

Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning

Anonymous ACL submission

Abstract

Advances in large vision-language models (LVLMs) have led to significant progress in generating natural language descriptions for visual contents. These powerful models are known for producing texts that are factually inconsistent with the visual input. While some efforts mitigate such inconsistencies in natural image captioning, the factuality of generated captions for structured visuals, such as charts, has not received as much scrutiny. This work introduces a comprehensive typology of factual errors in generated chart captions. A large-scale human annotation effort provides insight into the error patterns in captions generated by various models, ultimately forming the foundation of a dataset, CHOCOLATE. Our analysis reveals that even advanced models like GPT-4V frequently produce captions laced with factual inaccuracies. To combat this, we establish the task of Chart Caption Factual Error Correction and introduce CHARTVE, a visual entailment model that outperforms current LVLMs in evaluating caption factuality. Furthermore, we propose C2TFEC, an interpretable two-stage framework that excels at correcting factual errors. This work inaugurates a new domain in factual error correction for chart captions, presenting a novel evaluation metric, and demonstrating an effective approach to ensuring the factuality of generated chart captions.

1 Introduction

Large vision-language models (LVLMs) have recently shown impressive capabilities in generating natural language descriptions of visual content like images, videos and charts (OpenAI, 2023b; Google, 2023a; Liu et al., 2023c; Wang et al., 2023). Chart captioning is particularly important for data analysts, business analysts, and journalists who rely on accurate chart interpretations for decision-making and reporting. However, no prior work has studied

the *factuality*¹ of the generated captions. Given that factuality is vital for credibility in applications of chart captioning in news articles (Liu et al., 2021), educational resources (Fu et al., 2022), and social media (Monteiro et al., 2017), examining the truthfulness of generated captions is a critical concern.

To understand the factual errors in chart captioning models, we introduce a typology of factual errors for the chart domain. Using this scheme, we conduct a large-scale human annotation study to analyze the distributions of various error types, such as Value Error and Label Error, in captions from various models, from task-specific fine-tuned models to LVLMs (see Table 1). The annotated samples are then categorized into three splits, LVLM (Large-vision Language Models), LLM (Large Language Models), and FT (Fine-tuned Vision-language Models), based on the architecture and the scale of the underlying models, and form a dataset which we named CHOCOLATE. With this dataset collected, we aim to answer three main research questions. First, **are state-of-the-art chart captioning models able to produce factual captions? We find the answer is no** (§2). Specifically, 82.06% of the generated captions are non-factual (see Table 2). Even state-of-the-art LVLMs like GPT-4V (OpenAI, 2023b) produce a great portion of errors in its generated captions (see Figure 1).

The prevalence of factual inconsistencies observed in the generated captions by various models underscores the urgent need to mitigate the factual errors of such models. Hence, we introduce a new task, *Chart Caption Factual Error Correction* (§3), which presents a novel challenge of rectifying factual inaccuracies in chart captions generated by LVLMs. A pertinent question that arises from this task is: **how to automatically evaluate the factual consistency between charts and captions?** To

¹Factuality is also known as the *faithfulness* or *factual consistency* between inputs and outputs

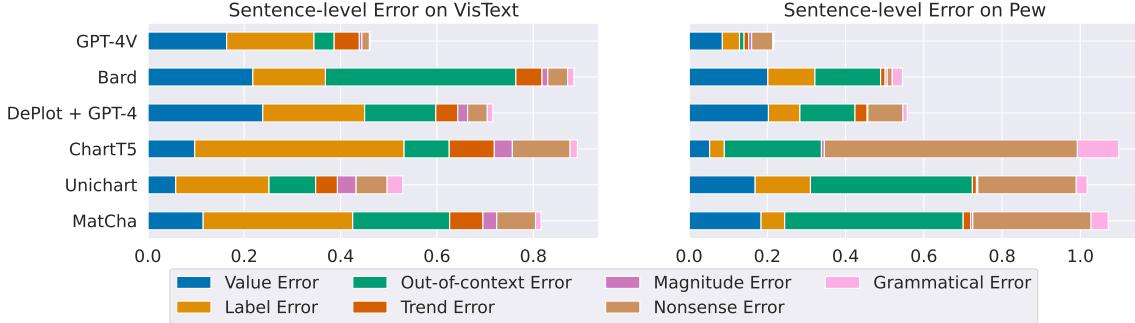


Figure 1: Error distribution for different models on VisText and Pew. The error rates are computed per sentence. An error rate of 0.4 indicates that 40% of the sentences in the generated captions contain such an error. Note that a single caption may contain multiple types of errors; hence, the maximum value for a stacked bar is greater than 1.0. We show that even the most advanced LVLM, GPT-4V, generates captions with a high rate of factual error.

tackle this question, we present CHARTVE, novel visual entailment approach to assess the factual consistency of chart captions. This model is trained by repurposing existing resources from chart summarization and chart question answering. Results show that CHARTVE performs competitively with proprietary LVLMs and outperforms the most advanced open-source LVLM, despite being 64 times less in size.

Now that we have set up the task, we turn to the challenge of **how to effectively correct factual errors in chart captions?** We propose C2TFEC (§4), an interpretable two-step framework that decomposes visual reasoning into image-to-structure rendering and text-based reasoning. C2TFEC first transforms the input chart into a structured data table representation. Grounded in this extracted tabular data, the second component then identifies and fixes any factual inconsistencies in the generated caption through an interpretable reasoning process. Our experiments demonstrate that this explicit decomposition enables more reliable factuality corrections compared to end-to-end approaches. The intermediate symbolic representation acts as an effective bridge between charts and captions, enabling C2TFEC to significantly outperform competitive baselines including GPT-4V (§6).

In summary, our contributions are as follows:

- We present the first analysis of factual errors in captions produced by models of various scales using a novel error typology, which results in the CHOCOLATE dataset.
- We introduce the Chart Caption Factual Error Correction task that challenges models to correct factual errors in generated chart captions.
- We present CHARTVE, a reference-free evaluation metric based on visual entailment that correlates better with human judges than LVLMs.

- We propose C2TFEC, an interpretable two-stage error correction framework that performs better than all existing LVLMs.

2 Analyzing Factual Errors

To understand the capabilities of existing models in summarizing key information from charts, we conduct a large-scale analysis on six most advanced chart captioning models on the VisText (Tang et al., 2023a) and Pew (Kantharaj et al., 2022) datasets. To facilitate this process, we introduce an error typology, as illustrated in §2.1. Upon gathering human annotations, we present a detailed analysis of different captioning models (§2.2) and discuss the quality of the collected data (§2.3).

2.1 Error Typology

To understand the frequency of various types of errors made by chart captioning systems, we define a typology of errors as detailed below and demonstrate examples in Table 1.

Value Error A quantitative data value from the chart is incorrectly stated in the caption. This includes numbers representing values on axes, percentages, or other numerical data points.

Label Error A non-numerical label, category, or text element from the chart is incorrectly referenced in the caption. This includes labels on axes, legend items, categorical variables, etc.

Trend Error The overall direction of change over time or comparison between groups is incorrectly described in the caption, such as stating an increasing trend when it is actually decreasing.

Magnitude Error The degree or amount of difference described for a trend is unfaithful to the chart, such as stating an increase “sharp” when the chart shows it is actually “smooth”.

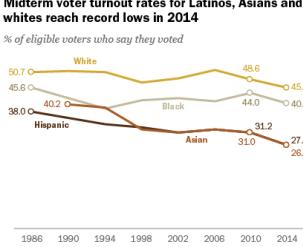
Chart	Category	Example Caption
	Value Error	Asians have a turnout rate of 20.4% in 1990.
	Label Error	Asians have the highest turnout rates across the years.
	Trend Error	From 1986-2014, the turnout rates are <i>increasing</i> overall.
	Magnitude Error	From 1986-2014, the turnout rates are <i>sharply</i> decreasing overall.
	Out-of-context Error	Vietnamese have the highest turnout rates among Asians.
	Nonsense Error	From 1986-2014, #?sep #sep #sep #sep .
	Grammatical Error	The turnout rates are <i>decrease</i> overall.

Table 1: Typology of errors illustrated with an example chart.

Out-of-context Error Concepts, variables, or any information introduced in the caption that does not exist at all in the content of the chart. The caption contains factual statements not grounded in the actual chart contents.

Nonsense Error The caption contains incomplete sentences, disconnected phrases that do not connect logically, or sequences of words that simply do not make coherent sense.

Grammatical Error There are grammatical mistakes in the structure or syntax of the caption.²

2.2 Captioning Model Analysis

We consider various types of models. First, ChartT5 (Zhou et al., 2023), MatCha (Liu et al., 2023b), and UniChart (Masry et al., 2023) are the most advanced task-specific models fine-tuned with in-domain data from the VisText and Pew datasets. Second, DePlot + GPT-4 (Liu et al., 2023a; OpenAI, 2023a) is a LLM-based pipeline approach. Finally, GPT-4V and Bard³ are the strongest LVLMs. For each model and dataset, we randomly sample 100 chart figures and generate the corresponding captions. Invalid output sequences, such as empty strings, are filtered out.

