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ABSTRACT

Deep Unfolding-based Networks (DUNs) have attracted attention due to their high
performance and a certain degree of interpretability. However, existing DUNs
often lack flexibility in handling details and features in different images during
reconstruction, as they typically involve multiple iterative modules cascading
through the same structure for each iteration. To address this limitation, we propose
DUMoE, a novel sparsely-activated Deep Unfolding Mixture-of-Experts (MoE)
architecture for Compressive Imaging (CI). By integrating the deep unfolding
paradigm into the MoE, we enable DUMoE to adaptively reconstruct various
images by utilizing different experts at each iteration stage. Specifically, we unfold
traditional SpaRSA iterations into experts within DUMoE and employ top-1 switch
routing to save computational consumption and enhance flexibility. Additionally,
we introduce the Degradation-Aware Mask within the self-attention mechanism
to prioritize image degradation caused by dimensionality reduction in CI, thereby
enhancing reconstruction fidelity. Moreover, we incorporate the Multi-Scale Gate
to improve the DUMoE’s adaptability to image features at different scales and
facilitate information transmission across iteration stages. Extensive experiments
across various CI recovery tasks, including natural image compressive sensing,
magnetic resonance imaging, and snapshot compressive imaging, demonstrate the
superior performance and effectiveness of DUMoE. To the best of our knowledge,
we are the first to leverage the deep unfolding paradigm within the MoE framework.

1 INTRODUCTION

Compressive Imaging (CI) is an imaging methodology that leverages signal sparsity or compress-
ibility principles to enable high-fidelity image reconstruction using markedly fewer samples than
conventional methods (Candès & Wakin (2008)). This capability allows CI to dramatically reduce
sampling complexity and data storage requirements, while concurrently enhancing imaging speed
and efficacy. Therefore, CI finds extensive applications across diverse domains, particularly in natural
Image Compressive Sensing (ICS) (Kulkarni & Turaga (2015); Zhang & Ghanem (2018); Zha et al.
(2023)), CS Magnetic Resonance Imaging (CS-MRI) (Lustig et al. (2007; 2008); Yang et al. (2016)),
and Snapshot Compressive Imaging (SCI) (Ma et al. (2019); Yuan et al. (2021); Cheng et al. (2023)).
Specifically, assuming that x ∈ RN denotes the vector of representation coefficients of original
signal, A ∈ RM×N (M ≪ N) denotes the linear sampling matrix, and y ∈ RM is the measurement
obtained from underdetermined system y = Ax, traditional CI recovery problem can be formulated
as follows:

min
x

1

2
∥Ax− y∥2ℓ2 + τR(x), (1)

Existing methods for CI recovery problem can be classified into three categories: traditional opti-
mization methods, purely Deep Learning (DL)-based networks, and Deep Unfolding-based Networks
(DUNs). First, traditional optimization methods, such as Iterative Shrinkage/Thresholding Algorithm
(ISTA) (Beck & Teboulle (2009)), Alternating Direction Method of Multipliers (ADMM) (Boyd
(2010)), Fixed-Point Continuation (FPC) (Hale et al. (2008)), Sparse Reconstruction by Separable
Approximation (SpaRSA) (Wright et al. (2009)), and others (Bioucas-Dias & Figueiredo (2007);
Goldstein & Osher (2009); Chambolle & Pock (2011); Donoho et al. (2009)), typically rely on
iterative steps to gradually optimize results and achieve (sub)optimal outcomes with theoretical
guarantees. However, these methods often require hand-crafted parameters fine-tuning, exhibit
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limited representation ability across various data, and demand significant computational time to attain
satisfactory results. Second, purely DL-based networks (Kulkarni et al. (2016); Gan et al. (2023a;b);
Shen et al. (2024)) leverage DL modules such as convolutional neural networks (CNNs), Vision Trans-
former (ViT) (Dosovitskiy et al. (2021)), and their combinations to learn the mapping relationship
between measurements and ground truth images, thus achieving superior reconstruction performance.
However, these methods do not possess theoretically proven properties and interpretability, as they
often lack insights and knowledge from the CI domain. Third, DUNs (Zhang & Ghanem (2018); Gan
et al. (2024b); Yang et al. (2020)) are inspired by traditional iterative optimization algorithms like
ISTA, ADMM and FPC. They integrate DL modules into the iterative steps of these optimization
algorithms, creating cascaded networks with multiple stages, where each stage represents an iteration
within the optimization algorithm. This integration not only leads to fast and accurate CI recovery
but also introduces domain-specific prior knowledge inherent to the CI domain.

However, existing DUNs often employ multiple iterative modules cascading through the same module
for each iteration, limiting flexibility when handling fine-grained details in diverse images. To over-
come this limitation, we propose DUMoE, a sparsely-activated Deep Unfolding Mixture-of-Experts
(MoE) framework for CI tasks. Initially, we transform the iterative steps of the SpaRSA algorithm
into deep unfolding modules, integrating them as experts within DUMoE. During reconstruction,
rather than utilizing all experts, we adopt the top-1 switch routing, thereby reducing computational
overhead and enhancing the model’s flexibility to handle details and features in distinct images.
Additionally, we introduce the Degradation-Aware Mask into the self-attention mechanism to enhance
DUMoE’s focus on image areas susceptible to degradation in various CI tasks. Furthermore, we
integrate U-Block into the Gate modules to leverage multi-scale features for experts selection and
enhanced image reconstruction, and improve feature transmission during the reconstruction.

Our contributions can be summarized as follows:

(i) We propose DUMoE, a novel sparse MoE framework integrated with deep unfolding SpaRSA.
Within DUMoE, we unfold the iterations of traditional SpaRSA into experts, i.e., Deep Unfolding
SpaRSA Experts, which are sparsely-activated based on the top-1 switch routing. To the best of our
knowledge, we are the first to leverage the deep unfolding paradigm within the MoE framework,
yielding state-of-the-art (SOTA) results across various CI tasks.

(ii) We introduce the Degradation-Aware Mask within the self-attention mechanism of DUMoE,
enhancing its adaptability to image degradation in diverse CI tasks. This refinement allows DUMoE
to focus more attentively on degraded image details, resulting in higher-quality reconstructed images.

(iii) We incorporate a Multi-Scale Gate into DUMoE, which enhances the capacity of model to capture
fine-grained feature across different image scales, and facilitates the transmission of multi-scale
features at different stages, leading to significant improvements in reconstruction performance.

Comprehensive comparative analyses between DUMoE and other SOTA methods across ICS, CS-
MRI, and SCI, highlight the excellent performance of our proposed DUMoE, demonstrating its
effectiveness in various CI tasks.

2 RELATED WORKS

In recent, various DUNs have emerged in the fields of ICS, CS-MRI, and SCI, showing significant
advancements in image reconstruction. In ICS, researchers have devised DUNs to reconstruct natural
images from limited measurements. For instance, Zhang and Ghanem introduced ISTA-Net+ (Zhang
& Ghanem (2018)), which integrates CNNs into ISTA’s iterative steps and utilizes them for sparse
transform-related proximal mapping. Besides, based on the FPC algorithm, Wang and Gan proposed
UFC-Net (Wang & Gan (2024)), which introduces the convolution-guided attention and auxiliary
iterative reconstruction block to enhance feature extraction and preservation. Other methods include
DPC-DUN (Song et al. (2023b)), NesTD-Net (Gan et al. (2024a)), and LTwIST (Gan et al. (2024b)),
among others (Chen & Zhang (2022); Zhang et al. (2020); You et al. (2021); Chen et al. (2022); Mou
et al. (2022); Song et al. (2023a); Chen et al. (2023a); Song et al. (2023c); Song & Zhang (2023)). In
CS-MRI, methods like ADMM-CSNet (Yang et al. (2020)), HiTDUN (Zhang et al. (2022)), MAPUN
(Song et al. (2023a)), along with others (Zhang & Ghanem (2018); Neyra-Nesterenko & Adcock
(2022); Gan et al. (2024b;a); Wang & Gan (2024)) have been developed to reconstruct high-quality
images from partial Fourier data, enabling faster imaging and reduced data acquisition. ADMM-
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Figure 1: The overall structure of DUMoE. DUMoE contains an embedding block, n iteration stages,
and a post-block. Here, y represents the measurement and xf denotes the output of DUMoE.

CSNet (Yang et al. (2020)) unfolds and generalizes the ADMM algorithm into a deep architecture,
while HiTDUN (Zhang et al. (2022)) facilitates multichannel information transmission between
unfolding iterative stages. In the domain of SCI, methods like ADMM-Net (Ma et al. (2019)),
DGSMP (Huang et al. (2021)), GAP-Net (Meng et al. (2023)), and others (Cai et al. (2022c); Li et al.
(2023b); Dong et al. (2023); Qin et al. (2024); Zhao et al. (2024)), aim to recover 3D hyperspectral
images (HSI) from 2D measurements containing spectral channel information. For example, Ma et al.
proposed ADMM-Net (Ma et al. (2019)), which transforms the ADMM algorithm into a layerwise
structure to learn the sparse representation domain through network training. Besides, Meng et al.
introduced GAP-Net (Meng et al. (2023)), which unfolds the generalized alternating projection (GAP)
algorithm, utilizing CNNs as denoisers projecting the estimate back to the desired signal space.

Recently, Mixture-of-Experts (MoE) has garnered considerable attention in both Natural Language
Processing (Shazeer et al. (2017); Dryden & Hoefler (2022); Fedus et al. (2022); Zoph et al. (2022);
Mustafa et al. (2022)) and Computer Vision (Riquelme et al. (2021); Puigcerver et al. (2022); Li et al.
(2023a); Chen et al. (2023b); Wang et al. (2023); Ye & Xu (2023)). Typically, an MoE layer comprises
many experts sharing the same network architecture, alongside a sparse gating or routing function
that directs individual inputs to the top-K experts among all candidates (Shazeer et al. (2017); Fedus
et al. (2022)). This approach only requires the computation of K experts for a new input, resulting in
fast inference times. For instance, Williams et al. introduced the Switch Transformer (Fedus et al.
(2022)), a model with sparsely-activated experts, which replaces the dense feed-forward network
(FFN) layer in the Transformer with a sparse Switch FFN layer and enables stability in the training
process of large sparse models.

3 PROPOSED METHOD

3.1 SAMPLING PROCESS

Different CI tasks involve diverse sampling processes. Thus, we offer a broad overview here, with
detailed task-specific descriptions in Appendix A.2. Let FA(·) denote the sampling function and x
be the original images. The generalized sampling process can be formulated as:

y = FA(x), (2)

where y denotes the obtained measurement derived from x.

3.2 RECONSTRUCTION STAGE

As shown in Fig. 1 and Fig. 2, the reconstruction stage includes an embedding module, n iteration
stages and a post-block. First, assuming F̃A(·) represents the initialization function, the process of
obtaining an initial estimate x(0) ∈ RC0×H×W from the measurement y can be expressed as:

x(0) = F̃A(y), (3)

where C0 denotes the basic channel count, set to 1 for images in ICS and CS-MRI tasks, and 28
for SCI tasks. The embedding module starts with a 3 × 3 convolution to increase the channel
count from C0 to C1, followed by a Depth-wise Channel Attention Block (DCAB). The post-block
structure mirrors that of the embedding module, albeit in reverse order. Each iteration stage integrates
Degradation-Aware Self-Attention, Multi-Scale Gate, and three Deep Unfolding SpaRSA Experts.
In the first stage, the channel count is C1, while from the 2-nd to the (n− 1)-th stage, it is C2, with
weights shared across them. Moreover, the channel count of n-th iteration stage is C3 = C1 + C2.
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Figure 2: Detailed structure of DUMoE: (a) The k-th iteration stage in DUMoE; (b) Deep Unfolding
SpaRSA Experts (DUSE); (c) Multi-Scale Gate (MSGate); (d) Degradation-Aware Self-Attention
(DA-SA); (e) Degradation-Aware Mask (DAM); (f) Depth-wise Channel Attention Block (DCAB).

