KRAQ: Optimizing Retrieval-Augmented Generation with
Knowledge Graph-Based Questions

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) sys-
tems face significant challenges in retrieval di-
versity and inference latency, limiting their ef-
fectiveness in practical scenarios. We introduce
KRAQ, an innovative approach that employs
corpus-derived knowledge graphs to generate
high-quality representative questions. These
precomputed questions enhance retrieval di-
versity by serving as diverse retrieval alter-
natives and reduce inference latency by en-
abling offline pre-computation of embeddings.
Implemented within two practical RAG vari-
ants—Combined Retrieve RAG and Efficient
Speculative RAG—KRAQ substantially outper-
forms competitive baselines by up to 48.7
points, achieves accuracy gains of up to 3%,
and reduces inference latency by as much as
11.8%. Our results demonstrate KRAQ’s po-
tential as a scalable, robust optimization for
improving the performance of RAG systems.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as the standard paradigm for addressing
the static, non-controllable, and limited nature of
LLM knowledge (Lewis et al., 2020; Kaddour et al.,
2023). By retrieving relevant external informa-
tion into the model’s context, RAG grounds LLM
outputs in verifiable evidence and improves fac-
tual accuracy. The approach has seen rapid and
widespread industrial adoption, becoming arguably
one of the most prominent applications of LLM
technology in practice (Tully et al., 2024).
Despite its promise, RAG systems continue to
face two core challenges. First, traditional retrieval
mechanisms often yield results lacking semantic
diversity, frequently retrieving passages that are lex-
ically similar both to the query and to one another.
This redundancy reduces the overall coverage of re-
trieved evidence, potentially limiting the quality of
generated responses (Barnett et al., 2024). Second,

augmenting LLM inputs with more documents not
only increases computational overhead and latency
but also runs into the ’lost-in-the-middle’ problem,
where positional biases impair the model’s abil-
ity to effectively use the provided context (Liu
et al., 2024). Recent approaches, such as Spec-
ulative RAG (Wang et al., 2024), have aimed to
mitigate these issues by leveraging smaller draft
models. However, these methods introduce an addi-
tional bottleneck by requiring online computation
of instruction-conditioned embeddings, limiting
scalability and efficiency.

To address these two challenges we propose
KRAQ (Knowledge-graph Representative Auto-
matic Questions), a novel methodology designed
to simultaneously enhance retrieval diversity and
reduce inference latency in RAG systems. The
central premise of KRAQ is that a carefully cu-
rated set of representative questions, pre-generated
from corpus-derived knowledge graphs, can serve
as reusable proxies for efficient, diverse retrieval.
Specifically, KRAQ leverages a knowledge graph
built from the corpus to identify thematic commu-
nities, which are then summarized into concise
natural language descriptions. These summaries
are subsequently transformed into representative
questions using a fine-tuned question-generation
LLM. By precomputing and indexing this ques-
tion set, KRAQ creates a reusable asset that enables
RAG systems to diversify retrieval and optimize
query-time computations.

We validate KRAQ through an extensive evalua-
tion across two dimensions. Initially, we directly
assess the quality of KRAQ-generated questions
which outperforms baselines by up to 48.7 points.
Subsequently, we evaluate the practical impact of
KRAQ in two realistic scenarios:

* Combined Retrieve RAG: Employs KRAQ-
generated questions as additional queries, en-
riching retrieval diversity and leading to more

accurate and comprehensive responses.

* Efficient Speculative RAG: Uses precomputed
KRAQ-generated questions to shift expensive em-
bedding computations offline, thereby achieving
substantial latency reductions without compro-
mising response quality.

Empirical results on four standard bench-
marks—TriviaQA, HotPotQA, BioASQ, and Pub-
Health—highlight the practical benefits of KRAQ,
including accuracy improvements up to 3% and
inference latency reductions up to 11.8%. These
findings underscore KRAQ’s value as a practical,
scalable enhancement to current RAG frameworks.

2 KRAQ

KRAQ transforms a document corpus into a valu-
able optimization asset: a reusable set of represen-
tative questions that succinctly capture its deep
semantic structure and anticipate potential user
queries. As illustrated in Figure 1, KRAQ leverages
GraphRAG (Edge et al., 2024) to generate corpus-
grounded knowledge graphs, revealing intricate
relationships within the corpus. These graphs are
subsequently segmented into coherent communi-
ties, each summarized into concise textual descrip-
tions via an LLM. A fine-tuned question-generation
LLM then transforms these summaries into high-
quality representative questions. This precomputed
question set then serves as a high-leverage proxy,
enabling both diverse retrieval and significant la-
tency reduction in downstream RAG tasks. !

2.1 From Corpus to Questions: The KRAQ
Pipeline

Building upon GraphRAG (Edge et al., 2024),

KRAQ extracts thematic clusters from the corpus

and transforms them into representative questions.

Specifically, KRAQ utilizes the GraphRAG frame-

work to perform the first four sequential stages of

its pipeline:

1. Knowledge Extraction: The corpus is seg-
mented into text chunks, from which an LLM ex-
tracts structured subject-relation-object triples.

2. Graph Construction: Extracted entities are dis-
ambiguated and consolidated to form a unified
knowledge graph G = (V| E).

3. Hierarchical Community Detection: The Lei-
den algorithm (Traag et al., 2019) is applied
recursively, revealing a multi-level hierarchical

'The source code for KRAQ and the fine-tuned generator
model will be made available upon publication.

community structure within the graph. Each
hierarchical level represents a distinct, non-
overlapping partition of nodes at varying granu-
larities.

4. Community Summary Synthesis: An LLM
generates concise, natural-language summaries
R; for each community C;.

KRAQ extends this pipeline by introducing a
fifth, novel stage aimed at converting each com-
munity summary into a high-quality representative
question. This is performed by a LLM fine-tuned
for this task. Unlike GraphRAG, which directly
uses summaries to answer queries, KRAQ con-
verts summaries into questions, creating a reusable
corpus-grounded asset. Formally, this question-
generation step is defined as:

QF = fo(Ry) (1)

where fy represents the fine-tuned question-
generation model mapping each community sum-
mary R; to its representative question QZ-K .