We compute the percentage of sentences with factual errors for different models and datasets, with a breakdown of different error types. Error rates are computed at the sentence level instead of the caption level since different models generate captions of different lengths. A sentence-level evaluation helps mitigate this discrepancy and facilitates a fairer comparison.

From Figure 1, we made the following observations. First, **SOTA chart captioning models often**

fail to produce factual captions. Additionally, as shown in Table 2, we calculated the percentage of non-factual captions, revealing that 82.06% of captions contain at least one factual error. More importantly, even models like GPT-4V and Bard, which have demonstrated proficiency in a variety of vision-language tasks, produce factually incorrect captions 81.27% of the time, as recorded in Table 7. These findings highlight the inherent difficulties of chart captioning tasks and the limitations of SOTA vision-language models.

Second, **task-specific chart captioning models and LVLMs show opposite trends on the two datasets.** Task-specific models, including ChartT5, MatCha, and UniChart, produce fewer errors on the VisText dataset. Conversely, LVLMs, including GPT-4V and Bard, generate significantly fewer errors on the Pew dataset. The key distinctions on these datasets are two: (1) the prevalent labeled values on charts from Pew and (2) the simpler structures in charts from VisText. We hypothesize that LVLMs may be better at utilizing the labeled numbers, while task-specific effectively interpret values via axis alignment. We show an example to validate this hypothesis in Figure 6.

Third, **LVLMs cannot consistently outperform task-specific fine-tuned models.** Despite their extensive training data and parameters, LVLMs may be surpassed by task-specific models with appropriate pre-training objectives and architectures. For example, on the VisText dataset, UniChart outperforms Bard and is comparable to GPT-4V in terms of producing more factual captions owing to UniChart’s various pre-training objectives for chart comprehension, enabling better interpretation of the relationship between data points within charts.

The dataset resulting from the analysis is named **CHOCOLATE (Captions Have Often Chosen Lies**

²Note that we do not consider grammatical errors as factual inconsistency. They are analyzed for assessing fluency.

³We tested Bard before Gemini’s release (Google, 2023b).

	# Factual	# Non-factual	# Total
Sentence	2,561	2,762	5,323
Caption	213	974	1,187

Table 2: Statistics of the captions we analyzed. A sentence is considered factual if and only if it does not contain any factual error. A caption is considered factual if all its sentences are factual.

224
225
226
227
228
229
230
231
232
233
234
About The Evidence), where each instance consists of a chart, a generated chart caption, and error types labeled by human annotators. Drawing insights from Tang et al. (2023b) that factual errors produced by different kinds of models may be easier or more difficult to identify, we categorize CHOCOLATE into three splits: the **LVLM** split, with captions from GPT-4V and Bard; the **LLM** split, featuring DePlot + GPT-4 outputs; and the **FT** split, for ChartT5, UniChart, and MatCha captions. Split details are in Appendix C.

235 2.3 Dataset Quality

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
To evaluate the quality of CHOCOLATE, we measured inter-annotator agreement by calculating Fleiss' Kappa κ (Fleiss, 1971) and the majority vote agreement percentage p , in line with the metrics used by Pagnoni et al. (2021). We applied these metrics across all 5,323 sentences in CHOCOLATE. For determining factual consistency between chart sentences and their corresponding charts, we achieved a Fleiss' Kappa of $\kappa = 0.63$ and a majority vote agreement of $p = 91\%$. For context, Pagnoni et al. (2021) reported a Fleiss' Kappa of $\kappa = 0.58$ and a majority agreement level of $p = 91\%$. This suggests that CHOCOLATE exhibits a quality on par with well-established benchmarks in text-based factual inconsistency detection.

251 3 The Chart Caption Factual Error 252 Correction Task

253
254
255
256
257
258
The dataset collected in §2 enables us to study the Chart Caption Factual Error Correction task. In this section, we first formally provide the definition of this task (§3.1) and propose an effective reference-free evaluation metric based on chart visual entailment (§3.2).

259 3.1 Task Definition

260
261
262
263
264
The input to our task is a chart \mathcal{E} and chart caption \mathcal{C} that may or may not be factually consistent with \mathcal{E} . The goal of chart caption factual error correction is to produce a corrected caption $\hat{\mathcal{C}}$ that fixes factual errors in \mathcal{C} with the minimum amount of edits. If

\mathcal{C} is already faithful to \mathcal{E} , models should output the original caption (i.e. $\hat{\mathcal{C}} = \mathcal{C}$). Following prior work on text-based factual error correction (Thorne and Vlachos, 2021; Huang et al., 2023b; Gao et al., 2023), corrections should be made with as few substitution, insertion, and deletion operations as possible since one can trivially achieve 0% non-factual rate by deleting all words in a caption.

273 3.2 Reference-free Evaluation With Chart 274 Visual Entailment

275
276
277
278
279
280
281
282
There was no established metric for evaluating the factual consistency between a chart and the corresponding chart caption. In addition, since our dataset does not contain annotated reference captions⁴, text-based metrics cannot be adopted. As a solution, we propose CHARTVE, a reference-free evaluation metric based on chart visual entailment, as detailed in the following paragraphs.

283
284
285
286
287
288
289
290
291
292
293
294
CHARTVE Overview We formulate the inconsistency detection problem as a chart visual entailment task. Given a chart caption sentence c and a chart \mathcal{E} , the task is to predict whether the relationship from \mathcal{E} to c as ENTAILMENT (factually consistent) or NOTENTAILMENT (factually inconsistent). The main challenge of learning a visual entailment model for this task is the lack of data. To overcome this challenge, we repurpose data from relevant tasks, such as chart QA, as positive samples. Then, we propose a table-guided negative data generation to produce negative samples.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Positive Data Creation We consider datasets from two tasks that are closely related to the chart visual entailment task: chart question answering and chart captioning. We utilize two datasets from chart question answering: ChartQA (Masry et al., 2022) and PlotQA (Methani et al., 2020). Using a QA2Claim model (Huang et al., 2023b), we transform the question-answer pairs into declarative statements and pair them with the original charts to form positive instances (ENTAILMENT). For chart captioning, captions from VisText (Tang et al., 2023a) and Chart-to-Text (Kantharaj et al., 2022) are segmented into individual sentences. Each sentence is paired with the relevant chart to create a positive instance. These methods allow us to repurpose existing resources for training CHARTVE.

⁴Reference captions are not collected due to the challenges of curating high-quality references through crowd-sourcing.

311 **Table-guided Negative Data Generation** Generating
 312 negative training samples is achieved by
 313 perturbing the positive instances grounded in the
 314 underlying data tables of the charts. For a chart \mathcal{E}_i
 315 and its underlying data table $\mathcal{A}_{\mathcal{E}_i}$, we locate values
 316 in $\mathcal{A}_{\mathcal{E}_i}$ that matches a substring within the positive
 317 caption c_i^+ . When a match is found, the substring
 318 in the caption is substituted with a different value
 319 from the same column in $\mathcal{A}_{\mathcal{E}_i}$, yielding a value or
 320 label-error infused negative sentence c_i^- , maintaining
 321 relevance while ensuring inconsistency with
 322 \mathcal{E}_i . For trend-related errors, we replace trend-terms
 323 found in c_i^+ with their opposites, drawing on
 324 a specific lexicon of terms like “increase” and
 325 “decrease,” thereby creating trend-contradictory
 326 statements. Furthermore, out-of-context errors are
 327 crafted by pairing \mathcal{E}_i with a mismatched caption
 328 c_j^+ from another chart, where $i \neq j$. This simulates
 329 captions filled with unrelated data.

330 The above process is illustrated in Algorithm
 331 1. We use the training, development, and test sets
 332 of the repurposed datasets for training, validating,
 333 and testing CHARTVE. This is vital for ensuring
 334 that CHARTVE is free from data contamination
 335 in downstream applications. In total, we collected
 336 over 595K instances partitioned into training,
 337 development, and test splits with a ratio of
 338 522:36:37, respectively.

339 **Learning CHARTVE** We selected UniChart as
 340 our base model, given its superior performance
 341 amongst comparable-size models⁵. Recognizing
 342 that UniChart has been pre-trained on chart ques-
 343 tion answering tasks, we employ a tailored input
 344 template t as follows:

345 *Does the image entail this statement:*
 346 *“SENTENCE”?*

347 In this template, *SENTENCE* replaces the chart cap-
 348 tion sentence c . Taking in a chart \mathcal{E} and template t
 349 as input, UniChart is fine-tuned to produce the to-
 350 ken “yes” if the chart \mathcal{E} entails the caption sentence
 351 c , and “no” otherwise using maximum likelihood
 352 estimate. During inference time, we use the same
 353 input format and probe the logits corresponding
 354 to the “yes” (l_{yes}) and “no” (l_{no}) decoder tokens.
 355 Following this, we apply the softmax function to
 356 convert these logits into an entailment score $s(\mathcal{E}, c)$
 357 that ranges from 0 to 1:

358 ⁵Our fine-tuning begins with this checkpoint:
 359 <https://huggingface.co/ahmed-masry/unicart-base-960>.