3.2.1 DEGRADATION-AWARE SELF-ATTENTION

In CI tasks, the reduction in data dimensionality during the sampling process can lead to inevitable
loss of information, resulting in image quality degradation characterized by blurring, noise, and
distortion. To address this challenge, we introduce a Degradation-Aware Mask (DAM) into self-
attention mechanism, proposing Degradation-Aware Self-Attention (DA-SA), as shown in Fig. 2e
and Fig. 2d. The DAM incorporates two domains of degradation perception: the image-level domain
and the measurement-level domain. Specifically, given x(k) as the input of the DAM in k-th iteration
stage, x(k) undergoes a DCAB and a 1×1 convolution to reduce the channel count to C0, yielding the
current estimated image x

(k)
0 . On one hand, we quantify the image-level degradation d

(k)
1 , resulting

from reduced-dimensional sampling in CI as follows:

d
(k)
1 = x

(k)
0 − F̃A(FA(x

(k)
0 )). (4)

On the other hand, we obtain the degradation d
(k)
2 in the measurement-level domain by subtracting the

initial measurement y from the measurement of x(k)
0 , which serves as a data fidelity term to maintain

consistency between the measurement of current estimated image and the original measurement:

d
(k)
2 = F̃A(y −FA(x

(k)
0 )). (5)

Subsequently, we concatenate the d
(k)
1 and d

(k)
2 along the channel dimension, and use a 1 × 1

convolution and DCAB to increase the channel count, which is succeeded by a Sigmoid function to
obtain degradation weights for the degraded regions of the images. We then perform a Hadamard
product between x(k) and the obtained degradation weights, followed by a residual connection to
obtain the output of the DAM, denoted as d(k). d(k) then undergoes a 1× 1 convolution to further
increase the channel count to Ch × Nh, where Ch denotes the number of channels per head and
Nh represents the number of heads. Subsequently, the obtained features are combined with Value
V in DA-SA using a Hadamard product to prioritize attention to the degraded parts and details in
the images. The integration of DAM enhances the DUMoE’s ability to perceive degraded details,
consequently improving feature extraction capabilities and resulting in more representative features.

3.2.2 MULTI-SCALE GATE

It is crucial to effectively utilize multi-scale features for recovering fine image details (Mou et al.
(2022); Cai et al. (2022b)) in CI tasks. Hence, we introduce a U-Block within the gating module
and utilize features at different scales to compute gate scores for expert selection. The structure of
Multi-Scale Gate (MSGate) is shown in Fig. 2c. Specifically, we employ a 2× 2 convolution with
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stride of 2 to halve the scale of x̃(k) and double the number of channels. After applying residual
connections at the same scale, we utilize a 2× 2 transpose convolution to increase the image scale
and reduce the number of channels, resulting in three different scales of x(k), x(k+1)

1 , and x
(k+1)
2 ,

which are then individually passed through Adaptive Average Pooling (AAP) and concatenated
along the channel dimension before being inputted into the Gate. The Gate consists of two linear
layers with GELU activation in between, followed by a Softmax operation to obtain corresponding
gate scores w(k) = {w(k)

1 , w
(k)
2 , w

(k)
3 }. Furthermore, instead of utilizing all three experts, we

adopt the top-1 switch routing introduced by Fedus et al. (2022) to sparsify the gating modules and
reduce computational overhead. At last, the output is obtained by multiplying the gate score of the
corresponding expert with the output of that expert.

3.2.3 DEEP UNFOLDING SPARSA EXPERTS

The detailed structure of Deep Unfolding SpaRSA Experts (DUSE) is presented in Fig. 2b. Specifi-

cally, we define f(x) =
1

2
∥Ax− y∥2ℓ2 , and we can transfer Eq. (1) into following iterative steps:

x(k+1) ∈ argmin
z

(z− x(k))∇f(x(k)) +
λ(k)

2
∥z− x(k)∥2ℓ2 + τ (k)R(z), (6)

where λ(k) is the penalty term, and λ(k) and τ (k) are learnable parameters independent for each stage.
Then we merge the first two terms in Eq. (6) and reformulate it into following two subproblems:

u(k) = x(k) − 1

λ(k)
∇f(x(k)), (7)

x(k+1) ∈ argmin
z

1

2
∥z− u(k)∥2ℓ2 +

τ (k)

λ(k)
R(z). (8)

Specifically, Eq. (7) represents a gradient descent term:

u(k) = x(k) − 1

λ(k)
A⊤(Ax(k) − y), (9)

while Eq. (8) can be viewed as a denoising problem solvable using the proximal mapping operator.
Here, we employ ℓ1-norm as the prior term to induce sparsity in the transformation domain, i.e.,
R(z) = ∥Ψz∥ℓ1 , where Ψ ∈ RN×N denotes an orthonormal sparse basis. Thus, Eq. (8) can be
reformulated as:

x(k+1) ∈ argmin
z

1

2
∥z− u(k)∥2ℓ2 +

τ (k)

λ(k)
∥Ψz∥ℓ1 . (10)

Theorem 1. Let z ∈ RN , and let Ψ ∈ RN×N be an orthonormal matrix, i.e., ΨTΨ = I, where
I denotes the identity matrix. Then, Parseval’s Theorem states that the Euclidean norm of z is
equivalent to the Euclidean norm of its transform Ψz, which can be mathematically expressed as:

∥z∥2ℓ2 = zT z = (Ψz)T (Ψz) = ∥Ψz∥2ℓ2 . (11)

According to Theorem 1, the following can be derived:

1

2
∥z− u(k)∥2ℓ2 =

1

2
∥Ψ(z− u(k))∥2ℓ2 =

1

2
∥Ψz−Ψu(k)∥2ℓ2 . (12)

By substituting Eq. (12) into Eq. (10), we arrive at the following expression:

x(k+1) ∈ argmin
z

1

2
∥Ψz−Ψu(k)∥2ℓ2 +

τ (k)

λ(k)
∥Ψz∥ℓ1 . (13)

By differentiating Eq. (13) and setting the derivative equal to zero, we obtain:

(Ψz−Ψu(k)) +
τ (k)

λ(k)
sgn(Ψz) = 0. (14)

Thus, it follows that:

Ψz = soft(Ψu(k),
τ (k)

λ(k)
), (15)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Average PSNR (dB) (upper) and SSIM (lower) performance comparisons of DUMoE and
other ICS methods on various datasets at different sampling ratios (0.01, 0.04, 0.10 and 0.25).

Methods
Urban100 General100 Set14 McM18

0.01 0.04 0.10 0.25 Avg. 0.01 0.04 0.10 0.25 Avg. 0.01 0.04 0.10 0.25 Avg. 0.01 0.04 0.10 0.25 Avg.

ISTA-Net+
(CVPR 2018)

16.67 19.66 23.51 28.91 22.19 17.45 21.56 26.49 32.44 24.49 18.22 22.08 26.00 30.62 24.23 19.99 24.27 28.54 33.99 26.70
0.3734 0.5370 0.7201 0.8834 0.6285 0.4131 0.624 0.8036 0.9237 0.6911 0.4014 0.5708 0.7289 0.8700 0.6428 0.4942 0.6577 0.8104 0.9237 0.7215

AMP-Net
(TIP 2021)

19.62 22.81 26.04 30.89 24.84 22.71 26.96 30.82 36.01 29.13 21.64 25.50 28.77 33.21 27.28 23.78 27.90 31.68 36.88 30.06
0.5025 0.6825 0.8151 0.9202 0.7301 0.6282 0.7695 0.8722 0.9508 0.8052 0.5433 0.7007 0.8183 0.9144 0.7442 0.6426 0.7879 0.8860 0.9560 0.8181

CASNet
(TIP 2022)

20.08 23.73 27.40 32.19 25.85 23.48 28.50 32.78 38.07 30.71 22.03 26.04 29.37 33.95 27.85 24.23 28.48 32.47 37.77 30.74
0.5366 0.7412 0.8606 0.9396 0.7695 0.6480 0.8171 0.9099 0.9657 0.8352 0.5600 0.7330 0.8467 0.9308 0.7676 0.6538 0.8166 0.9100 0.9659 0.8366

DGUNet+
(CVPR 2022)

20.15 24.05 28.01 32.77 26.25 22.86 27.92 32.41 37.55 30.18 21.86 25.88 29.34 33.70 27.69 23.05 28.16 32.32 37.74 30.32
0.5335 0.7478 0.8709 0.9452 0.7744 0.6190 0.8078 0.9073 0.9645 0.8247 0.5409 0.7250 0.8455 0.9294 0.7602 0.6267 0.8091 0.9070 0.9655 0.8271

FSOINet
(ICASSP 2022)

19.87 23.69 27.53 32.62 25.93 23.27 28.39 32.70 38.13 30.62 22.00 26.08 29.35 34.05 27.87 24.10 28.50 32.47 37.85 30.73
0.5223 0.7376 0.8627 0.9430 0.7664 0.6363 0.8135 0.9085 0.9660 0.8311 0.5538 0.7324 0.8451 0.9309 0.7656 0.6464 0.8157 0.9097 0.9663 0.8345

TransCS
(TIP 2022)

18.98 23.27 26.77 31.77 25.20 21.66 27.25 31.39 37.08 29.34 20.91 25.50 28.81 33.37 27.15 22.81 27.94 31.88 37.27 29.98
0.4398 0.7117 0.8418 0.9332 0.7316 0.5415 0.7843 0.8918 0.9604 0.7945 0.4853 0.7133 0.8343 0.9244 0.7393 0.5736 0.7976 0.8998 0.9627 0.8084

AutoBCS
(TCYB 2023)

19.23 22.50 25.36 29.60 24.17 22.24 27.10 30.76 35.92 29.00 20.93 25.07 28.00 32.14 26.53 23.26 27.54 31.13 36.25 29.55
0.4991 0.7029 0.8242 0.9187 0.7362 0.6164 0.7964 0.8927 0.9581 0.8159 0.5343 0.7153 0.8286 0.9203 0.7496 0.6248 0.8002 0.8973 0.9608 0.8208

SODAS-Net
(TIM 2023)

17.13 20.85 26.23 31.86 24.02 19.52 24.99 30.58 36.06 27.79 18.79 23.19 27.54 32.39 25.48 20.84 25.41 30.16 35.55 27.99
0.3947 0.5874 0.8084 0.9257 0.6791 0.5093 0.6998 0.8602 0.9454 0.7537 0.4349 0.6139 0.7812 0.8977 0.6819 0.5340 0.7079 0.8583 0.9434 0.7609

TCS-Net
(TCI 2023)

19.61 22.93 25.87 30.13 24.64 22.58 26.57 29.90 34.63 28.42 21.64 25.25 28.19 32.23 26.83 23.63 27.54 30.97 35.89 29.51
0.4945 0.7036 0.8291 0.9241 0.7378 0.5978 0.7712 0.8748 0.9504 0.7986 0.5219 0.7073 0.8283 0.9206 0.7445 0.6144 0.7907 0.8913 0.9579 0.8136

CSformer
(TIP 2023)

20.14 24.03 27.30 31.83 25.83 23.35 27.81 31.60 36.51 29.82 22.07 25.87 28.79 32.95 27.42 23.66 28.12 31.69 36.60 30.02
0.5298 0.7377 0.8483 0.9347 0.7626 0.6394 0.7986 0.8880 0.9558 0.8205 0.5493 0.7160 0.8214 0.9174 0.7510 0.6526 0.8030 0.8907 0.9570 0.8258

OCTUF
(CVPR 2023)

