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ABSTRACT

Within the evolving landscape of smart homes, the precise recognition of daily
living activities using ambient sensor data stands paramount. This paper not only
aims to bolster existing algorithms by evaluating two distinct pretrained embed-
dings suited for ambient sensor activations but also introduces a novel hierarchical
architecture. We delve into an architecture anchored on Transformer Decoder-
based pre-trained embeddings, reminiscent of the GPT design, and contrast it
with the previously established state-of-the-art (SOTA) ELMo embeddings for
ambient sensors. Our proposed hierarchical structure leverages the strengths of
each pre-trained embedding, enabling the discernment of activity dependencies
and sequence order, thereby enhancing classification precision. To further refine
recognition, we incorporate into our proposed architecture an hour-of-the-day em-
bedding. Empirical evaluations underscore the preeminence of the Transformer
Decoder embedding in classification endeavors. Additionally, our innovative hier-
archical design significantly bolsters the efficacy of both pre-trained embeddings,
notably in capturing inter-activity nuances. The integration of temporal aspects
subtly but distinctively augments classification, especially for time-sensitive ac-
tivities. In conclusion, our GPT-inspired hierarchical approach, infused with tem-
poral insights, outshines the SOTA ELMo benchmark.

1 INTRODUCTION

Human activity recognition (HAR) focuses on algorithms capable of finding patterns to describe
human movements from sensor data. For smart homes equipped with ambient sensors (eg. motion,
door open/close, temperature), taking advantage of the recent development of Internet of Things
(IoT), HAR consists in recognising activites of daily living (ADL) such as cooking, sleeping, clean-
ing... so as to provide services for healthcare or enhance daily life.

The performance of deep learning, especially its ability to interpret raw data, has placed it at the
forefront of HAR implementations in smart homes Gochoo et al. (2018); Mohmed et al. (2020);
Wang et al. (2016); Singh et al. (2017). Yet, genuine challenges persist Bouchabou et al. (2021b).
In particular ADL are complex actions combining several actions with multilevel dependencies in
terms of time. Recognizing intricate activity sets often stumbles upon the similarities in traces and
their contextual dependencies. Furthermore, the inherently privacy-respecting design of ambient
sensors, which provides minimal environmental context, results in poorly informative sensory sig-
nals and thus, in time series data without the Markov property. This means that understanding one
sensor activation often requires contextualization from the history and from other sensors. Activi-
ties can also be deeply interconnected, underscoring the significance of temporal context in HAR.
Compounding these issues, ambient sensor data manifests as noisy, multi-variate, and irregular time
series, straining traditional modeling methods.

To deal with long-term dependecy, hierarchical models have been proposed as ontologies Hong
et al. (2009) or hierarchical hidden Markov models Asghari et al. (2019) , all implementing the
idea of multilevel dependencies in terms of time. In parallel, recent deep learning paradigms
have begun to offer single-level sequence models to analyse temporal patterns Medina-Quero
et al. (2018); Liciotti et al. (2019); Sedky et al. (2018). Yet, they are not yet able to cope with
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irregular time series. Furthermore, handling long-range contexts remains a conundrum. Previous
efforts, like leveraging Recurrent neural networks or adopting language models like ELMo Peters
et al. (2018) for sensor sequences Bouchabou et al. (2021c) or GPT-2 Radford et al. (2018)
for sensor sequences Takeda et al. (2023), have shown promise but hit limitations for broader
contexts. Combining both streams of work in single-level time dependency and multi-level
dependency, our work integrates (1) attention mechanisms for discerning importance of sensor
signals across a whole sequence, (2) pre-trained generative transformer embeddings capturing
sensor inter-relations, (3) a hierarchical model emphasizing activity succession for long-horizon
dependency, and (4) a temporal encoding model to harness the rhythm of ADLs. In essence, we
propose a multi-timescale architecture, so as to take into account a wider temporal context in a
multi-timescale manner. Our code is available on https://anonymous.4open.science/r/
Generative-Pretrained-Embedding-and-Hierarchical-Representation-to-Unlock-ADL-Rhythm-in-Smart-Homes-E6EC

2 APPROACH

2.1 CAUSAL EMBEDDING

Driven by the innovative approach of pre-trained ELMo embeddings for ambient sensors in smart
homes proposed by Bouchabou et al. (2021c), and the success of transformer architectures like
BERT Devlin et al. (2018) and GPT Radford et al. (2018), we sought to harness the capabilities of
the Transformer decoder embedding architecture to amplify the efficacy of the HAR algorithm.

Our challenge centers on the effective categorization of sensor event sequences, which are tem-
porally contingent and intertwined, into discernible daily activities. A practical example can be
visualized in the transition of a closed room from being vacant to occupied; this change naturally
implies that the door had been opened prior to the occupancy. It’s this cause-effect relationship that
underscores the aptness of a Transformer decoder architecture, such as GPT, for our task.
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Figure 1: Model architecture of GPTAR and its GPT transformer decoder. GPTAR embeds the sen-
sor signal with 3 layers of GPT transformer decoder embedding and a bi-LSTM. The illustration of
the Transformer decoder was inspired by Vaswani et al. (2017)

In contrast, while architectures like BERT might adeptly handle intra-sequence context, their struc-
tural design constrains them from extrapolating context beyond their immediate sequence. Given
the inherent causality of our challenge, the capacity of a Transformer decoder-based architecture to
anticipate forthcoming events based on present sequences renders it a more fitting choice.