Model	CHOCOLATE		
	LVLM	LLM	FT
SUMMAC	-0.011	0.023	0.036
QAFACTEVAL	0.064	0.045	0.054
LLaVA-1.5-13B	0.002	0.057	0.214
Bard	-0.014	0.105	0.291
GPT-4V	0.157	0.205	0.215
DePlot + GPT-4	0.129	0.117	0.109
CHARTVE (Ours)	0.178	0.091	0.215

359 Table 3: Kendall’s Tau correlation of different ap-
 360 proaches on the CHOCOLATE dataset.

$$361 s(\mathcal{E}, c) = \frac{e^{l_{\text{yes}}}}{e^{l_{\text{yes}}} + e^{l_{\text{no}}}}. \quad (1)$$

362 Here, e is the base of the natural logarithm. Fi-
 363 nally, we compute the minimum of the entailment
 364 scores for all sentences within a caption, denoted
 365 by $S(\mathcal{E}, \mathcal{C})$, where \mathcal{C} represents the set of all cap-
 366 tion sentences for chart \mathcal{E} :

$$367 S(\mathcal{E}, \mathcal{C}) = \min_{c \in \mathcal{C}} s(\mathcal{E}, c). \quad (2)$$

368 **Meta-evaluation of Different Evaluation Metrics**
 369 To evaluate the effectiveness of different methods
 370 in assessing the factuality of generated captions on
 371 the CHOCOLATE dataset, we employ Kendall’s Tau
 372 ([Kendall, 1938](#)) to compute the correlation between
 373 these methods and human judgments. Given the
 374 absence of prior work on factual inconsistency
 375 detection methods for chart captions, we compare
 376 our CHARTVE with zero-shot capable methods,
 377 including DePlot + GPT-4, Bard, GPT-4V, and
 378 the leading open-source LVLM, LLaVA-1.5-13B
 379 ([Liu et al., 2023c](#)). Text-based factuality metrics,
 380 SUMMAC ([Laban et al., 2022](#)) and QAFACTEVAL
 381 ([Fabbri et al., 2022b](#)), which compute the factual
 382 consistency between the reference caption and the
 383 generated caption, are also included. The prompts
 384 for these models are detailed in Appendix E.

385 **Meta-evaluation**, summarized in Table 3, shows
 386 that, overall, **metrics exhibit the strongest cor-
 387 relation with human judgment on the FT split
 388 and the weakest on the LVLM split**. This pattern
 389 aligns with expectations: the FT captions are
 390 littered with more obvious mistakes, such as out-of-
 391 context and nonsense errors, while errors stemming
 392 from LVLMs are harder to detect since they often
 393 demand intricate inferences regarding the data
 394 points’ positions relative to the axes, as detailed
 395 in Figure 1. Importantly, Our CHARTVE excels on
 396 the challenging LVLM split, but less so on the LLM
 397 split, likely due to shifts in token distribution, as
 398 DePlot + GPT-4 occasionally employs table-centric

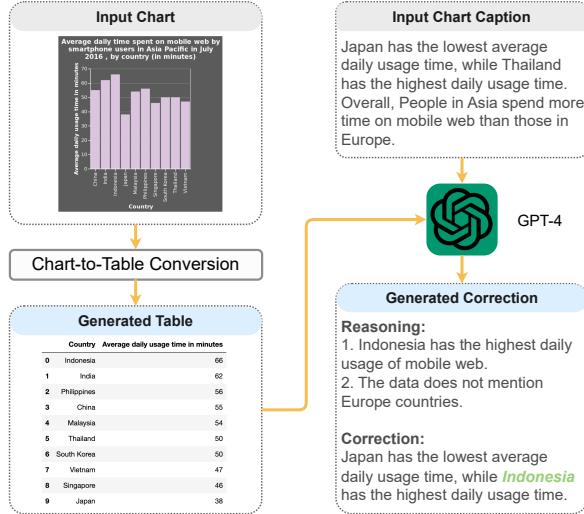


Figure 2: An overview of C2TFEC. Our approach decomposes visual reasoning into image-to-structure rendering and text-based reasoning, allowing for interpretability and better correction of chart captions.

terminology (e.g., “columns” and “entries”) absent from CHARTVE’s training data. Despite this, **CHARTVE compares favorably to proprietary LVLMs and outperforms LLaVA-1.5-13B, despite CHARTVE being 64 times smaller in scale.**

Bard and GPT-4V lead on the LLM and FT splits, respectively. However, Bard shows a negative correlation on the LVLM split, hinting at LVLMs’ limitations in assessing the factuality of chart captions. Thus, we advocate for using the best-performing metric for each split for evaluation.

4 Methodology

In correcting factual errors in generated captions, we propose C2TFEC, a two-step, interpretable framework, as shown in Figure 2. C2TFEC first transforms input charts into data tables (§4.1), then rectifies errors in the caption using the tabular data (4.2). This framework is motivated by our analysis on “DePlot + GPT-4”, which shows that a notable proportion of errors in caption generation originated from the DePlot component. To mitigate this, we develop a stronger chart-to-table model based on UniChart, significantly improved with expansive fine-tuning datasets. The advantage of C2TFEC is its ability to harness the reasoning strengths of GPT-4 to faithfully correct errors, boosting caption factuality.⁶

⁶Here, we do not consider approaches based on LVLMs due to their tendency towards factual errors.

4.1 Chart-To-Table Conversion

The training data for our chart-to-table model is sourced from datasets including VisText, Chart-to-Text, ChartQA, and PlotQA, where we repurpose original charts and underlying data tables for our model’s training. We collected a total of 65K instances with a train:dev:test split of 61:2:2. Similar to DePlot (Liu et al., 2023a), our model is also trained to generate chart titles, enhancing its ability to contextualize the data represented in table form. Let \mathcal{M} denote our proposed model. For a given chart figure \mathcal{E} , the model autoregressively generates a chart title \mathcal{T} and a corresponding table \mathcal{A} (i.e. $\mathcal{T}, \mathcal{A} = \mathcal{M}(\mathcal{E})$).

4.2 Table-based Error Rectification

With the input chart now converted into structured tabular data, the second phase uses the reasoning capacity of LLMs to address the factual inconsistency between \mathcal{C} and the generated table \mathcal{A} . Here, we use GPT-4 as the LLM. GPT-4 first provides an explanatory breakdown of detected factual errors in \mathcal{C} based on the table contents. It then uses this explanation to produce a corrected caption $\hat{\mathcal{C}}$. This transparent process enables users to validate the reasoning behind each correction.

C2TFEC separates the factual verification from language generation, taking advantage of the complementary strengths of separate vision and language models tailored to their respective domains. The symbolic table representation acts as a bridge to enhance and validate factual consistency in chart captions.

5 Experimental Settings

To assess C2TFECs ability in factual error correction for chart captions, we experiment on the CHOCOLATE dataset.

Datasets Our CHOCOLATE dataset includes 1,187 chart-caption pairs with factually consistent and inconsistent captions, as detailed in §2. It is split into LVLM, LLM, and FT, reflecting the diversity of models that generated the captions.

Baselines Since CHOCOLATE does not comprise training data, we compare C2TFEC against zero-shot capable LVLMs and LLMs, including LVLMs, LLaVA-1.5-13B, GPT-4V, Bard, as well as DePlot + GPT-4. For a fairer comparison between our approach and DePlot, we continue fine-tuning DePlot

Dataset Split →	CHOCOLATE-LVLM		CHOCOLATE-LLM		CHOCOLATE-FT	
Evaluation Metric →	CHARTVE (%)	Levenshtein	GPT-4V (%)	Levenshtein	Bard (%)	Levenshtein
Correction Model ↓						
N/A	31.13	0.0	23.47	0.0	43.10	0.0
LLaVA	31.20	19.09	22.45	9.20	52.94	16.94
Bard	14.13	127.83	31.77	77.63	75.69	42.80
GPT-4V	<u>33.30</u>	31.26	52.35	50.57	<u>76.55</u>	30.92
DePlot + GPT-4	<u>32.47</u>	81.37	22.45	21.25	<u>70.31</u>	38.79
DePlot _{CFT} + GPT-4	32.91	84.99	25.51	55.35	70.47	40.12
C2TFEC (Ours)	34.34	72.19	<u>39.29</u>	53.11	81.14	37.36

Table 4: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard, when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein computes the edit distance between the corrected caption and the original caption (denoted as “N/A”). Metric scores are shown separately for each of the three data splits based on captioning model source. The highest and second highest performing models per evaluation metric and split are highlighted in boldface and underlines respectively.

for an additional 5,000 steps on VisText, an approach which has been shown effective for adapting models to unseen domains (Huang et al., 2023b). We denote this model as DePlot_{CFT}. The prompts used for each model are described in Appendix E.