19.88 23.68 27.79 32.99 26.08 23.31 28.35 32.77 38.26 30.67 21.94 26.04 29.47 34.18 27.91 23.87 28.33 32.49 37.93 30.66
0.5167 0.7328 0.8621 0.9445 0.7640 0.6346 0.8122 0.9084 0.9666 0.8305 0.5500 0.7302 0.8454 0.9312 0.7642 0.6409 0.8120 0.9093 0.9667 0.8322

DPC-DUN
(TIP 2023)

17.31 22.36 26.96 32.36 24.75 19.95 26.61 31.17 36.50 28.56 19.04 24.32 28.03 32.78 26.04 21.10 26.51 30.67 35.86 28.54
0.4216 0.6768 0.8361 0.9323 0.7167 0.5363 0.7531 0.8716 0.9481 0.7773 0.4551 0.6630 0.7950 0.9023 0.7038 0.5553 0.7539 0.8701 0.9462 0.7814

MTC-CSNet
(TCYB 2024)

19.63 22.66 25.81 30.15 24.56 22.96 27.26 31.33 36.33 29.47 21.68 25.19 28.47 32.64 27.00 23.71 27.62 31.50 36.68 29.88
0.4906 0.6858 0.8284 0.9228 0.7319 0.6122 0.7843 0.8970 0.9596 0.8133 0.5295 0.7018 0.8333 0.9226 0.7468 0.6227 0.7884 0.8999 0.9623 0.8183

NesTD-Net
(TIP 2024)

20.13 23.94 27.80 33.02 26.22 23.14 28.58 32.85 38.42 30.74 22.32 26.31 29.62 34.33 28.15 24.41 28.70 32.73 37.98 30.96
0.5288 0.7432 0.8681 0.9448 0.7712 0.6165 0.8211 0.9123 0.9670 0.8292 0.5600 0.7393 0.8504 0.9330 0.7707 0.6535 0.8218 0.9125 0.9664 0.8385

LTwIST
(TCSVT 2024)

19.46 23.01 26.76 31.79 25.26 22.69 27.53 31.91 37.31 29.86 21.49 25.47 28.88 33.42 27.31 23.44 27.64 31.73 36.97 29.95
0.4886 0.7061 0.8463 0.9349 0.7440 0.5989 0.7935 0.8990 0.9616 0.8133 0.5190 0.7112 0.8352 0.9249 0.7476 0.6108 0.7918 0.8995 0.9611 0.8158

UFC-Net
(CVPR 2024)

19.69 23.37 27.55 32.82 25.86 23.08 27.92 32.31 37.75 30.27 21.79 25.67 29.10 33.81 27.59 23.73 27.95 31.97 37.24 30.22
0.5041 0.7195 0.8583 0.9423 0.7561 0.6145 0.7988 0.9014 0.9624 0.8193 0.5324 0.7163 0.8363 0.9259 0.7527 0.6240 0.7984 0.9011 0.9619 0.8214

DUMoE
(Our Method)

20.33 24.48 28.43 33.42 26.67 24.02 28.96 33.15 38.45 31.15 22.40 26.44 29.83 34.42 28.27 24.42 28.85 32.90 38.09 31.07
0.5420 0.7614 0.8773 0.9481 0.7822 0.6545 0.8261 0.9149 0.9676 0.8408 0.5643 0.7407 0.8516 0.9334 0.7725 0.6562 0.8245 0.9146 0.9676 0.8407

where soft denotes the soft thresholding function, defined as soft(x, θ) ≡ sgn(x)max{|x| − θ, 0}.
Consequently, the closed-form solution of Eq. (13) is given by:

x(k+1) = ΨT soft(Ψu(k),
τ (k)

λ(k)
). (16)

However, obtaining x(k+1) in Eq. (10) remains challenging when Ψ is non-orthogonal or represents
a nonlinear transform (Zhang & Ghanem (2018)). To address this, we substitute Ψ with a learnable,
deep learning-based structure D, as presented in Eq. (17), which allows for learning a sparse
representation of z, enhancing both model flexibility and adaptability.

x(k+1) = D̃(soft(D(u(k)),
τ (k)

λ(k)
)), (17)

where D̃ denotes the left inverse of D. Here, both D and D̃ are depth-wise convolutions with a
3× 3 kernel. It is worth noting that the image-level feature transmission in DUNs often results in
information loss (Zhang et al. (2022); Song et al. (2023c)) during the reconstruction. Therefore, we
use the Sigmoid function and residual connections to achieve the weighted feature fusion and obtain
the output of the DUSE, denoted as x̃(k+1), in the k-th iteration stage.

3.3 LOSS FUNCTION

We adopt different loss functions, denoted as Ldeviation, to quantify the deviation between the recon-
structed image and the corresponding ground truth image for various CI tasks. For instance, we
utilize the ℓ2-norm loss for ICS and CS-MRI tasks, and the Charbonnier loss (Charbonnier et al.
(1994)) for SCI tasks. Furthermore, to promote load balance and competition across different DUSE
(Fedus et al. (2022)), we employ the coefficient of variation to measure the dispersion of gate scores
of DUSE in each iteration stage:

LCv
=

1

n

n∑
k=1

(
std(w(k))

mean(w(k))

)2

, (18)

where n denotes the number of iteration stages and w(k) = {w(k)
1 , w

(k)
2 , w

(k)
3 } represents the gate

scores in the k-th iteration stage. Consequently, the loss function of DUMoE is formulated as follows:
Ltotal = Ldeviation + ηLCv

, (19)
where η is the weight of LCv . In our experiments, we set η to 1× 10−3.
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Local Image
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OCTUF

22.07/0.7928/0.2327

ISTA-Net+

17.20/0.4612/0.3950

DGUNet+

21.89/0.7562/0.2421

AMP-Net

20.89/0.7360/0.2634

CASNet

21.39/0.7823/0.2379

FSOINet

22.47/0.7977/0.2179

TransCS

17.85/0.6947/0.3330

AutoBCS

20.80/0.7536/0.2472

TCS-Net

20.68/0.7474/0.2707

Original Image

Sampling Ratio = 0.04

Local Image

PSNR/SSIM/LPIPS

UFC-Net

22.60/0.8841/0.0692

CSformer

20.94/0.8601/0.0875

DUMoE

25.24/0.9289/0.0435

OCTUF

23.43/0.8972/0.0599

ISTA-Net+

17.29/0.6203/0.2082

DGUNet+

23.86/0.9034/0.0580

AMP-Net

20.50/0.8223/0.1078

CASNet

23.33/0.8996/0.0586

FSOINet

23.16/0.8914/0.0631

TransCS

20.38/0.8251/0.1240

AutoBCS

20.43/0.8319/0.1002

TCS-Net

19.95/0.8052/0.1319

Original Image

Sampling Ratio = 0.10

DPC-DUN

19.84/0.6559/0.2950

MTC-CSNet

18.49/0.6763/0.3521

NesTD-Net

22.32/0.8104/0.2152

UFC-Net

20.42/0.7538/0.2824

LTwIST

19.90/0.7320/0.3106

LTwIST

21.73/0.8666/0.0761

DPC-DUN

21.73/0.8510/0.0735

MTC-CSNet

20.18/0.8265/0.1300

NesTD-Net

24.33/0.9141/0.0534

Figure 3: Comparisons of visual results and corresponding PSNR (dB)/SSIM/LPIPS (Zhang et al.
(2018)) performance between DUMoE and other advanced ICS methods at sampling ratios of 0.04
and 0.10. Key details are highlighted with arrows. Please zoom in for better comparisons.

4 EXPERIMENTS

In this section, we conduct extensive experiments across three CI tasks: ICS, CS-MRI, and SCI.
We set the default number of iteration stages to n = 5 and corresponding channels to C1 = 32,
C2 = 48, and C3 = 80. Besides, we highlight the best and second-best results in the tables using
red and blue colors, respectively. Further implementation details for each CI task are provided in
Appendix A.4. Additionally, more experiments as well as supplementary visualizations are available
in Appendix A.5.

4.1 NATURAL IMAGE COMPRESSIVE SENSING

We conduct qualitative comparisons between DUMoE and sixteen ICS methods, including ISTA-
Net+ (Zhang & Ghanem (2018)), AMP-Net (Zhang et al. (2021)), CASNet (Chen & Zhang (2022)),
DGUNet+ (Mou et al. (2022)), FSOINet (Chen et al. (2022)), TransCS (Shen et al. (2022)), AutoBCS
(Gan et al. (2023a)), SODAS-Net (Song & Zhang (2023)), TCS-Net (Gan et al. (2023b)), CSformer
(Ye et al. (2023)), OCTUF (Song et al. (2023c)), DPC-DUN (Song et al. (2023b)), MTC-CSNet
(Shen et al. (2024)), NesTD-Net (Gan et al. (2024a)), LTwIST (Gan et al. (2024b)), and UFC-Net
(Wang & Gan (2024)), across four widely-used benchmark datasets: Urban100 (Huang et al. (2015)),
General100 (Dong et al. (2016)), Set14 (Zeyde et al. (2012)), and McM18 (Zhang et al. (2011)).

Tab. 1 demonstrates that DUMoE consistently outperforms other methods in terms of PSNR and
SSIM across all tested datasets and various sampling ratios. Specifically, on the Urban100 at a
sampling ratio of 0.10, DUMoE surpasses OCTUF, LTwIST, DPC-DUN, MTC-CSNet, NesTD-Net
and UFC-Net by approximately 0.64 dB (2.30%), 1.67 dB (6.24%), 1.47 dB (5.45%), 2.62 dB
(10.15%), 0.63 dB (2.27%), and 0.88 dB (3.19%) in terms of PSNR, respectively. Similarly, regarding
SSIM, DUMoE leads by around 0.0152 (1.76%), 0.0310 (3.66%), 0.0412 (4.93%), 0.0489 (5.90%),
0.0092 (1.06%), and 0.0190 (2.21%), respectively. Moreover, Fig. 3 shows that DUMoE consistently
achieves superior performance in terms of human perception quality compared to methods such as
NesTD-Net, LTwIST, UFC-Net, and others. Even at low sampling ratios of 0.04 and 0.10, DUMoE
excels in recovering fine-grained image details with reduced noise, distortion, blurring, and absence
of blocking artifacts. This underscores the effectiveness of DUMoE in reconstructing images with
higher human perception quality and overall image quality. For additional experiments at high
sampling ratios, please refer to Appendix A.5.1.

4.2 COMPRESSIVE SENSING MRI

As shown in Tab. 2, we compare DUMoE with eleven CS-MRI methods, including ISTA-Net+ (Zhang
& Ghanem (2018)), RDN (Sun et al. (2018)), DC-CNN (Schlemper et al. (2018)), CDDN (Zheng et al.
(2019)), ADMM-CSNet (Yang et al. (2020)), NESTANets (Neyra-Nesterenko & Adcock (2022)),
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Table 2: Average PSNR (dB) and SSIM performance comparisons of DUMoE and other CS-MRI
methods on Brain dataset at various sampling ratios (0.05, 0.10, 0.20, 0.30 and 0.40).