As illustrated in Figure 1, we propose for our single-level temporal computation integrates a pre-
trained GPT Transformer decoder embedding in lieu of the earlier ELMo setup. Sensor events are
encoded via this GPT embedding, which the Bi-LSTM layer then leverages to generate a cohesive
vector representation. We name the classifier using this module with sofftmax layer, GPTAR.
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2.2 MULTI-TIMESCALE ARCHITECTURE

Driven by the aspiration to discern the intricate temporal relationships both within individual ac-
tivities and across successive ones, we designed a hierarchical architecture, depicted in Figure 2.
Understanding that human behaviors manifest across diverse observational scales, our model is
meticulously crafted to comprehend both the immediate sequences of events and the more expansive
dynamics between activities.

We augmented our architecture with an additional bi-directional LSTM layer, drawing methodolog-
ical inspiration from the strategies proposed in Devanne et al. (2019). This enhancement empowers
our model to not only discern immediate sequences of events but also to contextualize activities
within a broader framework. The bi-directionality of this LSTM layer accentuates its capability to
capture and assimilate insights from both prior and subsequent events. As a result, our architecture
adeptly integrates immediate event transitions with overarching behavioral patterns, furnishing a
comprehensive understanding of human activity sequences.

For the input, our model processes a chronologically ordered sequence of three activities. The
objective of this architectural choice is to predict the label of the current activity by leveraging the
contextual representations of its two preceding activities. We opted for a sequence of three activities
because, through observation, we discerned that activities often intersperse with a category termed
”other”, representing unlabeled sequences of sensor activations.
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Figure 2: Complete architecture of the Generative Pre-trained Transformer for Hierarchical Activity
Recognition (GPTHAR), composed of 3 low-level modules to compute 3 successive activities, and
a top-level composed of a bi-LSTM and a softmax classifier. The low-level module processes in
parallel the hour timestamp with a bi-LSTM and the sensor signal with a GPT transformer decoder
embedding and a bi-LSTM.

2.3 TIME ENCODING

For smart home human activity recognition, capturing the nuances of temporal patterns is of
paramount importance. Human behaviors within residential settings often exhibit rhythmic patterns,
driven by ingrained habits. Therefore, understanding not just the occurrence but also the timing and
sequencing of sensor-driven events can yield deeper insights. As an example, a sensor activation in
the kitchen at 8 am might be indicative of breakfast preparation, while the same sensor trigger at 8
pm could be related to dinner preparations.

Building upon foundational techniques, we incorporate a specialized temporal encoding mechanism,
as depicted in Figure 2. A supplementary input was introduced to our model. This input maps to
the hours corresponding to each sensor activation timestamp. For every sensor activation in the
main input sequence, a corresponding hour-of-the-day value is aligned in this secondary time input
sequence. These hour values undergo transformation through an embedding layer, rendering them
into vectorized representations. Subsequently, a bi-directional LSTM processes this sequence of
vectors. The output of this LSTM is then combined with the output from the bi-directional LSTM
that encodes the sensor activations. This merged output is directed to the terminal LSTM layer,
designed to discern the intricate relationships and order of activities.
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3 METHODS

3.1 DATASETS

To evaluate the robustness and adaptability of our model, we utilized the Aruba, Milan, and Cairo
datasets from the CASAS collection Cook et al. (2012). These choices were strategic: Aruba to test
single-resident scenarios, Milan to assess the impact of pets and sensor issues, and Cairo to ob-
serve performance in multi-resident settings with overlapping activities. Collected from volunteers’
homes over several months, these datasets feature unbalanced classes and vary in house structures
and resident numbers (details in Annex E).

3.2 GENERATIVE PRE-TRAINED TRANSFORMER SENSOR EMBEDDING

Following Bouchabou et al. (2021c), we use an ELMo embedding with a GPT transformer de-
coder Radford et al. (2018) for sensor embedding training. This approach predicts the next sensor
event by analyzing the current context, similar to natural language processing techniques. Our GPT
Sensor Embedding model, as shown in Figure 1, comprises token and positional embeddings, and
transformer decoders with pre-normalization Xiong et al. (2020), in line with GPT-2 Radford et al.
(2019). We used a context length of 1024 tokens for input contexts, matching the GPT-2 model’s
configuration.

3.3 PRE-PROCESSING, TRAINING, EVALUATION AND METRICS

Datasets are divided on a weekly basis to preserve temporal relationships. Once partitioned, the
weeks are shuffled and divided into training (70%) and testing (30%) subsets. The training subset
is multifunctional, facilitating the training of pre-trained embeddings, hyperparameter optimization
via cross-validation, and the training of the classification model.

In the embedding pre-training step, 80% of the training subset is designated for model training,
with the remaining 20% allocated for validation. We employ early stopping, based on validation
perplexity, to counteract overfitting.

For hyperparameter tuning, a 3-fold cross-validation approach is adopted. From the first two folds,
20% is reserved for validation and early stopping. The third fold serves as the test set for cross-
validation. In the final classification step, 20% of the whole training subset is earmarked for val-
idation and early stopping. Subsequently, the algorithm undergoes testing on the test set defined
initially.

Given the significant imbalance in our activity classes, we report the F1-score metric. For statistical
significance, we report the test results averaged over 10 repetitions. For experiment reproducibility,
we use a fixed value for all random seeds.

3.4 VECTORIZATION OF SENSOR ACTIVATIONS

In our approach, sensor activations are turned into categorical symbols, helping the model identify
patterns and relationships. This forms a vocabulary that encapsulates the nuances of sensors’ acti-
vations. Our datasets include motion (M), door (D), and temperature (T) sensors. Every event is
logged with details including a unique sensor ID, its corresponding value, and a timestamp.