Fine-tuning the Question Generator. We fine-
tune a pre-trained LLM using synthetic (summary,
question) pairs. As existing QA datasets lack suit-
able community-level summaries, we generate syn-
thetic training data from an external QA corpora
not utilized in downstream evaluations. Specif-
ically, given a dataset consisting of a question-
answer-evidence tuples (Q, A, F), we employ a
teacher model (GPT-40) to synthesize a representa-
tive community summary R = g(E, Q).

Details of the synthesis prompt and the full fine-
tuning procedure are provided in Appendix A. The
generated synthetic dataset of (R, Q) pairs is then
used to fine-tune our base model via a causal lan-
guage modeling objective:

L(0) = E(r,) [log Py(Q | R)] 2

Further details on the exact prompt used for fine-
tuning are provided in Appendix E.2. This tailored
fine-tuning process transforms a general-purpose
LLM into a specialized, efficient generator capa-
ble of converting thematic summaries into natural,
corpus-grounded representative questions. The re-
sulting question set QX forms a key asset under-
pinning KRAQ’s downstream retrieval and latency
optimizations.

Text Corpus

LLM |

Relation A-B

Entity and Relation Extraction

Knowledge Graph Creation
and Community Detection

LLM Fine-Tuned
LLM

—Questiun A

Question Generation per
Summary

Summary Generation per
Community

Figure 1: The KRAQ pipeline. The initial stages—from knowledge extraction to community summary synthesis—are
implemented using the GraphRAG framework (Edge et al., 2024). KRAQ’s novel contribution is the final stage:
transforming community summaries into representative questions using a fine-tuned LLM.

3 KRAQ for RAG Optimization

The representative question set QX generated by
KRAQ is a versatile asset that can be plugged into
existing Retrieval-Augmented Generation (RAG)
pipelines with almost no engineering overhead. Be-
low we showcase two orthogonal ways to leverage
QK. (i) Combined Retrieve RAG, which boosts
answer accuracy by diversifying the evidence re-
trieved, and (ii) Efficient Speculative RAG, which
reduces latency by pre-computing expensive em-
beddings offline.

3.1 Combined Retrieve RAG: Diversifying
Evidence

Motivation. RAG pipelines tend to retrieve doc-
uments that are highly similar yet lack semantic
diversity, leaving blind spots in the evidence and
hurting answer quality. Combined Retrieve RAG
mitigates this issue by injecting carefully chosen
KRAQ questions as additional retrieval queries to
broad thematic coverage.
Method. The strategy begins by identifying the n
questions in the pre-computed set Q¥ that are most
semantically similar to the user’s query (). These
auxiliary questions are then used to augment the
retrieval process. Let () be the user query, M the to-
tal retrieval budget, « € [0, 1] the share allocated to
@, and n the number of auxiliary questions drawn
from QX. Algorithm 1 summarizes the procedure.
By fusing evidence retrieved for both the original
query and thematically aligned KRAQ questions,

Algorithm 1 Combined Retrieve RAG

Require: User query Q; KRAQ set Q; budget
M ; primary ratio «; # auxiliary questions n.
OK < TOPNSIMILAR(Q, Q¥ n)

Mmain < LQM J

Mfmmain
n

Maux < L
D < RETRIEVE(Q, Mmain, &)
for g € QX do

D + D URETRIEVE(q, Maux, D)
A < GENERATEANSWER(Q, D)
8: return A

Note: RETRIEVE performs a similarity search for a query and
returns the k highest-scoring documents not present in the
exclusion set passed as its third argument.

AN A S e

the model receives a richer, less redundant context,
which empirically translates into higher answer
accuracy without increasing the retrieval budget.

3.2 Efficient Speculative RAG: Reducing
Latency

Motivation. RAG pipelines frequently incur two
intertwined problems: (i) high latency, as the LLM
must attend over an extensive context of retrieved
passages, and (ii) lost-in-the-middle degradation,
where information appearing far from the context’s
start or end is poorly utilised (Liu et al., 2024).
Speculative RAG (Wang et al., 2024) addresses
latency by running several lightweight draft gen-
erations in parallel, and tackles the ’lost-in-the-
middle’ problem by conditioning each draft on a

much smaller, focused subset of the evidence. How-
ever, constructing these subsets introduces a new
bottleneck: it relies on query-specific instruction-
conditioned embeddings that must be computed
online for every retrieved document. Our goal is
to eliminate this step—thereby cutting latency fur-
ther—while preserving answer quality.
Draft-then—Verify Paradigm. Speculative RAG
(i) retrieve a pool D, (ii) embeds each passage with
a query-conditioned encoder £(d; | Q) and clusters
the embeddings into & topical buckets, (iii) builds
k evidence subsets by sampling one document per
cluster, (iv) lets k lightweight draft models answer
@ in parallel, and (v) asks a verifier LLM to choose
the best draft.

The Latency Bottleneck. Speed gains vanish at
step (ii): the query-conditioned embeddings £(d; |
Q) must be computed online for every retrieved
passage, adding a forward pass per document and
becoming the dominant source of latency.
Pre-computation with KRAQ. We solve this bot-
tleneck by replacing the query-specific embedding
with the closest pre-computed KRAQ proxy. In-
tuitively, if two queries are semantically similar,
conditioning on one should yield embeddings good
enough for clustering documents for the other.
Offline Phase (one-time) For every document d;
and every KRAQ question QJK € OF we store

Epre(di7 Q]K) = g(dz ‘ Q]K) .
Online Phase (per query)

1. Retrieve a document pool D for query Q.

2. Select its nearest KRAQ proxy

QE = arg max cos(emb(Q),emb(Qf()).

Qi eQ

3. Fetch the cached embeddings Eye(d;, QX) for
all d; € D—a pure lookup.

4. Cluster these embeddings and proceed with the
standard draft-then—verify pipeline.

This simple substitution removes all query-time
embedding calls, dropping latency by = O(#docs)
forward passes while keeping the rest of Specula-
tive RAG intact.

