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Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems face significant challenges in retrieval di-003
versity and inference latency, limiting their ef-004
fectiveness in practical scenarios. We introduce005
KRAQ, an innovative approach that employs006
corpus-derived knowledge graphs to generate007
high-quality representative questions. These008
precomputed questions enhance retrieval di-009
versity by serving as diverse retrieval alter-010
natives and reduce inference latency by en-011
abling offline pre-computation of embeddings.012
Implemented within two practical RAG vari-013
ants—Combined Retrieve RAG and Efficient014
Speculative RAG—KRAQ substantially outper-015
forms competitive baselines by up to 48.7016
points, achieves accuracy gains of up to 3%,017
and reduces inference latency by as much as018
11.8%. Our results demonstrate KRAQ’s po-019
tential as a scalable, robust optimization for020
improving the performance of RAG systems.021

1 Introduction022

Retrieval-Augmented Generation (RAG) has023

emerged as the standard paradigm for addressing024

the static, non-controllable, and limited nature of025

LLM knowledge (Lewis et al., 2020; Kaddour et al.,026

2023). By retrieving relevant external informa-027

tion into the model’s context, RAG grounds LLM028

outputs in verifiable evidence and improves fac-029

tual accuracy. The approach has seen rapid and030

widespread industrial adoption, becoming arguably031

one of the most prominent applications of LLM032

technology in practice (Tully et al., 2024).033

Despite its promise, RAG systems continue to034

face two core challenges. First, traditional retrieval035

mechanisms often yield results lacking semantic036

diversity, frequently retrieving passages that are lex-037

ically similar both to the query and to one another.038

This redundancy reduces the overall coverage of re-039

trieved evidence, potentially limiting the quality of040

generated responses (Barnett et al., 2024). Second,041

augmenting LLM inputs with more documents not 042

only increases computational overhead and latency 043

but also runs into the ’lost-in-the-middle’ problem, 044

where positional biases impair the model’s abil- 045

ity to effectively use the provided context (Liu 046

et al., 2024). Recent approaches, such as Spec- 047

ulative RAG (Wang et al., 2024), have aimed to 048

mitigate these issues by leveraging smaller draft 049

models. However, these methods introduce an addi- 050

tional bottleneck by requiring online computation 051

of instruction-conditioned embeddings, limiting 052

scalability and efficiency. 053

To address these two challenges we propose 054

KRAQ (Knowledge-graph Representative Auto- 055

matic Questions), a novel methodology designed 056

to simultaneously enhance retrieval diversity and 057

reduce inference latency in RAG systems. The 058

central premise of KRAQ is that a carefully cu- 059

rated set of representative questions, pre-generated 060

from corpus-derived knowledge graphs, can serve 061

as reusable proxies for efficient, diverse retrieval. 062

Specifically, KRAQ leverages a knowledge graph 063

built from the corpus to identify thematic commu- 064

nities, which are then summarized into concise 065

natural language descriptions. These summaries 066

are subsequently transformed into representative 067

questions using a fine-tuned question-generation 068

LLM. By precomputing and indexing this ques- 069

tion set, KRAQ creates a reusable asset that enables 070

RAG systems to diversify retrieval and optimize 071

query-time computations. 072

We validate KRAQ through an extensive evalua- 073

tion across two dimensions. Initially, we directly 074

assess the quality of KRAQ-generated questions 075

which outperforms baselines by up to 48.7 points. 076

Subsequently, we evaluate the practical impact of 077

KRAQ in two realistic scenarios: 078

• Combined Retrieve RAG: Employs KRAQ- 079

generated questions as additional queries, en- 080

riching retrieval diversity and leading to more 081
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accurate and comprehensive responses.082

• Efficient Speculative RAG: Uses precomputed083

KRAQ-generated questions to shift expensive em-084

bedding computations offline, thereby achieving085

substantial latency reductions without compro-086

mising response quality.087

Empirical results on four standard bench-088

marks—TriviaQA, HotPotQA, BioASQ, and Pub-089

Health—highlight the practical benefits of KRAQ,090

including accuracy improvements up to 3% and091

inference latency reductions up to 11.8%. These092

findings underscore KRAQ’s value as a practical,093

scalable enhancement to current RAG frameworks.094

2 KRAQ095

KRAQ transforms a document corpus into a valu-096

able optimization asset: a reusable set of represen-097

tative questions that succinctly capture its deep098

semantic structure and anticipate potential user099

queries. As illustrated in Figure 1, KRAQ leverages100

GraphRAG (Edge et al., 2024) to generate corpus-101

grounded knowledge graphs, revealing intricate102

relationships within the corpus. These graphs are103

subsequently segmented into coherent communi-104

ties, each summarized into concise textual descrip-105

tions via an LLM. A fine-tuned question-generation106

LLM then transforms these summaries into high-107

quality representative questions. This precomputed108

question set then serves as a high-leverage proxy,109

enabling both diverse retrieval and significant la-110

tency reduction in downstream RAG tasks. 1111

2.1 From Corpus to Questions: The KRAQ112

Pipeline113

Building upon GraphRAG (Edge et al., 2024),114

KRAQ extracts thematic clusters from the corpus115

and transforms them into representative questions.116

Specifically, KRAQ utilizes the GraphRAG frame-117

work to perform the first four sequential stages of118

its pipeline:119

1. Knowledge Extraction: The corpus is seg-120

mented into text chunks, from which an LLM ex-121

tracts structured subject-relation-object triples.122

2. Graph Construction: Extracted entities are dis-123

ambiguated and consolidated to form a unified124

knowledge graph G = (V,E).125

3. Hierarchical Community Detection: The Lei-126

den algorithm (Traag et al., 2019) is applied127

recursively, revealing a multi-level hierarchical128

1The source code for KRAQ and the fine-tuned generator
model will be made available upon publication.

