDITIONAL EXPERIMENTS

A5.1 ICS

We conduct qualitative comparisons between DUMOE and other ICS methods on Urban100 and
General100 at high sampling ratios (0.30, 0.40, and 0.50). As shown in Tab.[6] our proposed DUMoE
consistently outperforms other advanced methods at these high sampling ratios, with OCTUF and
NesTD-Net achieving the second-best results. Specifically, on Urban100 at a sampling ratio of 0.30,
DUMOE achieves PSNR improvements of approximately 1.01 dB (3.02%), 0.33 dB (0.96%), 1.52
dB (4.60%), 1.02 dB (3.04%), and 0.76 dB (2.25%) compared to DPC-DUN, OCTUF, LTwIST,
NesTD-Net, and UFC-Net, respectively. Additionally, the SSIM improvements are approximately
0.0127 (1.34%), 0.0021 (0.22%), 0.0099 (1.04%), 0.0060 (0.63%), and 0.0052 (0.55%), respectively.

A.5.2 CS-MRI

We present visual comparisons of reconstructed magnetic resonance (MR) images between DUMoE
and other CS-MRI methods. As shown in Fig.[6] DUMOE exhibits superior performance in recon-
structing fine details and enhancing human perception quality, with fewer errors compared to other
methods in CS-MRI tasks.

A.5.3 SCI

We present visual comparisons of reconstructed HSI between DUMOE and other SCI methods using
both simulated and real HSI data. As illustrated in Fig.[7] the reconstructed HSI by DUMOE exhibits
fewer artifacts and more accurate details compared to other SCI methods across various spectral
channels. Additionally, the spectral density curves in the bottom left of Fig. [7] corresponding to
the areas highlighted in the red boxes in the RGB image, demonstrate the highest correlation and
alignment of DUMOE’s spectral curves with the reference curves, highlighting the advantages of
our proposed DUMOE in HSI reconstruction. Furthermore, Fig. [8] presents visual comparisons of
DUMOE and other SCI methods on Scene 4 and Scene 5 using 2 spectral channels of real HSI data
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Figure 7: Simulation HSI reconstruction comparisons of DUMOoE and other SCI methods on Scene 2

with 4 (out of 28) spectral channels.
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Figure 8: Real HSI reconstruction comparisons of DUMOoE and other SCI methods on Scene 4 and
Scene 5 with 2 (out of 28) spectral channels.

(Meng et al.|(2020)), showcasing the superior performance of DUMOE on real HSI data. Moreover,
Tab. [7] provides details on the number of parameters and FLOPs of different SCI methods on the
KAIST dataset (Choi et al.| (2017)).

Table 7: Number of parameters (M) and FLOPs (G) of different SCI methods on the KAIST dataset.

Methods | ADMM-Net Lambda-Net TSA-Net DGSMP HDNet MST-L CST-L+ RDFNet GAP-Net EDUNet DWMT | DUMoE

Params. 427 62.64 44.25 3.76 2.37 2.03 3.00 1.29 4.27 1.51 14.48 4.07
FLOPs 78.58 117.98 110.06 646.65  154.76  28.15 40.01 604.88 78.58 24.24 46.71 183.30

A.5.4 VISUALIZATIONS OF DAM FOR VARIOUS CI TASKS

In this section, we present detailed visualizations of Degradation-Aware Mask (DAM) for three CI
tasks. Specifically, we illustrate how DAM captures different types of degradation at the image-level
domain dgk), the measurement-level domain dgk>, and how the absolute sum of generated mask

channels evolves across stages k = 1, 3, 5.

In ICS, as shown in Fig. EI, the image-level domain degradation d§k> primarily reflects global image
degradation and block artifacts, which are characteristic of the block sampling process in compressed
sensing. Conversely, dgk) is more focused on finer details such as edges and noise, which tend
to be more vulnerable to degradation. As the number of stages increases, the mask progressively
incorporates richer texture details.

For CS-MRI, as shown in Fig.[TI0} sampling is performed in the Fourier domain using a subsampling

mask, resulting in aliasing artifacts. Here, both dgk) and dék) capture different aspects of this
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Figure 9: The visualizations of image-level domain degradation dgk), measurement-level domain

degradation dék) and absolute sum of generated mask channels at stages of &k = {1, 3,5} for ICS at a
sampling ratio of 0.25.
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Figure 10: The visualizations of image-level domain degradation dgk), measurement-level domain
degradation dgk) and absolute sum of generated mask channels at stages of k = {1, 3,5} for CS-MRI

at a sampling ratio of 0.20.

degradation: dgk) emphasizes edge information, while dgk) focuses on broader degraded regions.
The mask also becomes more refined with stage progression, revealing increasing detail.