Algorithm 2 Efficient Speculative RAG (online)

Require: Query (); cache Eje; KRAQ set oK
1: D+ RETRIEVEDOCS(Q)
2 QX <« NEARESTKRAQ(Q, Q)
30 B+ {Epe(d, QK) | deD}
4: {Cl, ..
5

., ¢k} < KMEANS(E, k)
: // sample one doc per cluster to form k evi-
dence subsets
6: // run k draft models in parallel
7. // verifier selects the best draft
8: return best answer A

As the proxy fom is drawn from a representa-
tive, domain-wide question set; empirically (Sec.
5) we find that its embeddings preserve the relative
document topology required for effective cluster-
ing delivering a substantial latency reduction while

maintaining a highly competitive response quality.
4 Experimental Setup

We conducted a series of experiments to validate
the performance of KRAQ. We detailed our datasets,
implementation choices, evaluation metrics, and
baselines below.

4.1 Datasets

We evaluated on four standard QA benchmarks:
TriviaQA (Joshi et al., 2017): open-domain ques-
tions authored independently of the evidence.
HotPotQA (Yang et al., 2018): multi-hop ques-
tions that require reasoning across documents.
BioASQ (Tsatsaronis et al., 2015): biomed ques-
tions; we score against the exact_answer entity list.
PubHealth (Kotonya and Toni, 2020): public-
health claims to be verified as true, false, or mixed.

For each benchmark we iteratively sampled ques-
tions and their evidence until the resulting corpus
reached ~ 5 M unique tokens, keeping experiments
tractable on our hardware.

4.2 Evaluation Metrics

Question quality. We assess the semantic align-

ment of KRAQ-generated questions against bench-

mark reference questions. For each reference ques-

tion, we find its nearest KRAQ neighbor via cosine

similarity and compute:

* Relevance: Average BERTScore F; (Zhang
et al., 2020);

* Relevance@7 % of pairs whose BERTScore F;
meets or exceeds 7€ {0.70,0.75,0.80}

RAG performance.

» Exact Match — fraction of answers containing
the gold string.

e LLM judge — We used GPT-4.1 to rate seman-
tic and factual equivalence (Zheng et al., 2023)
(prompt in App. E.6).

» Latency — median wall-clock time per query; for
parallel stages we adopt the slowest branch time
(see App. D).

4.3 Baselines

To rigorously evaluate our contributions, we com-
pared our methods against carefully designed base-
lines that allowed us to isolate the impact of each
component of our framework.

KRAQ Question Quality.

* Random Baseline: To test the core hypothe-
sis that structured, thematic context is superior
to unstructured context, this baseline generates
questions from a sampling of the corpus. The
method randomly samples a variable number of
text chunks (2 to 7), concatenates them, and then
prompts an LLLM to produce a question (see Ap-
pendix E.3). This allows us to directly measure
the value added by KRAQ’s systematic, graph-
based content structuring.

* Non-Finetuned KRAQ: This baseline followed
the same pipeline as KRAQ but used a non-fine-
tuned model for the final question generation step.
This allowed us to isolate the specific contribu-
tion of our fine-tuned model.

Combined Retrieve RAG.

* Traditional RAG: We compared our method
against a standard RAG system that used the
same LLM and retriever. For a given user query,
it retrieved the top-M documents based solely
on their semantic similarity to the original query.
This direct comparison, using the prompt detailed
in Appendix E.4, allowed us to quantify the gains
of our retrieval diversification strategy.

Efficient Speculative RAG Baseline. The baseline
for our efficiency-focused application was our re-
implementation of the Speculative RAG framework
from Wang et al. (2024). We followed the original
design, but introduced necessary adaptations for
numerical stability and model handling, which are
fully detailed in Appendix C. This version com-
puted the instruction-conditioned embeddings on-
line for every user query. By comparing against
this baseline, we could directly measure the reduc-
tion in latency and the corresponding trade-off in
accuracy achieved by our optimization.

4.4 Implementation Details

All experiments were conducted on a single
NVIDIA RTX 3090 GPU (24GB VRAM).
Model: Our primary model for all generative
tasks was LLaMA 3.1-8B-Instruct(Grattafiori et al.,
2024). We used a 4-bit AWQ quantized version to
manage resources, with inference served by vLLM
(Kwon et al., 2023). This model served as both the
base model for all fine-tuning experiments and as
the off-the-shelf instruct model for baseline com-
parisons and other non-fine-tuned generative roles
(e.g., Drafter, Verifier).

Graph Construction: KRAQ pipeline utilized the
open-source GraphRAG framework (Edge et al.,
2024). We used its default configuration without
prompt tuning (see Appendix B for details), with
chunks of 300 tokens and 50 tokens overlap.
Embedding Models: We used two embed-
ding models. For general-purpose semantic
retrieval, nomic-embed-text (Nussbaum et al.,
2024) with relevance calculated via cosine simi-
larity. For instruction-conditioned embeddings, we
used InBedder-RoBERTa(Peng et al., 2024).
Vector Store: We used the Qdrant (Vasnetsov et al.,
2021) vector database for efficient indexing and
similarity search.

Hyperparameters Configuration. The hyperpa-
rameters for our RAG applications were selected
based on the characteristics of each dataset. The
specific prompts used for each generative task are
detailed in Appendix E.

Combined Retrieve RAG. For Table 2, we used
n = 2 similar KRAQ questions and a retrieval pro-
portion o = 0.5. The total number of retrieved
documents (M) was 15 for TriviaQA, HotPotQA,
and BioASQ, and 10 for PubHealth.

Speculative RAG. Configurations for Table 5 and 6
were: (1) BioASQ: Nictieved = 18, k = 5 clusters,
m = 10 drafts.”, (ii) HotPotQA: Nygieved = 10,
k = 4 clusters, m = 8 drafts, and (iii) TriviaQA
& PubHealth: Nyieveda = 10, & = 2 clusters,
m = b drafts.

5 Results

We first validate the semantic quality of questions
generated by our core KRAQ methodology, then
assess the downstream impact on accuracy and la-
tency in our two RAG applications.

’The higher number of retrieved documents for BioASQ
was selected to better cover the multiple distinct evidence
sources often needed for list-based biomedical answers.

5.1 Question Quality

We first evaluated KRAQ’s ability to generate se-
mantically relevant questions that cover the breadth
of a corpus. As shown in Table 1, our fine-tuned
KRAQ model delivered a consistently better perfor-
mance than baselines.