community structure within the graph. Each 129

hierarchical level represents a distinct, non- 130

overlapping partition of nodes at varying granu- 131

larities. 132

4. Community Summary Synthesis: An LLM 133

generates concise, natural-language summaries 134

Ri for each community Ci. 135

KRAQ extends this pipeline by introducing a 136

fifth, novel stage aimed at converting each com- 137

munity summary into a high-quality representative 138

question. This is performed by a LLM fine-tuned 139

for this task. Unlike GraphRAG, which directly 140

uses summaries to answer queries, KRAQ con- 141

verts summaries into questions, creating a reusable 142

corpus-grounded asset. Formally, this question- 143

generation step is defined as: 144

QK
i = fθ(Ri) (1) 145

where fθ represents the fine-tuned question- 146

generation model mapping each community sum- 147

mary Ri to its representative question QK
i . 148

Fine-tuning the Question Generator. We fine- 149

tune a pre-trained LLM using synthetic (summary, 150

question) pairs. As existing QA datasets lack suit- 151

able community-level summaries, we generate syn- 152

thetic training data from an external QA corpora 153

not utilized in downstream evaluations. Specif- 154

ically, given a dataset consisting of a question- 155

answer-evidence tuples (Q,A,E), we employ a 156

teacher model (GPT-4o) to synthesize a representa- 157

tive community summary R = g(E,Q). 158

Details of the synthesis prompt and the full fine- 159

tuning procedure are provided in Appendix A. The 160

generated synthetic dataset of (R,Q) pairs is then 161

used to fine-tune our base model via a causal lan- 162

guage modeling objective: 163

L(θ) = E(R,Q) [logPθ(Q | R)] (2) 164

Further details on the exact prompt used for fine- 165

tuning are provided in Appendix E.2. This tailored 166

fine-tuning process transforms a general-purpose 167

LLM into a specialized, efficient generator capa- 168

ble of converting thematic summaries into natural, 169

corpus-grounded representative questions. The re- 170

sulting question set QK forms a key asset under- 171

pinning KRAQ’s downstream retrieval and latency 172

optimizations. 173
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Figure 1: The KRAQ pipeline. The initial stages—from knowledge extraction to community summary synthesis—are
implemented using the GraphRAG framework (Edge et al., 2024). KRAQ’s novel contribution is the final stage:
transforming community summaries into representative questions using a fine-tuned LLM.

3 KRAQ for RAG Optimization174

The representative question set QK generated by175

KRAQ is a versatile asset that can be plugged into176

existing Retrieval-Augmented Generation (RAG)177

pipelines with almost no engineering overhead. Be-178

low we showcase two orthogonal ways to leverage179

QK : (i) Combined Retrieve RAG, which boosts180

answer accuracy by diversifying the evidence re-181

trieved, and (ii) Efficient Speculative RAG, which182

reduces latency by pre-computing expensive em-183

beddings offline.184

3.1 Combined Retrieve RAG: Diversifying185

Evidence186

Motivation. RAG pipelines tend to retrieve doc-187

uments that are highly similar yet lack semantic188

diversity, leaving blind spots in the evidence and189

hurting answer quality. Combined Retrieve RAG190

mitigates this issue by injecting carefully chosen191

KRAQ questions as additional retrieval queries to192

broad thematic coverage.193

Method. The strategy begins by identifying the n194

questions in the pre-computed setQK that are most195

semantically similar to the user’s query Q. These196

auxiliary questions are then used to augment the197

retrieval process. Let Q be the user query, M the to-198

tal retrieval budget, α∈ [0, 1] the share allocated to199

Q, and n the number of auxiliary questions drawn200

from QK . Algorithm 1 summarizes the procedure.201

By fusing evidence retrieved for both the original202

query and thematically aligned KRAQ questions,203

Algorithm 1 Combined Retrieve RAG

Require: User query Q; KRAQ set QK ; budget
M ; primary ratio α; # auxiliary questions n.

1: QK
sim ← TOPNSIMILAR(Q,QK , n)

2: mmain ← ⌊αM⌋
3: maux ←

⌊
M−mmain

n

⌋
4: D ← RETRIEVE(Q,mmain,∅)
5: for q ∈ QK

sim do
6: D ← D ∪ RETRIEVE(q,maux, D)

7: A← GENERATEANSWER(Q,D)
8: return A

Note: RETRIEVE performs a similarity search for a query and
returns the k highest-scoring documents not present in the
exclusion set passed as its third argument.

the model receives a richer, less redundant context, 204

which empirically translates into higher answer 205

accuracy without increasing the retrieval budget. 206

3.2 Efficient Speculative RAG: Reducing 207

Latency 208

Motivation. RAG pipelines frequently incur two 209

intertwined problems: (i) high latency, as the LLM 210

must attend over an extensive context of retrieved 211

passages, and (ii) lost-in-the-middle degradation, 212

where information appearing far from the context’s 213

start or end is poorly utilised (Liu et al., 2024). 214

Speculative RAG (Wang et al., 2024) addresses 215

latency by running several lightweight draft gen- 216

erations in parallel, and tackles the ’lost-in-the- 217

middle’ problem by conditioning each draft on a 218
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much smaller, focused subset of the evidence. How-219

