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Abstract— Collaborative Simultaneous Localization and
Mapping (CSLAM) is a critical capability for enabling multiple
robots to operate in complex environments. Most CSLAM
techniques rely on the transmission of low-level features for
visual and LiDAR-based approaches, which are used for pose
graph optimization. However, these low-level features can lead
to incorrect loop closures, negatively impacting map generation.
Recent approaches have proposed the use of high-level semantic
information in the form of Hierarchical Semantic Graphs to
improve the loop closure procedures and overall precision
of SLAM algorithms. In this work, we present Multi S-
Graphs, an S-graphs [1] based distributed CSLAM algorithm
that utilizes high-level semantic information for cooperative
map generation while minimizing the amount of information
exchanged between robots. Experimental results demonstrate
the promising performance of the proposed algorithm in map
generation tasks.

I. INTRODUCTION

Collaborative Simultaneous Localization and Mapping
(CSLAM) is a fundamental capability that enables multiple
robots to operate in complex environments with multiple
robots coordinately.

Most CSLAM techniques, such as [2] [3] [4] are heav-
ily based on the transmission of low-level features, such
as keyframe descriptors, for both visual and LiDAR-based
approaches. These low-level features constitute the core of
the majority of the Pose Graph Optimization (PGO) SLAM
based methods and relies on these low-level features for the
creation and optimization of each Pose Graph. Using this
low-level feature to align and extend the pose graphs created
for each robot usually leads to incorrect loop closures; some
works like [2] or [5] are focused on robustifying their loop
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Politécnica de Madrid, Spain. {miguel.fernandez.cortizas,
pascual.campoy}@upm.es

*This work was partially funded by the Fonds National de la Recherche
of Luxembourg (FNR), under the projects C19/IS/13713801/5G-Sky, by
the European Union’s Horizon 2020 Project No. 101017258 SESAME, by
European Union’s Horizon Europe Project No. 101070254 CORESENSE,
as well as project COPILOT ref. 2020/EMT6368, funded by the Madrid
Government under the R&D Synergic Projects Program and project IN-
SERTION ref. ID2021-127648OBC32, funded by the Spanish Ministry of
Science and Innovation.

For the purpose of Open Access, the author has applied a CC BY public
copyright license to any Author Accepted Manuscript version arising from
this submission.

closure algorithms to avoid incorrect loop closures that could
ruin the overall map generation. The main problem about
these methods emerges from the fact that the system has no
awareness about what each low-level feature means, or if it
has sense to create a loop closure between nodes or not.

Lately, some SLAMs approaches like Hydra [6] or S-
Graphs+ [1] tend to deal with this issue of lack of awareness
in the field of SLAM, betting for the use of Hierarchical
Semantic Graphs during the generation of the Pose Graphs,
to include high-level semantic information about the archi-
tectural components (Walls, Rooms, floors) into their “mental
model”, which can later be used to improve the loop closure
procedures and to improve the overall precision of the SLAM
algorithms.

However, as far as we know, these high-level semantic
representations have not been used to improve the per-
formance of multi-robot SLAM algorithms that can take
advantage of this semantic knowledge to reduce the amount
of information that has to be transmitted between agents and
to robustify loop closures, pursuing the best overall mapping
and localization quality.

In this work, we present Multi S-Graphs, a LiDAR based
distributed CSLAM algorithm that relies on high-level se-
mantic information to generate a complete map of a building
cooperatively exchanging a minimum amount of information
between them.

The main contributions presented in this work are as
follows:

1) A novel distributed multi-robot SLAM architecture that
relies on high-level semantic features for communicat-
ing information between agents.

2) A hybrid descriptor that combines the fine-grained
information of a pointcloud with semantic knowledge.

3) A real-time CSLAM algorithm robust to multiple robot
initialization, considering the multiple kidnapped robot
problem.

II. RELATED WORK

Although, the algorithm presented is a LiDAR based
multi-robot SLAM pipeline, we will include Visual Based
algorithms to further understand how the multi-robot ap-
proaches are accomplished within the field.

Currently, the vast majority of the multi-robot SLAM
methods relies on Pose Graph Optimization (PGO) ap-
proaches in which the agents exchange information of the
same type that each graph uses for generating the internal
loop closures.



Fig. 1: Multi S-graph architecture schema viewed from Agenti perspective.

In LiDAR-based approaches, Zhong et al. [3] and Huang
et al. [4] proposed a framework based on Scan Context
Descriptors [7]. In [3] also presents a P2P communication
protocol for exchanging the descriptors of each keyframe and
uses Binarized Scan Contexts. In both works, each Robot
runs its own PGO pipeline.