Methods
0.05 0.10 0.20 0.30 0.40 Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filled 24.20 0.5417 26.81 0.6030 30.41 0.7229 33.01 0.8023 35.14 0.8568 29.91 0.7053
ISTA-Net+ (CVPR 2018) 31.28 0.8547 34.62 0.9035 38.57 0.9478 40.90 0.9631 42.62 0.9724 37.60 0.9283

RDN (AAAI 2018) 30.95 0.8421 34.38 0.8998 38.47 0.9474 40.82 0.9630 42.50 0.9719 37.42 0.9248
DC-CNN (TMI 2018) 30.81 0.8370 34.33 0.8957 38.43 0.9467 40.53 0.9526 42.02 0.9717 37.22 0.9207

CDDN (NeurIPS 2019) 31.58 0.8513 34.67 0.9014 38.65 0.9476 40.95 0.9633 42.74 0.9731 37.72 0.9273
ADMM-CSNet (TPAMI 2020) 31.37 0.8608 34.45 0.8985 38.52 0.9471 40.81 0.9629 42.71 0.9729 37.57 0.9284
NESTANets (STSPDA 2022) 26.65 0.6044 30.79 0.7670 35.20 0.8866 38.07 0.9314 40.16 0.9523 34.17 0.8283

HiTDUN (J-STSP 2022) 32.72 0.8770 35.35 0.9104 39.02 0.9510 41.21 0.9651 42.87 0.9737 38.23 0.9354
PUERT (J-STSP 2022) 31.51 0.8542 34.84 0.9068 38.78 0.9495 41.01 0.9642 42.73 0.9732 37.77 0.9296
LTwIST (TCSVT 2024) 31.30 0.8536 34.11 0.9043 36.68 0.9361 39.46 0.9523 41.47 0.9663 36.60 0.9225
NesTD-Net (TIP 2024) 33.71 0.8934 36.15 0.9243 39.43 0.9536 41.32 0.9658 42.90 0.9740 38.70 0.9422
UFC-Net (CVPR 2024) 32.63 0.8779 34.68 0.9064 38.85 0.9502 41.04 0.9644 42.73 0.9732 37.99 0.9344

DUMoE (Our Method) 34.28 0.9047 36.39 0.9274 39.65 0.9555 41.57 0.9668 43.11 0.9746 39.00 0.9458

Table 3: PSNR (dB)/SSIM performance comparisons of DUMoE and other SCI methods on 10
simulation scenes.

Methods Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg.

GAP-TV (ICIP 2017) 28.16/0.913 23.90/0.818 20.44/0.762 23.33/0.872 28.11/0.920 27.69/0.885 20.62/0.811 24.68/0.831 22.84/0.800 23.02/0.843 24.28/0.845
DeSCI (TPAMI 2019) 28.30/0.910 27.46/0.901 31.98/0.955 32.56/0.971 28.06/0.933 27.43/0.914 25.51/0.945 24.51/0.876 31.80/0.935 22.29/0.822 27.99/0.916

Lambda-Net (ICCV 2019) 29.71/0.830 27.70/0.742 29.53/0.846 37.53/0.911 26.60/0.790 27.25/0.787 26.61/0.782 26.20/0.781 28.54/0.798 26.14/0.701 28.58/0.797
ADMM-Net (ICCV 2019) 34.09/0.924 33.58/0.904 35.02/0.935 41.24/0.972 31.79/0.926 32.52/0.929 32.38/0.901 30.68/0.912 33.70/0.921 30.64/0.905 33.56/0.923

TSA-Net (ECCV 2020) 32.31/0.898 31.07/0.863 32.30/0.918 39.53/0.959 29.44/0.887 31.06/0.905 30.26/0.883 29.31/0.893 31.62/0.912 29.20/0.867 31.61/0.899
DGSMP (CVPR 2021) 33.35/0.920 31.66/0.892 32.93/0.925 40.39/0.970 29.46/0.894 32.74/0.938 31.14/0.898 31.32/0.932 31.53/0.925 31.51/0.934 32.60/0.923
MST-L (CVPR 2022) 35.43/0.946 36.11/0.949 36.39/0.955 42.05/0.977 32.94/0.950 34.71/0.957 34.08/0.932 32.88/0.953 35.04/0.947 32.74/0.946 35.24/0.951
HDNet (CVPR 2022) 35.10/0.940 35.65/0.943 36.04/0.948 42.47/0.978 32.67/0.950 34.46/0.956 33.64/0.930 32.43/0.948 34.86/0.947 32.34/0.943 34.97/0.948
CST-L+ (ECCV 2022) 35.87/0.954 36.84/0.958 38.20/0.966 42.53/0.982 33.11/0.958 35.76/0.967 34.73/0.947 34.33/0.967 36.31/0.961 33.04/0.952 36.07/0.961

BiSRNet (NeurIPS 2023) 30.87/0.853 29.22/0.795 28.97/0.830 35.87/0.909 28.20/0.828 30.19/0.860 27.81/0.806 28.71/0.845 29.39/0.834 27.84/0.810 29.71/0.837
RDFNet (TCI 2023) 33.40/0.950 32.38/0.954 34.47/0.961 37.70/0.976 32.67/0.957 35.80/0.963 27.67/0.939 33.09/0.956 34.66/0.958 31.54/0.949 33.34/0.956

GAP-Net (IJCV 2023) 33.62/0.926 30.08/0.914 33.07/0.944 40.94/0.966 30.77/0.925 33.60/0.936 27.41/0.915 31.25/0.918 33.56/0.937 30.36/0.914 32.47/0.929
EDUNet (NN 2024) 36.48/0.951 37.65/0.961 37.19/0.963 42.85/0.981 34.29/0.962 35.70/0.966 35.37/0.949 34.18/0.962 36.81/0.960 33.46/0.951 36.40/0.961

DWMT (AAAI 2024) 36.46/0.957 37.75/0.963 38.47/0.965 44.23/0.984 33.99/0.963 36.17/0.970 35.22/0.949 34.56/0.968 37.41/0.965 34.00/0.959 36.83/0.964

DUMoE (Our Method) 36.73/0.959 38.87/0.971 40.46/0.974 45.69/0.989 34.87/0.969 36.58/0.973 35.88/0.952 34.78/0.971 38.79/0.971 33.74/0.959 37.64/0.969

HiTDUN (Zhang et al. (2022)), PUERT (Xie et al. (2022)), NesTD-Net (Gan et al. (2024a)), LTwIST
(Gan et al. (2024b)), and UFC-Net (Wang & Gan (2024)) on the widely-used Brain dataset (Yang
et al. (2020)) using Pseudo Radial masks as sub-sampling matrix. Specifically, at a sampling ratio of
0.05, DUMoE significantly outperforms NesTD-Net, LTwIST, and UFC-Net, with improvements of
approximately 0.57 dB (1.69%), 2.98 dB (9.52%), and 1.65 dB (5.06%) in PSNR, respectively, and
leads by around 0.0113 (1.26%), 0.0511 (5.99%), and 0.0268 (3.05%) in terms of SSIM, respectively.
For additional visualizations, please refer to Appendix A.5.2.

4.3 SNAPSHOT COMPRESSIVE IMAGING

We perform qualitative comparisons between DUMoE and fourteen SCI methods, namely GAP-TV
(Yuan (2016)), DeSCI (Liu et al. (2019)) Lambda-Net (Miao et al. (2019)), ADMM-Net (Ma et al.
(2019)), TSA-Net (Meng et al. (2020)), DGSMP (Huang et al. (2021)), MST-L (Cai et al. (2022b)),
HDNet (Hu et al. (2022)), CST-L+ (Cai et al. (2022a)), BiSRNet (Cai et al. (2023)), RDFNet (Zhou
et al. (2023)), GAP-Net (Meng et al. (2023)), EDUNet (Qin et al. (2024)) and DWMT (Luo et al.
(2024)), using widely-used ten scenes from KAIST dataset (Choi et al. (2017)). As shown in Tab. 3,
when compared to GAP-Net, RDFNet, EDUNet, and DWMT, DUMoE achieves an average PSNR
improvement of approximately 5.17 dB (15.92%), 4.30 dB (12.90%), 1.24 dB (3.41%), and 0.81
dB (2.20%) across the ten scenes, respectively. Moreover, in terms of average SSIM on ten scenes,
DUMoE maintains a lead of approximately 0.040 (4.31%), 0.013 (1.36%), 0.008 (0.83%), and 0.005
(0.52%), respectively. For additional visualizations and experiments on real HSI data, please refer to
Appendix A.5.3.

5 DISCUSSION

In this section, we delve into several discussions concerning DUMoE, primarily based on ICS
experiments, but the insights are equally applicable to other tasks as well.
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Table 4: Ablation studies on different cases (a) and number of iteration stages (b), as well as
complexity analysis of various methods (c).

(a) PSNR (dB), SSIM, parameters (M) and FLOPs (G) for different
ablation cases on various datasets at a sampling ratio of 0.25.

Cases
Urban100 General100 Set14 McM18

Params. FLOPs
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o SR 33.39 0.9479 38.41 0.9675 34.39 0.9329 38.12 0.9675 4.17 158.72
w/o DUSE 33.30 0.9469 38.34 0.9674 34.35 0.9333 38.03 0.9675 4.43 150.53

w/o MSGate 31.15 0.9289 37.34 0.9629 33.24 0.9252 37.39 0.9642 1.18 92.77
w/o DAM 33.21 0.9465 38.30 0.9672 34.29 0.9325 38.02 0.9670 3.92 116.74

DUMoE 33.42 0.9481 38.45 0.9676 34.42 0.9334 38.09 0.9676 4.17 142.34

(b) PSNR (dB)/SSIM, parameters (M) and FLOPs (G) for different
number of stages in DUMoE on General100 at a sampling ratio of 0.10.

Stages 3 4 5 (default) 7 5 (w/o share weights)

PSNR/SSIM 32.88/0.9128 33.00/0.9132 33.15/0.9149 33.24/0.9151 32.98/0.9139

Params. 4.01 4.01 4.01 4.01 5.87

FLOPs 91.18 117.76 141.31 190.46 141.31

(c) Comparisons of various resources required by different methods on a
256×256 image at a sampling ratio of 0.10.

Methods Params. (M) FLOPs (G) Inference
time (ms)

Inference
memory (MB)

Model size
(MB)

CASNet 16.90 205.24 33±2 1652 64.77
DGUNet+ 6.81 97.79 27±1 1124 26.61
FSOINet 0.64 17.19 8±2 852 2.53
TransCS 1.49 25.86 187±26 515 20.43
AutoBCS 2.01 20.11 26±3 651 7.72

SODAS-Net 0.92 64.69 10±7 720 3.54
TCS-Net 0.52 7.04 5±3 1553 3.23
OCTUF 0.40 21.51 16±6 824 1.67

DPC-DUN 1.64 65.54 25±5 579 6.43
MTC-CSNet 0.92 20.61 10±0 605 3.61
NesTD-Net 5.57 347.92 82±12 1957 21.38

LTwIST 23.49 110.46 103±6 707 89.99
UFC-Net 1.74 115.58 84±28 844 7.19

DUMoE 4.01 141.31 78±6 1745 15.46

(a) PCA visualization of hidden
states in w/o MSGate.

(b) PCA visualization of hidden
states in DUMoE.

(c) Gaussian KDE visualization
of hidden states in w/o MSGate.

(d) Gaussian KDE visualization
of hidden states in DUMoE.

Figure 4: Analysis of the representation collapse of the hidden states in MSGate of DUMoE. (a)
and (b) illustrate the spatial structure of the experts using Principal Component Analysis (PCA),
where each data point represents an image to be routed, and its color corresponds to the assigned
DUSE. (c) and (d) show the diversity of these hidden states, computed using Gaussian Kernel Density
Estimation (KDE) and visualized as heatmaps.

5.1 ABLATION STUDY

Different components. We perform ablation experiments to evaluate the contributions of switch
routing strategy, DUSE, MSGate, and DAM within the DUMoE architecture. Specifically, we obtain
the ablation cases by adopting all the experts instead of switch routing (w/o SR), replacing DUSE
with two 3× 3 convolutions and GELU activation in between (w/o DUSE), replacing MSGate with a
linear layer (w/o MSGate), and removing DAM from DA-SA (w/o DAM).

First, as shown in Tab. 4a, DUMoE achieves better or comparable performance with the same param-
eter counts and fewer Floating Point Operations (FLOPs) compared to w/o SR, while also achieving
superior performance with fewer parameters and FLOPs compared to w/o DUSE, demonstrating the
effectiveness of the switch routing strategy and our proposed DUSE.