ever, constructing these subsets introduces a new220

bottleneck: it relies on query-specific instruction-221

conditioned embeddings that must be computed222

online for every retrieved document. Our goal is223

to eliminate this step—thereby cutting latency fur-224

ther—while preserving answer quality.225

Draft–then–Verify Paradigm. Speculative RAG226

(i) retrieve a pool D, (ii) embeds each passage with227

a query-conditioned encoder E(di | Q) and clusters228

the embeddings into k topical buckets, (iii) builds229

k evidence subsets by sampling one document per230

cluster, (iv) lets k lightweight draft models answer231

Q in parallel, and (v) asks a verifier LLM to choose232

the best draft.233

The Latency Bottleneck. Speed gains vanish at234

step (ii): the query-conditioned embeddings E(di |235

Q) must be computed online for every retrieved236

passage, adding a forward pass per document and237

becoming the dominant source of latency.238

Pre-computation with KRAQ. We solve this bot-239

tleneck by replacing the query-specific embedding240

with the closest pre-computed KRAQ proxy. In-241

tuitively, if two queries are semantically similar,242

conditioning on one should yield embeddings good243

enough for clustering documents for the other.244

Offline Phase (one-time) For every document di245

and every KRAQ question QK
j ∈QK we store246

Epre(di, Q
K
j ) = E

(
di | QK

j

)
.247

Online Phase (per query)248

1. Retrieve a document pool D for query Q.249

2. Select its nearest KRAQ proxy250

QK
sim = arg max

QK
j ∈QK

cos(emb(Q), emb(QK
j )).251

3. Fetch the cached embeddings Epre(di, Q
K
sim) for252

all di∈D—a pure lookup.253

4. Cluster these embeddings and proceed with the254

standard draft–then–verify pipeline.255

This simple substitution removes all query-time256

embedding calls, dropping latency by ≈ O(#docs)257

forward passes while keeping the rest of Specula-258

tive RAG intact.259

Algorithm 2 Efficient Speculative RAG (online)

Require: Query Q; cache Epre; KRAQ set QK

1: D ← RETRIEVEDOCS(Q)
2: QK

sim ← NEARESTKRAQ(Q,QK)
3: E ← {Epre(d,Q

K
sim) | d∈D }

4: {c1, . . . , ck} ← KMEANS(E, k)
5: // sample one doc per cluster to form k evi-

dence subsets
6: // run k draft models in parallel
7: // verifier selects the best draft
8: return best answer Â