Within visual-based approaches, Deustch et al. [8] pro-
posed a framework that relies on a BoW of the keyframes
obtained with an RGB-d camera. Lajoie et al. [2] [9]
proposed a distributed CSLAM system based on NetVLAD
descriptors. KIMERA multi [10], also uses BoW and needs a
Robust Distributed Initialization to initialize all robot poses
in a shared (global) coordinate frame.

Finally, Bernreiter et al. [11] presented a centralized
CSLAM method based on spectral graph waves, which
consists of analyzing the SE(3) Pose graph of each robot
and trying to find coincidences and discrepancies in the graph
structure of each robot compared to the global graph. This
algorithm does not rely on a specific sensor, but just on the
pose graph generated.

III. COLABORATIVE S-GRAPHS

A. Nomenclature

In this work, we present a distributed approach for multi-
robot semantic SLAM. In our approach, we consider each
robot (agent) that interacts in a 1 to N fashion. This means
that each robot will interact with as many robots as possible
independently, each robot will be denoted as Agent Ai. An
schema of the architecture is shown in Fig. 1.

Each agent will run its own S-graphs pipeline. S-Graphs
are four-layered optimizable hierarchical graphs built online
using 3D LiDAR measurements. The full details of the S-
Graphs we use in this work can be found in [1]. In brief,
their four layers can be summarized as follows:

• Keyframes Layer. It consists of robot poses factored as
SE(3) nodes in the agent map frame Ai with pairwise
odometry measurements constraining them.

• Walls Layer. It consists of the planar wall surfaces
extracted from the 3D LiDAR measurements and fac-
tored using minimal plane parameterization. The planes

observed by their respective keyframes are factored
using pose-plane constraints.

• Rooms Layer: It consists of two-wall rooms or four-wall
rooms, each constraining either two or four detected
wall surfaces, respectively.

• Floors Layer: It consists of a floor node 2 positioned in
the center of the current floor.

From S-graphs, we will only consider the following ver-
tices: Rooms Ri,k, Planes Pi,k and Keyframes Ki,k, where
the i index denoted the agent that contains this vertex in its
own graph, and k the index of the vertex.

Each vertex can be translated into different agents coor-
dinated frames. We denote AjVi,k as the k-vertex V of the
robot i expressed in the agent j reference frame.

B. Room descriptors

In order to avoid errors aligning the robot positions in very
symmetric situations, like a corridor with multiple rooms,
one on side of the order, we cannot only rely on the structural
information stored in the top layers of the S-graphs, lower
level information may be needed to break the symmetry and
decide if two rooms are the same or not.

Compared to other LiDAR-based SLAM methods, S-
graphs does not take continuous snapshots of the pointcloud
measures, these measures are very sparse, so using classical
pointcloud feature-based pointcloud matching is not the most
convenient way. In order to take advantage of the semantic
information that each room contains, we decided to generate
a hybrid descriptor that combines the fine-grained informa-
tion of a pointcloud with high-level semantic knowledge, a
Room Descriptor.

For generating these descriptors, we use an Scan Con-
text descriptor [7] approach, an egocentric, yaw-invariant
descriptor. This descriptor has achieved satisfactory results
in multiple LiDAR odometry, and SLAM works because
of its simplicity and fast generation. However, one of the
drawbacks of these descriptors is the sensitiveness of these
descriptions to translation.

Here, we take advantage of the semantic information in
the room, by generating a scan context from the centre of



each room, avoiding translation errors. To generate the Room
Descriptor, we need a Room Keyframe, which is built by
combining all point clouds obtained by the robot from within
a room. Each Room Keyframe Rki can be expressed as:

Rki = U{RiKj} ; ∀j | Kj ∈ Ri (1)

where RiKj represents the pointcloud associated with the
keyframe Kj in the Ri frame (a frame located in the center
of the room i).

To obtain the Room Descriptor Rdi from a Room
Keyframe Rki a downsample of the Rki with a voxel size
of 0.1 m is done to homogenize the number of points that
each keypoint has independently of the number of keyframes
associated with each room. Finally, the scan context descrip-
tor of each Room Keyframe Rki is computed to create the
Room Descriptor Rdi:

Rdi = SC(ϕ(Rki)) (2)

where ϕ(Rki) represents the downsample of the keyframe,
and SC(X⃗) : Rn×3 → Rns×nr is the Scan Context obten-
tion from a pointcloud. An example of this room descriptor
is shown in Fig. 2.

Fig. 2: Room Descriptor (right) obtained from a Room
Keyframe (left).

The use of this descriptor will make the difference in the
alignment and further optimization steps.

