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Abstract

Advances in large vision-language models001
(LVLMs) have led to significant progress in002
generating natural language descriptions for003
visual contents. These powerful models are004
known for producing texts that are factually in-005
consistent with the visual input. While some006
efforts mitigate such inconsistencies in natural007
image captioning, the factuality of generated008
captions for structured visuals, such as charts,009
has not received as much scrutiny. This work010
introduces a comprehensive typology of factual011
errors in generated chart captions. A large-012
scale human annotation effort provides insight013
into the error patterns in captions generated by014
various models, ultimately forming the founda-015
tion of a dataset, CHOCOLATE. Our analysis016
reveals that even advanced models like GPT-017
4V frequently produce captions laced with fac-018
tual inaccuracies. To combat this, we establish019
the task of Chart Caption Factual Error Correc-020
tion and introduce CHARTVE, a visual entail-021
ment model that outperforms current LVLMs in022
evaluating caption factuality. Furthermore, we023
propose C2TFEC, an interpretable two-stage024
framework that excels at correcting factual er-025
rors. This work inaugurates a new domain in026
factual error correction for chart captions, pre-027
senting a novel evaluation metric, and demon-028
strating an effective approach to ensuring the029
factuality of generated chart captions.030

1 Introduction031

Large vision-language models (LVLMs) have re-032

cently shown impressive capabilities in generating033

natural language descriptions of visual content like034

images, videos and charts (OpenAI, 2023b; Google,035

2023a; Liu et al., 2023c; Wang et al., 2023). Chart036

captioning is particularly important for data ana-037

lysts, business analysts, and journalists who rely on038

accurate chart interpretations for decision-making039

and reporting. However, no prior work has studied040

the factuality1 of the generated captions. Given that 041

factuality is vital for credibility in applications of 042

chart captioning in news articles (Liu et al., 2021), 043

educational resources (Fu et al., 2022), and social 044

media (Monteiro et al., 2017), examining the truth- 045

fulness of generated captions is a critical concern. 046

To understand the factual errors in chart cap- 047

tioning models, we introduce a typology of factual 048

errors for the chart domain. Using this scheme, we 049

conduct a large-scale human annotation study to an- 050

alyze the distributions of various error types, such 051

as Value Error and Label Error, in captions from 052

various models, from task-specific fine-tuned mod- 053

els to LVLMs (see Table 1). The annotated sam- 054

ples are then categorized into three splits, LVLM 055

(Large-vision Language Models), LLM (Large 056

Language Models), and FT (Fine-tuned Vision- 057

language Models), based on the architecture and 058

the scale of the underlying models, and form a 059

dataset which we named CHOCOLATE. With this 060

dataset collected, we aim to answer three main re- 061

search questions. First, are state-of-the-art chart 062

captioning models able to produce factual cap- 063

tions? We find the answer is no (§2). Specifically, 064

82.06% of the generated captions are non-factual 065

(see Table 2). Even state-of-the-art LVLMs like 066

GPT-4V (OpenAI, 2023b) produce a great portion 067

of errors in its generated captions (see Figure 1). 068

The prevalence of factual inconsistencies ob- 069

served in the generated captions by various models 070

underscores the urgent need to mitigate the fac- 071

tual errors of such models. Hence, we introduce a 072

new task, Chart Caption Factual Error Correction 073

(§3), which presents a novel challenge of rectifying 074

factual inaccuracies in chart captions generated by 075

LVLMs. A pertinent question that arises from this 076

task is: how to automatically evaluate the factual 077

consistency between charts and captions? To 078

1Factuality is also known as the faithfulness or factual
consistency between inputs and outputs
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Figure 1: Error distribution for different models on VisText and Pew. The error rates are computed per sentence.
An error rate of 0.4 indicates that 40% of the sentences in the generated captions contain such an error. Note that
a single caption may contain multiple types of errors; hence, the maximum value for a stacked bar is greater than
1.0. We show that even the most advanced LVLM, GPT-4V, generates captions with a high rate of factual error.