As the proxy QK
sim is drawn from a representa- 260

tive, domain-wide question set; empirically (Sec. 261

5) we find that its embeddings preserve the relative 262

document topology required for effective cluster- 263

ing delivering a substantial latency reduction while 264

maintaining a highly competitive response quality. 265

4 Experimental Setup 266

We conducted a series of experiments to validate 267

the performance of KRAQ. We detailed our datasets, 268

implementation choices, evaluation metrics, and 269

baselines below. 270

4.1 Datasets 271

We evaluated on four standard QA benchmarks: 272

TriviaQA (Joshi et al., 2017): open-domain ques- 273

tions authored independently of the evidence. 274

HotPotQA (Yang et al., 2018): multi-hop ques- 275

tions that require reasoning across documents. 276

BioASQ (Tsatsaronis et al., 2015): biomed ques- 277

tions; we score against the exact_answer entity list. 278

PubHealth (Kotonya and Toni, 2020): public- 279

health claims to be verified as true, false, or mixed. 280

For each benchmark we iteratively sampled ques- 281

tions and their evidence until the resulting corpus 282

reached∼5 M unique tokens, keeping experiments 283

tractable on our hardware. 284

4.2 Evaluation Metrics 285

Question quality. We assess the semantic align- 286

ment of KRAQ-generated questions against bench- 287

mark reference questions. For each reference ques- 288

tion, we find its nearest KRAQ neighbor via cosine 289

similarity and compute: 290

• Relevance: Average BERTScore F1 (Zhang 291

et al., 2020); 292

• Relevance@τ % of pairs whose BERTScore F1 293

meets or exceeds τ ∈{0.70, 0.75, 0.80} 294

295
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RAG performance.296

• Exact Match – fraction of answers containing297

the gold string.298

• LLM judge – We used GPT-4.1 to rate seman-299

tic and factual equivalence (Zheng et al., 2023)300

(prompt in App. E.6).301

• Latency – median wall-clock time per query; for302

parallel stages we adopt the slowest branch time303

(see App. D).304

4.3 Baselines305

To rigorously evaluate our contributions, we com-306

pared our methods against carefully designed base-307

lines that allowed us to isolate the impact of each308

component of our framework.309

KRAQ Question Quality.310

• Random Baseline: To test the core hypothe-311

sis that structured, thematic context is superior312

to unstructured context, this baseline generates313

questions from a sampling of the corpus. The314

method randomly samples a variable number of315

text chunks (2 to 7), concatenates them, and then316

prompts an LLM to produce a question (see Ap-317

pendix E.3). This allows us to directly measure318

the value added by KRAQ’s systematic, graph-319

based content structuring.320

• Non-Finetuned KRAQ: This baseline followed321

the same pipeline as KRAQ but used a non-fine-322

tuned model for the final question generation step.323

This allowed us to isolate the specific contribu-324

tion of our fine-tuned model.325

Combined Retrieve RAG.326

• Traditional RAG: We compared our method327

against a standard RAG system that used the328

same LLM and retriever. For a given user query,329

it retrieved the top-M documents based solely330

on their semantic similarity to the original query.331

This direct comparison, using the prompt detailed332

in Appendix E.4, allowed us to quantify the gains333

of our retrieval diversification strategy.334

Efficient Speculative RAG Baseline. The baseline335

for our efficiency-focused application was our re-336

implementation of the Speculative RAG framework337

from Wang et al. (2024). We followed the original338

design, but introduced necessary adaptations for339

numerical stability and model handling, which are340

fully detailed in Appendix C. This version com-341

puted the instruction-conditioned embeddings on-342

line for every user query. By comparing against343

this baseline, we could directly measure the reduc-344

tion in latency and the corresponding trade-off in345

accuracy achieved by our optimization.346

4.4 Implementation Details 347

All experiments were conducted on a single 348

NVIDIA RTX 3090 GPU (24GB VRAM). 349

Model: Our primary model for all generative 350

tasks was LLaMA 3.1-8B-Instruct(Grattafiori et al., 351

2024). We used a 4-bit AWQ quantized version to 352

manage resources, with inference served by vLLM 353

(Kwon et al., 2023). This model served as both the 354

base model for all fine-tuning experiments and as 355

the off-the-shelf instruct model for baseline com- 356

parisons and other non-fine-tuned generative roles 357

(e.g., Drafter, Verifier). 358

Graph Construction: KRAQ pipeline utilized the 359

open-source GraphRAG framework (Edge et al., 360

2024). We used its default configuration without 361

prompt tuning (see Appendix B for details), with 362

chunks of 300 tokens and 50 tokens overlap. 363

Embedding Models: We used two embed- 364

ding models. For general-purpose semantic 365

retrieval, nomic-embed-text (Nussbaum et al., 366

2024) with relevance calculated via cosine simi- 367

larity. For instruction-conditioned embeddings, we 368

used InBedder-RoBERTa(Peng et al., 2024). 369

Vector Store: We used the Qdrant (Vasnetsov et al., 370

2021) vector database for efficient indexing and 371

similarity search. 372

Hyperparameters Configuration. The hyperpa- 373

rameters for our RAG applications were selected 374

based on the characteristics of each dataset. The 375

specific prompts used for each generative task are 376

detailed in Appendix E. 377

Combined Retrieve RAG. For Table 2, we used 378

n = 2 similar KRAQ questions and a retrieval pro- 379

portion α = 0.5. The total number of retrieved 380

documents (M ) was 15 for TriviaQA, HotPotQA, 381

and BioASQ, and 10 for PubHealth. 382

Speculative RAG. Configurations for Table 5 and 6 383

were: (i) BioASQ: Nretrieved = 18, k = 5 clusters, 384

m = 10 drafts.2, (ii) HotPotQA: Nretrieved = 10, 385

k = 4 clusters, m = 8 drafts, and (iii) TriviaQA 386

& PubHealth: Nretrieved = 10, k = 2 clusters, 387

m = 5 drafts. 388

5 Results 389

We first validate the semantic quality of questions 390

generated by our core KRAQ methodology, then 391

assess the downstream impact on accuracy and la- 392

tency in our two RAG applications. 393

2The higher number of retrieved documents for BioASQ
was selected to better cover the multiple distinct evidence
sources often needed for list-based biomedical answers.
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5.1 Question Quality394

We first evaluated KRAQ’s ability to generate se-395

mantically relevant questions that cover the breadth396

of a corpus. As shown in Table 1, our fine-tuned397

KRAQ model delivered a consistently better perfor-398

mance than baselines.399

The results isolate the dual benefits of our ap-400

proach. First, the significant gap between KRAQ401

and the Random baseline (e.g., a 48.7-point differ-402

ence in Relevance@0.75 on TriviaQA) underscores403

the value of the graph-based structuring, which404

ensures thematic coherence. Second, the equally405

large gap between KRAQ and the Instruct baseline406

(e.g., a 20.7-point difference on the same metric)407

demonstrates that our specialized fine-tuning is crit-408

ical for transforming community summaries into409

high-quality, natural questions. The comparatively410

lower performance on PubHealth across all meth-411

ods is likely attributable to its claims-based format,412

which diverges from the standard question structure413

KRAQ was trained on.414

Dataset Metric KRAQ Non-FT KRAQ Random

TriviaQA

Rel. 78.1 75.5 72.2
R@.70 93.0 90.6 72.0
R@.75 71.0 50.3 22.3
R@.80 33.0 15.0 3.6

HotPotQA

Rel. 74.2 72.8 69.5
R@.70 84.0 75.0 42.7
R@.75 40.4 29.9 5.6
R@.80 10.0 4.7 0.3

PubHealth

Rel. 68.5 68.0 66.7
R@.70 33.6 30.3 15.6
R@.75 4.8 3.4 1.1
R@.80 0.4 0.26 0.03

BioASQ

Rel. 79.0 77.9 74.1
R@.70 93.1 93.6 84.3
R@.75 73.8 70.8 42.7
R@.80 42.6 34.9 8.6

Table 1: KRAQ question generation performance (scores
are percentages, R@ is Relevance@). Our fine-tuned
KRAQ model generated more relevant questions.

5.2 Combined Retrieve RAG Results415

The results presented in Table 2 validate our central416

hypothesis: diversifying the retrieval context with417

KRAQ-generated questions leads to more accurate418

RAG systems. The improvements are consistent419

across both Exact Match (EM) and an LLM-as-a-420

Judge evaluation. For standard QA datasets like421

TriviaQA, HotPotQA, and PubHealth, Combined422

Retrieve RAG consistently improves both literal423

precision and semantic correctness by furnishing424

the LLM with a more comprehensive and less re- 425

dundant evidence set. 426

The case of BioASQ, however, reveals a key 427

trade-off inherent to retrieval diversification. While 428

enriching the context is beneficial for generating 429

comprehensive narrative answers, it can be detri- 430

mental for tasks demanding exhaustive recall of a 431

list of specific entities. BioASQ exemplifies such 432

a task, as its answers are lists of entities and our 433

EM evaluation requires matching at least 50% of 434

them for a correct score.3 We hypothesize that by 435

broadening the thematic scope, our method may 436

occasionally replace a highly specific document 437

containing key entities with a more general one, 438

leading to lower scores on these strict, list-based 439

metrics. This highlights a key insight: the optimal 440

retrieval strategy may be task-dependent. While 441

our diversification proves highly effective for stan- 442

dard QA formats, it may need to be adapted for 443

entity-centric retrieval scenarios, an improvement 444

we leave for future work. 445

Dataset EM (%) LLM-Judge

Trad. Combined Trad. Combined

HotPotQA 57.0 58.6 70.3 71.3
TriviaQA 88.6 89.0 91.0 92.3
PubHealth 65.5 66.2 65.5 66.2
BioASQ 69.6 67.5 76.0 74.6

Table 2: Accuracy of Combined Retrieve RAG vs. Tra-
ditional RAG, using Exact Match (EM) and an LLM-as-
a-Judge (GPT-4.1) evaluation.