We convert each event, defined by sensor ID (si), value (vi), and timestamp (ti), into a unique
token by merging si and vi, excluding ti. For example, motion sensor M001 turning ON becomes
’M001ON’, and temperature sensor T004 reading 24.5◦C becomes ’T00424.5’.

For processing, these tokens are indexed similarly to methods used in natural language processing.
This means that index assignment is based on frequency, starting from 1, with 0 reserved for padding.
Consequently, a sequence such as [M005OFF M007OFF M004OFF M004ON] is transformed into
an indexed sequence like [1 4 8 2], in accordance with the frequency of each token.
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4 RESULTS

In this section we provide an empirical study of the following research questions: (RQ1) Can GPT-
based models capture better long-term dependencies and lead to better activity recognition ? (RQ2)
Is a single-level long-term dependency enough to model activities of daily living and what does a
hierarchical model add ? (RQ3) Is time a relevant information for HAR, especially in the case of
this irregularly sampled time-series from event-triggered sensors ?

To this end, we consider ablation studies with the following algorithms : (i) GPTHAR, our pro-
posed method, using GPT transformer decoder with time-encoding and a hierarchical architecture
as pictured in Fig. 2. (ii) GPTAR-note (for no temporal encoding) : uses GPT transoformer decoder
and a hierarchical architecture, but without timestamp information . (iii) GPTAR, pictured in Figure
1, using GPT transformer decoder for embedding in a single-level architecture, without timestamp
information. (iv) ELMoHAR : using ELMo with time-encoding and a hierarchical architecture.
(v) ELMoAHR-note (for no temporal encoding) : uses ELMo and a hierarchical architecture, but
without timestamp information . (vi) ELMoAR : using ELMo for embedding in a single-level archi-
tecture, without timestamp information.

4.1 COMPARATIVE STUDY AND HYPERPARAMETERS SEARCH

To respond to RQ1, we compare two distinct embeddings: the GPT decoder Transformer-based
model (GPTAR) and the ELMo-based model (ELMoAR) as described in Bouchabou et al. (2021c).
These models were implemented according to the architecture delineated in Fig. 1, where the em-
bedding component is implemented with ELMo embedding for ELMoAR and GPT decoder Trans-
former embedding for GPTAR. Both embeddings underwent pre-training on the training set : GPT
decoder on unsegmented data, and EMLo on pre-segmented data.

A hyperparameter tuning was conducted for each embedding technique, encompassing variations in
window size for ELMoAR and the number of layers and attention heads for GPTAR. The outcomes
of a 3-fold cross-validation on the three datasets are reported in Table 4 in Annex A for the F1 score
and in Annex B for more metrics. For ELMoAR, a 60-token context window offers the best results
across all datasets. For GPTAR, a configuration with 8 attention heads and 3 decoder layers yielded
better F1 scores averaged across the three datasets, in particular the noisy Milan and Cairo datasets,
and exhibiting less variance then ELMoAR. The augmentation of attention heads or decoder layers
in the GPTAR model did not linearly correlate with improved recognition performance. GPTAR
shows better robustness in noisy datasets and an improved average F1 score during cross-validation.

However, an in-depth analysis of individual activity performance in Annex C and confusion matrix
in Annex D revealed specific challenges. Activities such as ’Wash Dishes’ in Aruba, ’Eve Meds’ in
Milan, and ’Breakfast’ in Cairo, presented suboptimal recognition. These activities, often exhibiting
similar sensor patterns, however occur after different activities, in the perspective of a sequence of
activities.

The next sections use on these two hyperparameters for low-level modules of ELMoAR, ELMo-
HAR-note, ELMoHAR, GPTAR, GPTHAR-note and GPTHAR: the 60-token window for ELMo
and the 8 attention heads and 3 decoder layers for GPT embedding.

4.2 HIERARCHICAL ACTIVITY RECOGNITION

ADLs often manifest interconnected patterns, driven by established daily routines or a structured
sequence. While deciphering the relationships among individual sensor activations, comprehending
the overarching dynamics between the activities, in particular the multi-timescale dependencies, is
ncessary. To respond to RQ2, we examine how a single-level model, even understanding a long
time-range dependencies, compares to a hierarchical model.

We delve into the hierarchical architectures, Generative Pre-Trained Hierarchical Activity Recog-
nition - no time encoding (GPTHAR-note) and ELMo Hierarchical Activity Recognition - no time
encoding (ELMoHAR-note), built upon GPTAR and EMLoAR to encapsulate these inter-activity
relationships. They differ from Fig. 2 in the absence of the timestamp input. We compare the hierar-
chical and non-hierarchical architectures in section 4.2.1. To test the hypothesis that the hierarchical
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architectures benefit from data from longer time ranges and from activity segmentation information,
we compared with the non-hierarchal algorithms with longer input context and with a segmentation
sign (section 4.2.2).

4.2.1 COMPARISON OF HIERARCHICAL ARCHITECTURES

In our experiments with GPTHAR and ELMoHAR, we employed the previously selected ELMo-
based model with a 60-token context window and the GPT transformer decoder embedding model
configured with 8 attention heads and 3 decoder layers. Consistent with earlier experiments, the
pre-trained embeddings remained fixed, allowing only the dual bi-directional LSTM layers and the
softmax layer to undergo training for classification. Comparative results from these experiments
are presented in Table 1. We also compared to other families of methods: FCN Bouchabou et al.
(2021a) and a SOTA LSTM-based method Liciotti et al. (2019). For details of Liciotti et al. (2019)
replication, please refer to Annex F.