Furthermore, as illustrated in Fig. 4, we visualize and analyze the hidden states (i.e., the input features
of the gate module) in the MSGate of DUMoE from the aspect of representation collapse (Chi et al.
(2022)). We employ images from the CIFAR-10 and CIFAR-100 test sets (Krizhevsky (2009)),
comprising a total of 20,000 images, for visualizations and analyses.

Initially, we use Principal Component Analysis (PCA) to extract the first two principal components
from the hidden states. As illustrated in Fig. 4a and Fig. 4b, each data point represents an image to be
routed, with its color corresponding to the assigned DUSE. In Fig. 4a, the points are predominantly
mixed together, indicative of unbalanced routing. Conversely, in Fig. 4b, DUMoE exhibits a well-
structured feature space with clear cluster distinctions, suggesting successful projection of images by
our MSGate while preserving routing features.

Subsequently, we apply Gaussian Kernel-Density Estimation (KDE) to the hidden states processed
by PCA, using the Scott method as the bandwidth estimator. Compared to Fig. 4c, Fig. 4d showcases
uniformly distributed hidden states, indicating balanced expert assignment and reduced representation
collapse (Chi et al. (2022)).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 0 0 2 0 0 3 0 0 4 0 0
2 4

2 6

2 8

3 0

3 2

3 4

PS
NR

 (d
B)

e p o c h s

 w / o  S R
 w / o  D U S E
 w / o  M S G a t e
 w / o  D A M
 D U M o E

3 4 0 3 5 0 3 6 0 3 7 0 3 8 0 3 9 0 4 0 03 3 . 2 5

3 3 . 3 0

3 3 . 3 5

3 3 . 4 0

3 3 . 4 5

(a) PSNR (dB) of different ablation cases
on the validation set at a sampling ratio of
0.25 during the training epochs.

0 . 0 0 0 0 . 0 0 2 0 . 0 0 4 0 . 0 0 6 0 . 0 0 82 4 . 5
2 5 . 0
2 5 . 5
2 6 . 0
2 6 . 5
2 7 . 0
2 7 . 5

PS
NR

 (d
B)

v a r i a n c e s

 C A S N e t
 D G U N e t +
 F S O I N e t
 O C T U F
 L T w I S T
 M T C - C S N e t
 N e s T D - N e t
 U F C - N e t
 D U M o E

(b) PSNR (dB) of different methods on
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ferent Gaussian noise levels.
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(c) PSNR (dB) of different methods on
Set11 at a sampling ratio of 0.04 under dif-
ferent pepper-and-salt noise levels.

Figure 5: PSNR (dB) for different ablation cases on validation set during the training epochs (a),
different levels of Gaussian noise (b) and pepper-and-salt noise (c) for various methods on Set11.

Finally, as shown in Fig. 5a, compared to other cases, w/o DAM converges more slowly in the initial
epochs and does not perform as well as DUMoE in the final convergence. This demonstrates that DAM
effectively guides DUMoE to focus on degraded image areas while enhancing attention to crucial
details, thus improving feature extraction capabilities. Besides, we provide more visual analyses of
the DAM and feature maps at each stage in Appendix A.5.4 and Appendix A.5.5, respectively.

Number of iteration stages. We explore the influence of varying the number of iteration stages in
DUMoE, specifically examining configurations with 3, 4, 5 (default), and 7 stages. As presented in
Tab. 4b, due to the weight sharing across intermediate stages, DUMoE’s performance is observed
to scale with FLOPs without increasing the parameter counts, underscoring the effectiveness of our
iterative network design. Moreover, compared to the case of w/o sharing weights, DUMoE achieves
superior performance with same FLOPs and fewer parameters.

5.2 COMPLEXITY ANALYSIS

We conduct a thorough analysis of computational efficiency and hardware utilization for DUMoE
and other methods on a 256×256 image with a sampling ratio of 0.10 on the RTX 4090 GPU.
Average inference time (ms) and its standard deviation are computed over 500 passes, with memory
consumption measured using the nvidia-smi command. Model size reflects the storage requirements
of each model, along with reported parameter counts and FLOPs for comparison. As indicated in
Tab. 4c, when compared to CASNet, DGUNet+, and NesTD-Net—each achieving several second-best
results in Tab. 1—our proposed DUMoE demonstrates superior performance while featuring fewer
parameters than CASNet, DGUNet+, and NesTD-Net, as well as fewer FLOPs than CASNet and
NesTD-Net. Notably, in comparison to NesTD-Net, DUMoE achieves superior performance while
reducing parameters by 1.56 M (28.01%), and FLOPs by 206.61 G (59.38%).

5.3 PERFORMANCE UNDER NOISE

We assess the robustness of our DUMoE under various levels of Gaussian and pepper-and-salt noise
to demonstrate its effectiveness. Specifically, we introduce four levels of Gaussian noise variances
(0.001, 0.002, 0.004, and 0.008) and pepper-and-salt proportions (0.01, 0.02, 0.4, and 0.08) to the
Set11 (Kulkarni et al. (2016)) and evaluate the model’s performance on these noisy images. As shown
in Fig. 5b and Fig. 5c, while the performance of each method declines with increasing noise levels,
DUMoE consistently outperforms the other methods across all tested noise levels.

6 CONCLUSION

In this paper, we propose DUMoE, a novel sparse Deep Unfolding MoE framework for CI tasks.
DUMoE addresses key challenges in CI recovery problems by integrating innovative components:
the DAM, MSGate, and DUSE. Notably, our work represents the first attempt to study deep unfolding
paradigm within the MoE framework. Extensive experiments across various CI tasks, including ICS,
CS-MRI and SCI, demonstrate the superior performance and effectiveness of our proposed DUMoE.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, January 2009. doi: 10.1137/080716542.

JosÉ M. Bioucas-Dias and MÁrio A. T. Figueiredo. A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16(12):2992–3004,
December 2007. ISSN 1941-0042. doi: 10.1109/TIP.2007.909319.

Stephen Boyd. Distributed optimization and statistical learning via the alternating direction method
of multipliers. Found. Trends Mach. Learn., 3(1):1–122, 2010. ISSN 1935-8237, 1935-8245. doi:
10.1561/2200000016.

Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and
Luc Van Gool. Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction. In
Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner
(eds.), Eur. Conf. Comput. Vis. (ECCV), Lecture Notes Comput. Sci., pp. 686–704, 2022a. ISBN
978-3-031-19790-1. doi: 10.1007/978-3-031-19790-1_41.

Yuanhao Cai, Jing Lin, Xiaowan Hu, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and Luc
Van Gool. Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction.
In IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 17502–17511, 2022b.

Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Henghui Ding, Yulun Zhang, Radu Timofte,
and Luc V. Gool. Degradation-aware unfolding half-shuffle transformer for spectral compressive
imaging. In Adv. Neural Inf. Process. Syst. (NeurIPS), volume 35, pp. 37749–37761, December
2022c.

Yuanhao Cai, Yuxin Zheng, Jing Lin, Xin Yuan, Yulun Zhang, and Haoqian Wang. Binarized spectral
compressive imaging. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Adv. Neural Inf. Process. Syst. (NeurIPS), volume 36, pp. 38335–38346, 2023.

Emmanuel J Candès and Michael B Wakin. An introduction to compressive sampling. IEEE Signal
Process. Mag., 25(2):21–30, 2008.

Antonin Chambolle and Thomas Pock. A First-order primal-dual algorithm for convex problems
with applications to imaging. J. Math Imaging Vis., 40(1):120–145, May 2011. ISSN 0924-9907,
1573-7683. doi: 10.1007/s10851-010-0251-1.

P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic
regularization algorithms for computed imaging. In Proc. 1st Int. Conf. Image Process., volume 2,
pp. 168–172. IEEE Comput. Soc. Press, 1994. ISBN 978-0-8186-6952-1. doi: 10.1109/ICIP.1994.
413553.

Bin Chen and Jian Zhang. Content-aware scalable deep compressed sensing. IEEE Trans. Image
Process., 31:5412–5426, 2022. ISSN 1941-0042. doi: 10.1109/TIP.2022.3195319.

Bin Chen, Jiechong Song, Jingfen Xie, and Jian Zhang. Deep physics-guided unrolling generalization
for compressed sensing. Int. J. Comput. Vis., 131(11):2864–2887, November 2023a. ISSN
1573-1405. doi: 10.1007/s11263-023-01814-w.

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. AdaMV-MoE: Adaptive multi-task vision mixture-of-experts. In Int. Conf.
Comput. Vis. (ICCV), pp. 17346–17357, 2023b.

Wenjun Chen, Chunling Yang, and Xin Yang. FSOINET: Feature-space optimization-inspired
network for image compressive sensing. In IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP), pp. 2460–2464, May 2022. doi: 10.1109/ICASSP43922.2022.9746648.

Ziheng Cheng, Bo Chen, Ruiying Lu, Zhengjue Wang, Hao Zhang, Ziyi Meng, and Xin Yuan.
Recurrent neural networks for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach.
Intell., 45(2):2264–2281, February 2023. ISSN 1939-3539. doi: 10.1109/TPAMI.2022.3161934.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu Wei. On the representation
collapse of sparse mixture of experts. In Adv. Neural Inf. Process. Syst. (NeurIPS), volume 35, pp.
34600–34613, December 2022.

I. Choi, M. H. Kim, D. Gutierrez, D. S. Jeon, and G. Nam. High-quality hyperspectral reconstruction
using a spectral prior. In ACM Trans. Graph., number ART-2017-104309, 2017. doi: 10.1145/
3130800.3130810.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Eur. Conf. Comput.
Vis. (ECCV), pp. 391–407, 2016. ISBN 978-3-319-46475-6. doi: 10.1007/978-3-319-46475-6_25.

Yubo Dong, Dahua Gao, Tian Qiu, Yuyan Li, Minxi Yang, and Guangming Shi. Residual degradation
learning unfolding framework with mixing priors across spectral and spatial for compressive
spectral imaging. In IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 22262–22271,
2023.

David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for compressed
sensing. Natl. Acad. Sci., 106(45):18914–18919, November 2009. doi: 10.1073/pnas.0909892106.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In Int. Conf. Learn. Representations (ICLR), June 2021.

Nikoli Dryden and Torsten Hoefler. Spatial mixture-of-experts. In Adv. Neural Inf. Process. Syst.
(NeurIPS), volume 35, pp. 11697–11713, December 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1):120:5232–120:5270, January
2022. ISSN 1532-4435.

Hongping Gan, Yang Gao, Chunyi Liu, Haiwei Chen, Tao Zhang, and Feng Liu. AutoBCS: Block-
based image compressive sensing with data-driven acquisition and noniterative reconstruction.
IEEE Trans. Cybern., 53(4):2558–2571, April 2023a. ISSN 2168-2275. doi: 10.1109/TCYB.2021.
3127657.

Hongping Gan, Minghe Shen, Yi Hua, Chunyan Ma, and Tao Zhang. From patch to pixel: A
transformer-based hierarchical framework for compressive image sensing. IEEE Trans. Comput.
Imaging, 9:133–146, 2023b. ISSN 2333-9403. doi: 10.1109/TCI.2023.3244396.

Hongping Gan, Zhen Guo, and Feng Liu. NesTD-Net: Deep NESTA-inspired unfolding network
with dual-path deblocking structure for image compressive sensing. IEEE Trans. Image Process.,
33:1923–1937, 2024a. ISSN 1941-0042. doi: 10.1109/TIP.2024.3371351.

Hongping Gan, Xiaoyang Wang, Lijun He, and Jie Liu. Learned two-step iterative shrinkage
thresholding algorithm for deep compressive sensing. IEEE Trans. Circuits Syst. Video Technol.,
34(5):3943–3956, May 2024b. ISSN 1558-2205. doi: 10.1109/TCSVT.2023.3325340.