tackle this question, we present CHARTVE, novel079

visual entailment approach to assess the factual con-080

sistency of chart captions. This model is trained081

by repurposing existing resources from chart sum-082

marization and chart question answering. Results083

show that CHARTVE performs competitively with084

proprietary LVLMs and outperforms the most ad-085

vanced open-source LVLM, despite being 64 times086

less in size.087

Now that we have set up the task, we turn to the088

challenge of how to effectively correct factual089

errors in chart captions? We propose C2TFEC090

(§4), an interpretable two-step framework that de-091

composes visual reasoning into image-to-structure092

rendering and text-based reasoning. C2TFEC first093

transforms the input chart into a structured data094

table representation. Grounded in this extracted095

tabular data, the second component then identifies096

and fixes any factual inconsistencies in the gen-097

erated caption through an interpretable reasoning098

process. Our experiments demonstrate that this ex-099

plicit decomposition enables more reliable factual-100

ity corrections compared to end-to-end approaches.101

The intermediate symbolic representation acts as102

an effective bridge between charts and captions,103

enabling C2TFEC to significantly outperform com-104

petitive baselines including GPT-4V (§6).105

In summary, our contributions are as follows:106

• We present the first analysis of factual errors in107

captions produced by models of various scales108

using a novel error typology, which results in the109

CHOCOLATE dataset.110

• We introduce the Chart Caption Factual Error111

Correction task that challenges models to correct112

factual errors in generated chart captions.113

• We present CHARTVE, a reference-free evalua-114

tion metric based on visual entailment that corre-115

lates better with human judges than LVLMs.116

• We propose C2TFEC, an interpretable two-stage 117

error correction framework that performs better 118

than all existing LVLMs. 119

2 Analyzing Factual Errors 120

To understand the capabilities of existing models 121

in summarizing key information from charts, we 122

conduct a large-scale analysis on six most advanced 123

chart captioning models on the VisText (Tang et al., 124

2023a) and Pew (Kantharaj et al., 2022) datasets. 125

To facilitate this process, we introduce an error 126

typology, as illustrated in §2.1. Upon gathering 127

human annotations, we present a detailed analysis 128

of different captioning models (§2.2) and discuss 129

the quality of the collected data (§2.3). 130

2.1 Error Typology 131

To understand the frequency of various types of 132

errors made by chart captioning systems, we define 133

a typology of errors as detailed below and demon- 134

strate examples in Table 1. 135

Value Error A quantitative data value from the 136

chart is incorrectly stated in the caption. This in- 137

cludes numbers representing values on axes, per- 138

centages, or other numerical data points. 139

Label Error A non-numerical label, category, or 140

text element from the chart is incorrectly referenced 141

in the caption. This includes labels on axes, legend 142

items, categorical variables, etc. 143

Trend Error The overall direction of change 144

over time or comparison between groups is incor- 145

rectly described in the caption, such as stating an 146

increasing trend when it is actually decreasing. 147

Magnitude Error The degree or amount of 148

difference described for a trend is unfaithful to the 149

chart, such as stating an increase “sharp” when the 150

chart shows it is actually “smooth”. 151

2



Chart Category Example Caption

Value Error Asians have a turnout rate of 20.4% in 1990.

Label Error Asians have the highest turnout rates across the
years.

Trend Error From 1986-2014, the turnout rates are increasing
overall.

Magnitude Error From 1986-2014, the turnout rates are sharply de-
creasing overall.

Out-of-context Error Vietnamese have the highest turnout rates among
Asians.

Nonsense Error From 1986-2014, #?sep #sep #sep #sep.

Grammatical Error The turnout rates are decrease overall.

Table 1: Typology of errors illustrated with an example chart.