Table 1: Hierarchical model : Test F1 score of FCN, Liciotti et al, and the hierarchical and non-
hierarchical architectures using ELMo and GPT pre-trained embeddings.

Aruba Milan Cairo
Macro F1 Score std Macro F1 Score std Macro F1 Score std

FCN Bouchabou et al. (2021a) 33.10% 2.23 15.10 1.52 7.60% 2.46
Liciotti et al. Liciotti et al. (2019) 32.00% 1.56 17.40% 2.07 26.60% 3.24
ELMoAR (Window 60) 84.80% 1.99 70.80% 0.92 70.50% 1.43
GPTAR (8 Heads 3 Layers) 86.10% 1.20 70.80% 1.40 73.20% 1.99
ELMoHAR-note 88.10% 1.20 77.40 1.65 75.90% 2.88
GPTHAR-note 87.30% 2.98 79.90% 1.52 84.80% 1.81

The results indicate that GPTHAR-note outperforms all other architectures across the three datasets.
It can be observed that the hierarchical structure allows both types of pre-trained embeddings to en-
hance their performance. This underscores the presence of relationships among activity sequences,
which significantly bolsters the model’s classification performance. However, it’s worth noting that
for the Aruba and Milan datasets, employing a hierarchical structure increases the standard devia-
tion value. In these datasets, the model displays reduced stability in terms of consistent performance.
We hypothesize that introducing a regularization layer after the embedding output might help sta-
bilize the architecture’s performance. Upon a detailed examination of classification performances
for individual activities across the three datasets (see Annex C and D), integrating relational context
among activities improves recognition rates. For instance, activities that depend on preceding ones,
such as ”Wash dishes” – which is directly associated with activities like ”Dining Room Activity”
or ”Meal Preparation” in the Aruba dataset – benefit from this approach. Similarly, activities like
”Leave home” and ”Enter Home”, which often get misclassified, are better distinguished using the
hierarchical architecture.

4.2.2 INPUT CONTEXT EXTENDED

In assessing the hierarchical structure’s efficacy, we contrasted hierarchical and non-hierarchical
algorithm versions using an augmented input context. Specifically, base models ELMoAR and
GPTAR inputs were expanded by: 1) appending two preceding activities to the current one, re-
taining sensor event sequence, and 2) appending two preceding activities with a separation token
between distinct sensor sequences. This token demarcates activity boundaries, inherently discerned
by GPTHAR and ELMoHAR. Results are presented in Table 2.

The results demonstrate that the hierarchical structures maintain superior performance, compared to
the versions of the models with a extended input context. We hypothesized that since the hierarchical
structure inherently discerns the boundaries between activities through its design, the addition of an
explicit token to mark this boundary might suffice to achieve equivalent performance. However, we
observe this is not the case. Despite marking the boundaries between activities, hierarchical struc-
tures achieve the best performance across the three datasets. It is worth noting that the versions with
separators outperform their counterparts without separators. During our experiments, we observed
that by increasing the number of nodes into the last bi-directional LSTM of the baseline models,
both the extended context and extended context with separator approaches enhanced their perfor-
mance. Yet, even by increasing the number of parameters, we could not match the performance of
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Table 2: Long-term dependency : Test F1 Score and its standard deviation of the classification when
using either (1) a hierarchical architecture, or (2) the baseline models using extended input context,
or (3) extended input context incorporating the ”< sep >” token.

Aruba Milan Cairo
Macro F1 Score std Macro F1 Score std Macro F1 Score std

ELMoHAR-note 88.10% 1.20 77.40% 1.65 75.90% 2.88
GPTHAR-note 87.30% 2.98 79.90% 1.52 84.80% 1.81
ELMoAR (Window 60)
context entended 76.90% 1.2 60.05% 3.5 59.10% 3.84

ELMoAR (Window 60)
context extended with < sep >

77.90% 3.63 59.50% 1.27 56.80% 5.45

GPTAR (8 Heads 3 Layers)
context extended 81.00% 3.53 61.80% 1.4 58.80% 2.7

GPTAR (8 Heads 3 Layers)
context extended with < sep >

81.60% 3.81 61.40% 1.26 60.20% 2.94

the hierarchical structures. This experiment clearly indicates a need to observe sensor activations at
different scales, and the proposed hierarchical structure facilitates these multi-scale observations.

4.3 THE IMPACT OF TIME ENCODING

Human activity can also be linked to specific times of the day. Certain activities occur at distinct
moments, such as having breakfast, lunch, dinner, or sleeping. Thus, we added a temporal encoding
to our activity sequences, as shown in Figure 2. The comparative results of the models, both with
(ELMoHAR and GPTHAR) and without (ELMoHAR-note and GPTHAR-note) this time encoding,
are presented in Table 3 (see Annex B for more metrics).
Table 3: Time encoding : Test F1 Score and its standard deviation comparing when the embedding
is either (1) ELMoHAR, (2) GPTHAR with and without Time Encoding.