Ablation Studies. To better understand the inter- 446

play between the original query and KRAQ’s sup- 447

plementary questions, we conducted an ablation 448

study varying the retrieval proportion (α) and the 449

number of questions (n). This analysis, performed 450

on HotPotQA and presented in Table 3, reveals an 451

optimal configuration. Performance peaks at an α 452

of 0.75, confirming that KRAQ questions are most 453

effective as a strategic supplement to the primary 454

user query, yielding the best results in both Exact 455

Match and the LLM-Judge evaluation. The study 456

on n suggests that while performance remains rela- 457

tively stable, a smaller number of highly-focused 458

auxiliary questions may be sufficient, as expanding 459

to four questions does not yield further gains. This 460

indicates that with tuned parameters, performance 461

can be optimized effectively. 462

3The modified EM criterion for BioASQ’s list-based an-
swers considers a response correct if it contains at least 50%

6



Varying n (α = 0.5) Varying α (n = 2)

n EM LLM-Judge α EM LLM-Judge

1 58.7 73.0 0.25 56.0 69.0
2 58.7 71.3 0.50 58.6 71.3
3 58.7 72.0 0.75 59.6 74.0
4 57.0 72.3 1.00 57.0 70.3

Table 3: Ablation study for Combined Retrieve RAG on
HotPotQA, varying the number of auxiliary questions
(n) and the retrieval proportion (α).

To validate our core hypothesis that question463

quality directly translates to downstream perfor-464

mance, a second ablation study (Table 4) examines465

the impact of the generator model on final RAG466

accuracy. The results are unequivocal: our Fine-467

tuned KRAQ model leads to the best performance468

across both Exact Match and the LLM-Judge eval-469

uation. This confirms a direct causal link: higher470

quality, semantically relevant questions translate471

into more effective retrieval and more precise final472

answers.473

KRAQ Question Source EM (%) LLM-Judge (%)

Fine-tuned KRAQ 67.5 74.6
Random Baseline 65.3 71.6
Non-Finetuned KRAQ 65.1 72.5

Table 4: Impact of KRAQ generator quality on Com-
bined Retrieve RAG performance on BioASQ.

5.3 Efficient Speculative RAG Results474

Our second application targeted the efficiency of475

the Speculative RAG framework. We compared our476

implementation of the original algorithm against477

our optimized version, Efficient Speculative RAG,478

evaluating the trade-off between latency and accu-479

racy.480

Latency. Table 5 confirms a significant reduction481

in time computation (Appendix D). Efficient Spec-482

ulative RAG achieved speedups across all datasets,483

with latency reductions ranging from 2.7% on Hot-484

PotQA to a substantial 11.8% on PubHealth. This485

result demonstrates that using a KRAQ question as486

a proxy to pre-compute instructed embeddings is a487

valid strategy for removing the main computational488

bottleneck from the online inference path.489

Accuracy. Having established the significant ef-490

ficiency gains, we next evaluated whether this491

speedup came at the cost of accuracy. The results492

in Table 6 show that our optimization maintains a493

of the reference items, after normalization.

Dataset SR (s) ESR (s) Reduction (%)

HotPotQA 3.01 2.93 2.7%
TriviaQA 3.91 3.51 10.2%
PubHealth 3.81 3.36 11.8%
BioASQ 4.32 3.97 8.1%

Table 5: Latency comparison between Speculative RAG
(SR) and Efficient Speculative RAG (ESR). Inference
time reductions.

highly competitive performance. While the original 494

Speculative RAG method holds a consistent, albeit 495

marginal, edge across both Exact Match and the 496

LLM-Judge evaluation, the accuracy of Efficient 497

Speculative RAG remains remarkably close. This 498

establishes a clear trade-off: a substantial reduction 499

in latency for a negligible impact on response qual- 500

ity, confirming that using a KRAQ question as a 501

proxy is a robust strategy for document clustering. 502

Dataset EM (%) LLM-Judge (%)

SR. ESR. SR. ESR.

HotPotQA 44.3 44.0 54.3 54.0
TriviaQA 77.6 75.3 82.6 80.6
PubHealth 58.3 58.0 58.3 58.0
BioASQ 51.4 50.6 63.8 62.0

Table 6: Accuracy comparison between our implementa-
tion of Speculative RAG (SR) and Efficient Speculative
RAG (ESR).

Ablation Studies. To further validate our 503

efficiency-focused approach, two additional stud- 504

ies were conducted. First, as shown in Table 7, 505

we confirmed that proxy question quality is crucial 506

for maintaining accuracy. The results show that 507

using questions from our Fine-tuned KRAQ model 508

is essential for achieving the highest accuracy in Ef- 509

ficient Speculative RAG, outperforming the other 510

methods in both Exact Match and the LLM-Judge 511

evaluation. This establishes a direct link between 512

the quality of the proxy question and the final re- 513

sponse, as better proxies lead to more relevant docu- 514

ment clustering. This result highlights the need for 515

our specialized, graph-aware fine-tuning process to 516

generate the most effective proxies. 517

KRAQ Question Source EM (%) LLM-Judge (%)

Fine-tuned KRAQ 75.3 80.6
Random Baseline 73.3 79.3
Non-Finetuned KRAQ 73.0 76.3

Table 7: Impact of KRAQ generator quality on Efficient
Speculative RAG performance on TriviaQA.
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Second, we analyzed how latency scaled with the518

number of initially retrieved documents (Nretrieved).519

As shown in Table 8, the latency advantage of our520

efficient method grew as more documents were521

retrieved. This is because the cost of online embed-522

ding generation for the original method increases523

linearly with the number of documents, while our524

method’s lookup cost remains nearly constant. This525

result highlights the scalability of our optimiza-526

tion, demonstrating its particular value for complex527

queries that require a larger evidence set.528

Nretrieved Original Latency (s) Efficient Latency (s)

10 3.01 2.93
15 3.09 2.98
20 3.23 2.99

Table 8: Latency comparison on HotPotQA as the num-
ber of retrieved documents (Nretrieved) increases.