Evaluation Metrics We assess the factual consistency between corrected captions and input charts using CHARTVE, GPT-4V, and Bard, according to our recommendations in §3.2. In addition, since corrections should be made with as few edits as possible, we measure the number of edits using the Levenshtein distance (Levenshtein et al., 1966).

6 Results

6.1 Main Results

The results in Table 4 demonstrate that our C2TFEC achieves the best performance for factual consistency on the LVLM and FT splits, and takes the second place on the LLM split. This indicates that **the two-step process of first transforming charts into structured data tables and then rectifying factual inconsistencies using table-caption alignment is an effective strategy**.

Bard’s underperformance on the LVLM split and its negative correlation with human judgments of factuality, as shown in Table 3, implies its unreliability in detecting errors in chart captions. Additionally, when used as an evaluator, GPT-4V tends to assign high factuality scores to its own corrected outputs on all three splits (see Table 8), while other metrics show GPT-4V lagging behind C2TFEC. This suggests GPT-4V may suffer from the *self-enhancement bias* (Zheng et al., 2023), overestimating its own performance when used for evaluation. We thus perform human evaluations in §6.2 to verify the effectiveness of our approach.

6.2 Human Evaluation

Our human assessments focus on comparing C2TFEC with GPT-4V by using the same annotation tasks detailed in §2 for factual error identification, with the same annotators evaluating. We sampled 30 charts from each split of LVLM, LLM, and FT. For each chart, human judges are presented with a caption generated by one of the models.

Figure 3 demonstrates C2TFECs superiority in multiple error categories, especially with a substantial decrease in Value Errors, over 20% better in the LVLM and LLM splits, and halving the overall error rate compared to GPT-4V. C2TFEC virtually eliminated Trend Errors, highlighting its strong error correction ability, particularly for axes-related errors like Label, Value, and Trend errors. A representative comparison is shown in Figure 4. GPT-4V’s shortcomings seem to stem from its failure to accurately infer data point values from charts as evidenced in Figure 7.

In contrast, GPT-4V is better in addressing Out-of-context Errors, involving information out of the chart’s scope. However, GPT-4V seemed challenged in rectifying errors within captions generated by itself, particularly within the LVLM split. This observation echoes recent findings on LLMs’ inability to self-correct (Huang et al., 2023a; Valmeekam et al., 2023), we find that **LVLMs also cannot perform self-correction**. More importantly, our human evaluation results, combined with our findings in Table 4 and Table 8, reflect that GPT-4V is subject to serious self-enhancement bias. Consequently, **although GPT-4V’s capabilities are formidable, we recommend not using them to assess their own outputs**.

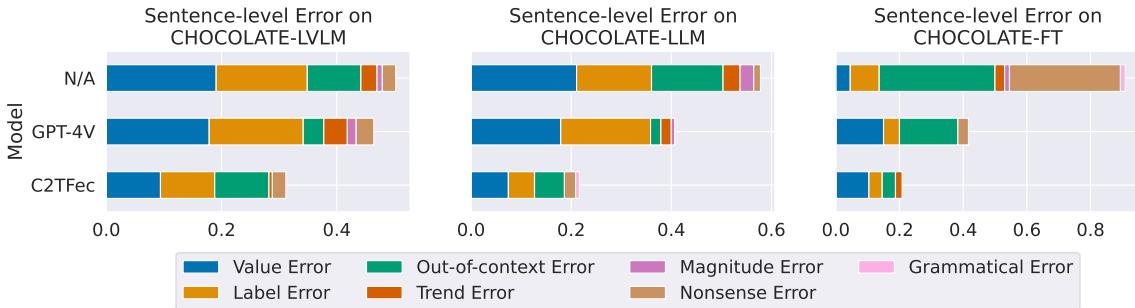


Figure 3: Human evaluation results on subsets of the CHOCOLATE dataset, comparing C2TFEC and GPT-4V. C2TFEC corrects significantly more errors compared to GPT-4V, especially Value, Label, and Trend Errors.

540 7 Related Work

541 7.1 Chart Captioning

542 Chart captioning is essential for accurately interpreting and communicating the information 543 conveyed by chart images, particularly in news 544 articles and social media, where factuality is 545 imperative to prevent misinformation. While 546 current datasets like FigureQA (Kahou et al., 547 2017), DVQA (Kafle et al., 2018), PlotQA (Methani et al., 548 2020), VisText (Tang et al., 2023a), and Chart-to- 549 Text (Kantharaj et al., 2022) offer chart image 550 descriptions and question-answer pairs to train 551 models, advancements in vision-language models 552 like ChartT5 (Zhou et al., 2023), MatCha (Liu et al., 553 2023b), and UniChart (Masry et al., 2023) have 554 largely prioritized relevance and fluency over 555 factual accuracy. Our work provides a rigorous 556 characterization of factual errors in chart captioning 557 and comparisons of methods to address this gap. By 558 focusing on faithfulness and correction, we 559 complement the emphasis of prior work and aim to 560 produce more trustworthy chart captions.

562 7.2 Factual Error Correction

563 Prior research in factual error correction has mainly 564 targeted text summarization and fact-checking. 565 Within summarization, the bulk of work has been 566 carried out in the news domain and often involves 567 methods that substitute inconsistent entities from 568 the source text. Some studies have enhanced 569 this approach through entity-replacement reranking 570 techniques (Chen et al., 2021), autoregressive 571 models for rewriting and perturbation filtering (Cao 572 et al., 2020; Zhu et al., 2021; Adams et al., 2022), 573 and editing strategies that focus on selective deletion 574 (Wan and Bansal, 2022). In contrast, Fab- 575 bri et al. (2022a) employed sentence compression 576 datasets to train their models. More recently, Gao 577 et al. (2023) have expanded the focus of these 578 studies to include dialogue summarization.

579 Moving to the domain of fact-checking, this area 580 has experienced a flurry of activity, particularly 581 with the increased attention on combating mis- 582 information (Fung et al., 2021; Wu et al., 2022; Fung 583 et al., 2022; Huang et al., 2023d,c; Qiu et al., 2023). 584 Early approaches train a distantly supervised model 585 that involves a masker and a corrector (Shah et al., 586 2020; Thorne and Vlachos, 2021). Thorne and Vla- 587 chos (2021) made significant strides by developing 588 the first factual error correction dataset for fact- 589 checking, thus enabling fully supervised training 590 for error correctors. Recently, Huang et al. (2023b) 591 propose an interpretable framework that breaks 592 down the process of fact-checking into individual 593 components. Our study builds on these insights 594 and extends them to a multimodal context, which 595 challenges models to understand the chart images 596 and the consistency between different modalities.

597 8 Conclusion

598 Our study exposes the prevalent issue of factual 599 errors in chart captions generated by various chart 600 captioning models and introduces CHOCOLATE 601 to scrutinize these errors. We establish the Chart 602 Caption Factual Error Correction task to propel 603 the creation of trustworthy captioning systems and 604 present CHARTVE, an evaluation model surpass- 605 ing LVLMs in mirroring human assessments of 606 caption factuality. Our two-stage correction frame- 607 work, C2TFEC, provides an interpretable means 608 of improving caption factuality by transforming 609 visual data into structured tables for more faith- 610 ful error corrections. Our work marks an essential 611 step in ensuring verifiable and trustworthy chart 612 captions. Future directions include extending our 613 approach to multimodal contexts beyond charts, 614 developing more sophisticated error detection and 615 correction algorithms, and creating datasets cover- 616 ing a broader range of visual content.

617 9 Ethical Considerations

618 Text generation models pre-trained on information
619 from the Web are known to demonstrate various
620 biases. Despite the primary focus on models and
621 datasets that represent the English-speaking popula-
622 tion’s culture, manual examinations of the CHOCO-
623 LATE dataset reveal no evidence of biases related to
624 gender, age, race, or other socioeconomic factors.

625 In §2 and §6.2, we recruited annotators to assess
626 the factual consistency of chart captions. The an-
627 notators were fairly compensated for their efforts,
628 as detailed in Appendix B. During the annotation
629 process, we made provisions for open communica-
630 tion, allowing the annotators the flexibility to work
631 at their preferred pace and the freedom to withdraw
632 from the project at any point. Additionally, we
633 took measures to protect the anonymity of the con-
634 tributors by excluding any personally identifiable
635 information from the dataset.

636 10 Limitations

637 We acknowledge that our study did not rigorously
638 examine the sensitivity of different systems to the
639 variations in the prompts used. The effectiveness of
640 several natural language processing tasks is known
641 to be influenced by the design of the input prompts.
642 Our omission of a systematic sensitivity analysis
643 means that there could be a range of responses
644 to different prompts that we have not accounted
645 for, which may affect the generalization of our re-
646 sults. However, we did not perform prompt tuning
647 to craft prompts that benefit our proposed model.
648 Therefore, the comparisons across all models are
649 fair. Due to the scope of our study, we leave the
650 prompt sensitivity experiments for future work.