The results isolate the dual benefits of our ap-
proach. First, the significant gap between KRAQ
and the Random baseline (e.g., a 48.7-point differ-
ence in Relevance @0.75 on TriviaQA) underscores
the value of the graph-based structuring, which
ensures thematic coherence. Second, the equally
large gap between KRAQ and the Instruct baseline
(e.g., a 20.7-point difference on the same metric)
demonstrates that our specialized fine-tuning is crit-
ical for transforming community summaries into
high-quality, natural questions. The comparatively
lower performance on PubHealth across all meth-
ods is likely attributable to its claims-based format,
which diverges from the standard question structure
KRAQ was trained on.

Dataset Metric KRAQ Non-FT KRAQ Random
Rel. 78.1 75.5 722
N R@.70 93.0 90.6 72.0
TriviaQA p@75 710 50.3 223
R@380 33.0 15.0 3.6
Rel. 742 728 69.5
R@.70 84.0 75.0 427
HotPolQA p @75 40.4 29.9 5.6
R@380 10.0 47 03
Rel. 685 68.0 66.7
R@.70 33.6 303 15.6
PubHealth p 675 4.8 34 11
R@30 0.4 0.26 0.03
Rel. 79.0 77.9 74.1
. R@.70 93.1 93.6 84.3
BioASQ pr@75 738 70.8 427
R@80 42.6 34.9 8.6

Table 1: KRAQ question generation performance (scores
are percentages, R@ is Relevance@). Our fine-tuned
KRAQ model generated more relevant questions.

5.2 Combined Retrieve RAG Results

The results presented in Table 2 validate our central
hypothesis: diversifying the retrieval context with
KRAQ-generated questions leads to more accurate
RAG systems. The improvements are consistent
across both Exact Match (EM) and an LLM-as-a-
Judge evaluation. For standard QA datasets like
TriviaQA, HotPotQA, and PubHealth, Combined
Retrieve RAG consistently improves both literal
precision and semantic correctness by furnishing

the LLM with a more comprehensive and less re-
dundant evidence set.

The case of BioASQ, however, reveals a key
trade-off inherent to retrieval diversification. While
enriching the context is beneficial for generating
comprehensive narrative answers, it can be detri-
mental for tasks demanding exhaustive recall of a
list of specific entities. BioASQ exemplifies such
a task, as its answers are lists of entities and our
EM evaluation requires matching at least 50% of
them for a correct score.> We hypothesize that by
broadening the thematic scope, our method may
occasionally replace a highly specific document
containing key entities with a more general one,
leading to lower scores on these strict, list-based
metrics. This highlights a key insight: the optimal
retrieval strategy may be task-dependent. While
our diversification proves highly effective for stan-
dard QA formats, it may need to be adapted for
entity-centric retrieval scenarios, an improvement
we leave for future work.

Dataset EM (%) LLM-Judge
Trad. Combined Trad. Combined
HotPotQA 57.0 58.6 70.3 71.3

TriviaQA 88.6 89.0 91.0 92.3
PubHealth 65.5 66.2 65.5 66.2
BioASQ 69.6 67.5 76.0 74.6

Table 2: Accuracy of Combined Retrieve RAG vs. Tra-
ditional RAG, using Exact Match (EM) and an LLM-as-
a-Judge (GPT-4.1) evaluation.

Ablation Studies. To better understand the inter-
play between the original query and KRAQ’s sup-
plementary questions, we conducted an ablation
study varying the retrieval proportion (o) and the
number of questions (n). This analysis, performed
on HotPotQA and presented in Table 3, reveals an
optimal configuration. Performance peaks at an «
of 0.75, confirming that KRAQ questions are most
effective as a strategic supplement to the primary
user query, yielding the best results in both Exact
Match and the LLM-Judge evaluation. The study
on 7 suggests that while performance remains rela-
tively stable, a smaller number of highly-focused
auxiliary questions may be sufficient, as expanding
to four questions does not yield further gains. This
indicates that with tuned parameters, performance
can be optimized effectively.

3The modified EM criterion for BioASQ’s list-based an-
swers considers a response correct if it contains at least 50%

Varying n (o = 0.5) | Varying o (n = 2)

n EM LLM-Judge \ « EM LLM-Judge
1 58.7 73.0 0.25 56.0 69.0
2 587 71.3 0.50 58.6 71.3
3 587 72.0 0.75 59.6 74.0
4 57.0 72.3 1.00 57.0 70.3

Table 3: Ablation study for Combined Retrieve RAG on
HotPotQA, varying the number of auxiliary questions
(n) and the retrieval proportion ().

To validate our core hypothesis that question
quality directly translates to downstream perfor-
mance, a second ablation study (Table 4) examines
the impact of the generator model on final RAG
accuracy. The results are unequivocal: our Fine-
tuned KRAQ model leads to the best performance
across both Exact Match and the LLM-Judge eval-
uation. This confirms a direct causal link: higher
quality, semantically relevant questions translate
into more effective retrieval and more precise final
answers.

KRAQ Question Source EM (%) LLM-Judge (%)
Fine-tuned KRAQ 67.5 74.6
Random Baseline 65.3 71.6
Non-Finetuned KRAQ 65.1 72.5

Table 4: Impact of KRAQ generator quality on Com-
bined Retrieve RAG performance on BioASQ.

5.3 Efficient Speculative RAG Results

Our second application targeted the efficiency of
the Speculative RAG framework. We compared our
implementation of the original algorithm against
our optimized version, Efficient Speculative RAG,
evaluating the trade-off between latency and accu-
racy.

Latency. Table 5 confirms a significant reduction
in time computation (Appendix D). Efficient Spec-
ulative RAG achieved speedups across all datasets,
with latency reductions ranging from 2.7% on Hot-
PotQA to a substantial 11.8% on PubHealth. This
result demonstrates that using a KRAQ question as
a proxy to pre-compute instructed embeddings is a
valid strategy for removing the main computational
bottleneck from the online inference path.
Accuracy. Having established the significant ef-
ficiency gains, we next evaluated whether this
speedup came at the cost of accuracy. The results
in Table 6 show that our optimization maintains a

of the reference items, after normalization.