6 Related Work529

Our work lies at the intersection of Retrieval-530

Augmented Generation (RAG) optimization and531

knowledge-guided question generation.532

RAG and Retrieval Optimization. The founda-533

tional RAG architecture (Lewis et al., 2020) estab-534

lished the “retrieve-then-read” paradigm. Recent535

work has focused on improving the retrieval step,536

often through query expansion. For instance, Rack-537

auckas (2024) proposed RAG-Fusion, which gen-538

erates multiple query variants online and re-ranks539

the combined results using Reciprocal Rank Fu-540

sion (RRF). Similarly, Li et al. (2024) introduced541

a dual-mode mechanism that applies semantic per-542

turbations to the input query. While these meth-543

ods broaden the search, their query variations are544

generated in isolation from the underlying corpus545

structure. Our Combined Retrieve RAG differs fun-546

damentally by leveraging a pre-computed set of547

questions that are holistically corpus-aware. These548

questions, derived from the knowledge graph’s549

global thematic structure, enable a grounded and550

comprehensive diversification that other methods551

lack. Crucially, because this asset is pre-computed552

offline, our design avoids introducing online infer-553

ence latency, allowing for richer retrieval without a554

performance penalty.555

Knowledge-Guided Question Generation. Using556

structured knowledge to guide Question Genera-557

tion (QG) is an active area of research. Method-558

ologies often leverage underlying semantics to in-559

form what to ask. For example, some approaches560

construct local, single-document graphs to iden- 561

tify salient sentences for question generation (Do 562

et al., 2023), while others identify key concepts 563

across a corpus and retrieve evidence for each to 564

ground the generated questions (Noorbakhsh et al., 565

2025). Recent frameworks like GraphRAG (Edge 566

et al., 2024) have further advanced this by using 567

global knowledge graphs to generate community- 568

level summaries for direct QA, and can also re- 569

actively generate suggested follow-up questions 570

based on a user’s query history. 571

While KRAQ builds upon a similar foundation of 572

semantic structuring, its approach and purpose are 573

fundamentally different. Instead of generating con- 574

tent for direct user consumption (like summaries 575

or suggested queries), KRAQ’s sole purpose is to 576

proactively pre-compute a comprehensive ques- 577

tion set to serve as a reusable optimization tool. 578

We repurpose this multi-granularity, thematically- 579

grounded set to directly enhance the performance 580

and efficiency of downstream RAG systems, a con- 581

tribution distinct from prior work. 582

7 Conclusion and Future Work 583

In this work, we introduced KRAQ, a novel frame- 584

work that addresses RAG’s dual challenges of low 585

retrieval diversity and high latency. We demon- 586

strated that by creating a pre-computed asset of 587

high-quality, representative questions from a cor- 588

pus knowledge graph, we can significantly enhance 589

RAG systems. Our empirical results validate this 590

strategy: KRAQ surpasses question generation base- 591

lines by up to 48.7 points, while its applications 592

in Combined Retrieve RAG and Efficient Specula- 593

tive RAG achieve accuracy gains of up to 3% and 594

latency reductions of up to 11.8%, respectively. 595

While these applications serve as powerful proof- 596

of-concept, our core contribution is broader: we 597

propose that proactively modeling a corpus’s deep 598

semantic structure opens a new research direction 599

for creating reusable, structure-aware optimization 600

assets. Promising avenues for future work could 601

follow this path, starting with enhancing the core 602

KRAQ methodology with finer-grained graph fea- 603

tures. Further research could also explore advanced 604

applications, such as leveraging question hierar- 605

chies for multi-level retrieval, optimizing the pre- 606

computation cost for Efficient Speculative RAG 607

(Appendix D.3), and developing new tools for auto- 608

mated QA dataset generation and interactive corpus 609

exploration. 610

8



Limitations611

While our framework demonstrates strong perfor-612

mance, we identify four key limitations that also613

point toward fruitful avenues for future research.614

1) Pre-processing Cost: KRAQ requires a signifi-615

cant, one-time computational investment to build616

the graph, which may be prohibitive for very large617

or dynamic corpora. 2) Proxy Mismatch Risk:618

The efficiency gains in our framework rely on a619

KRAQ question being a good proxy for the user620

query. This assumption’s validity diminishes for621

queries that fall outside the core thematic distribu-622

tion of the corpus, as no suitable proxy question623

may exist. 3) Error Propagation: The quality624

of generated questions is dependent on the initial625

graph construction; biases or errors in the graph626

will propagate downstream. 4) Task Format Sen-627

sitivity: Our results suggest that the benefits of re-628

trieval diversification are less pronounced for tasks629

requiring highly structured, list-based answers (e.g.,630

BioASQ). The enriched context, while effective for631

generating descriptive answers, may encourage the632

model to produce more narrative responses, which633

can be penalized by strict list-matching evaluation634

metrics.635

Ethical Considerations636

The deployment of KRAQ warrants ethical dili-637

gence. 1) Bias Amplification: By design, KRAQ638

reflects a corpus’s dominant themes, which can am-639

plify societal biases present in the source data and640

affect downstream tasks. 2) Potential for Misuse:641

The framework could be applied to disinformation642

corpora to automatically generate misleading ques-643

tions. 3) Data Privacy: When used on sensitive644

datasets, there is a risk that generated summaries or645

questions could inadvertently reveal private infor-646

mation. Responsible data governance and auditing647

of the generated questions are essential on sensible648

corpora.649
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A KRAQ Generator Fine-tuning Details792