651 In addition, charts in the datasets we used are
652 mostly line plots and bar plots. Future efforts can
653 extend our work with additional analyses for other
654 types of charts, such as violin plots and distribution
655 plots.

656 References

657 Griffin Adams, Han-Chin Shing, Qing Sun, Christo-
658 pher Winestock, Kathleen McKeown, and Noémie
659 Elhadad. 2022. [Learning to revise references for](#)
660 [faithful summarization](#). In *Findings of the Associa-*
661 *tion for Computational Linguistics: EMNLP 2022*,
662 pages 4009–4027, Abu Dhabi, United Arab Emirates.
663 Association for Computational Linguistics.

664 Meng Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit
665 Cheung. 2020. [Factual error correction for abstrac-](#)

666 [tive summarization models](#). In *Proceedings of the*
667 *2020 Conference on Empirical Methods in Natural*
668 *Language Processing (EMNLP)*, pages 6251–6258,
669 *Online*. Association for Computational Linguistics.

670 Sihao Chen, Fan Zhang, Kazoo Sone, and Dan Roth.
671 2021. [Improving faithfulness in abstractive sum-](#)
672 [marization with contrast candidate generation and](#)
673 [selection](#). In *Proceedings of the 2021 Conference of*
674 *the North American Chapter of the Association for*
675 *Computational Linguistics: Human Language Tech-*
676 *nologies*, pages 5935–5941, *Online*. Association for
677 Computational Linguistics.

678 Alex Fabbri, Prafulla Kumar Choubey, Jesse Vig,
679 Chien-Sheng Wu, and Caiming Xiong. 2022a. [Im-](#)
680 [proving factual consistency in summarization with](#)
681 [compression-based post-editing](#). In *Proceedings of*
682 *the 2022 Conference on Empirical Methods in Nat-*
683 *ural Language Processing*, pages 9149–9156, Abu
684 Dhabi, United Arab Emirates. Association for Com-
685 putational Linguistics.

686 Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
687 Caiming Xiong. 2022b. [QAFactEval: Improved](#)
688 [QA-based factual consistency evaluation for sum-](#)
689 [marization](#). In *Proceedings of the 2022 Conference*
690 *of the North American Chapter of the Association for*
691 *Computational Linguistics: Human Language Tech-*
692 *nologies*, pages 2587–2601, Seattle, United States.
693 Association for Computational Linguistics.

694 Joseph L Fleiss. 1971. Measuring nominal scale agree-
695 [ment among many raters](#). *Psychological bulletin*,
696 76(5):378.

697 Tsu-Jui Fu, William Yang Wang, Daniel McDuff, and
698 Yale Song. 2022. [Doc2ppt: automatic presentation](#)
699 [slides generation from scientific documents](#). In *Pro-*
700 *ceedings of the AAAI Conference on Artificial Intelli-*
701 *gence*, volume 36, pages 634–642.

702 Yi Fung, Christopher Thomas, Revanth Gangi Reddy,
703 Sandeep Polisetty, Heng Ji, Shih-Fu Chang, Kathleen
704 McKeown, Mohit Bansal, and Avi Sil. 2021. [InfoSur-](#)
705 [geon: Cross-media fine-grained information con-](#)
706 [sistency checking for fake news detection](#). In *Proceed-*
707 *ings of the 59th Annual Meeting of the Association for*
708 *Computational Linguistics and the 11th International*
709 *Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 1683–1698, *Online*.
710 Association for Computational Linguistics.

711 Yi R. Fung, Kung-Hsiang Huang, Preslav Nakov, and
712 Heng Ji. 2022. [The battlefield of combating misinfor-](#)
713 [mation and coping with media bias](#). In *Proceedings*
714 *of the 28th ACM SIGKDD Conference on Knowl-*
715 *edge Discovery and Data Mining*, KDD ’22, page
716 4790–4791, New York, NY, USA. Association for
717 Computing Machinery.

719 Mingqi Gao, Xiaojun Wan, Jia Su, Zhefeng Wang, and
720 Baoxing Huai. 2023. [Reference matters: Bench-](#)
721 [marking factual error correction for dialogue sum-](#)
722 [marization with fine-grained evaluation framework](#).

723	In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 13932–13959, Toronto, Canada. Association for Computational Linguistics.	778
724		779
725		780
726		781
727	Google. 2023a. <i>Bard</i> .	782
728	Google. 2023b. <i>Gemini - google deepmind</i> .	783
729		784
730		785
731	Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. 2023a. Large language models cannot self-correct reasoning yet. <i>arXiv preprint arXiv:2310.01798</i> .	
732		
733		
734	Kung-Hsiang Huang, Hou Pong Chan, and Heng Ji. 2023b. <i>Zero-shot faithful factual error correction</i> . In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 5660–5676, Toronto, Canada. Association for Computational Linguistics.	
735		
736		
737		
738		
739		
740	Kung-Hsiang Huang, Hou Pong Chan, Kathleen McKeown, and Heng Ji. 2023c. <i>Manitweet: A new benchmark for identifying manipulation of news on social media</i> . <i>arXiv preprint arXiv:2305.14225</i> .	
741		
742		
743		
744	Kung-Hsiang Huang, Kathleen McKeown, Preslav Nakov, Yejin Choi, and Heng Ji. 2023d. <i>Faking fake news for real fake news detection: Propaganda-loaded training data generation</i> . In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 14571–14589, Toronto, Canada. Association for Computational Linguistics.	
745		
746		
747		
748		
749		
750		
751		
752	Kushal Kafle, Scott Cohen, Brian Price, and Christopher Kanan. 2018. <i>Dvqa: Understanding data visualizations via question answering</i> . In <i>CVPR</i> .	
753		
754		
755	Samira Ebrahimi Kahou, Adam Atkinson, Vincent Michalski, Ákos Kádár, Adam Trischler, and Yoshua Bengio. 2017. <i>Figureqa: An annotated figure dataset for visual reasoning</i> . <i>ArXiv</i> , abs/1710.07300.	
756		
757		
758		
759	Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque, and Shafiq Joty. 2022. <i>Chart-to-text: A large-scale benchmark for chart summarization</i> . In <i>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 4005–4023, Dublin, Ireland. Association for Computational Linguistics.	
760		
761		
762		
763		
764		
765		
766		
767	Maurice G Kendall. 1938. A new measure of rank correlation. <i>Biometrika</i> , 30(1/2):81–93.	
768		
769	Philippe Laban, Tobias Schnabel, Paul N. Bennett, and Marti A. Hearst. 2022. <i>SummaC: Re-visiting NLI-based models for inconsistency detection in summarization</i> . <i>Transactions of the Association for Computational Linguistics</i> , 10:163–177.	
770		
771		
772		
773		
774	Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In <i>Soviet physics doklady</i> , volume 10, pages 707–710. Soviet Union.	
775		
776		
777		
	Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhui Chen, Nigel Collier, and Yasemin Altun. 2023a. <i>DePlot: One-shot visual language reasoning by plot-to-table translation</i> . In <i>Findings of the Association for Computational Linguistics: ACL 2023</i> , pages 10381–10399, Toronto, Canada. Association for Computational Linguistics.	
		786
		787
		788
		789
		790
		791
		792
		793
		794
		795
		796
		797
		798
		799
		800
		801
	Fuxiao Liu, Yinghan Wang, Tianlu Wang, and Vicente Ordonez. 2021. <i>Visual news: Benchmark and challenges in news image captioning</i> . In <i>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</i> , pages 6761–6771, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.	
		802
		803
		804
	Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2023c. Improved baselines with visual instruction tuning.	
		805
		806
		807
		808
		809
		810
		811
	Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. 2022. <i>ChartQA: A benchmark for question answering about charts with visual and logical reasoning</i> . In <i>Findings of the Association for Computational Linguistics: ACL 2022</i> , pages 2263–2279, Dublin, Ireland. Association for Computational Linguistics.	
		812
		813
		814
		815
	Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Enamul Hoque, and Shafiq Joty. 2023. <i>Unichart: A universal vision-language pretrained model for chart comprehension and reasoning</i> .	
		816
		817
		818
		819
	Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. 2020. <i>Plotqa: Reasoning over scientific plots</i> . In <i>The IEEE Winter Conference on Applications of Computer Vision (WACV)</i> .	
		820
		821
		822
		823
		824
	João Monteiro, Asanobu Kitamoto, and Bruno Martins. 2017. Situational awareness from social media photographs using automated image captioning. In <i>2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA)</i> , pages 203–211. IEEE.	
		825
		826
	OpenAI. 2023a. <i>Gpt-4 technical report</i> . <i>arXiv preprint arXiv:2303.08774</i> .	
		827
	OpenAI. 2023b. <i>Gpt-4v(ision) system card</i> .	
		828
		829
		830