Tom Goldstein and Stanley Osher. The split bregman method for ℓ1-regularized problems. SIAM J.
Imaging Sci., 2(2):323–343, January 2009. ISSN 1936-4954. doi: 10.1137/080725891.

Elaine T. Hale, Wotao Yin, and Yin Zhang. Fixed-point continuation for ℓ1-minimization: Methodol-
ogy and convergence. SIAM J. Optim., 19(3):1107–1130, 2008. doi: 10.1137/070698920.

Xiaowan Hu, Yuanhao Cai, Jing Lin, Haoqian Wang, Xin Yuan, Yulun Zhang, Radu Timofte, and
Luc Van Gool. HDNet: High-resolution dual-domain learning for spectral compressive imaging.
In IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 17542–17551, 2022.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 5197–5206, June 2015.
ISBN 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.7299156.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tao Huang, Weisheng Dong, Xin Yuan, Jinjian Wu, and Guangming Shi. Deep Gaussian scale
mixture prior for spectral compressive imaging. In IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), pp. 16216–16225, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Kuldeep Kulkarni and Pavan Turaga. Reconstruction-free action inference from compressive imagers.
IEEE Trans. Pattern Anal. Mach. Intell., 38(4):772–784, 2015.

Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. ReconNet:
Non-iterative reconstruction of images from compressively sensed measurements. In IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), pp. 449–458, 2016.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu.
Sparse mixture-of-experts are domain generalizable learners. In Int. Conf. Learn. Representations
(ICLR), pp. 1–16, 2023a.

Miaoyu Li, Ying Fu, Ji Liu, and Yulun Zhang. Pixel adaptive deep unfolding transformer for
hyperspectral image reconstruction. In IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 12959–
12968, 2023b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In Eur. Conf.
Comput. Vis. (ECCV), pp. 740–755, 2014. ISBN 978-3-319-10602-1.

Yang Liu, Xin Yuan, Jinli Suo, David J. Brady, and Qionghai Dai. Rank minimization for snapshot
compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell., 41(12):2990–3006, December
2019. ISSN 1939-3539. doi: 10.1109/TPAMI.2018.2873587.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, January 2019.

Fulin Luo, Xi Chen, Xiuwen Gong, Weiwen Wu, and Tan Guo. Dual-window multiscale transformer
for hyperspectral snapshot compressive imaging. AAAI Conf. Artif. Intell. (AAAI), 38(4):3972–3980,
March 2024. ISSN 2374-3468. doi: 10.1609/aaai.v38i4.28190.

Michael Lustig, David Donoho, and John M. Pauly. Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magn. Reson. Medicine, 58(6):1182–1195, 2007. ISSN 1522-2594.
doi: 10.1002/mrm.21391.

Michael Lustig, David L. Donoho, Juan M. Santos, and John M. Pauly. Compressed sensing MRI.
IEEE Signal Process. Mag., 25(2):72–82, March 2008. ISSN 1558-0792. doi: 10.1109/MSP.2007.
914728.

Jiawei Ma, Xiao-Yang Liu, Zheng Shou, and Xin Yuan. Deep tensor admm-net for snapshot
compressive imaging. In IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 10223–10232, 2019.

Ziyi Meng, Jiawei Ma, and Xin Yuan. End-to-end low cost compressive spectral imaging with
spatial-spectral self-attention. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm (eds.), Eur. Conf. Comput. Vis. (ECCV), Lecture Notes Comput. Sci., pp. 187–204, 2020.
ISBN 978-3-030-58592-1. doi: 10.1007/978-3-030-58592-1_12.

Ziyi Meng, Xin Yuan, and Shirin Jalali. Deep unfolding for snapshot compressive imag-
ing. Int. J. Comput. Vis., 131(11):2933–2958, November 2023. ISSN 1573-1405. doi:
10.1007/s11263-023-01844-4.

Xin Miao, Xin Yuan, Yunchen Pu, and Vassilis Athitsos. Lambda-Net: Reconstruct hyperspectral
images from a snapshot measurement. In IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 4058–
4068, October 2019. doi: 10.1109/ICCV.2019.00416.

Chong Mou, Qian Wang, and Jian Zhang. Deep generalized unfolding networks for image restoration.
In IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 17378–17389, June 2022. ISBN
978-1-66546-946-3. doi: 10.1109/CVPR52688.2022.01688.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multimodal
contrastive learning with LIMoE: The language-image mixture of experts. In Adv. Neural Inf.
Process. Syst. (NeurIPS), volume 35, pp. 9564–9576, December 2022.

Maksym Neyra-Nesterenko and Ben Adcock. NESTANets: Stable, accurate and efficient neural
networks for analysis-sparse inverse problems. Sampl. Theory Signal Process. Data Anal., 21(1):4,
December 2022. ISSN 2730-5724. doi: 10.1007/s43670-022-00043-5.

Jong-Il Park, Moon-Hyun Lee, Michael D. Grossberg, and Shree K. Nayar. Multispectral imaging
using multiplexed illumination. In IEEE Int. Conf. Comput. Vis. (ICCV), pp. 1–8, October 2007.
doi: 10.1109/ICCV.2007.4409090.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Adv. Neural Inf. Process. Syst. (NeurIPS), volume 32, 2019.

Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, and Srinadh Bhojanapalli.
On the adversarial robustness of mixture of experts. In Adv. Neural Inf. Process. Syst. (NeurIPS),
volume 35, pp. 9660–9671, December 2022.

Xinran Qin, Yuhui Quan, and Hui Ji. Enhanced deep unrolling networks for snapshot compressive
hyperspectral imaging. Neural Networks, 174:106250, June 2024. ISSN 0893-6080. doi: 10.1016/
j.neunet.2024.106250.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
Adv. Neural Inf. Process. Syst. (NeurIPS), volume 34, pp. 8583–8595, 2021.

Jo Schlemper, Jose Caballero, Joseph V. Hajnal, Anthony N. Price, and Daniel Rueckert. A deep
cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans.
Med. Imag., 37(2):491–503, February 2018. ISSN 1558-254X. doi: 10.1109/TMI.2017.2760978.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
January 2017.

Minghe Shen, Hongping Gan, Chao Ning, Yi Hua, and Tao Zhang. TransCS: A transformer-based
hybrid architecture for image compressed sensing. IEEE Trans. Image Process., 31:6991–7005,
2022. ISSN 1941-0042. doi: 10.1109/TIP.2022.3217365.

Minghe Shen, Hongping Gan, Chunyan Ma, Chao Ning, Hongqi Li, and Feng Liu. MTC-CSNet:
Marrying transformer and convolution for image compressed sensing. IEEE Trans. Cybern., pp.
1–13, 2024. ISSN 2168-2275. doi: 10.1109/TCYB.2024.3363748.

Jiechong Song and Jian Zhang. SODAS-Net: Side-information-aided deep adaptive shrinkage
network for compressive sensing. IEEE Trans. Instrum. Meas., 72:1–12, 2023. ISSN 1557-9662.
doi: 10.1109/TIM.2023.3304676.

Jiechong Song, Bin Chen, and Jian Zhang. Deep memory-augmented proximal unrolling network for
compressive sensing. Int. J. Comput. Vis., 131(6):1477–1496, June 2023a. ISSN 1573-1405. doi:
10.1007/s11263-023-01765-2.

Jiechong Song, Bin Chen, and Jian Zhang. Dynamic path-controllable deep unfolding network for
compressive sensing. IEEE Trans. Image Process., 32:2202–2214, 2023b. ISSN 1941-0042. doi:
10.1109/TIP.2023.3263100.

Jiechong Song, Chong Mou, Shiqi Wang, Siwei Ma, and Jian Zhang. Optimization-inspired cross-
attention transformer for compressive sensing. In IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), April 2023c.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Liyan Sun, Zhiwen Fan, Yue Huang, Xinghao Ding, and John Paisley. Compressed sensing MRI
using a recursive dilated network. In AAAI Conf. Artif. Intell. (AAAI), volume 32, April 2018. doi:
10.1609/aaai.v32i1.11869.

Mengzhu Wang, Jianlong Yuan, and Zhibin Wang. Mixture-of-experts learner for single long-tailed
domain generalization. In ACM Int. Conf. Multimedia (ACM-MM), MM ’23, pp. 290–299, October
2023. ISBN 9798400701085. doi: 10.1145/3581783.3611871.

Xiaoyang Wang and Hongping Gan. UFC-Net: Unrolling fixed-point continuous network for deep
compressive sensing. In IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2024.

S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation.
IEEE Trans. Signal Process., 57(7):2479–2493, July 2009. ISSN 1053-587X, 1941-0476. doi:
10.1109/TSP.2009.2016892.

Jingfen Xie, Jian Zhang, Yongbing Zhang, and Xiangyang Ji. PUERT: Probabilistic under-sampling
and explicable reconstruction network for CS-MRI. IEEE J. Sel. Top. Signal Process., 16(4):
737–749, June 2022. ISSN 1932-4553, 1941-0484. doi: 10.1109/JSTSP.2022.3170654.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep ADMM-net for compressive sensing MRI. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Adv. Neural Inf. Process. Syst.
(NeurIPS), volume 29, 2016.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. ADMM-CSNet: A deep learning approach for
image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell., 42(3):521–538, March 2020.
ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2018.2883941.

Dongjie Ye, Zhangkai Ni, Hanli Wang, Jian Zhang, Shiqi Wang, and Sam Kwong. CSformer:
Bridging convolution and transformer for compressive sensing. IEEE Trans. Image Process., 32:
2827–2842, 2023. ISSN 1941-0042. doi: 10.1109/TIP.2023.3274988.

Hanrong Ye and Dan Xu. TaskExpert: Dynamically assembling multi-task representations with
memorial mixture-of-experts. In IEEE/CVF Int. Conf. Comput. Vis. (ICCV), pp. 21828–21837,
2023.

Di You, Jian Zhang, Jingfen Xie, Bin Chen, and Siwei Ma. COAST: Controllable arbitrary-sampling
network for compressive sensing. IEEE Trans. Image Process., 30:6066–6080, 2021. ISSN
1941-0042. doi: 10.1109/TIP.2021.3091834.

Xin Yuan. Generalized alternating projection based total variation minimization for compressive
sensing. In IEEE Int. Conf. Image Process. (ICIP), pp. 2539–2543, September 2016. doi:
10.1109/ICIP.2016.7532817.

Xin Yuan, David J. Brady, and Aggelos K. Katsaggelos. Snapshot compressive imaging: Theory,
algorithms, and applications. IEEE Signal Process. Mag., 38(2):65–88, March 2021. ISSN
1053-5888, 1558-0792. doi: 10.1109/MSP.2020.3023869.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In Int. Conf. Curves Surfaces, pp. 711–730, 2012. ISBN 978-3-642-27413-8. doi:
10.1007/978-3-642-27413-8_47.

Zhiyuan Zha, Bihan Wen, Xin Yuan, Saiprasad Ravishankar, Jiantao Zhou, and Ce Zhu. Learning
nonlocal sparse and low-rank models for image compressive sensing: Nonlocal sparse and low-rank
modeling. IEEE Signal Process. Mag., 40(1):32–44, 2023.

Jian Zhang and Bernard Ghanem. ISTA-Net: Interpretable optimization-inspired deep network for
image compressive sensing. In IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 1828–1837,
June 2018. ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00196.

Jian Zhang, Chen Zhao, and Wen Gao. Optimization-inspired compact deep compressive sensing.
IEEE J. Sel. Top. Signal Process., 14(4):765–774, May 2020. ISSN 1932-4553, 1941-0484. doi:
10.1109/JSTSP.2020.2977507.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jian Zhang, Zhenyu Zhang, Jingfen Xie, and Yongbing Zhang. High-throughput deep unfolding
network for compressive sensing MRI. IEEE J. Sel. Top. Signal Process., 16(4):750–761, June
2022. ISSN 1941-0484. doi: 10.1109/JSTSP.2022.3170227.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color demosaicking by local directional
interpolation and nonlocal adaptive thresholding. J. Electron. Imaging, 20(2):023016, 2011. doi:
10.1117/1.3600632.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), pp. 586–595, June 2018. ISBN 978-1-5386-6420-9. doi: 10.1109/CVPR.2018.00068.