Aruba Milan Cairo
Macro F1 Score std Macro F1 Score std Macro F1 Score std

ELMoHAR-note 88.10% 1.20 77.40% 1.65 75.90% 2.88
GPTHAR-note 87.30% 2.98 79.90% 1.52 84.80% 1.81
ELMoHAR 90.70% 1.25 80.00 1.33 83.30% 2.95
GPTHAR 89.70% 3.06 81.90% 1.1 87.20 0.92

The results demonstrate that the integration of the temporal component augments the classification
efficacy of both models. Furthermore, the addition of this temporal dimension tends to diminish the
standard deviation values. This progression is particularly evident in GPTHAR-note. We note that
GPTHAR-note outstrips the performance of ELMoHAR-note and ELMoAR on the Cairo dataset.
On the Milan dataset, GPTHAR also considerably surpasses ELMoHAR and ELMoAR. Examining
the confusion matrices in Annex D, in the Aruba dataset, activities such as ’Washing Dishes’, ’Meal
Preparation’, ’Enter Home’, and ’Leave Home’ show improved classification accuracy. In the Mi-
lan dataset, ’Eve Med’ and ’Morning Meds’ demonstrate a notable reduction in misclassifications.
Similarly, in the Cairo dataset, meal-related activities like ’Breakfast’, ’Lunch’, and ’Dinner’ are
identified with higher accuracy.

The Cairo dataset, given its complexity stemming from activities of multiple residents, shows note-
worthy enhancement compared to the second noisy dataset Milan. This performance variance can
be rationalized by the Milan dataset’s inherent challenges. Despite seeming less complex, the Milan
dataset is fraught with sensor anomalies, particularly at its onset, leading to elevated data noise.

In summary, our results that GPT-based transformers provide a richer embedding for HAR, that time
encoding based on the hour of the day time can alleviate confusion between some activites (ex confu-
sion between dinner,lunch and breakfast, see Annex C and D) for the details), and that a hierarchical
model is essential despite long-term dependency embedding and segmentation information.

5 RELATED WORKS

5.1 PRE-TRAINED EMBEDDINGS

Deep learning, particularly in applications like computer vision and natural language processing, has
significantly progressed by abstracting complex data (Pouyanfar et al., 2018; Ordóñez & Roggen,
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2016). In HAR, sensor-based deep learning techniques have been thoroughly investigated Wang
et al. (2019), with methods categorized into Convolutional Neural Networks (Singh et al., 2017;
Mohmed et al., 2020), autoencoders (Wang et al., 2016), semantics-based approaches Yamada et al.
(2007), and sequence models (Ghods & Cook, 2019), according to Bouchabou et al. (2021b). Yet,
these often struggle with temporal aspects and long-term dependencies crucial for ADL.

Recent self-supervised learning and sequence modeling advancements have impacted HAR in smart
homes, seen in the use of bi-LSTM (Liciotti et al., 2019), ELMo (Bouchabou et al., 2021c), and
GPT-2 (Takeda et al., 2023) embeddings. Bouchabou et al. (2021c) enhanced bi-LSTM models with
a pre-trained, frozen sensor embedding, differing from Liciotti et al. (2019)’s in-training embedding
learning. Takeda et al. (2023) used a GPT embedding for sensor event prediction. However, their
prediction needs the outputs from a distinct classification process and from a district segmentation
module, for which they applied feature engineering, varying the methods for different datasets, in-
stead of an end-to-end modelling.

Our work aligns with Takeda et al. (2023) in using the GPT-2 transformer’s decoder block but differs
by training the embedding from actual continuous sensor readings, without separate segmentation
and classification modules. Unlike Takeda et al. (2023), we integrate the GPT-based embedding into
a sequence representation and feature extraction architecture as in Bouchabou et al. (2021c).

5.2 HIERARCHICAL MODEL OF ACTIONS

Our results show that long-term dependency is not enough, but a hierarchical description is essen-
tial for modeling human actions. This article proposes yet another hierarchical model to describe
complex actions. Indeed, for human activity recognition, hierarchical models have been proposed
as ontologies of context-aware activities for recognition of activities of daily living in smart homes
Hong et al. (2009), hierarchical hidden Markov models Asghari et al. (2019) for recognition of ac-
tivities of daily living in smart homes, or hierarchical LSTM with two hidden layers for activity
recognition from wearable sensors Wang & Liu (2020) or a hierarchical LSTM for activity recogni-
tion for simple action recognition from RGB-D videos Devanne et al. (2019). While Wang & Liu
(2020); Devanne et al. (2019) is applied on other types of input data and other categories of activi-
ties, Hong et al. (2009); Asghari et al. (2019) focus on the same application case. While Hong et al.
(2009) study user-designed models of ontology and Asghari et al. (2019) uses a HMM which does
have long-term memory, our proposition uses self-attention models which are the state of the art for
recognising long-term dependencies.

Besides, contrarily to the cited works, our study includes a systematic comparison of hierarchical
and non-hierarchical architectures between several encodings : ELMo and GPT. From the previously
cited works, only Devanne et al. (2019) compared their hierarchical structure to the non-hierarchical
structure, to draw the same conclusion. Our study also reject the hypothesis that the hierarchical
algorithms simply receive longer the gain only comes from processing more information from inputs
from longer time-windows or from segmentation of activities.

These results only highlight the main challenge of recognition of activities of daily living : multilevel
time dependencies. Indeed, an activity of daily living such as cooking and cleaning can vary greatly
from one day to the other depending on the context and goal of the inhabitant. Each activity can be
viewed as a combination of unit actions (such as actions recognized in Devanne et al. (2019); Wang
& Liu (2020) that are selected and organised for the completion of a temporally distant goal.