C. Robots alignment

As we start from the problem of multiple kidnapped
robots, no initial estimation of the relative positions of the
robots is provided. If we try to align the complete pointclouds
obtained from the multiple robots, we will meet the global
registration problem, which, combined with the noise of
each pointcloud and no prior information of a possible
transformation, leads to unsuitable alignments.

In order to generate good candidates for alignment, we
leverage in the Room Descriptors to generate a global
alignment of each robot coordinated system, which is crucial
for the further graph sharing and collective optimization.

The module in charge of finding this relative transforma-
tion between the robots is Graph Broker.

In order to compute this transformation, we perform a
two-step process:

1) Descriptor matching: The broker receives and stores
the room descriptors of the rest of the agents, trying
to find a suitable match.

2) Fine alignment: Whenever a match is found between
robot and other agents’ keyframes, it tries to obtain an
improved transform from the room keyframe using a
VGICP [12] registration algorithm. The validity of the
relative transform is determined by alignment distance
and matching threshold dt. If suitable, the rest of the
graph information can be transformed into the local
robot frame for optimization.

D. Multi-robot mapping

Whenever a transformation between robots is found, then
the top layers of the S-graphs can be shared and incorporated
into the other robot graph.

In this approach, there are 2 types of graph vertices that
are exchanged:

• Room vertices: Each room vertex includes the SE(3)
transformation of the Room center in the agent frame
AiRi,k .

• Plane vertices: Each plane vertex includes the n⃗ normal
to the plane and the distance d from this plane to the
agent frame Ai

These vertices are joined with edges that relate the planes
that conform each room.

The optimization pipeline consists of 3 steps that repeat:
1) Vertex transform: After the transformation between

agents AiTAj
is found, the vertices that came from the j

agent can be transformed and added to the graph of the agent
i.

The rooms transforms are:

AiRj,k =Ai TAj

AjRj,k ;Tj,k ∈ SE(3) (3)

Considering each plane as follows:

AiPi,k =

[
Aink
Aidk

]
(4)

where Aink is the normal vector to the plane in the i-agent
map frame, and dk is the distance between this plane and
the i-agent origin of coordinates.

The plane transforms are:

AiPi,k =

[
Aink
Aidk

]
=

[
AiRAj

0
−AjtAj 1

] [
Ajnk
Ajdk

]
(5)

2) Data association: Whenever the external vertices are
transformed into the corresponding agent frame, a data
association process is performed. In this step, similarities
between vertices are searched for, no matter if they are
internal or external vertices. If two vertices are similar, then
an association is made and a new factor is created between
them. Further details on data association criteria can be found
in [1].

3) Graph Optimization: After this data association, the
rest of the optimization process is similar to the one used in
S-graphs [1].



Fig. 3: Collaborative maps created for two robots, displaying green Rooms and Planes provided by the other agent. Dotted
circles indicate the initial position of each robot, while room numbers indicate their navigation order.

IV. EXPERIMENTAL RESULTS

In our experiments, we generate a map of a building
floor collaboratively with two robots. Each robot starts at
a different place and is unknown to the rest.

During the experiment, we divided a floor into two parts
to be explored; the first robot covers the right-hand rooms of
the floor and the second one covers the left-hand rooms. A
central room is covered for both robots to have a common
room, which could lead to the alignment of the robot
frames. The data of the experiment were collected using a
Boston Dynamics Spot carrying a Velodyne VLP-16 in a real
construction site.

As is shown in Fig. 3 both robots are capable of integrating
the information collected by the other robot into its own
graph, and both robots optimize its own graph by taking into
account the information provided by the counterpart. Table I
compares the mapping times between the S-graphs with one
robot and our proposal with two robots, to map one area.

Experiment S-graphs+ Multi S-graphs Overlapping time.

Construction 1 203 s 123 s 22s (18%)

TABLE I: Elapsed time in generating a complete map of
an area, including overlapping time for matching when both
robots explore the same rooms.

V. CONCLUSSIONS AND FUTURE WORK

In this work a distributed multi-robot SLAM algorithm is
presented, leveraging in the semantic features extracted by
the S-graphs SLAM algorithm, in order to filter and reduce
the amount of data that has to be transmitted between robots.
This algorithm considers the kidnapped robot problem for all
their robots, and is able to align the maps of the different
robots taking advantage of the Room Keyframe descriptor,
which combines semantic information with low-level fea-
tures. We have tested this algorithm for a map generation
task, achieving promising results.

In this work, each robot optimizes its own graph with the
information obtained by the others, but the optimization that

each one mades is not feedbacked to the rest of the agents.
In order to achieve the best results, this optimization should
be transmitted to the rest in order to achieve a global graph
optimization. Moreover, a thorough experimental evaluation
in different simulated and real environments has to be done
for measuring the performance of the proposed algorithm.
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