Zhonghao Zhang, Yipeng Liu, Jiani Liu, Fei Wen, and Ce Zhu. AMP-Net: Denoising-based deep
unfolding for compressive image sensing. IEEE Trans. Image Process., 30:1487–1500, 2021.
ISSN 1057-7149, 1941-0042. doi: 10.1109/TIP.2020.3044472.

Yin-Ping Zhao, Jiancheng Zhang, Yongyong Chen, Zhen Wang, and Xuelong Li. RCUMP: Residual
completion unrolling with mixed priors for snapshot compressive imaging. IEEE Trans. Image
Process., 33:2347–2360, 2024. ISSN 1941-0042. doi: 10.1109/TIP.2024.3374093.

Hao Zheng, Faming Fang, and Guixu Zhang. Cascaded dilated dense network with two-step data
consistency for MRI reconstruction. In Adv. Neural Inf. Process. Syst. (NeurIPS), volume 32, 2019.

Shiyun Zhou, Tingfa Xu, Shaocong Dong, and Jianan Li. RDFNet: Regional dynamic fista-net for
spectral snapshot compressive imaging. IEEE Trans. Comput. Imag., 9:490–501, 2023. ISSN
2333-9403. doi: 10.1109/TCI.2023.3237175.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. ST-MoE: Designing stable and transferable sparse expert models, April 2022.

A APPENDIX

In this appendix, we provide more details not covered in the main paper, including:

• Introduction of SpaRSA in Appendix A.1.
• Mathematical descriptions of sampling process for different CI tasks in Appendix A.2;
• Mathematical descriptions of initialization process for different CI tasks in Appendix A.3;
• Implementation specifics of various experiments in Appendix A.4.
• Additional experiments and visualizations in Appendix A.5;
• Limitations of our work in Appendix A.6;
• Code submission and reproducibility in Appendix A.7.

A.1 SPARSA

SpaRSA (Wright et al. (2009)) (short for Sparse Reconstruction by Separable Approximation) is a
general approach for solving unconstrained optimization problem as follows:

min
x

θ(x) := f(x) + τγ(x), (20)

where f is a smooth function, τ is the regularization parameter and γ is always non-smooth and
non-convex, which is usually called regularization function and is finite for all x ∈ RN . Specifically,
SpaRSA solve Eq. (20) by iterating following equations:

x(k+1) ∈ argmin
z

(z− x(k))∇f(x(k)) +
λ

2
∥z− x∥2ℓ2 + τγ(z), (21)

where k denotes the k-th iterations and λ ∈ R+. Notably, the choice of γ can vary, including ℓ0-norm,
ℓ1-norm, total-variation norm, etc., for different applications, such as image processing and restoration
problems. Compared with algorithms that are specially designed for particular tasks, such as ISTA
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and FPC, SpaRSA serves as an effective and versatile approach to handle these problems and is
computationally competitive. However, being a traditional iterative optimization algorithm, SpaRSA
still requires hand-crafted parameter setting, such as λ and τ for different tasks. By incorporating
DL modules into SpaRSA, we can fully exploit the potential of powerful generalization ability in
SpaRSA with the fast feature learning and correspondence capabilities of DL. Thus, we introduce the
deep unfolding SpaRSA as the experts in our proposed DUMoE framework.

A.2 SAMPLING PROCESS FOR DIFFERENT CI TASKS

ICS: Given an input natural image x ∈ RH×W with height and width of H and W , respectively,
image x is initially partitioned into non-overlapping blocks of size B ×B. In cases where the width
or height of x is not perfectly divisible by B, zero-padding is employed to ensure uniform block sizes.
These blocks are then transformed into vectors, and a sampling matrix A ∈ RM×N (M ≪ N ) is
applied to yield measurement y ∈ RM . In our ICS experiments, A is initialized as Gaussian matrix.
Let Fvec(·) : RW×H → RB2

denote the partitioning and vectorization function, and σ represent the
sampling ratio, where M = ⌊N × σ⌋ = ⌊B2 × σ⌋. The sampling process in ICS can be represented
as follows:

y = AFvec(x). (22)

CS-MRI: CS-MRI employs a partial Fourier transform matrix as the sampling matrix A = UF,
where U represents a sub-sampling mask, and F corresponds to the Discrete Fourier Transform
(DFT). In our CS-MRI experiments, we adopt the Pseudo Radial masks as U. Additionally, the size
of U matches that of the input image x, and σ denotes the ratio between the number of measurement
points M and the total number of pixels N in x, i.e., σ = M

N . The sampling process of CS-MRI is
mathematically represented as:

y = Ax = UFx. (23)

SCI: Consider a 3D hyperspectral image (HSI) x ∈ RH×W×Nζ , where W , H , and Nζ represent its
width, height, and number of wavelengths, respectively. The process begins with the application of a
pre-defined coded aperture Aζ ∈ RH×W to modulate the captured HSI, resulting in the transformed
HSI denoted as x′:

x′(:, :, nζ) = x(:, :, nζ)⊙Aζ , (24)

where ⊙ denotes the Hadamard product, and nζ ∈ [1, ..., Nζ ] denotes the spectral channels. After
modulation, the modulated HSI x′ is subjected to spatial shifts through a disperser, resulting in a
transformed measurement x′′ ∈ RH×(W+d(Nζ−1)). This process induces shear and tilt effects, where
d denotes the step of spatial shifting. The dispersion operation can be expressed as:

x′′(u, v, nζ) = x′(x, y + d(ζn − ζc), nζ). (25)

Here, ζc represents the reference wavelength, ζn signifies the wavelength of the nζ-th spectral
channel, (u, v) denotes the coordinate system on the detector array, and d(ζn − ζc) characterizes
the spatial shifting offset of the nζ-th channel on x′′. As a result, the 2D compressed measurement
y ∈ RH×(W+d(Nζ−1)) is acquired through the following summation operation:

y =

Nζ∑
nζ=1

x′′(:, :, nζ) +E. (26)

Here, E signifies the random image noise produced by the photon sensing detector.

A.3 INITIALIZATION PROCESS FOR DIFFERENT CI TASKS

ICS: For initialization, a matrix multiplication is performed using the transpose of the sampling
matrix AT ∈ RN×M and y to obtain a vector of image blocks. Following this, the function
F̃vec(·) : RB2 → RW×H is applied to recover the image blocks and assemble them into the initial
estimate x(0). This initialization process can be represented as:

x(0) = F̃vec(A
Ty). (27)
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CS-MRI: As for initialization, we apply the inverse DFT, denoted as F̃, to the acquired measurement
y to obtain the initial estimate x(0). Therefore, the initialization of CS-MRI can be expressed as:

x(0) = F̃y. (28)

SCI: Regarding the initialization, we derive x′(0) ∈ RH×W×Nζ by repeating the measurement y
Nζ times along the channel dimension. Subsequently, the concatenation of x′(0) and the 3D mask
A ∈ RH×W×Nζ in channel dimension is inputted into a convolutional layer with a kernel size of
1× 1, yielding the initial estimate x(0) ∈ RH×W×Nζ :

x(0) = Conv1(Concat(x
′(0),A)). (29)

A.4 IMPLEMENTATION DETAILS FOR DIFFERENT CI TASKS

Table 5: The configurations of pretraining and fine-tuning on the ICS, CS-MRI and SCI tasks.

Configuration
ICS CS-MRI SCI

Pretrain Fine-tune Pretrain Fine-tune Pretrain Fine-tune

sampling matrix init Gaussian matrix - Pseudo Radial mask - Pre-defined coded aperture -
weight init trunc.normal (0.2) - trunc.normal (0.2) - trunc.normal (0.2) -
αk init 0.5 - 0.5 - 0.5 -
λk init 1e-3 - 1e-3 - 1e-3 -

block size 32 32 - - - -
stages count 5 5 5 5 5 5
image size 96×96 96×96 256×256 256×256 256×256 256×256

basic channel count C0 1 1 1 1 28 28
stage channel count [C1, C2, C3] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80] [32, 48, 80]

number of heads Nh 8 8 8 8 8 8
channel per head Ch 64 64 64 64 64 64

batch size 10 10 2 2 2 2
training epochs 400 400 200 100 400 400

base learning rate 2e-4 4e-5 1e-4 4e-5 1e-4 2e-5
min learning rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

optimizer AdamW
(Loshchilov & Hutter (2019)) AdamW AdamW AdamW AdamW AdamW

weight decay 0.05 0.05 0.05 0.05 0.05 0.05
optimizer momentum 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999

warmup epochs 5 5 5 5 5 5
warmup schedule linear linear linear linear linear linear

learning rate schedule cosine annealing cosine annealing cosine annealing cosine annealing cosine annealing cosine annealing
time consumption about 5 days about 5 days about 30 hours about 15 hours about 9 days about 9 days

implementation Pytorch 2.2.1 (Paszke et al. (2019))
CPU 13th Gen Intel Core i9-13900KF
GPU RTX 4090 24 GB

ICS: For the ICS task, we employ a training dataset of 40,000 images randomly selected from the
COCO2017 unlabeled image dataset (Lin et al. (2014)), with an additional 1,000 images reserved
for validation. During training, we apply diverse data augmentation techniques, including random
cropping, scaling, and rotation. Initially, the DUMoE model is trained with a sampling ratio of 0.25.
Subsequently, fine-tuning is performed at various sampling ratios, leveraging the pretrained DUMoE
weights from the initial training. Notably, the model jointly learns the sampling matrix. Furthermore,
LPIPS scores are computed using VGG as the base network (Zhang et al. (2018)).

CS-MRI: In the CS-MRI experiments, our dataset consists of 100 training MRI images and 50 test
MRI images sourced from the Brain dataset (Yang et al. (2020)) as used in previous works (Zhang &
Ghanem (2018); Yang et al. (2020); Gan et al. (2024a)). All images share a uniform size of 256×256.
During training, random rotation is applied as a data augmentation technique. The DUMoE model is
first trained with a sampling ratio of 0.10, followed by fine-tuning at various sampling ratios using
the pretrained weights.

SCI: The SCI experiments are conducted using both simulation and real HSI data. Following the
settings of previous works (Ma et al. (2019); Meng et al. (2020); Huang et al. (2021); Hu et al. (2022);
Cai et al. (2022b)), we select Nζ = 28 wavelengths ranging from 450 nm to 650 nm and d = 2
through spectral interpolation manipulation to derive HSIs. For simulations, the CAVE dataset (Park
et al. (2007)), which contains thirty-two HSIs with a spatial size of 512× 512, serves as the training
set, while ten scenes from KAIST (Choi et al. (2017)) are utilized for testing. During training, data
augmentation techniques such as random cropping into 256×256, slicing, and rotation are employed.
In real data experiments, 11-bit shot noise is introduced into the measurements of CAVE and KAIST
datasets during training to mimic real-world noise disturbances. Fine-tuning is performed based on
the pretrained model using simulation data. Testing is conducted using five real scenes from the real
CASSI system (Meng et al. (2020)).

Please refer to Tab. 5 for detailed configurations of DUMoE for the ICS, CS-MRI and SCI tasks.
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Table 6: Average PSNR (dB) and SSIM performance comparisons of DUMoE and other ICS methods
on various datasets at high sampling ratios (0.30, 0.40 and 0.50).

Methods

Urban100 General100

0.30 0.40 0.50 Avg. 0.30 0.40 0.50 Avg.