Dataset SR(s) ESR(s) Reduction (%)
HotPotQA 3.01 2.93 2.7%
TriviaQA 3.91 3.51 10.2%
PubHealth 3.81 3.36 11.8%
BioASQ 4.32 3.97 8.1%

Table 5: Latency comparison between Speculative RAG
(SR) and Efficient Speculative RAG (ESR). Inference
time reductions.

highly competitive performance. While the original
Speculative RAG method holds a consistent, albeit
marginal, edge across both Exact Match and the
LLM-Judge evaluation, the accuracy of Efficient
Speculative RAG remains remarkably close. This
establishes a clear trade-off: a substantial reduction
in latency for a negligible impact on response qual-
ity, confirming that using a KRAQ question as a
proxy is a robust strategy for document clustering.

EM (%) LLM-Judge (%)
SR. ESR. SR. ESR.

HotPotQA 44.3 44.0 54.3 54.0
TriviaQA 77.6 753 82.6 80.6
PubHealth 583 58.0 58.3 58.0
BioASQ 514 50.6 63.8 62.0

Dataset

Table 6: Accuracy comparison between our implementa-
tion of Speculative RAG (SR) and Efficient Speculative
RAG (ESR).

Ablation Studies. To further validate our
efficiency-focused approach, two additional stud-
ies were conducted. First, as shown in Table 7,
we confirmed that proxy question quality is crucial
for maintaining accuracy. The results show that
using questions from our Fine-tuned KRAQ model
is essential for achieving the highest accuracy in Ef-
ficient Speculative RAG, outperforming the other
methods in both Exact Match and the LLM-Judge
evaluation. This establishes a direct link between
the quality of the proxy question and the final re-
sponse, as better proxies lead to more relevant docu-
ment clustering. This result highlights the need for
our specialized, graph-aware fine-tuning process to
generate the most effective proxies.

KRAQ Question Source EM (%) LLM-Judge (%)
Fine-tuned KRAQ 75.3 80.6
Random Baseline 73.3 79.3

Non-Finetuned KRAQ 73.0 76.3

Table 7: Impact of KRAQ generator quality on Efficient
Speculative RAG performance on TriviaQA.

Second, we analyzed how latency scaled with the
number of initially retrieved documents (Nyerieved)-
As shown in Table 8, the latency advantage of our
efficient method grew as more documents were
retrieved. This is because the cost of online embed-
ding generation for the original method increases
linearly with the number of documents, while our
method’s lookup cost remains nearly constant. This
result highlights the scalability of our optimiza-
tion, demonstrating its particular value for complex
queries that require a larger evidence set.

Nretrievea Original Latency (s) Efficient Latency (s)
10 3.01 2.93
15 3.09 2.98
20 3.23 2.99

Table 8: Latency comparison on HotPotQA as the num-
ber of retrieved documents (NVyegieved) INCreases.

6 Related Work

Our work lies at the intersection of Retrieval-
Augmented Generation (RAG) optimization and
knowledge-guided question generation.

RAG and Retrieval Optimization. The founda-
tional RAG architecture (Lewis et al., 2020) estab-
lished the “‘retrieve-then-read” paradigm. Recent
work has focused on improving the retrieval step,
often through query expansion. For instance, Rack-
auckas (2024) proposed RAG-Fusion, which gen-
erates multiple query variants online and re-ranks
the combined results using Reciprocal Rank Fu-
sion (RRF). Similarly, Li et al. (2024) introduced
a dual-mode mechanism that applies semantic per-
turbations to the input query. While these meth-
ods broaden the search, their query variations are
generated in isolation from the underlying corpus
structure. Our Combined Retrieve RAG differs fun-
damentally by leveraging a pre-computed set of
questions that are holistically corpus-aware. These
questions, derived from the knowledge graph’s
global thematic structure, enable a grounded and
comprehensive diversification that other methods
lack. Crucially, because this asset is pre-computed
offline, our design avoids introducing online infer-
ence latency, allowing for richer retrieval without a
performance penalty.

Knowledge-Guided Question Generation. Using
structured knowledge to guide Question Genera-
tion (QG) is an active area of research. Method-
ologies often leverage underlying semantics to in-
form what to ask. For example, some approaches

construct local, single-document graphs to iden-
tify salient sentences for question generation (Do
et al., 2023), while others identify key concepts
across a corpus and retrieve evidence for each to
ground the generated questions (Noorbakhsh et al.,
2025). Recent frameworks like GraphRAG (Edge
et al., 2024) have further advanced this by using
global knowledge graphs to generate community-
level summaries for direct QA, and can also re-
actively generate suggested follow-up questions
based on a user’s query history.

While KRAQ builds upon a similar foundation of
semantic structuring, its approach and purpose are
fundamentally different. Instead of generating con-
tent for direct user consumption (like summaries
or suggested queries), KRAQ’s sole purpose is to
proactively pre-compute a comprehensive ques-
tion set to serve as a reusable optimization tool.
We repurpose this multi-granularity, thematically-
grounded set to directly enhance the performance
and efficiency of downstream RAG systems, a con-
tribution distinct from prior work.

7 Conclusion and Future Work

In this work, we introduced KRAQ, a novel frame-
work that addresses RAG’s dual challenges of low
retrieval diversity and high latency. We demon-
strated that by creating a pre-computed asset of
high-quality, representative questions from a cor-
pus knowledge graph, we can significantly enhance
RAG systems. Our empirical results validate this
strategy: KRAQ surpasses question generation base-
lines by up to 48.7 points, while its applications
in Combined Retrieve RAG and Efficient Specula-
tive RAG achieve accuracy gains of up to 3% and
latency reductions of up to 11.8%, respectively.

While these applications serve as powerful proof-
of-concept, our core contribution is broader: we
propose that proactively modeling a corpus’s deep
semantic structure opens a new research direction
for creating reusable, structure-aware optimization
assets. Promising avenues for future work could
follow this path, starting with enhancing the core
KRAQ methodology with finer-grained graph fea-
tures. Further research could also explore advanced
applications, such as leveraging question hierar-
chies for multi-level retrieval, optimizing the pre-
computation cost for Efficient Speculative RAG
(Appendix D.3), and developing new tools for auto-
mated QA dataset generation and interactive corpus
exploration.

