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ABSTRACT

Object-centric architectures usually apply some differentiable module on the whole
feature map to decompose it into sets of entity representations called slots. Some of
these methods structurally resemble clustering algorithms, where the center of the
cluster in latent space serves as a slot representation. Slot Attention is an example
of such a method as a learnable analog of the soft K-Means algorithm. In our work,
we use the learnable clustering method based on Gaussian Mixture Model, unlike
other approaches we represent slots not only as centers of clusters but we also use
information about the distance between clusters and assigned vectors, which leads
to more expressive slot representations. Our experiments demonstrate that using
this approach instead of Slot Attention improves performance in different object-
centric scenarios, achieving the state-of-the-art performance in the set property
prediction task.

1 INTRODUCTION

In recent years, interest in object-centric representations has greatly increased (Greff et al. (2019);
Burgess et al. (2019); Li et al. (2020); Engelcke et al. (2020; 2021); Locatello et al. (2020)). Such
representations have the potential to improve the generalization ability of machine learning methods
in many domains, such as reinforcement learning (Keramati et al. (2018); Watters et al. (2019a);
Kulkarni et al. (2019); Berner et al. (2019); Sun et al. (2019)), scene representation and generation
(El-Nouby et al. (2019); Matsumori et al. (2021); Kulkarni et al. (2019)), reasoning (Yang et al.
(2020)), object-centric visual tasks (Groth et al. (2018a); Yi et al. (2020); Singh et al. (2021b)), and
planning (Migimatsu & Bohg (2020)).

Automatic segmentation of objects on the scene and the formation of a structured latent space can be
carried out in various ways (Greff et al. (2020)): augmentation of features with grouping information,
the use of a tensor product representation, engaging ideas of attractor dynamics, etc. However, the
most effective method for learning object-centric representations is Slot Attention Locatello et al.
(2020). Slot Attention maps the input feature vector received from the convolutional encoder to a
fixed number of output feature vectors, which are called Slots. As a result of training, each object is
assigned a corresponding slot. If the number of slots is greater than the number of objects, then some
of the slots remain empty (do not contain objects). This approach showed significant results in such
object-centric tasks as set property prediction and object discovery.

The iterative slot-based approach can be considered as a variant of the soft K-Means algorithm
(Bauckhage (2015b)), where the key/value/query projections are replaced with the identity function
and updating via the recurrent neural network is excluded (Locatello et al. (2020)). In our work,
we propose another version of the generalization, when the K-Means algorithm is considered as a
Gaussian Mixture Model (Bauckhage (2015a)). We represent slots not only as centers of clusters,
but we also use information about the distance between clusters and assigned vectors, which leads
to more expressive slot representations. Representing slots in this way improves the quality of the
model in object-centric problems, achieving the state-of-the-art results in the set property prediction
task, even compared to highly specialized models (Zhang et al. (2019b)), and also improves the
generalization ability of the model for image reconstruction task.

The paper is structured as follows. In Section 2, we provide background information about Slot
Attention module and Mixture Models. We also describe the process of their training. In Section 3,
we introduce a Slot Mixture Module — the modification of a Slot Attention Module which provides
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more expressive slot representations. In Section 4.1, by extensive experiments we show that the
proposed Slot Mixture Module riches the state-of-the-art performance in the set property prediction
task on the CLEVR dataset Johnson et al. (2017) and outperforms even highly specialized models
Zhang et al. (2019b). In Section 4.2, we provide experimental results for the image reconstruction
task on four datasets: three with synthetic images (CLEVR-Mirror Singh et al. (2021a), ShapeStacks
Groth et al. (2018b), ClevrTex Karazija et al. (2021)) and one with real life images COCO-2017
(Lin et al. (2014)). The proposed Slot Mixture Module improves reconstruction performance. In
Section 4.3, we demonstrate that Slot Mixture Module outperforms original Slot Attention on the
Object Discovery task on the CLEVR10 dataset. In Section 4.4, we compare K-Means and Gaussian
Mixture Model clustering approaches on the Set Property Prediction task and show that Gaussian
Mixture Model clustering is a better choice for object-centric learning. We give a short overview of
related works in Section 5. In Section 6, we discuss the obtained results, advantages, and limitations
of our work.