831	factuality metrics. In <i>Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</i> , pages 4812–4829, Online. Association for Computational Linguistics.	888
832		889
833		890
834		891
835		892
836	Haoyi Qiu, Kung-Hsiang Huang, Jingnong Qu, and Nanyun Peng. 2023. Amrfact: Enhancing summarization factuality evaluation with amr-driven training data generation. <i>arXiv preprint arXiv:2311.09521</i> .	893
837		894
838		895
839		896
840	Darsh Shah, Tal Schuster, and Regina Barzilay. 2020. Automatic fact-guided sentence modification. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 34, pages 8791–8798.	897
841		
842		
843		
844	Benny Tang, Angie Boggust, and Arvind Satyanarayanan. 2023a. VisText: A benchmark for semantically rich chart captioning. In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 7268–7298, Toronto, Canada. Association for Computational Linguistics.	898
845		899
846		900
847		901
848		902
849		903
850		904
851	Liyan Tang, Tanya Goyal, Alex Fabbri, Philippe Laban, Jiacheng Xu, Semih Yavuz, Wojciech Kryscinski, Justin Rousseau, and Greg Durrett. 2023b. Understanding factual errors in summarization: Errors, summarizers, datasets, error detectors. In <i>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 11626–11644, Toronto, Canada. Association for Computational Linguistics.	905
852		906
853		907
854		908
855		909
856		910
857		911
858		912
859		
860	James Thorne and Andreas Vlachos. 2021. Evidence-based factual error correction. In <i>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</i> , pages 3298–3309, Online. Association for Computational Linguistics.	
861		
862		
863		
864		
865		
866		
867	Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. 2023. Can large language models really improve by self-critiquing their own plans? <i>arXiv preprint arXiv:2310.08118</i> .	
868		
869		
870		
871	David Wan and Mohit Bansal. 2022. FactPEGASUS: Factuality-aware pre-training and fine-tuning for abstractive summarization. In <i>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</i> , pages 1010–1028, Seattle, United States. Association for Computational Linguistics.	
872		
873		
874		
875		
876		
877		
878		
879	Zhenhailong Wang, Ansel Blume, Sha Li, Genglin Liu, Jaemin Cho, Zineng Tang, Mohit Bansal, and Heng Ji. 2023. Paxion: Patching video-language foundation models with action knowledge. In <i>Proc. 2023 Conference on Neural Information Processing Systems (NeurIPS2023) [Spotlight Paper]</i> .	
880		
881		
882		
883		
884		
885	Xueqing Wu, Kung-Hsiang Huang, Yi Fung, and Heng Ji. 2022. Cross-document misinformation detection based on event graph reasoning. In <i>Proceedings of</i>	
886		
887		

913 A Further Discussions

914 **Captioning Model Analysis** In addition the findings
 915 we summarize in §2.2, we also found that
 916 **the error distribution for each model differs on**
 917 **different datasets**. Almost all models make signifi-
 918 cantly more Nonsense Errors on the Pew dataset.
 919 In addition, task-specific models observe a non-
 920 negligible increase in Out-of-context Errors on the
 921 Pew dataset. Both observations could be explained
 922 by the fact that these models are sometimes con-
 923 fused about the charts in Pew, which are often as-
 924 sociated with more complicated structures.

925 Furthermore, in Figure 1, the error rates are
 926 computed as the number of such errors divided
 927 by the number of sentences. While this pro-
 928 vides an overview of the *frequency* for each
 929 error, it does not indicate the likelihood of a
 930 value/label/trend/magnitude-related mention in the
 931 generated captions being factual. This limitation
 932 can result in an underrepresentation of certain error
 933 types – for instance, the infrequent occurrence of
 934 Magnitude Errors as shown in Figure 1 is more a
 935 consequence of the scarcity of magnitude-related
 936 mentions in the captions rather than an indication of
 937 the models’ superior trend variance comprehen-
 938 sion. To address this, we sample 30 generated captions

939 for each model from each dataset and compute
 940 another error rate as the number of sentences con-
 941 taining such non-factual mentions over the number
 942 of sentences containing such mentions. The results
 943 are shown in Table 5. The outcomes corroborate
 944 the observations in §2.2, while Table 5 offers a
 945 supplementary perspective on model performance.

946 **Meta-evaluation Results** For the text-based met-
 947 rics presented in Table 3, they both perform weakly
 948 in determining the factuality of the generated cap-
 949 tion. This is largely because charts often contain
 950 much denser information compared to the corre-
 951 sponding reference. As a result, text-only factuality
 952 metrics are unsuitable for assessing factual consis-
 953 tency between charts and captions.

954 **Main Results** We see that C2TFEC outperforms
 955 the pipeline approaches of DePlot/DePlot_{CFT} +
 956 GPT-4 across the board. While both methods
 957 utilize an intermediate tabular representation and
 958 leverage GPT-4 for language generation/correction,
 959 C2TFEC employs a superior chart-to-table conver-
 960 sion model with much more comprehensive train-
 961 ing datasets. This results in extracted tables that
 962 more faithfully capture the underlying chart data,
 963 better facilitating the downstream factual error cor-

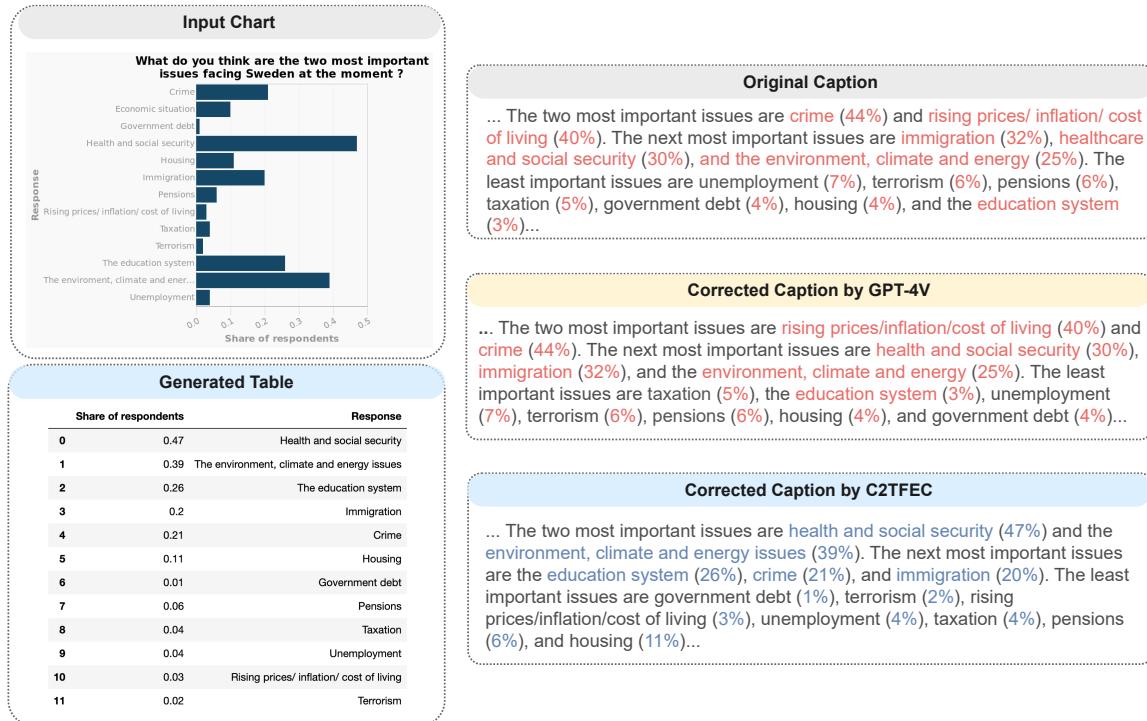


Figure 4: An example showing how decomposing the visual reasoning process into image-to-structure rendering and text-based reasoning allows C2TFEC to accurately rectify errors in chart captions. Texts marked in red indicate non-factual information units in the caption, whereas those marked in blue represent information units faithful to the chart. In this instance, C2TFEC successfully corrects all Value and Label Errors presented in the original caption. Conversely, GPT-4V fails to identify the factual inconsistencies and merely reorders the entities in the caption.