Limitations

While our framework demonstrates strong perfor-
mance, we identify four key limitations that also
point toward fruitful avenues for future research.
1) Pre-processing Cost: KRAQ requires a signifi-
cant, one-time computational investment to build
the graph, which may be prohibitive for very large
or dynamic corpora. 2) Proxy Mismatch Risk:
The efficiency gains in our framework rely on a
KRAQ question being a good proxy for the user
query. This assumption’s validity diminishes for
queries that fall outside the core thematic distribu-
tion of the corpus, as no suitable proxy question
may exist. 3) Error Propagation: The quality
of generated questions is dependent on the initial
graph construction; biases or errors in the graph
will propagate downstream. 4) Task Format Sen-
sitivity: Our results suggest that the benefits of re-
trieval diversification are less pronounced for tasks
requiring highly structured, list-based answers (e.g.,
BioASQ). The enriched context, while effective for
generating descriptive answers, may encourage the
model to produce more narrative responses, which
can be penalized by strict list-matching evaluation
metrics.

Ethical Considerations

The deployment of KRAQ warrants ethical dili-
gence. 1) Bias Amplification: By design, KRAQ
reflects a corpus’s dominant themes, which can am-
plify societal biases present in the source data and
affect downstream tasks. 2) Potential for Misuse:
The framework could be applied to disinformation
corpora to automatically generate misleading ques-
tions. 3) Data Privacy: When used on sensitive
datasets, there is a risk that generated summaries or
questions could inadvertently reveal private infor-
mation. Responsible data governance and auditing
of the generated questions are essential on sensible
corpora.

References

Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu,
Zach Brannelly, and Mohamed Abdelrazek. 2024.
Seven failure points when engineering a retrieval
augmented generation system. arXiv preprint
arXiv:2401.05856.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free Dolly:

Introducing the world’s first truly open instruction-
tuned LLM. Databricks Blog, April 11 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized LLMs. In Advances in Neural Infor-
mation Processing Systems, volume 36.

Xuan Long Do, Bowei Zou, Shafiq Joty, Tran Tai, Liang-
ming Pan, Nancy Chen, and Ai Ti Aw. 2023. Model-
ing what-to-ask and how-to-ask for answer-unaware
conversational question generation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 10785—-10803, Toronto, Canada. Association
for Computational Linguistics.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph RAG approach to query-focused summariza-
tion. arXiv preprint arXiv:2404.16130.

Aaron Grattafiori and 1 others. 2024. The Llama-3 herd
of models. arXiv preprint arXiv:2407.21783.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. arXiv preprint arXiv:2307.10169.

Neema Kotonya and Francesca Toni. 2020. Explainable
automated fact-checking for public health claims. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7740-7754, Online. Association for Computa-
tional Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
29th ACM SIGOPS Symposium on Operating Systems
Principles (SOSP ’23), Koblenz, Germany.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-

mation Processing Systems, volume 33, pages 9459—
9474.

Zhicong Li, Jiahao Wang, Zhishu Jiang, Hangyu
Mao, Zhongxia Chen, Jiazhen Du, Yuanxing Zhang,
Fuzheng Zhang, Di Zhang, and Yong Liu. 2024.
DMQR-RAG: Diverse multi-query rewriting for
RAG. arXiv preprint arXiv:2411.13154.

https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2401.05856
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.18653/v1/2023.acl-long.603
https://doi.org/10.18653/v1/2023.acl-long.603
https://doi.org/10.18653/v1/2023.acl-long.603
https://doi.org/10.18653/v1/2023.acl-long.603
https://doi.org/10.18653/v1/2023.acl-long.603
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.18653/v1/2020.emnlp-main.623
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://arxiv.org/abs/2411.13154
https://arxiv.org/abs/2411.13154
https://arxiv.org/abs/2411.13154

NelsonF. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Kimia Noorbakhsh, Joseph Chandler, Pantea Karimi,
Mohammad Alizadeh, and Hari Balakrishnan. 2025.
Savaal: Scalable concept-driven question genera-
tion to enhance human learning. arXiv preprint
arXiv:2502.12477.

Zach Nussbaum, John X. Morris, Brandon Duderstadt,
and Andriy Mulyar. 2024. Nomic embed: Training
a reproducible long context text embedder. arXiv
preprint arXiv:2402.01613.

Letian Peng, Yuwei Zhang, Zilong Wang, Jayanth Srini-
vasa, Gaowen Liu, Zihan Wang, and Jingbo Shang.
2024. Answer is all you need: Instruction-following
text embedding via answering the question. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 459-477, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Zackary Rackauckas. 2024. RAG-Fusion: a new take
on retrieval-augmented generation.

Vincent A. Traag, Ludo Waltman, and Nees Jan van
Eck. 2019. From Louvain to Leiden: guarantee-
ing well-connected communities. Scientific Reports,
9(1):Article 5233.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop questions via single-hop question composition.
Transactions of the Association for Computational
Linguistics, 10:539-554.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, and 1 others. 2015. An overview of the BioASQ
large-scale biomedical semantic indexing and ques-
tion answering competition. BMC Bioinformatics,
16(1):Article 138.

Tim Tully, Joff Redfern, and Derek Xiao. 2024. 2024:
The state of generative Al in the enterprise. Menlo
Ventures—Perspective Blog. Encuesta a 600 organi-
zaciones; reporta un 51% de adopcion de RAG en
produccién.

Andrey Vasnetsov and 1 others. 2021. Qdrant: Vector
similarity search engine and vector database. https:
//github.com/qdrant/qdrant. GitHub reposi-
tory.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,
Chen-Yu Lee, and Tomas Pfister. 2024. Specula-
tive RAG: Enhancing retrieval augmented generation
through drafting. arXiv preprint arXiv:2407.08223.