The main contributions of our paper are as follows:

1. We proposed a generalization of slot-based approach for object-centric representations as a
Gaussian Mixture Model (Section 3).

2. Such a representation allows state-of-the-art performance in the set property prediction task,
even in comparison with specialized models (Section 4.1), which are not aimed at building
disentangled representations.

3. The slot representations as a Gaussian Mixture improve the generalization ability of the
model in other object-oriented tasks (Section 4.2).

4. The Slot Mixture Module shows a much faster convergence on the Object Discovery task
compare to the Original Slot Attention (Section 4.3).

2 BACKGROUND

2.1 SLOT ATTENTION

Slot Attention (SA) module (Locatello et al. (2020)) is an iterative attention mechanism that is
designed to map a distributed feature map to a set of K slots. Randomly initialized slots from a
Gaussian distribution with trainable parameters are used to get q projections of slots. Feature map
vectors with corresponding projections serve as k and v vectors. Dot-product attention between q and
k vectors with the softmax across q dimension implies competition between slots for explaining parts
of the input. Attention coefficients are used to assign v vectors to slots via a weighted mean.

M =
1√
D
k(inputs)q(slots)T ∈ RN×K , attni,j =

eMi,j∑K
j=1 e

Mi,j

,

Wi,j =
attni,j∑N
i=1 attni,j

, updates = WT v(inputs) ∈ RK×D

Gated Recurrent Unit (GRU) (Cho et al. (2014)) is used for addition slots update. It takes slot
representations before update iteration as a hidden state and updated slots as inputs. The important
property of Slot Attention is that it has permutation invariance with respect to input vectors of the
feature map and permutation equivariance with respect to slots. These properties make the Slot
Attention module suitable for operating with sets and object-centric representations.

Technically, Slot Attention is a learnable analogue of K-Means clustering algorithm with an additional
trainable GRU update step and dot product (with trainable q, k, v) projections instead of Euclidean
distance as the measure of similarity between the input vectors and cluster centroids. At the same
time, K-Means clustering can be considered as a simplified version of the Gaussian Mixture Model.
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2.2 MIXTURE MODELS

Mixture Models (MM) is a class of parametric probabilistic models, in which it is assumed that each
xi from some observations X = {x1, ...,xN} ∈ RN×D is sampled from the mixture distribution
with K mixture components and prior mixture weights π ∈ RK :

xi ∼ p(xi|θ) =
K∑

k=1

πkp(xi|θk), P (X|θ) =
N∏
i=1

p(xi|θ),
∑
k

πk = 1.

These models can be seen as the models with latent variables zi,k ∈ {z1, ..., zK} that indicate which
component xi came from. The problem is to find such K groups of component parameters θk and
component assignments of each sample xi that will maximize the likelihood of the model P (X|θ).
The Expectation Maximization (EM) algorithm is an iterative algorithm that addresses this problem
and includes two general steps. The Expectation (E) step: evaluate the expected value of the
complete likelihood P (X,Z|θ∗) with respect to the conditional distribution of P (Z|X,θ):

Q(θ∗,π∗|θ,π) = EP (Z|X,θ)[logP (X,Z|θ∗)], P (X,Z|θ∗) =

N∏
i=1

K∏
k=1

[πkp(xi|θ∗
k)]

I(zi=zk),

where I(∗) is an indicator function.

The Maximization (M) step: find θ∗,π∗ that maximize Q(θ∗,π∗|θ,π):

(θ,π) = argmax(θ∗,π∗)Q(θ∗,π∗|θ,π).

One of the most widely used models of this kind is Gaussian Mixture Model (GMM), where each
mixture component is modeled as a Gaussian distribution parameterized with its mean values and
covariance matrix, which is diagonal in the simplest case: P (xi|θk) = N (xi|µk,Σk), Σk =
diag(σ2

k). In this case, EM algorithm is reduced to the following calculations.

E step:

p(zk|xi) =
p(zk)p(xi|θk)∑K
k=1 p(zk)p(xi|θk)

=
πkN (xi|µk,Σk)∑K
k=1 πkN (xi|µk,Σk)

= γk,i.