Out-of-context Error Concepts, variables, or152

any information introduced in the caption that does153

not exist at all in the content of the chart. The cap-154

tion contains factual statements not grounded in155

the actual chart contents.156

Nonsense Error The caption contains incom-157

plete sentences, disconnected phrases that do not158

connect logically, or sequences of words that sim-159

ply do not make coherent sense.160

Grammatical Error There are grammatical mis-161

takes in the structure or syntax of the caption.2162

2.2 Captioning Model Analysis163

We consider various types of models. First,164

ChartT5 (Zhou et al., 2023), MatCha (Liu et al.,165

2023b), and UniChart (Masry et al., 2023) are the166

most advanced task-specific models fine-tuned167

with in-domain data from the VisText and Pew168

datasets. Second, DePlot + GPT-4 (Liu et al.,169

2023a; OpenAI, 2023a) is a LLM-based pipeline170

approach. Finally, GPT-4V and Bard3 are the171

strongest LVLMs. For each model and dataset, we172

randomly sample 100 chart figures and generate173

the corresponding captions. Invalid output174

sequences, such as empty strings, are filtered out.175

We compute the percentage of sentences with176

factual errors for different models and datasets,177

with a breakdown of different error types. Error178

rates are computed at the sentence level instead179

of the caption level since different models gener-180

ate captions of different lengths. A sentence-level181

evaluation helps mitigate this discrepancy and fa-182

cilitates a fairer comparison.183

From Figure 1, we made the following observa-184

tions. First, SOTA chart captioning models often185

2Note that we do not consider grammatical errors as factual
inconsistency. They are analyzed for assessing fluency.

3We tested Bard before Gemini’s release (Google, 2023b).

fail to produce factual captions. Additionally, 186

as shown in Table 2, we calculated the percentage 187

of non-factual captions, revealing that 82.06% of 188

captions contain at least one factual error. More 189

importantly, even models like GPT-4V and Bard, 190

which have demonstrated proficiency in a variety of 191

vision-language tasks, produce factually incorrect 192

captions 81.27% of the time, as recorded in Table 7. 193

These findings highlight the inherent difficulties of 194

chart captioning tasks and the limitations of SOTA 195

vision-language models. 196

Second, task-specific chart captioning models 197

and LVLMs show opposite trends on the two 198

datasets. Task-specific models, including ChartT5, 199

MatCha, and UniChart, produce fewer errors on 200

the VisText dataset. Conversely, LVLMs, includ- 201

ing GPT-4V and Bard, generate significantly fewer 202

errors on the Pew dataset. The key distinctions 203

on these datasets are two: (1) the prevalent labeled 204

values on charts from Pew and (2) the simpler struc- 205

tures in charts from VisText. We hypothesize that 206

LVLMs may be better at utilizing the labeled num- 207

bers, while task-specific effectively interpret values 208

via axis alignment. We show an example to validate 209

this hypothesis in Figure 6. 210

Third, LVLMs cannot consistently outperform 211

task-specific fine-tuned models. Despite their 212

extensive training data and parameters, LVLMs 213

may be surpassed by task-specific models with ap- 214

propriate pre-training objectives and architectures. 215

For example, on the VisText dataset, UniChart out- 216

performs Bard and is comparable to GPT-4V in 217

terms of producing more factual captions owing to 218

UniChart’s various pre-training objectives for chart 219

comprehension, enabling better interpretation of 220

the relationship between data points within charts. 221

The dataset resulting from the analysis is named 222

CHOCOLATE (Captions Have Often ChOsen Lies 223

3



# Factual # Non-factual # Total

Sentence 2,561 2,762 5,323
Caption 213 974 1,187

Table 2: Statistics of the captions we analyzed. A
sentence is considered factual if and only if it does
not contain any factual error. A caption is considered
factual if all its sentences are factual.