While the hypothesis that complex actions need to be represented by hierarchical models is valid for
classification, the literature consolidates these results for generative models and especially reinforce-
ment learning : to solve complex tasks, hierarchical reinforcement learning (Barto & Mahadevan,
2003; Barto et al., 2013) enabled tackling complex tasks by decomposing into subtasks. These
machine learning models confirm the neuroscience description that our nervous system selects and
organizes motor elements in a hierarchical model Grafton & de C. Hamilton (2007), as well as the
behavioural psychology studies such as Eckstein & Collins (2021) showing that humans use hierar-
chical representations of action sequences of efficient planning and flexibility. Our study provides
yet another computation model supporting this hypothesis of hierarchy, but has the particularity of
analysing activities of daily living which are very complex and variable tasks.
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6 DISCUSSION

6.1 SUMMARY

In our study on recognizing daily living activities through ambient sensor classifications within smart
homes, we embarked on a comparison of two distinct pretrained embeddings applied to ambient
sensor activations. Notably, the Transformer Decoder-based embedding (akin to the GPT design)
was shown superior in classification tasks when compared to the ELMo pretrained embeddings. By
introducing a hierarchical structure, we aimed to exploit the inherent relationships among activity
sequences, thereby refining the classification outcomes. The effectiveness of this approach was
evident across all three datasets, with the GPTHAR version standing out especially. Furthermore, the
inclusion of an hour-of-the-day embedding subtly yet significantly enhanced classification precision,
particularly for activities with time-sensitive natures.

6.2 LIMITATIONS

Our study provides valuable insights into the recognition of daily living activities within smart
homes. However,utilizing pre-segmented data may not effectively capture the natural flow of sen-
sor activations, thereby possibly not mirroring real-world situations accurately. Such segmentation
restricts the potential application of these algorithms in real-time services. Furthermore, managing
large datasets introduces challenges related to training durations. Throughout our experiments, we
observed that the transformer architecture resulted in longer training times compared to the LSTM
embedding-based architecture. This necessitates further optimization efforts to prevent excessive
training durations. Additionally, although we selected datasets that encompass various lifestyle con-
figurations, our evaluation was limited to just three datasets. This constraint raises potential concerns
regarding the wider applicability and generalizability of our conclusions.

6.3 FUTURE WORKS

In light of the results and observed limitations, several avenues present themselves for future explo-
ration. Enhancing model stability stands as a priority, and we believe the introduction of normaliza-
tion layers could potentially address this. Our findings from the increased standard deviation values
in datasets, like Aruba and Milan, upon employing a hierarchical structure, underscore the necessity
of such improvements. An exhaustive hyperparameter search is also on the horizon, aiming not only
to bolster results but also to refine and make the model more efficient. Such optimization would be
instrumental in achieving better performance while ensuring computational efficiency. Broadening
the scope of our evaluations to encompass a more diverse range of datasets will be pivotal. This
would not only test the model’s robustness but also enhance its generalizability across various sce-
narios and environments. Lastly, we see a promising avenue in automated segmentation learning.
Moving away from pre-segmented data, investigating methods that allow for more natural and con-
tinuous activity recognition could pave the way for more realistic and adaptive models. This would
potentially overcome the constraints posed by our current segmentation approach, leading to more
organic and real-world applicable results.

6.4 CONCLUSION

In the context of smart homes, our study in recognition of daily living activities underscores the
significant advantages of utilizing pre-trained embeddings, with a particular emphasis on the Trans-
former Decoder-based approach, for this task. We introduced a robust framework dedicated to
enhancing the recognition of ADLs. Our results consistently support the hierarchical methodology,
highlighting its proficiency in discerning inter-activity relations. With the integration of temporal
data, the framework’s performance was notably augmented, especially in datasets characterized by
sensor anomalies and noise, demonstrating its potential in distinguishing nuanced activity patterns.
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A HYPER PARAMETER SEARCH

In this annex, we present F1 scores during cross-validation of ELMoAR and GPTAR with, respec-
tively, different window sizes and different head and layer numbers. The best hyperparameters are
selected for the ELMoHAR-note, ELMoHAR and GPTHAR-note and GPTHAR algorithms.

For ELMoAR, the best hyperparameters are: a window size of 60. For GPTAR, the best hyperpa-
rameters are : 8 attention heads and 3 layers of decoder.

Table 4: Cross-validation F1-Scores with their standard deviation for GPTAR and ELMoAR models
with various hyperparameters across the three datasets, to assess the Impact of context window size
in ELMoAR and the number of layers and attention heads in GPTAR

Aruba Milan Cairo
Macro F1 Score std Macro F1 Score std Macro F1 Score std Average

ELMoAR (Window 20) 83.47 1.83 71.10 2.25 66.37 3.24 73.65
ELMoAR (Window 40) 82.93 2.12 70.73 2.43 66.70 4.07 73.45
ELMoAR (Window 60) 83.47 2.61 72.40 2.49 67.23 4.70 74.37
GPTAR (8 Heads 3 Layers) 83.20 1.45 73.77 2.19 70.90 3.48 75.96
GPTAR (8 Heads 4 Layers) 83.53 1.48 72.30 1.62 69.03 4.42 74.95
GPTAR (12 Heads 6 Layers) 83.57 1.57 73.07 2.13 68.27 4.08 74.97
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B DETAILED ALGORITHMS METRICS

In this annex, we present a comprehensive breakdown of the performance metrics for the algorithms
used in our study. The table encompasses test results from three distinct datasets: Aruba (Table 5),
Milan (Table 6), and Cairo (Table 7). These metrics show that for the most simple dataset, Aruba,
ELMoHAR and GPTHAR perform closely, ranking first or second depending on the chosen metric.
For the more complex datasets, Milan and Cairo, GPTHAR outperforms all the other algorithms,
regardless of the choice of metric.