M step:

π∗
k =

∑N
i=1 γk,i
N

, µ∗
k =

∑N
i=1 γk,ixi∑N
i=1 γk,i

, Σ∗
k =

∑N
i=1 γk,i(xi − µk)(xi − µk)

T∑N
i=1 γk,i

.

The key difference between the Gaussian Mixture Model and K-Means clustering is that GMM
considers not only the centers of clusters, but also the distance between clusters and assigned vectors
with the prior probabilities of each cluster.

3 SLOT MIXTURE MODULE

For the purposes of the object-centric learning we propose a modified Gaussian Mixture Model
approach and call it the Slot Mixture Module (SMM). This module uses GMM E and M steps
(Section 2.2) to map feature map vectors from the convolutional neural network (CNN) encoder to the
set of slot representations, where slots are concatenation of mean values and diagonal of covariance
matrix. This set of slots is further used in the downstream task. We also use the same additional
neural network update step for the mean values before updating the covariance values:

µk = RNN(input=µ∗
k, hidden=µk), µk = MLP(µk) + µk.
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These two steps serve the needs of the downstream task by linking the external and internal models.
The internal model (E and M steps in SMM) tries to update its parameters µ,Σ so that the input vectors
x are assigned to slots with the maximum likelihood, while external model takes these parameters
as input. The full pseudocode is presented in the Algorithm 1. A function fθ(x,µ,Σdiag) :
RN×D × RK×D → RN×K stands for a log-Gaussian density function with additional k and q
projections for input and slot vectors.

Slot Mixture Module can be seen as an extension of the Slot Attention Module with the following
key differences: (1) SMM updates not only the mean values, but also the covariance values and prior
probabilities, (2) the Gaussian density function is used instead of the dot-product attention, and (3)
slots are considered not only as mean values of the cluster, but as the concatenation of mean and
covariance values.

Algorithm 1: The Slot Mixture Module pseudocode. π is initialized as uniform categorical
distribution, µ and Σdiag are initialized from Gaussian distributions with trainable parameters.

Input: x ∈ RN×D — flattened CNN feature map with added positional embeddings;
µ,Σdiag ∈ RK×D,π ∈ RK — SMM initialization parameters.

Output: slots ∈ RN×2D.
1 x = MLP(LayerNorm(x))
2 for t = 0...T do
3 logits = fθ(x,µ,Σdiag)

4 gammas = SoftMax(logits + logπ, dim=1)
5 π = gammas.mean(dim=0)
6 µ∗ = WeightedMean(weights=gammas, values=x)
7 µ = GRU(input=µ∗, hidden=µ)
8 µ += MLP(LayerNorm(µ))
9 Σdiag = WeightedMean(weights=gammas, values=(x− µ)2))

10 slots = concat([µ,Σdiag])
11 return slots

4 EXPERIMENTS

Since our model can be seen as an extension of the Slot Attention, we use it as our main competitor.
In each experiment, we trained two versions of the same model: the one with the Slot Attention
module and another one with our SMM, keeping the same training conditions. We also make use of
the technique from (Chang et al. (2022)) detaching slots from the gradient computational graph at the
last iteration of the algorithm in every experiment.

With equal dimensionality of input vectors, SMM implies twice the dimensionality of the slots in
comparison with SA (SA represents slots with µ, while SMM uses concatenation of µ,Σdiag). To
ensure a fair comparison of approaches, we added matrix multiplication after the SMM module,
reducing the dimensionality by a factor of two.

4.1 SET PROPERTY PREDICTION

Neural networks for sets are involved in various applications across many data modalities (Carion
et al. (2020); Achlioptas et al. (2017); Simonovsky & Komodakis (2018); Fujita et al. (2019)). Set
Property Prediction is a supervised task that requires the model to predict an unordered set of vectors
representing the properties of objects from the input image. Sets of predicted and target vectors are
matched using a Hungarian algorithm (Kuhn (1955)) and the learning signal is provided by Huber
Loss (Zhang et al. (2019a)) between matched vectors. Slot Mixture Module is suitable for operating
with sets as it preserves permutation equivariance regarding mixture components (slots) and initializes
them randomly. The scheme of the model is shown in the Fig. 1.
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Figure 1: Architecture of the set property prediction model. Input image is encoded into a set of
vectors with added positional embeddings via CNN encoder. These vectors are assigned to slots
with our Slot Mixture Module. Then slots representations are passed to the MLP to predict object
properties. Ground truth and predicted sets are matched using the Hungarian algorithm.