About The Evidence), where each instance con-224

sists of a chart, a generated chart caption, and er-225

ror types labeled by human annotators. Drawing226

insights from Tang et al. (2023b) that factual er-227

rors produced by different kinds of models may228

be easier or more difficult to identify, we catego-229

rize CHOCOLATE into three splits: the LVLM split,230

with captions from GPT-4V and Bard; the LLM231

split, featuring DePlot + GPT-4 outputs; and the FT232

split, for ChartT5, UniChart, and MatCha captions.233

Split details are in Appendix C.234

2.3 Dataset Quality235

To evaluate the quality of CHOCOLATE, we mea-236

sured inter-annotator agreement by calculating237

Fleiss’ Kappa κ (Fleiss, 1971) and the majority238

vote agreement percentage p, in line with the met-239

rics used by Pagnoni et al. (2021). We applied240

these metrics across all 5,323 sentences in CHOCO-241

LATE. For determining factual consistency between242

chart sentences and their corresponding charts, we243

achieved a Fleiss’ Kappa of κ = 0.63 and a ma-244

jority vote agreement of p = 91%. For context,245

Pagnoni et al. (2021) reported a Fleiss’ Kappa246

of κ = 0.58 and a majority agreement level of247

p = 91%. This suggests that CHOCOLATE exhibits248

a quality on par with well-established benchmarks249

in text-based factual inconsistency detection.250

3 The Chart Caption Factual Error251

Correction Task252

The dataset collected in §2 enables us to study the253

Chart Caption Factual Error Correction task. In254

this section, we first formally provide the defini-255

tion of this task (§3.1) and propose an effective256

reference-free evaluation metric based on chart vi-257

sual entailment (§3.2).258

3.1 Task Definition259

The input to our task is a chart E and chart caption260

C that may or may not be factually consistent with261

E . The goal of chart caption factual error correction262

is to produce a corrected caption Ĉ that fixes factual263

errors in C with the minimum amount of edits. If264

C is already faithful to E , models should output 265

the original caption (i.e. Ĉ = C). Following prior 266

work on text-based factual error correction (Thorne 267

and Vlachos, 2021; Huang et al., 2023b; Gao et al., 268

2023), corrections should be made with as few 269

substitution, insertion, and deletion operations as 270

possible since one can trivially achieve 0% non- 271

factual rate by deleting all words in a caption. 272

3.2 Reference-free Evaluation With Chart 273

Visual Entailment 274

There was no established metric for evaluating the 275

factual consistency between a chart and the cor- 276

responding chart caption. In addition, since our 277

dataset does not contain annotated reference cap- 278

tions4, text-based metrics cannot be adopted. As a 279

solution, we propose CHARTVE, a reference-free 280

evaluation metric based on chart visual entailment, 281

as detailed in the following paragraphs. 282

CHARTVE Overview We formulate the incon- 283

sistency detection problem as a chart visual entail- 284

ment task. Given a chart caption sentence c and 285

a chart E , the task is to predict whether the rela- 286

tionship from E to c as ENTAILMENT (factually 287

consistent) or NOTENTAILMENT (factually incon- 288

sistent). The main challenge of learning a visual 289

entailment model for this task is the lack of data. To 290

overcome this challenge, we repurpose data from 291

relevant tasks, such as chart QA, as positive sam- 292

ples. Then, we propose a table-guided negative 293

data generation to produce negative samples. 294

Positive Data Creation We consider datasets 295

from two tasks that are closely related to the chart 296

visual entailment task: chart question answering 297

and chart captioning. We utilize two datasets from 298

chart question answering: ChartQA (Masry et al., 299

2022) and PlotQA (Methani et al., 2020). Using a 300

QA2Claim model (Huang et al., 2023b), we trans- 301

form the question-answer pairs into declarative 302

statements and pair them with the original charts 303

to form positive instances (ENTAILMENT). For 304

chart captioning, captions from VisText (Tang et al., 305

2023a) and Chart-to-Text (Kantharaj et al., 2022) 306

are segmented into individual sentences. Each sen- 307

tence is paired with the relevant chart to create a 308

positive instance. These methods allow us to repur- 309

pose existing resources for training CHARTVE. 310

4Reference captions are not collected due to the challenges
of curating high-quality references through crowd-sourcing.
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Table-guided Negative Data Generation Gen-311