Dataset →	VisText				Pew				
	Error Type →	Value	Label	Trend	Magnitude	Value	Label	Trend	Magnitude
Model ↓									
ChartT5	92.31 (12/13)	64.71 (33/51)	32.00 (8/25)	100.00 (3/3)	66.67 (2/3)	100.00 (2/2)	N/A (0/0)	N/A (0/0)	
MatCha	71.43 (5/7)	50.00 (13/26)	23.33 (7/30)	50.00 (1/2)	100.00 (2/2)	66.67 (2/3)	N/A (0/0)	N/A (0/0)	
UniChart	33.33 (3/9)	29.41 (10/34)	0.00 (0/14)	50.00 (2/4)	51.72 (15/29)	46.67 (14/30)	100.00 (1/1)	N/A (0/0)	
DePlot + GPT-4	51.52 (34/66)	44.78 (30/67)	30.77 (8/26)	0.00 (0/7)	49.25 (33/67)	34.48 (10/29)	46.15 (6/13)	0.00 (0/3)	
Bard	69.12 (47/69)	69.39 (34/49)	43.75 (14/32)	15.38 (2/13)	38.10 (40/105)	27.71 (23/83)	11.11 (2/18)	40.00 (2/5)	
GPT-4V	40.48 (17/42)	33.33 (17/51)	20.75 (11/53)	23.53 (4/17)	8.20 (10/122)	9.02 (11/122)	16.67 (2/12)	33.33 (2/6)	

Table 5: Error rates (%) are calculated by dividing the number of sentences containing such non-factual mentions (e.g. non-factual mentions of values) by the number of sentences containing such mentions (e.g. all mentions of values). The lower the error rate, the better the performance.

Dataset Split →	CHOCOLATE-LVLM		CHOCOLATE-LLM		CHOCOLATE-FT		
	Evaluation Metric →	CHARTVE (%)	Levenshtein	GPT-4V (%)	Levenshtein	Bard (%)	Levenshtein
Correction Model ↓							
C2TFEC		29.29	62.85	40.63	35.63	49.49	23.48
C2TFEC (w/ GT Table)		29.90	52.82	40.69	32.59	50.93	23.47

Table 6: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard, when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein computes the edit distance between the corrected caption and the original caption. Metric scores are shown separately for each of the three data splits. Note that the Bard metric corresponds to Gemini Pro (Google, 2023b) since the experiments were conducted after its release.

rection. C2TFEC also requires a relatively small number of edits to captions according to Levenshtein distance, making focused changes to improve factuality while minimizing revisions. An example output from C2TFEC is shown in Figure 4. By comparison, the proprietary LVLM Bard produces corrected captions requiring 127.83 as many character-level edits on average. This signals excessive rewriting rather than targeted error correction. After manually inspecting Bard’s outputs, we found the reason is that Bard oftentimes try to improve the fluency of the caption by paraphrasing. Hence, it makes more edits to the generated captions.

Understanding The Upper Bound We seek to understand the performance upper bound of our proposed two-stage framework by replacing generated tables with ground-truth data tables. Since the ground-truth data tables in Pew are not available, we experiment with only the instances from the VisText dataset. The results are demonstrated in Table 6.

B Annotation Details

In this section, we present the details of our human annotation conducted in §2.

B.1 Worker Qualification

We laid out specific preliminary criteria for the recruitment of MTurk workers with impressive per-

formance records. These prerequisites comprise a HIT approval percentage of 99% or above, a minimum of 10,000 approved HITs, and the worker’s location within the United Kingdom, Canada, or the United States.

Moreover, beyond these initial criteria, suitable workers have to successfully pass two staged qualification examinations focused on identifying factual errors in generated chart captions. To optimize the qualification procedure, the authors manually annotate two HITs, each consisting of one chart and one caption produced by one of our chart captioning models. In every qualification round, annotators are exposed to one of these annotated examples. Workers whose annotations fail to correspond closely with ours are eliminated from the selection procedure.

Finally, a group of 7 annotators who successfully navigated all three stages of qualification tests were chosen. Additionally, each HIT was meticulously crafted to ensure that annotators could achieve an equivalent hourly pay rate of \$15 - \$20, assuming they work without interruption.

B.2 Annotation Guidelines

In this task, you will evaluate the factual errors for a generated caption with regard to the reference chart. To correctly solve this task, follow these steps:

- Carefully read the generated caption and the

964
965
966
967
968
969
970
971
972
973
974
975
976

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

1020 reference chart.

1021 • Compare the generated caption against the

1022 reference chart and decide whether the caption

1023 contains any factual error defined below.

1024 • You should click/press the button if an error

1025 occurs. A blue button indicates the caption

1026 contains the corresponding factual error, while

1027 a white button means the caption does not

1028 contain such an error.

1029 **Warning:** Annotations will be checked for qual-

1030 ity against control labels, low-quality work will be

1031 rejected.

1032 **Error definition**

1033 • **Value error:** A quantitative data value is in-

1034 correct.

1035 • **Label error:** A non-quantitative data value is

1036 incorrect.

1037 • **Trend error:** The direction of a trend is

1038 wrong.

1039 • **Magnitude error:** The magnitude or variance

1040 of a trend is wrong.

1041 • **Out-of-context error:** The caption introduces

1042 concepts that are not present in the chart.

1043 • **Grammatical error:** The grammar of the cap-

1044 tion is wrong.

1045 • **Nonsense error:** The caption is incomplete

1046 or does not make sense at all.

B.3 Annotation Interface

The interface for our human annotation is shown in Figure 5.

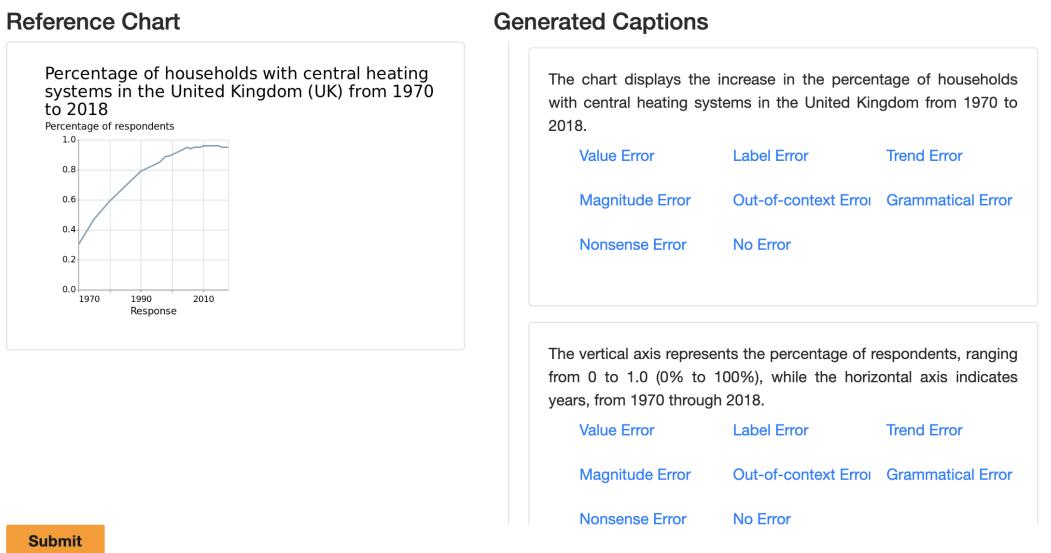


Figure 5: Human annotation interface for our data collection discussed in §2. Examples of each type of error from Table 1 are also displayed in the annotation interface. We were not able to show these examples in this figure due to space limits.

C Dataset Details

Table 7 presents the detailed statistics of each split in our dataset.

D Implementation Details

D.1 Details of the Chart-To-Table Model

Our chart-to-table model takes in as input a graphical chart and outputs a linearized data table format, using `\t` to delimit columns and `&&&` for row separation. The backbone of our approach is UniChart (Masry et al., 2023), due to its diverse chart-oriented pre-training objectives that have demonstrated strong performance on relevant tasks.

D.2 Table-guided Negative Data Generation

In Algorithm 1, we depict the details of how we generate negative data for our CHARTVE model.

D.3 Model Training

The Chart-To-Table model and CHARTVE are optimized using AdamW for a maximum of 20,000 and 50,000 steps, respectively. The learning rates for both models are set to 5e-5. During inference time, the Chart-To-Table model uses beam search with a beam width of 4.

E Prompts

The prompts for using LVLM and LLM as evaluation metrics are displayed in Figure 8 and Figure 9,

	CHOCOLATE-LVLM		CHOCOLATE-LLM		CHOCOLATE-FT	
	# Factual	# Non-factual	# Factual	# Non-factual	# Factual	# Non-factual
Sentence	1,683	1,270	518	469	360	1,023
Caption	74	321	27	169	112	484

Table 7: Dataset statistics per split. A sentence is considered factual if and only if it does not contain any factual error. A caption is considered factual if all its sentences are factual.