Setup We use the CLEVR dataset with rescaled images to a resolution of 128× 128 as the data
source. All modules except SA/SMM are the same as in the (Locatello et al. (2020)). Each model
is trained with Adam optimizer (Kingma & Ba (2015)) for 1.5× 105 iterations with OneCycleLR
(Smith & Topin (2019)) learning rate scheduler at a maximum learning rate of 4× 10−4, we use a
batch size of 512. SA/SMM number of iterations is set to 5 during training and to 7 during evaluation.
The number of slots is equal to 10 since CLEVR images contain 10 or fewer objects.

Results Quantitative results of the experiments are presented in Table 1. We compute Average
Precision (AP) with a certain distance threshold (∞ means we do not use distance threshold). A
predicted vector of properties and coordinates is correct if there is an object with the same properties
within the threshold distance. The lower the distance threshold, the more difficult the task.Our
experiments demonstrate it is possible to improve significantly the original Slot Attention performance
via detaching slots before the last iteration of slots refinement and rescaling coordinates to a wider
range of values. With these modifications, the original Slot Attention performance is still worse than
the current state-of-the-art model iDSPN, while our SMM confidently outperforms iDSPN.

Table 1: Set prediction performance on the CLEVR dataset (AP in %, mean ± std for 4 seeds in our
experiments). Slot Attention (Locatello et al. (2020)) and iDSPN (Zhang et al. (2019b)) results are
from the original papers. SA* is the Slot Attention model that was trained with the same conditions
as our SMM: detached slots at the last iteration, rescaled coordinates to the range of [-1, 1].

Model AP∞ AP1 AP0.5 AP0.25 AP0.125 AP0.0625

SA 94.3 ± 1.1 86.7 ± 1.4 56.0 ± 3.6 10.8 ± 1.7 0.9 ± 0.2 -
SA∗ 97.1 ± 0.7 94.5 ± 0.7 88.3 ± 3.2 62.5 ± 5.4 23.6 ± 1.4 4.6 ± 0.3
iDSPN 98.8 ± 0.5 98.5 ± 0.6 98.2 ± 0.6 95.8 ± 0.7 76.9 ± 2.5 32.3 ± 3.9
SMM (ours) 99.4 ± 0.2 99.3 ± 0.2 98.8 ± 0.4 98.4 ± 0.7 92.1 ± 1.2 47.3 ± 2.5

4.2 IMAGE RECONSTRUCTION USING TRANSFORMER

For comparison in an unsupervised image-to-image task, we use the SLATE model (Singh et al.
(2021a)) replacing the Slot Attention module with our SMM. Unlike the pixel-mixture decoders,
SLATE uses an Image GPT (Chen et al. (2020)) decoder conditioned on slot representations to
reconstruct in the autoregressive manner the discrete visual tokens from a discrete VAE (dVAE) (Im
et al. (2017)) treating pre-computed slot representations from a dVAE output as query vectors and
latent code-vectors of the image as key/value vectors. SLATE demonstrates an impressive ability to
capture complex interactions between the slots and pixels of the synthetic images, but exhibits poor
performance for real-world data. dVAE encoder, decoder, and latent discrete tokens are receiving
training signals from MSE between the input image and the reconstructed one with dVAE only.
SA/SMM modules and Image GPT are trained with a cross-entropy using compressed image into
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dVAE tokens as a target distribution, these gradients are blocked from the rest of the model (i.e.
dVAE), but both parts of the system are trained simultaneously.