Table 5: Detailed Algorithms Scores over the datasets Aruba

ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR
Accuracy 97.00% 97.10% 98.40% 98.20% 98.50% 98.52%
Precision 86.00% 90.30% 89.90% 87.40% 94.30% 91.20%
Recall 84.70% 85.10% 88.10% 88.60% 89.70% 89.80%
F1 Score 84.80% 86.10% 88.10% 87.30% 90.70% 89.70%
Balanced Accuracy 84.76% 85.18% 88.22% 88.55 89.71% 90.10%
Weighted Precision 96.70% 97.00% 98.10% 98.00% 98.50% 98.00%
Weighted Recall 97.00% 97.00% 98.40% 92.20% 98.50% 98.30%
Weighted F1 Score 96.9% 97.00% 98.00% 98.00% 98.30% 98.20%

Table 6: Detailed Algorithms Scores over the dataset Milan

Milan
ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR

Accuracy 87.50% 88.20% 90.00% 91.30% 90.60% 91.9%
Precision 75.90% 80.20% 85.60% 87.60% 88.90% 90.00%
Recall 68.40 68.50% 73.90 76.90% 75.60% 79.20%
F1 Score 70.80% 70.80% 77.40% 79.90% 80.00% 81.90%
Balanced Accuracy 68.51% 68.55% 73.91% 76.87% 77.84% 79.22%
Weighted Precision 86.80% 88.20% 89.60% 91.20% 90.70% 91.90%
Weighted Recall 87.50% 88.20% 90.00% 91.30% 90.60% 91.90%
Weighted F1 Score 86.70% 87.60% 89.20% 90.70% 90.00% 91.70%

Table 7: Detailed Algorithms Scores over the dataset Cairo

Cairo
ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR

Accuracy 81.1% 83.40% 87.30% 91.00% 90.80% 93.20
Precision 72.70% 76.60% 79.70% 87.40% 87.30% 89.80%
Recall 69.20% 71.40% 74.70% 83.40% 82.00% 86.60%
F1 Score 70.50% 73.20% 75.90% 84.80% 83.30% 87.20%
Balanced Accuracy 69.12% 71.33% 74.75% 83.58% 81.87% 86.74%
Weighted Precision 81.10% 82.40% 86.90% 91.10% 90.60% 93.20
Weighted Recall 81.10% 83.40% 87.30% 91.00% 90.80% 93.20
Weighted F1 Score 80.90% 82.30% 86.80% 90.50% 90.30% 92.70%

13



Under review as a conference paper at ICLR 2024

C F1 SCORE BY ACTIVITIES FOR EACH ALGORITHM

We report here the F1-scores as recognition performance for the 3 datasets per algorithm and per
activity label, as labelled in each dataset. This annex gives an insight which activities could account
for the difference of performance.

Table 8: F1-Score by activity for each algorithm on the Aruba dataset

ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR
Bed to Toilet 0,987 0,996 0,991 0,992 0,992 0,996
Eating 0,925 0,935 0,937 0,948 0,932 0,936
Enter Home 0,8 0,797 0,992 0,994 0,99 0,992
Housekeeping 0,83 0,84 0,829 0,907 0,852 0,918
Leave Home 0,827 0,811 0,992 0,992 0,99 0,99
Meal Preparation 0,974 0,971 0,972 0,968 0,971 0,964
Other 0,988 0,99 0,99 0,99 0,99 0,99
Relax 0,99 0,99 0,991 0,993 0,994 0,992
Respirate 0,867 0,967 0,651 0,502 0,967 0,548
Sleeping 0,988 0,99 0,982 0,984 0,991 0,981
Wash Dishes 0,008 0,047 0,266 0,243 0,225 0,199
Work 0,984 0,993 0,979 0,987 0,985 0,975

Table 9: F1-Score by activity for each algorithm on Milan dataset

ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR
Bed to Toilet 0,551 0,532 0,79 0,749 0,845 0,902
Chores 0 0,011 0,088 0,122 0,15 0,161
Desk Activity 0,976 0,996 0,952 0,982 0,958 0,976
Dining Rm Activity 0,416 0,252 0,516 0,481 0,491 0,522
Eve Meds 0 0,095 0,421 0,587 0,566 0,545
Guest Bathroom 0,978 0,981 0,979 0,98 0,98 0,984
Kitchen Activity 0,91 0,919 0,93 0,936 0,927 0,931
Leave Home 0,901 0,911 0,934 0,952 0,941 0,957
Master Bathroom 0,884 0,858 0,942 0,943 0,968 0,977
Master Bedroom Activity 0,788 0,792 0,799 0,836 0,836 0,872
Meditate 0,86 0,874 0,863 0,933 0,866 0,972
Morning Meds 0,58 0,546 0,642 0,669 0,698 0,712
Other 0,888 0,9 0,906 0,92 0,909 0,924
Read 0,92 0,946 0,917 0,947 0,914 0,953
Sleep 0,897 0,921 0,927 0,925 0,943 0,932
Watch TV 0,767 0,778 0,782 0,807 0,789 0,806