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CASNet (TIP 2022) 33.35 0.9509 35.46 0.9668 37.46 0.9773 35.42 0.9650 39.32 0.9730 41.56 0.9827 43.74 0.9887 41.54 0.9815
DGUNet+ (CVPR 2022) 33.16 0.9510 35.24 0.9666 37.65 0.9785 35.35 0.9654 38.87 0.9724 41.07 0.9821 43.26 0.9884 41.07 0.9810
FSOINet (ICASSP 2022) 33.84 0.9540 35.93 0.9688 37.80 0.9777 35.86 0.9668 39.40 0.9735 41.62 0.9831 43.69 0.9887 41.57 0.9818

TransCS (TIP 2022) 32.01 0.9384 35.29 0.9649 37.28 0.9762 34.86 0.9598 37.81 0.9669 40.74 0.9806 42.89 0.9873 40.48 0.9782
DPC-DUN (TIP 2023) 33.53 0.9449 35.58 0.9622 37.52 0.9737 35.54 0.9603 37.76 0.9590 39.95 0.9731 42.00 0.9820 39.91 0.9713
OCTUF (CVPR 2023) 34.21 0.9555 36.25 0.9669 38.29 0.9797 36.25 0.9674 39.54 0.9740 41.76 0.9833 43.95 0.9892 41.75 0.9822
NesTD-Net (TIP 2024) 33.52 0.9516 35.96 0.9683 38.07 0.9786 35.85 0.9662 39.34 0.9732 41.78 0.9831 43.97 0.9891 41.70 0.9818
LTwIST (TCSVT 2024) 33.02 0.9477 35.16 0.9643 37.12 0.9753 35.10 0.9624 38.61 0.9699 40.85 0.9806 42.97 0.9872 40.81 0.9792
UFC-Net (CVPR 2024) 33.78 0.9524 35.93 0.9679 37.98 0.9782 35.90 0.9662 38.89 0.9704 41.17 0.9810 43.35 0.9878 41.14 0.9797

DUMoE (Our Method) 34.54 0.9576 36.58 0.9706 38.49 0.9797 36.54 0.9693 39.64 0.9743 41.96 0.9836 44.09 0.9894 41.90 0.9824

LTwIST

27.56/0.7604/0.1483

28.85/0.8566/0.0510

LTwIST

27.56/0.7604/0.1483

28.85/0.8566/0.0510

ISTA-Net+

27.13/0.7275/0.1322

28.57/0.8502/0.0636

Original Image Zero-filled
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Figure 6: Comparisons of visual results with error maps and corresponding PSNR (dB)/SSIM/LPIPS
performance between DUMoE and other advanced CS-MRI methods at a sampling ratio of 0.10.

A.5 ADDITIONAL EXPERIMENTS

A.5.1 ICS

We conduct qualitative comparisons between DUMoE and other ICS methods on Urban100 and
General100 at high sampling ratios (0.30, 0.40, and 0.50). As shown in Tab. 6, our proposed DUMoE
consistently outperforms other advanced methods at these high sampling ratios, with OCTUF and
NesTD-Net achieving the second-best results. Specifically, on Urban100 at a sampling ratio of 0.30,
DUMoE achieves PSNR improvements of approximately 1.01 dB (3.02%), 0.33 dB (0.96%), 1.52
dB (4.60%), 1.02 dB (3.04%), and 0.76 dB (2.25%) compared to DPC-DUN, OCTUF, LTwIST,
NesTD-Net, and UFC-Net, respectively. Additionally, the SSIM improvements are approximately
0.0127 (1.34%), 0.0021 (0.22%), 0.0099 (1.04%), 0.0060 (0.63%), and 0.0052 (0.55%), respectively.

A.5.2 CS-MRI

We present visual comparisons of reconstructed magnetic resonance (MR) images between DUMoE
and other CS-MRI methods. As shown in Fig. 6, DUMoE exhibits superior performance in recon-
structing fine details and enhancing human perception quality, with fewer errors compared to other
methods in CS-MRI tasks.

A.5.3 SCI

We present visual comparisons of reconstructed HSI between DUMoE and other SCI methods using
both simulated and real HSI data. As illustrated in Fig. 7, the reconstructed HSI by DUMoE exhibits
fewer artifacts and more accurate details compared to other SCI methods across various spectral
channels. Additionally, the spectral density curves in the bottom left of Fig. 7, corresponding to
the areas highlighted in the red boxes in the RGB image, demonstrate the highest correlation and
alignment of DUMoE’s spectral curves with the reference curves, highlighting the advantages of
our proposed DUMoE in HSI reconstruction. Furthermore, Fig. 8 presents visual comparisons of
DUMoE and other SCI methods on Scene 4 and Scene 5 using 2 spectral channels of real HSI data
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Figure 7: Simulation HSI reconstruction comparisons of DUMoE and other SCI methods on Scene 2
with 4 (out of 28) spectral channels.
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Figure 8: Real HSI reconstruction comparisons of DUMoE and other SCI methods on Scene 4 and
Scene 5 with 2 (out of 28) spectral channels.

(Meng et al. (2020)), showcasing the superior performance of DUMoE on real HSI data. Moreover,
Tab. 7 provides details on the number of parameters and FLOPs of different SCI methods on the
KAIST dataset (Choi et al. (2017)).

Table 7: Number of parameters (M) and FLOPs (G) of different SCI methods on the KAIST dataset.

Methods ADMM-Net Lambda-Net TSA-Net DGSMP HDNet MST-L CST-L+ RDFNet GAP-Net EDUNet DWMT DUMoE

Params. 4.27 62.64 44.25 3.76 2.37 2.03 3.00 1.29 4.27 1.51 14.48 4.07
FLOPs 78.58 117.98 110.06 646.65 154.76 28.15 40.01 604.88 78.58 24.24 46.71 183.30

A.5.4 VISUALIZATIONS OF DAM FOR VARIOUS CI TASKS

In this section, we present detailed visualizations of Degradation-Aware Mask (DAM) for three CI
tasks. Specifically, we illustrate how DAM captures different types of degradation at the image-level
domain d

(k)
1 , the measurement-level domain d

(k)
2 , and how the absolute sum of generated mask

channels evolves across stages k = 1, 3, 5.

In ICS, as shown in Fig. 9, the image-level domain degradation d
(k)
1 primarily reflects global image

degradation and block artifacts, which are characteristic of the block sampling process in compressed
sensing. Conversely, d(k)

2 is more focused on finer details such as edges and noise, which tend
to be more vulnerable to degradation. As the number of stages increases, the mask progressively
incorporates richer texture details.

For CS-MRI, as shown in Fig. 10, sampling is performed in the Fourier domain using a subsampling
mask, resulting in aliasing artifacts. Here, both d

(k)
1 and d

(k)
2 capture different aspects of this
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Figure 9: The visualizations of image-level domain degradation d
(k)
1 , measurement-level domain

degradation d
(k)
2 and absolute sum of generated mask channels at stages of k = {1, 3, 5} for ICS at a

sampling ratio of 0.25.
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Figure 10: The visualizations of image-level domain degradation d
(k)
1 , measurement-level domain

degradation d
(k)
2 and absolute sum of generated mask channels at stages of k = {1, 3, 5} for CS-MRI

at a sampling ratio of 0.20.

degradation: d(k)
1 emphasizes edge information, while d

(k)
2 focuses on broader degraded regions.

The mask also becomes more refined with stage progression, revealing increasing detail.

The SCI task, as shown in Fig. 11, involves a 3D hyperspectral image compressed into a 1D
measurement via a coded aperture. This process is prone to noise-induced artifacts. Initially, both
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Figure 11: The visualizations of image-level domain degradation d
(k)
1 , measurement-level domain

degradation d
(k)
2 and absolute sum of generated mask channels at stages of k = {1, 3, 5} for SCI.
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Figure 12: Feature visualization of the iteration stages in DUMoE at a sampling ratio of 0.10.

d
(k)
1 and d

(k)
2 capture these artifacts, but as the stages evolve, d(k)

1 emphasizes texture recovery,
while d

(k)
2 continues to highlight noise-affected areas. The mask becomes more precise in revealing

important details as the stages progress.

As detailed in Fig. 5a, Tab. 4a and through the analysis in Sec. 5.1 of our paper, the DAM effectively
guides DUMoE to focus on critical degraded image areas and fine details, despite variations in
sampling, initialization processes, and data types (2D and 3D) across different CI tasks. This
highlights the effectiveness and generalization of our proposed method, enhancing feature extraction
capabilities across diverse CI tasks.

A.5.5 VISUALIZATIONS OF IMAGE FEATURE MAPS

Fig. 12 visualizes the features across different iteration stages and modules in DUMoE, demonstrating
the contributions and attention of different modules to the iterative image refinement during the
reconstruction, thus enhancing the effectiveness of DUMoE.

Furthermore, as shown in Fig. 13, we present visualizations of image features and the corresponding
top-1 selection of the DUSE for different images at each iteration stage across various sampling
ratios. In the initial stages, DUMoE tends to capture the overall contour information of the images.
However, at lower sampling ratios, block artifacts may be more prominent. Nevertheless, as the
iterative stages progress, the details and texture information within the images become increasingly
enriched, consequently diminishing block artifacts and resulting in high-fidelity image reconstruction.
Notably, it is evident that at different sampling ratios, the refinement and enhancement of details and
texture information in diverse images evolve through different experts during the iterative stages.
This observation underscores the ability of DUMoE to dynamically select DUSE, facilitating iterative
refinement tailored to the diverse characteristics of images during the iteration stages.

A.5.6 ABLATION STUDIES ON DUSE NUMBER

Table 8: The performance comparisons of cases under different number of DUSE.

DUSE 1 2 3 5 3

Switch Routing - w/ w/ w/ w/o

PSNR (dB) 34.31 34.39 34.42 34.38 34.39
SSIM 0.9325 0.9332 0.9334 0.9332 0.9329

Params. (M) 3.99 4.08 4.17 4.34 4.17
FLOPs (G) 142.34 142.34 142.34 142.34 158.72

We conduct an ablation study on the number of experts as shown in Tab. 8. As the number of DUSE
increases, performance gradually improves, peaking at three blocks. However, performance declines
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Figure 13: Visualizations of image features and the corresponding top-1 selection of the DUSE for
diverse images in each iteration stage at different sampling ratios.
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when the number of DUSE reaches five, likely due to increased training complexity and the higher
number of parameters, requiring more epochs to achieve optimal performance.

A.6 LIMITATIONS

In our main paper, we primarily focus on utilizing the ℓ1-norm as the image prior to enforce sparsity in
the transform domain and employ soft thresholding to address Eq. (8). However, it’s worth noting that
various other image priors exist, including the ℓ0-norm, total variation, low-rank, etc., for different
applications. Besides, many deep unfolding-based methods leverage deep denoising networks to
replace image prior terms (Song et al. (2023c); Mou et al. (2022); Cai et al. (2022c)). Moving forward,
we aim to explore a broader spectrum of image prior terms, thereby enhancing the versatility of
DUMoE to address a wider array of image ill-posed problems, such as image super-resolution, image
deraining, image denoising, etc.

Furthermore, the proposed DUMoE framework is designed as a general approach capable of address-
ing a broad range of CI tasks, including ICS, CS-MRI, and SCI, without being restricted to a single
domain. This generality allows DUMoE to be applied to various CI tasks with diverse data charac-
teristics (e.g., 2D and 3D) and requirements (e.g., different sampling and initialization processes).
However, this broad applicability may result in performance trade-offs for highly specialized tasks.
We view this as an area for future improvement, where incorporating more specialized knowledge
into the DUMoE framework could potentially mitigate these trade-offs and yield more competitive
results in specialized applications.

A.7 CODE SUBMISSION AND REPRODUCIBILITY

We submit the source code and pre-trained models in the supplemental material and provide the
detailed experimental settings for reproducing the results presented in our paper. Additionally,
both the source code and pre-trained models will be publicly released for broader accessibility and
reproducibility.
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