Setup We consider the following datasets: CLEVR-Mirror (Singh et al. (2021a)), ClevrTex (Karaz-
ija et al. (2021)), ShapeStacks (Groth et al. (2018b)), and COCO-2017 (Lin et al. (2014)). CLEVR-
Mirror is an extension of the standard CLEVR dataset, which requires capturing global relations
between local components due to the presence of a mirror, ShapeStacks tests the ability of the model
to describe complex local interactions (multiple different objects stacked on each other), ClevrTex
examines the capabilities of the model in the textural-rich scenes. For ShapeStacks, ClevrTex and
COCO we used images rescaled to the resolution of 96× 96, CLEVR-Mirror images are rescaled to
64× 64. Training conditions with hyperparameters corresponding to a certain dataset are taken from
(Singh et al. (2021a)), except that we use a batch size equal to 64 and 2.5× 105 training iterations for
all experiments.

Results Table 2 shows the metrics of the image reconstruction performance for the test-parts of
different datasets. We use mean squared error (MSE) and Frechet Inception Distance (FID) (Heusel
et al. (2017)) computed with the PyTorch-Ignite library (Fomin et al. (2020)) as measure of quality
of the generated images. We also evaluate cross-entropy between tokens from discrete VAE (as
one-hot distributions) and predicted distributions by Image GPT that are conditioned by certain slot
representations, as MSE and FID can be limited by the discrete VAE.

Table 2: Reconstruction performance using Image GPT decoder with different conditions.

FID MSE Cross-Entropy
Data SA SMM SA SMM SA SMM

CLEVR-Mirror 35.4 34.8 4.5 4.3 0.82 0.20

ShapeStacks 56.6 50.4 102.2 67.3 88.3 66

ClevrTex 116 113 358 344 566 517

COCO 129 122 1354 938 540 479

Fig. 2 indicates the advantage of SMM in terms of cross-entropy during training across all the datasets
we use. But as can be seen from the Table 2, this advantage does not always translate into much better
image quality metrics of generated images due to dVAE limitations. The largest increase in quality
was obtained for the ShapeStacks dataset. Examples of the images from ShapeStacks, ClevrTex and
CLEVR-Mirror datasets and their reconstructions are presented in the Fig. 3. The model trained with
SMM is much more likely to reconstruct the correct order of objects from the original image, as can
be seen in examples from the random batch of 64 images from ShapeStacks dataset (see Fig. 4).

Even though we were able to improve the quality of real-world object-centric image generation, the
final quality in general is quite poor and attention maps barely reflect human object-centered vision
(see Fig. 5). Scaling and extending such visual models to handle a wide range of complex real-world
images is an area of the future research.

4.3 OBJECT DISCOVERY

Another unsupervised object-centric image-to-image task is the Object Discovery. In this task, each
slot representation is decoded into the 4-channel image using a Spatial Broadcast decoder (Watters
et al. (2019b)). The resulting reconstruction is estimated as a mixture of decoded slots, where the
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Figure 2: Validation cross-entropy during training for 4 different datasets. Our experiments show that
using SMM module instead of SA improves validation performance of the autoregressive transformer
by about 10 percent during training. The result is maintained for all the datasets that we use.

Figure 3: Examples of image generation with Image GPT conditioned to different slot representations.
Images in the blue borders are from the model with the Slot Attention module, and images in green
borders are generated using slots from the Slot Mixture Module. Red color stands for input images.

first three channels are responsible for the reconstructed RGB image and the fourth channel is for the
weights of the mixture component.

Setup To compare with the Slot Attention module, we consider the same training setup from the
original work (Locatello et al. (2020)) for the CLEVR10 dataset but with the decreased number of
training steps (300k instead of 500k).

Results Table 3 shows similarity between ground truth segmentation masks of objects (excluded
background) and mixture coefficients estimated via the Adjusted Rand Index (ARI) score. Fig.6
demonstrates a much faster convergence of the model that uses SMM instead of the Slot Attention,
which results in higher ARI score.