This section provides additional details on the fine-793

tuning process for our core KRAQ question genera-794

tor model.795

A.1 Fine-tuning Dataset and Training796

Performance797

To train our question generator, we created a syn-798

thetic dataset of (Summary, Question) pairs. We799

synthesized this data from two external, publicly800

available corpora to avoid any overlap with our801

evaluation benchmarks:802

• Dolly-v2 (Conover et al., 2023): A dataset of803

15k instruction-following records generated by804

humans, valued for its diversity and natural lan-805

guage quality.806

• MusiQue (Trivedi et al., 2022): A multi-hop807

question-answering dataset that provides com-808

plex questions requiring multi-step reasoning.809

From these datasets, we extracted (Question, Evi-810

dence) pairs to synthesize the (Summary, Question)811

pairs used for fine-tuning. The specific prompts812

used for summary synthesis and question genera-813

tion are detailed in Appendix E.1 and E.2, respec-814

tively.815

The fine-tuning process demonstrated stable con-816

vergence, as illustrated by the validation loss curve817

in Figure 2.818

Figure 2: Validation loss curve during the fine-tuning of
the KRAQ question generator model. The model shows
steady convergence.

A.2 Hyperparameter Configuration819

The KRAQ question generator model was fine-820

tuned from LLaMA 3.1-8B-Instruct using QLoRA821

(Dettmers et al., 2023) with the following key hy-822

perparameters:823

• Learning Rate: 2e-4 824

• Batch Size: 2 825

• Epochs: 3 826

• Optimizer: Paged AdamW (8-bit) 827

• LoRA rank (r): 64 828

• LoRA alpha: 16 829

• LoRA dropout: 0.05 830

B GraphRAG Configuration: Prompt 831

Tuning 832

The GraphRAG framework includes a PromptTun- 833

ing feature that automatically adapts its internal 834

prompts to a specific domain. To determine the 835

optimal configuration, we compared its perfor- 836

mance against the default, non-tuned prompts on 837

the BioASQ dataset. 838

Metric No Tuning Prompt Tuning

Relevance 79.0 78.8
R@.70 93.1 92.9
R@.75 73.8 74.8
R@.80 42.6 40.6

Table 9: Comparison of KRAQ performance with and
without GraphRAG’s prompt tuning on BioASQ.

As shown in Table 9, the performance was com- 839

parable, with the default configuration slightly out- 840

performing the tuned version in most cases. Given 841

the added complexity of the tuning step, we opted 842

to use the default GraphRAG prompts for all exper- 843

iments in this paper. 844

C Speculative RAG Implementation 845

Notes 846

This section details the key practical adaptations 847

made during our re-implementation of the Specu- 848

lative RAG framework (Wang et al., 2024). These 849

notes cover our solutions for ensuring numerical 850

stability in score calculation and our empirical find- 851

ings on drafter model fine-tuning, which informed 852

our final implementation choices. 853

C.1 Score Calculation 854

The Speculative RAG framework ranks candidate 855

drafts using a score ρj derived from three compo- 856

nents: 857

ρdraft
j : The probability of the Drafter model 858

generating the rationale and response: 859

P (βj |Q, δj) + P (αj |Q, δj , βj). 860

861

11



ρself-contain
j : The joint probability of the response862

and rationale, measuring internal coherence:863

P (αj , βj |Q, δj).864

865

ρself-reflect
j : The Verifier model’s confidence in the866

rationale, estimated as the probability of it generat-867

ing a positive affirmation (e.g., "Yes").868

The final score is the product of these components:869

ρj = ρdraft
j · ρself-contain

j · ρself-reflect
j .870

The scoring method proposed by Wang et al.871

(2024) relies on calculating the full probability of872

a sequence S, which is theoretically the product of873

its token probabilities:874

P (S) =
∏
t∈S

P (t)875

However, in practice, this calculation leads to nu-876

merical underflow4 for long sequences, where the877

result collapses to zero and makes it impossible to878

differentiate between drafts. To address this, we879

implemented a numerically stable confidence met-880

ric, Pconf(S), based on the average log-probability881

of the tokens in a sequence S of length L:882

Pconf(S) = exp

(
1

L

∑
t∈S

logprob(t)

)
883

This metric normalizes for sequence length and is884

robust against underflow. We used this confidence885

score to compute the three score components, pre-886

serving the multiplicative structure of ρj . This887

pragmatic adaptation was crucial for a functional888

implementation.889

C.2 Drafter Model Fine-tuning890

We conducted an experiment to fine-tune the891

MDrafter model (LLaMA 3.1-8B-Instruct) to gener-892

ate both a response and a rationale, following the893

methodology in Wang et al. (2024) using the same894

datasets for training that we used in the KRAQ Gen-895

erator Finetuning (Appendix A.1). However, as896

shown in Table 10, the fine-tuned model performed897

worse than the base instruction-tuned model across898

both Exact Match and the LLM-Judge evaluation.899

4We use LLaMA-3-8B with AWQ INT4. Logits are com-
puted in FP16/32 after dequantization, but reduced precision
increases underflow risk, motivating Pconf.

Table 10: Performance on TriviaQA using a fine-tuned
Drafter vs. the base instruct model, evaluated with EM
and an LLM-Judge (GPT-4.1). The fine-tuned model
led to a drop in accuracy.