The SCI task, as shown in Fig. [TT} involves a 3D hyperspectral image compressed into a 1D
measurement via a coded aperture. This process is prone to noise-induced artifacts. Initially, both

abs mask & &

) ®

abs mask d d; ~abs mask

Y

Figure 11: The visualizations of image-level domain degradation dgk) , measurement-level domain
degradation dgk) and absolute sum of generated mask channels at stages of k = {1, 3,5} for SCI.
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Figure 12: Feature visualization of the iteration stages in DUMOE at a sampling ratio of 0.10.

dgk) and dgk) capture these artifacts, but as the stages evolve, dgk) emphasizes texture recovery,

while dék) continues to highlight noise-affected areas. The mask becomes more precise in revealing
important details as the stages progress.

As detailed in Fig.[5a] Tab.[#a]and through the analysis in Sec.[5.1]of our paper, the DAM effectively
guides DUMOE to focus on critical degraded image areas and fine details, despite variations in
sampling, initialization processes, and data types (2D and 3D) across different CI tasks. This
highlights the effectiveness and generalization of our proposed method, enhancing feature extraction
capabilities across diverse CI tasks.

A.5.5 VISUALIZATIONS OF IMAGE FEATURE MAPS

Fig.[T2] visualizes the features across different iteration stages and modules in DUMoE, demonstrating
the contributions and attention of different modules to the iterative image refinement during the
reconstruction, thus enhancing the effectiveness of DUMOoE.

Furthermore, as shown in Fig.[I3] we present visualizations of image features and the corresponding
top-1 selection of the DUSE for different images at each iteration stage across various sampling
ratios. In the initial stages, DUMOE tends to capture the overall contour information of the images.
However, at lower sampling ratios, block artifacts may be more prominent. Nevertheless, as the
iterative stages progress, the details and texture information within the images become increasingly
enriched, consequently diminishing block artifacts and resulting in high-fidelity image reconstruction.
Notably, it is evident that at different sampling ratios, the refinement and enhancement of details and
texture information in diverse images evolve through different experts during the iterative stages.
This observation underscores the ability of DUMOE to dynamically select DUSE, facilitating iterative
refinement tailored to the diverse characteristics of images during the iteration stages.

A.5.6 ABLATION STUDIES ON DUSE NUMBER

Table 8: The performance comparisons of cases under different number of DUSE.

DUSE | | 2 3 5 3
Switch Routing | - wi/ w/ wi/ w/o

PSNR (dB) 3431 3439 3442 3438 3439
SSIM 0.9325 0.9332 09334 0.9332 0.9329

Params. (M) 3.99 4.08 4.17 4.34 4.17
FLOPs (G) 142.34 14234 14234 14234 158.72

We conduct an ablation study on the number of experts as shown in Tab.[§] As the number of DUSE
increases, performance gradually improves, peaking at three blocks. However, performance declines
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Figure 13: Visualizations of image features and the corresponding top-1 selection of the DUSE for
diverse images in each iteration stage at different sampling ratios.

23



Under review as a conference paper at ICLR 2025

when the number of DUSE reaches five, likely due to increased training complexity and the higher
number of parameters, requiring more epochs to achieve optimal performance.

A.6 LIMITATIONS

In our main paper, we primarily focus on utilizing the ¢;-norm as the image prior to enforce sparsity in
the transform domain and employ soft thresholding to address Eq. (§). However, it’s worth noting that
various other image priors exist, including the ¢y-norm, total variation, low-rank, etc., for different
applications. Besides, many deep unfolding-based methods leverage deep denoising networks to
replace image prior terms (Song et al.| (2023c)); [Mou et al.|(2022); Cai et al.|(2022c))). Moving forward,
we aim to explore a broader spectrum of image prior terms, thereby enhancing the versatility of
DUMOE to address a wider array of image ill-posed problems, such as image super-resolution, image
deraining, image denoising, etc.

Furthermore, the proposed DUMOE framework is designed as a general approach capable of address-
ing a broad range of CI tasks, including ICS, CS-MRI, and SCI, without being restricted to a single
domain. This generality allows DUMOE to be applied to various CI tasks with diverse data charac-
teristics (e.g., 2D and 3D) and requirements (e.g., different sampling and initialization processes).
However, this broad applicability may result in performance trade-offs for highly specialized tasks.
We view this as an area for future improvement, where incorporating more specialized knowledge
into the DUMOE framework could potentially mitigate these trade-offs and yield more competitive
results in specialized applications.

A.7 CODE SUBMISSION AND REPRODUCIBILITY

We submit the source code and pre-trained models in the supplemental material and provide the
detailed experimental settings for reproducing the results presented in our paper. Additionally,
both the source code and pre-trained models will be publicly released for broader accessibility and
reproducibility.
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