4.4 COMPARING VANILLA CLUSTERING

Slot Attention and Slot Mixture modules can be reduced to K-Means and Gaussian Mixture Model
clustering approaches by removing GRU/MLP updates, trainable q, k, v projections and LayerNorm
layers (Ba et al. (2016)). Table 4 shows results of training set prediction model for CLEVR dataset
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Figure 4: Examples of all the qualitatively incorrectly generated images from the random batch of 64
samples. In 6 cases reconstruction using Slot Attention gave a wrong order of objects (blue circle)
or lost 1 object (red circle), in the remaining 2 samples both modules gave incorrect reconstruction
(green circle).

Figure 5: Examples of COCO image generations with Image GPT conditioned to slot representations
from SMM. The first and the second columns show the input images and the end-to-end dVAE
reconstruction correspondingly. The third column shows the generated image and all other columns
demonstrate the corresponding attention maps from slots to the input image.

using these vanilla clustering methods. Our experiments demonstrate that GMM clustering is a better
choice for object-centric learning, even without trainable layers.

Table 3: Adjusted Rand Index (ARI) score be-
tween ground truth masks of objects and mixture
coefficients for CLEVR10 after 300k iterations of
training.

Model ARI

SA 85.9

SMM 91.3

5 RELATED WORKS

SA
SMM

Figure 6: Mean Squared Error (MSE) between
input and reconstructed images for Object Discov-
ery task during training.

Set prediction Neural network models for sets are applied to different machine learning tasks, such
as point cloud generation (Achlioptas et al. (2017)), object detection (Carion et al. (2020)), speaker
diarization (Fujita et al. (2019)), and molecule generation (Simonovsky & Komodakis (2018)). Albeit
the set structure is suitable in many cases, traditional deep learning models are not inherently suitable
for representing sets. There are some approaches that are built to reflect the unordered nature of
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Table 4: Average Precision with different distance thresholds for set property prediction task on the
CLEVR dataset after 100k iterations of training.

Model AP∞ AP1 AP0.5 AP0.25 AP0.125

K-Means 81.7 49.1 7.2 1.4 0.2
GMM 88.6 53.3 9.2 2.3 0.5

sets, e.g., the Deep Set Prediction Network (DSPN) (Zhang et al. (2019a)) reflects permutation
symmetry by running an inner gradient descent loop that changes a set to encode more similarly
to the input. An improved version of DSPN — iDSPN (Zhang et al. (2019b)) with approximate
implicit differentiation provides better optimizations with faster convergence and state-of-the-art
performance on the CLEVR dataset. Such models as Slot Attention and TSPN (Kosiorek et al. (2020))
use set-equivariant self-attention layers to represent the structure of sets.

Object-centric representation The discovery of objects in a scene in an unsupervised manner
is a crucial aspect of representation learning, especially for object-centric tasks. In recent years,
many approaches have been presented to solve this problem (Greff et al. (2019); Burgess et al.
(2019); Engelcke et al. (2020; 2021) and others). Such methods as IODINE (Greff et al. (2019)),
MONET (Burgess et al. (2019)), and GENESIS (Engelcke et al. (2020)) are built upon the Variational
Autoencoder (VAE) framework (Kingma & Welling (2014); Rezende et al. (2014)). MONET uses
the attention network that generates masks and conditions VAE on these masks. IODINE models an
image as a spatial Gaussian mixture model to jointly infer the object representation and segmentation.
Compared to MONET and IODINE, GENESIS explicitly models dependencies between scene
components that allow the sampling of novel scenes. MONET, IODINE, and GENESIS use multiple
steps to encode and decode an image, while Slot Attention (and its sequential extension for video
(Kipf et al. (2021))) uses one step but performs an iterative procedure inside this step. The useful
property of Slot Attention is that it produces the set of output vectors (slots) with permutation
symmetry. Slots group input information and could be used in unsupervised tasks (object discovery)
and supervised tasks (set prediction). GENESIS-v2 (Engelcke et al. (2021)), a development of the
GENESIS model, uses attention masks similarly to (Locatello et al. (2020)).