Drafter Model Variant EM (%) LLM-Judge (%)

Base Instruct Drafter 77.6 82.6
Fine-tuned Drafter 71.6 76.3

Given this negative result, we opted to use the 900

non-fine-tuned LLaMA 3.1-8B-Instruct model for 901

all Speculative RAG experiments. To obtain struc- 902

tured output, we used the prompt in Appendix E.5, 903

instructing the model to return its response and 904

rationale in a JSON format. 905

D Latency Estimation for Efficient 906

Speculative RAG 907

This section details the methodologies used to esti- 908

mate the latency of Efficient Speculative RAG and 909

its comparison to the original framework, given the 910

practical constraints of our single-GPU experimen- 911

tal setup. 912

D.1 Modeling Parallelism Latency 913

Our experiments were conducted on a single GPU, 914

which necessitated serial execution of the m draft 915

generation and verification steps common to both 916

Speculative RAG frameworks. To provide a realis- 917

tic latency estimate for a multi-GPU environment 918

where these steps could run in parallel, we adopted 919

a standard simulation approach. 920

For each user query, we first recorded the indi- 921

vidual execution times for generating each of the m 922

drafts (tdraft
1 , ..., tdraft

m ) and verifying each of them 923

(tverify
1 , ..., t

verify
m ). The total latency for the paral- 924

lelized draft-and-verify phase was then estimated 925

by summing the maximum time of each stage: 926

Latencydraft-verify = max
j=1..m

(tdraft
j ) + max

j=1..m
(t

verify
j ) 927

This estimated time was then added to the other 928

serial components of the pipeline (e.g., retrieval, 929

clustering) to calculate the total end-to-end latency 930

reported in our results. This conservative estima- 931

tion, based on the longest-running task, is a com- 932

mon practice for modeling the performance of par- 933

allelized systems in a serialized environment. 934

D.2 Simulating Pre-Computed Embedding 935

Retrieval 936

A full offline pre-computation of all in- 937

structed embeddings for Efficient Speculative 938
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RAG—calculating E(di|QK
j ) for every document939

di and every KRAQ question QK
j —was computa-940

tionally prohibitive for this work. To measure the941

latency of our method nonetheless, we simulated942

the retrieval of pre-computed embeddings during943

the online phase.944

For a given query Q, we identified the most945

similar KRAQ question QK
sim and computed the946

instructed embeddings online for the retrieved doc-947

uments using QK
sim as the instruction. To estimate948

the final latency of our efficient method, we sub-949

tracted the time taken for this on-the-fly computa-950

tion. To account for the lookup cost, we then added951

the time taken to retrieve the initial documents as a952

conservative proxy, assuming that fetching embed-953

dings from a vector store would have a similar or954

lower time complexity. This simulation allowed us955

to evaluate the accuracy of our method using the956

correct proxy-instructed embeddings while provid-957

ing a fair estimate of the latency gains.958

D.3 Hypothesis on Optimized959

Pre-computation960

While a full pre-computation is costly, we hypothe-961

size that it is not necessary. As a direction for future962

work, we propose a selective pre-computation963

strategy. For each KRAQ question QK
j , one would964

first retrieve the top-N most semantically similar965

documents (e.g., N = 1000) using a standard em-966

bedding model. The expensive instructed embed-967

ding calculation, E(di|QK
j ), would then be per-968

formed only for this much smaller subset of docu-969

ments. This would dramatically reduce the offline970

cost, making the approach practical for very large971

corpora while likely preserving most of the perfor-972

mance benefits. Validating this hypothesis remains973

a key avenue for future research.974

E Prompts975

E.1 Community Summary Synthesis Prompt976

This prompt was used with a teacher model (GPT-977

4o) to generate a summary R from evidence E978

and a target question Q for the fine-tuning dataset979

creation.980

Given this evidence and knowing that981
we want to generate a question982
about {target_question}, create a983
community-style summary that:984

1. Begins with "This community centers985
around..."986

2. Describes the main topic that987
connects the entities.988

3. Lists key members or elements. 989
4. IMPORTANT: Do not reference the 990

specific question. 991
5. Make the summary concise (max 5 992

sentences). 993

Evidence: 994
{evidence} 995

E.2 KRAQ Question Generator Prompt 996

This prompt was used for fine-tuning the KRAQ 997

generator model and for inference to generate ques- 998

tions from community summaries. 999

Given this summary of a document 1000
collection, generate a natural question 1001
that a person might ask when looking for 1002
this information. The question should 1003
be: 1004

• Simple and straightforward 1005
• Written in conversational language 1006
• Focused on the main topic or event 1007
• Something a real person would ask 1008

Now generate a question for this 1009
summary: 1010
{summary} 1011

E.3 Random Baseline Question Generator 1012

Prompt 1013

This prompt was used to generate questions for the 1014

random baseline, using concatenated random text 1015

chunks as context. 1016

Given these random fragments, generate a 1017
natural, concise question that someone 1018
might ask about the themes or topics 1019
present in these passages. The question 1020
should: 1021

• Be short and to the point 1022
• Focus on a common theme or connection 1023
• Be something a real person would ask 1024

Fragments: 1025
{combined_content} Generate only ONE 1026

concise question: 1027

E.4 Traditional RAG Answer Generation 1028

Prompt 1029

This base prompt was used for the final answer 1030

generation step in Traditional RAG and Combined 1031

Retrieve RAG. 1032

Below is an instruction that describes 1033
a task. Write a response using the 1034
evidence provided for it. Evidence: 1035

{context} Instruction: 1036

{query} 1037
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E.5 Speculative RAG Drafter Prompt1038

This prompt instructed the MDrafter model to pro-1039

duce a response and rationale in a structured JSON1040

format.1041

Response to the instruction. Also1042
provide a concise rationale that1043
justifies the response. Instruction:1044

{instruction} Evidence:1045

{evidence} Your response must be a valid1046

JSON object with the following format:1047
{{’response’: ’your response here’,1048
’rationale’: ’your rationale here’}}1049

E.6 LLM-as-a-Judge Prompt1050

This prompt was used to evaluate the semantic cor-1051

rectness of generated answers from our RAG appli-1052

cations.1053

You are an expert evaluator. Your task1054
is to determine if the generated answer1055
correctly responds to the question1056
according to the reference answer.1057

Question: {question}1058
Generated Answer: {generated_answer}1059
Reference Answer: {reference_answer}1060

Respond with ONLY a single digit:1061
1 - CORRECT1062
0 - INCORRECT1063

Your verdict (just the digit 1 or 0):1064
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