10

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2369-2380.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Proceed-
ings of the International Conference on Learning
Representations.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
LLM-as-a-judge with MT-Bench and Chatbot Arena.
In Advances in Neural Information Processing Sys-
tems 36 (NeurIPS 2023),

Datasets and Benchmarks Track.

https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.48550/arXiv.2502.12477
https://doi.org/10.48550/arXiv.2502.12477
https://doi.org/10.48550/arXiv.2502.12477
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://doi.org/10.18653/v1/2024.acl-long.27
https://doi.org/10.18653/v1/2024.acl-long.27
https://doi.org/10.18653/v1/2024.acl-long.27
https://arxiv.org/abs/2402.03367
https://arxiv.org/abs/2402.03367
https://arxiv.org/abs/2402.03367
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1186/s12859-015-0564-6
https://menlovc.com/2024-the-state-of-generative-ai-in-the-enterprise/
https://menlovc.com/2024-the-state-of-generative-ai-in-the-enterprise/
https://menlovc.com/2024-the-state-of-generative-ai-in-the-enterprise/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://arxiv.org/abs/2407.08223
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685

A KRAQ Generator Fine-tuning Details

This section provides additional details on the fine-
tuning process for our core KRAQ question genera-
tor model.

A.1 Fine-tuning Dataset and Training
Performance

To train our question generator, we created a syn-
thetic dataset of (Summary, Question) pairs. We
synthesized this data from two external, publicly
available corpora to avoid any overlap with our
evaluation benchmarks:

¢ Dolly-v2 (Conover et al., 2023): A dataset of
15k instruction-following records generated by
humans, valued for its diversity and natural lan-
guage quality.

* MusiQue (Trivedi et al., 2022): A multi-hop
question-answering dataset that provides com-
plex questions requiring multi-step reasoning.

From these datasets, we extracted (Question, Evi-
dence) pairs to synthesize the (Summary, Question)
pairs used for fine-tuning. The specific prompts
used for summary synthesis and question genera-
tion are detailed in Appendix E.1 and E.2, respec-
tively.

The fine-tuning process demonstrated stable con-
vergence, as illustrated by the validation loss curve
in Figure 2.

Loss During Training

Epochs

— Training Loss
—e— Validation Loss

3000 000
Training Steps

Figure 2: Validation loss curve during the fine-tuning of
the KRAQ question generator model. The model shows
steady convergence.

A.2 Hyperparameter Configuration

The KRAQ question generator model was fine-
tuned from LLaMA 3.1-8B-Instruct using QLoRA
(Dettmers et al., 2023) with the following key hy-
perparameters:

11

* Learning Rate: 2e-4

* Batch Size: 2

* Epochs: 3

* Optimizer: Paged AdamW (8-bit)
¢ LoRA rank (r): 64

* LoRA alpha: 16

¢ LoRA dropout: 0.05

B GraphRAG Configuration: Prompt
Tuning

The GraphRAG framework includes a PromptTun-
ing feature that automatically adapts its internal
prompts to a specific domain. To determine the
optimal configuration, we compared its perfor-
mance against the default, non-tuned prompts on
the BioASQ dataset.

Metric No Tuning Prompt Tuning
Relevance 79.0 78.8
R@.70 93.1 92.9
R@.75 73.8 74.8
R@.80 42.6 40.6

Table 9: Comparison of KRAQ performance with and
without GraphRAG’s prompt tuning on BioASQ.

As shown in Table 9, the performance was com-
parable, with the default configuration slightly out-
performing the tuned version in most cases. Given
the added complexity of the tuning step, we opted
to use the default GraphRAG prompts for all exper-
iments in this paper.

C Speculative RAG Implementation
Notes

This section details the key practical adaptations
made during our re-implementation of the Specu-
lative RAG framework (Wang et al., 2024). These
notes cover our solutions for ensuring numerical
stability in score calculation and our empirical find-
ings on drafter model fine-tuning, which informed
our final implementation choices.

C.1 Score Calculation

The Speculative RAG framework ranks candidate
drafts using a score p; derived from three compo-
nents:

pgraﬂ: The probability of the Drafter model
generating the rationale and response:

P(B;]Q, 05) + P(c|Q, 65, B;)-

self-contain

P; : The joint probability of the response
and rationale, measuring internal coherence:

P(ajv /8]|Qv 5])
p;elf'reﬂ“t: The Verifier model’s confidence in the
rationale, estimated as the probability of it generat-
ing a positive affirmation (e.g., "Yes").

The final score is the product of these components:
draft self-contain self-reflect

Pj =P P P

The scoring method proposed by Wang et al.
(2024) relies on calculating the full probability of
a sequence .S, which is theoretically the product of
its token probabilities:

P(S)=]]r®

tesS

However, in practice, this calculation leads to nu-
merical underflow* for long sequences, where the
result collapses to zero and makes it impossible to
differentiate between drafts. To address this, we
implemented a numerically stable confidence met-
ric, Peont(.S), based on the average log-probability
of the tokens in a sequence S of length L:

This metric normalizes for sequence length and is
robust against underflow. We used this confidence
score to compute the three score components, pre-
serving the multiplicative structure of p;. This
pragmatic adaptation was crucial for a functional
implementation.

1
7 Z logprob(t)
tesS

Peone(S) = exp (

C.2 Drafter Model Fine-tuning

We conducted an experiment to fine-tune the
Mpyafier model (LLaMA 3.1-8B-Instruct) to gener-
ate both a response and a rationale, following the
methodology in Wang et al. (2024) using the same
datasets for training that we used in the KRAQ Gen-
erator Finetuning (Appendix A.1). However, as
shown in Table 10, the fine-tuned model performed
worse than the base instruction-tuned model across
both Exact Match and the LLM-Judge evaluation.

*We use LLaMA-3-8B with AWQ INT4. Logits are com-
puted in FP16/32 after dequantization, but reduced precision
increases underflow risk, motivating Peons.

12

Table 10: Performance on TriviaQA using a fine-tuned
Drafter vs. the base instruct model, evaluated with EM
and an LLM-Judge (GPT-4.1). The fine-tuned model
led to a drop in accuracy.

Drafter Model Variant EM (%) LLM-Judge (%)
Base Instruct Drafter 77.6 82.6
Fine-tuned Drafter 71.6 76.3

Given this negative result, we opted to use the
non-fine-tuned LLaMA 3.1-8B-Instruct model for
all Speculative RAG experiments. To obtain struc-
tured output, we used the prompt in Appendix E.5,
instructing the model to return its response and
rationale in a JSON format.

D Latency Estimation for Efficient
Speculative RAG

This section details the methodologies used to esti-
mate the latency of Efficient Speculative RAG and
its comparison to the original framework, given the
practical constraints of our single-GPU experimen-
tal setup.