6 CONCLUSION AND DISCUSSION

In this paper, we propose a new slot-based approach for object-centric representations — the Slot
Mixture Module. Our module is a generalization of the K-Means clustering algorithm to the Gaussian
Mixture Model (Bauckhage (2015a)). Unlike other approaches, we represent slots not only as centers
of clusters, but we also use information about the distance between clusters and assigned vectors,
which leads to more expressive slot representations. We have demonstrated on the CLEVR dataset
(Johnson et al. (2017)) that using this module achieves the best results in the set property prediction
task, even compared to highly specialized models. Also, the use of Slot Mixture Module shows
considerable results in the image reconstruction task. On synthetic datasets, such as CLEVR-Mirror
(Singh et al. (2021a)), ShapeStacks (Groth et al. (2018b)), ClevrTex (Karazija et al. (2021)), we
achieved improved reconstruction performance. However, it is worth noting that modern object-
centric models still do not perform well enough on real-life images, such as in COCO-17 (Lin et al.
(2014)). The generalization of such methods to real data is an important scientific problem. We also
show that Slot Mixture Module outperforms original Slot Attention on the Object Discovery task on
the CLEVR10 dataset.

Also, in models using the slot representation, the number of slots is a hyperparameter, the same as the
number of clusters for the K-Means clustering algorithm. In object-centric methods, this parameter
is usually chosen equal to the maximum number of objects in the image plus one (assuming one
slot is reserved for the background). This value varies from image to image, making it difficult to
transfer from one dataset to another. It should be noted that, in general, the issue of transfer learning
for slot-based models has not been sufficiently studied. Another limitation of modern slot-based
models is that they work with a small number of slots (about 10), which means a small number of
objects in the image. Therefore, the issue of scalability of such models to a larger number of objects
is considered as a direction for further research.
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(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019b. URL https://proceedings.neurips.cc/paper/2019/file/
6e79ed05baec2754e25b4eac73a332d2-Paper.pdf.

12

https://arxiv.org/abs/2110.11405
https://proceedings.neurips.cc/paper/2019/file/6e79ed05baec2754e25b4eac73a332d2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e79ed05baec2754e25b4eac73a332d2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e79ed05baec2754e25b4eac73a332d2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e79ed05baec2754e25b4eac73a332d2-Paper.pdf


Under review as a conference paper at ICLR 2023

A ARCHITECTURE DETAILS

Tables 5, 6, 7 describe hyperparameters for our experiments. In the case of using SMM instead of SA
we use an additional dimensionality reduction for slots via trainable matrix multiplication.

Table 5: Architecture of the CNN encoder for the experiments on CLEVR dataset for set property
prediction and object discovery tasks. Set prediction uses stride of 2 in the layers with *, while object
discovery model uses stride of 1 in these layers.

Layer Channels Activation Params

Conv2D 5 ×5 64 ReLU stride: 1
Conv2D 5 ×5 64 ReLU stride: 1/2*
Conv2D 5 ×5 64 ReLU stride: 1/2*
Conv2D 5 ×5 64 ReLU stride: 1
Position Embedding - - absolute
Flatten - - dims: w, h
LayerNorm - - -
Linear 64 ReLU -
Linear 64 - -

Table 6: Spatial broadcast decoder for object discovery task.

Layer Channels/Size Activation Params

Spatial Broadcast 8 ×8 - -
Position Embedding - - absolute
ConvTranspose2D 5 ×5 64 ReLU stride: 2
ConvTranspose2D 5 ×5 64 ReLU stride: 2
ConvTranspose2D 5 ×5 64 ReLU stride: 2
ConvTranspose2D 5 ×5 64 ReLU stride: 2
ConvTranspose2D 5 ×5 64 ReLU stride: 1
ConvTranspose2D 3 ×3 4 - stride: 1
Split Channels RGB (3), mask (1) Softmax on masks (slots dim) -
Combine components - - -

Table 7: Hyperparameters used for our experiments with SLATE architecture.

Module Parameter Value
Image Size 96
Encoded Tokens 576

dVAE Vocab size 4096
dVAE Temp. Cooldown 1.0 to 0.1
dVAE Temp. Cooldown Steps 30000
dVAE LR (no warmup) 0.0003
Transformer Layers 8
Transformer Heads 8
Transformer Hidden Dim. 192
SA/SMM Num. slots 12
SA/SMM Iterations 7
SA/SMM Slot dim. 192
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