Table 10: F1-Score by activity for each algorithm on Cairo dataset

ELMoAR GPTAR ELMoHAR-note GPTHAR-note ELMoHAR GPTHAR
Bed to toilet 0,382 0,359 0,374 0,483 0,545 0,311
Breakfast 0,533 0,61 0,822 0,89 0,886 0,94
Dinner 0,415 0,412 0,711 0,713 0,961 0,991
Laundry 0,911 1 0,309 0,951 0,358 0,794
Leave home 0,938 0,958 0,891 0,97 0,895 0,973
Lunch 0,337 0,331 0,609 0,67 0,912 0,929
Night wandering 0,759 0,795 0,805 0,829 0,823 0,837
Other 0,915 0,923 0,948 0,968 0,955 0,977
R1 sleep 0,702 0,629 0,852 0,868 0,897 0,877
R1 wake 0,871 0,899 0,903 0,906 0,895 0,909
R1 work in office 0,853 0,939 0,918 0,985 0,92 0,991
R2 sleep 0,706 0,715 0,824 0,857 0,856 0,863
R2 take medicine 0,781 0,913 0,859 0,94 0,87 0,931
R2 wake 0,745 0,746 0,799 0,821 0,852 0,87
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D CONFUSION MATRIX

a ELMoAR b GPTAR

c ELMoHAR-note d GPTHAR-note

e ELMoHAR f GPTHAR

Figure 3: Confusion matrices per algorithm on the Aruba dataset.

In this section, we report on the confusion matrices for various algorithms across three datasets. A
notable observation is that the more complex architectures, which include time encodings (namely
ELMoHAR and GPTHAR), exhibit fewer misclassifications compared to simpler models.
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a ELMoAR b GPTAR

c ELMoHAR-note d GPTHAR-note

e ELMoHAR f GPTHAR

Figure 4: Confusion matrices per algorithm on the Milan dataset.

This improvement is particularly evident in specific activities. For instance, in the Aruba dataset,
activities like ’Washing Dishes’, ’Meal Preparation’, ’Enter Home’, and ’Leave Home’ are classi-
fied more accurately. Similarly, in the Milan dataset, activities such as ’Eve Med’ and ’Morning
Meds’ show a marked decrease in misclassifications. Additionally, in the Cairo dataset, meal-related
activities like ’Breakfast’, ’Lunch’, and ’Dinner’ are more accurately identified.
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a ELMoAR b GPTAR

c ELMoHAR-note d GPTHAR-note

e ELMoHAR f GPTHAR

Figure 5: Confusion matrices per algorithm on the Cairo dataset.

-These findings highlight the effectiveness of our improved algorithms in reducing misclassifica-
tions.
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E DATASETS DETAILS

This section provides detailed information on each dataset. It includes specifics such as the number
of residents, the number of sensors utilized, the variety of activities recorded, and the duration of
these recordings.

Table 11: Details of the three CASAS datasets

Dataset Aruba Milan Cairo
Residents 1 1 + pet 2 + pet

Number of Sensors 39 33 27
Number of Activities 12 16 13

Number of Days 219 82 56
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F EXPERIMENTS REPRODUCTION

This section presents the scores and results of our replication of the Liciotti et al. Liciotti et al.
(2019) experiments. Table 12 below includes results from the original paper for the Milan and Cairo
datasets, alongside our findings. It’s important to note that the Aruba dataset had already been ex-
plored in the original study. We conducted our experiments 10 times, and the table reflects the aver-
age results of these repetitions. In line with the original paper, we employed a 3-fold cross-validation
evaluation method for each dataset and regrouping the original dataset labels under meta-activities
using the same activity remapping as in the original study. Additionally, we adhered to the same
hyperparameters defined in the original paper to ensure consistency in our replication process. Our
findings demonstrate that we achieved results closely similar to those in the original paper, confirm-
ing the accuracy of our implementation of the algorithm.

Table 12: Reproduction results of the Bi-LSTM architecture as proposed by Liciotti et al. Our
replication of these experiments was conducted 10 times to ensure reliability and consistency of the
results.

Aruba Milan Cairo
Liciotti et al.

(paper)
Liciotti et al.
(reproduce)

Liciotti et al.
(paper)

Liciotti et al.
(reproduce)

Liciotti et al.
(paper)

Liciotti et al.
(reproduce)

Accuracy NA 96.17% 94.12% 90.70% 86.90% 86.67%
Precision NA 92.73% NA 82.33% NA 79.67%
Recall NA 90.17% NA 77.00% NA 75.00%
F1 Score NA 91.17% NA 79.33% NA 76.33%
Balanced Accuracy NA 90.37% NA 76.88% NA 74.98%
Weighted Precision NA 96.30% 94.00% 90.33% 86.67% 86.33%
Weighted Recall NA 96.10% 94.00% 90.67% 87.00% 86.67%
Weighted F1 Score NA 96.03% 94.00% 90.33% 86.67% 86.33%

4


	Introduction
	Approach
	Causal Embedding
	Multi-timescale Architecture
	Time Encoding

	Methods
	Datasets
	Generative Pre-trained Transformer Sensor Embedding
	Pre-processing, Training, Evaluation and Metrics
	Vectorization of Sensor Activations

	Results
	Comparative Study and Hyperparameters Search
	Hierarchical Activity Recognition
	Comparison of Hierarchical Architectures
	Input context extended

	The Impact of Time Encoding

	Related Works
	Pre-trained Embeddings
	Hierarchical Model of Actions

	Discussion
	Summary
	Limitations
	Future Works
	Conclusion

	Hyper parameter search
	Detailed Algorithms Metrics
	F1 Score By Activities for each algorithm
	Confusion Matrix
	Datasets Details
	Experiments Reproduction