D.1 Modeling Parallelism Latency

Our experiments were conducted on a single GPU,
which necessitated serial execution of the m draft
generation and verification steps common to both
Speculative RAG frameworks. To provide a realis-
tic latency estimate for a multi-GPU environment
where these steps could run in parallel, we adopted
a standard simulation approach.

For each user query, we first recorded the indi-
vidual execution times for generating each of the m
drafts (¢§raft .., tdafty and verifying each of them
@Y. e, The total latency for the paral-
lelized draft-and-verify phase was then estimated
by summing the maximum time of each stage:

max (tgraft) + max (tv-erify)

Latenc ity =
Ydraft-verlfy j=1.m j=1..m J

This estimated time was then added to the other
serial components of the pipeline (e.g., retrieval,
clustering) to calculate the total end-to-end latency
reported in our results. This conservative estima-
tion, based on the longest-running task, is a com-
mon practice for modeling the performance of par-
allelized systems in a serialized environment.

D.2 Simulating Pre-Computed Embedding
Retrieval

A full offline pre-computation of all in-
structed embeddings for Efficient Speculative

RAG—calculating £ (di|QjK) for every document
d; and every KRAQ question QJK —was computa-
tionally prohibitive for this work. To measure the
latency of our method nonetheless, we simulated
the retrieval of pre-computed embeddings during
the online phase.

For a given query (), we identified the most
similar KRAQ question Q% and computed the
instructed embeddings online for the retrieved doc-
uments using Q% as the instruction. To estimate
the final latency of our efficient method, we sub-
tracted the time taken for this on-the-fly computa-
tion. To account for the lookup cost, we then added
the time taken to retrieve the initial documents as a
conservative proxy, assuming that fetching embed-
dings from a vector store would have a similar or
lower time complexity. This simulation allowed us
to evaluate the accuracy of our method using the
correct proxy-instructed embeddings while provid-
ing a fair estimate of the latency gains.

D.3 Hypothesis on Optimized
Pre-computation

While a full pre-computation is costly, we hypothe-
size that it is not necessary. As a direction for future
work, we propose a selective pre-computation
strategy. For each KRAQ question QX, one would
first retrieve the top-/N most semantically similar
documents (e.g., N = 1000) using a standard em-
bedding model. The expensive instructed embed-
ding calculation, £ (di|Q§(), would then be per-
formed only for this much smaller subset of docu-
ments. This would dramatically reduce the offline
cost, making the approach practical for very large
corpora while likely preserving most of the perfor-
mance benefits. Validating this hypothesis remains
a key avenue for future research.

E Prompts

E.1 Community Summary Synthesis Prompt

This prompt was used with a teacher model (GPT-
40) to generate a summary R from evidence F
and a target question () for the fine-tuning dataset
creation.

Given this evidence and knowing that
we want to generate a question
about {target_question}, create a
community-style summary that:

1. Begins with "This community centers
around...”

Describes the main
connects the entities.

2. topic that

13

3. Lists key members or elements.

4. IMPORTANT: Do not reference the
specific question.

5. Make the summary concise (max 5
sentences).

Evidence:

{evidence}

E.2 KRAQ Question Generator Prompt

This prompt was used for fine-tuning the KRAQ
generator model and for inference to generate ques-
tions from community summaries.

Given this summary of a document
collection, generate a natural question
that a person might ask when looking for
this information. The question should
be:

e Simple and straightforward

* Written in conversational language
e Focused on the main topic or event
* Something a real person would ask
Now generate for this
summary:

{summary}

a question

E.3 Random Baseline Question Generator
Prompt

This prompt was used to generate questions for the
random baseline, using concatenated random text
chunks as context.

Given these random fragments, generate a
natural, concise question that someone
might ask about the themes or topics
present in these passages. The question
should:

* Be short and to the point
* Focus on a common theme or connection
* Be something a real person would ask

Fragments:

{combined_content} Generate only ONE

concise question:

E.4 Traditional RAG Answer Generation
Prompt

This base prompt was used for the final answer
generation step in Traditional RAG and Combined
Retrieve RAG.

Below is an instruction that describes
a task. Write a response using the
evidence provided for it. Evidence:

{context} Instruction:

{query}

E.5 Speculative RAG Drafter Prompt

This prompt instructed the Mpyafer model to pro-
duce a response and rationale in a structured JSON
format.

Response to the instruction. Also
provide a concise rationale that
justifies the response. Instruction:

{instruction} Evidence:
{evidence} Your response must be a valid

JSON object with the following format:
{{’response’: ’your response here’,
’rationale’: ’your rationale here’}}

E.6 LLM-as-a-Judge Prompt

This prompt was used to evaluate the semantic cor-
rectness of generated answers from our RAG appli-
cations.

You are an expert evaluator. Your task
is to determine if the generated answer
correctly responds to the question
according to the reference answer.

Question: {question}
Generated Answer: {generated_answer}
Reference Answer: {reference_answer}

Respond with ONLY a single digit:
1 - CORRECT
@ - INCORRECT

Your verdict (just the digit 1 or 0):

14

	Introduction
	KRAQ
	From Corpus to Questions: The KRAQ Pipeline

	KRAQ for RAG Optimization
	Combined Retrieve RAG: Diversifying Evidence
	Efficient Speculative RAG: Reducing Latency

	Experimental Setup
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details

	Results
	Question Quality
	Combined Retrieve RAG Results
	Efficient Speculative RAG Results

	Related Work
	Conclusion and Future Work
	KRAQ Generator Fine-tuning Details
	Fine-tuning Dataset and Training Performance
	Hyperparameter Configuration

	GraphRAG Configuration: Prompt Tuning
	Speculative RAG Implementation Notes
	Score Calculation
	Drafter Model Fine-tuning

	Latency Estimation for Efficient Speculative RAG
	Modeling Parallelism Latency
	Simulating Pre-Computed Embedding Retrieval
	Hypothesis on Optimized Pre-computation

	Prompts
	Community Summary Synthesis Prompt
	KRAQ Question Generator Prompt
	Random Baseline Question Generator Prompt
	Traditional RAG Answer Generation Prompt
	Speculative RAG Drafter Prompt
	LLM-as-a-Judge Prompt