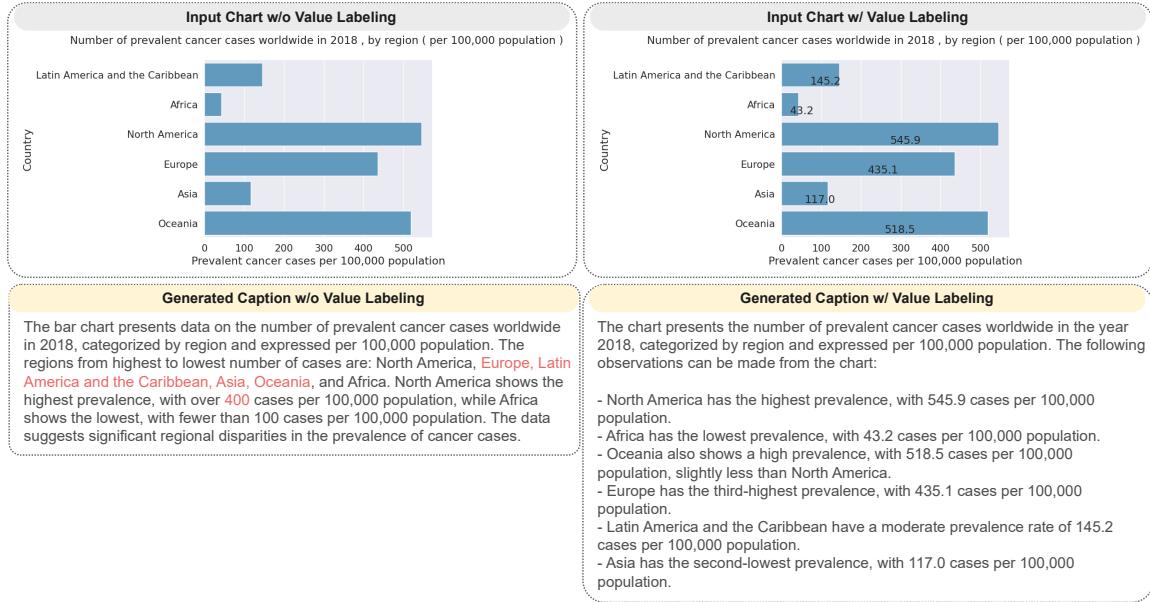


Figure 6: The impact of value labeling. We prompted GPT-4V to generate captions of two charts we created using the Seaborn library from an underlying table sampled from the Chart-to-Text dataset, with or without labeling the values of the bars on the chart. We see that when the labeled values are presented in the chart, GPT-4V is capable of producing more factual captions.

while the prompts for factual error correction are shown in Figure 10 and Figure 11.

Algorithm 1: Table-guided Negative Data Generation

Input: Data table $\mathcal{A}_{\mathcal{E}_i}$ for chart \mathcal{E}_i , Positive caption sentence c_i^+ .

Output: Set of negative caption sentences $C_i^- = \{c_i^-, \text{value}, c_i^-, \text{trend}, c_i^-, \text{context}\}$.

```

1 Initialize  $C_i^-$  as an empty set;
2 Define a lexicon of trend terms  $T$ ;
3 Define entailment threshold  $\tau$ ;
4 // Generate Value and Label Errors;
5 for each cell value  $v$  in  $\mathcal{A}_{\mathcal{E}_i}$  do
6   if  $v$  is a substring of  $c_i^+$  then
7     Randomly sample a new value  $v'$ 
      from the same column in  $\mathcal{A}_{\mathcal{E}_i}$ ;
8     Replace  $v$  in  $c_i^+$  with  $v'$  to get
       $c_i^-, \text{value}$ ;
9     Add  $c_i^-, \text{value}$  to  $C_i^-$ ;
10 // Generate Trend Errors;
11 for each trend term  $t$  in  $T$  do
12   if  $t$  is found in  $c_i^+$  then
13     Replace  $t$  in  $c_i^+$  with its antonym to
      get  $c_i^-, \text{trend}$ ;
14     Add  $c_i^-, \text{trend}$  to  $C_i^-$ ;
15 // Generate Out-of-Context Errors;
16 Randomly select a different chart  $\mathcal{E}_j$  where
   $j \neq i$ ;
17 Pair  $\mathcal{E}_i$  with unrelated caption sentence  $c_j^+$  to
  get  $c_i^-, \text{context}$ ;
18 Add  $c_i^-, \text{context}$  to  $C_i^-$ ;
19 return  $C_i^-$ ;

```

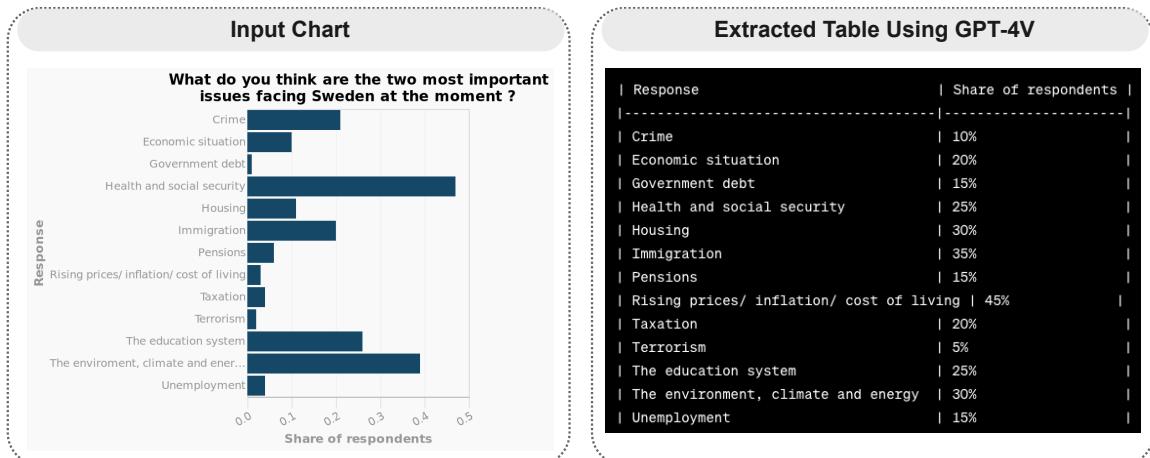


Figure 7: An example showing GPT-4V cannot accurately extract tables from charts. This indicates its inability to infer the actual value of each data point within the chart.

Dataset Split →	CHOCOLATE-LVLM GPT-4V	CHOCOLATE-LLM GPT-4V	CHOCOLATE-FT GPT-4V
Evaluation Metric →			
Correction Model ↓			
N/A	<u>50.89</u>	23.47	24.83
LLaVA	<u>29.87</u>	22.45	39.45
Bard	37.37	31.77	44.86
GPT-4V	61.34	52.35	74.79
DePlot + GPT-4	23.79	22.45	40.63
C2TFEC (Ours)	35.96	<u>39.29</u>	<u>55.56</u>

Table 8: Correction performance on CHOCOLATE using GPT-4V as the evaluation metric. GPT-4V, when used as an evaluator, assigns significantly higher scores to its own generations. This suggests potential self-enhancement bias of GPT-4V. Note that GPT-4V also assign a high scores to the original captions (i.e. N/A) on the LvLM split. This is because half of these captions are directly generated from GPT-4V.

LVLM Evaluation Prompt

You are given a chart and a caption, you are tasked to detect whether the caption is factually consistent with the chart.

[Start of Caption]
 {caption}
 [End of Caption]

You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

Figure 8: Prompts for using GPT-4V, Bard, and LLaVA-1.5 as a evaluator.

LLM Evaluation Prompt

You are given a table extracted from a chart and a caption. The table uses "<0x0A>" to delimit rows and "!" to delimit columns. The first row is the extracted chart title. You are tasked to detect whether the caption is factually consistent with the table.

[Start of Extracted Table]
 {table}
 [End of Extracted Table]

[Start of Caption]
 {caption}
 [End of Caption]

You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

Figure 9: Prompts for using DePlot + GPT-4 as a evaluator.

LVLM Correction Prompt

You are given a chart and a chart caption. Your task is to correct errors in the caption based on the given chart. You should correct factual errors in the caption by as few substitution, insertion, and deletion operations as possible.

[Start of Caption]
{caption}
[End of Caption]
=====

You must give your response in a structured JSON format that can be directly parsed with json.loads. Your response should contain two fields and two fields only:

"corrected_caption": the corrected caption based on the chart provided
"explanation": an explanation of your correction

Please follow the below rules:

1. Do not include "```json" in your response so that your output can be directly parsed with json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is no error, "corrected_caption" should be the same as input caption.

Figure 10: Prompts for using GPT-4V, Bard, and LLaVA as a factual error corrector.

LLM Correction Prompt

You are given a Markdown table, a chart title and a chart caption. The linearized table is assumed to faithfully represent the chart corresponding to the caption. Your task is to correct errors in the caption based on the Markdown table and the chart title. You should correct factual errors in the caption by as few substitution, insertion, and deletion operations as possible.

[Start of Table]
{extracted_table}
[End of Table]

[Start of Chart Title]
{extracted_title}
[End of Chart Title]

[Start of Caption]
{caption}
[End of Caption]
=====

You must give your response in a structured JSON format that can be directly parsed with json.loads. Your response should contain two fields and two fields only:

"explanation": an explanation of your correction
"corrected_caption": the corrected caption based on the table provided

Please follow the below rules:

1. Do not include "```json" in your response so that your output can be directly parsed with json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is no error, "corrected_caption" should be the same as input caption.

Figure 11: Prompts used for using DePlot + GPT-4 as a factual error corrector.