erating negative training samples is achieved by312

perturbing the positive instances grounded in the313

underlying data tables of the charts. For a chart Ei314

and its underlying data table AEi , we locate values315

in AEi that matches a substring within the positive316

caption c
+
i . When a match is found, the substring317

in the caption is substituted with a different value318

from the same column in AEi , yielding a value or319

label-error infused negative sentence c
−
i , maintain-320

ing relevance while ensuring inconsistency with321

Ei. For trend-related errors, we replace trend-terms322

found in c
+
i with their opposites, drawing on323

a specific lexicon of terms like “increase” and324

“decrease,” thereby creating trend-contradictory325

statements. Furthermore, out-of-context errors are326

crafted by pairing Ei with a mismatched caption327

c
+
j from another chart, where i ≠ j. This simulates328

captions filled with unrelated data.329

The above process is illustrated in Algorithm330

1. We use the training, development, and test sets331

of the repurposed datasets for training, validating,332

and testing CHARTVE. This is vital for ensuring333

that CHARTVE is free from data contamination334

in downstream applications. In total, we collected335

over 595K instances partitioned into training,336

development, and test splits with a ratio of337

522:36:37, respectively.338

Learning CHARTVE We selected UniChart as339

our base model, given its superior performance340

amongst comparable-size models5. Recognizing341

that UniChart has been pre-trained on chart ques-342

tion answering tasks, we employ a tailored input343

template t as follows:344

Does the image entail this statement:345

“SENTENCE”?346

In this template, SENTENCE replaces the chart cap-347

tion sentence c. Taking in a chart E and template t348

as input, UniChart is fine-tuned to produce the to-349

ken “yes” if the chart E entails the caption sentence350

c, and “no” otherwise using maximum likelihood351

estimate. During inference time, we use the same352

input format and probe the logits corresponding353

to the “yes” (lyes) and “no” (lno) decoder tokens.354

Following this, we apply the softmax function to355

convert these logits into an entailment score s(E , c)356

that ranges from 0 to 1:357

5Our fine-tuning begins with this checkpoint:
https://huggingface.co/ahmed-masry/unichart-base-960.

CHOCOLATE

Model LVLM LLM FT

SUMMAC -0.011 0.023 0.036
QAFACTEVAL 0.064 0.045 0.054

LLaVA-1.5-13B 0.002 0.057 0.214
Bard -0.014 0.105 0.291
GPT-4V 0.157 0.205 0.215
DePlot + GPT-4 0.129 0.117 0.109

CHARTVE (Ours) 0.178 0.091 0.215

Table 3: Kendall’s Tau correlation of different ap-
proaches on the CHOCOLATE dataset.

s(E , c) = e
lyes

elyes + elno
. (1) 358

Here, e is the base of the natural logarithm. Fi- 359

nally, we compute the minimum of the entailment 360

scores for all sentences within a caption, denoted 361

by S(E , C), where C represents the set of all cap- 362

tion sentences for chart E : 363

S(E , C) = min
c∈C

s(E , c). (2) 364

Meta-evaluation of Different Evaluation Metrics 365

To evaluate the effectiveness of different methods 366

in assessing the factuality of generated captions on 367

the CHOCOLATE dataset, we employ Kendall’s Tau 368

(Kendall, 1938) to compute the correlation between 369

these methods and human judgments. Given the 370

absence of prior work on factual inconsistency 371

detection methods for chart captions, we compare 372

our CHARTVE with zero-shot capable methods, 373

including DePlot + GPT-4, Bard, GPT-4V, and 374

the leading open-source LVLM, LLaVA-1.5-13B 375

(Liu et al., 2023c). Text-based factuality metrics, 376

SUMMAC (Laban et al., 2022) and QAFACTEVAL 377

(Fabbri et al., 2022b), which compute the factual 378

consistency between the reference caption and the 379

generated caption, are also included. The prompts 380

for these models are detailed in Appendix E. 381

Meta-evaluation, summarized in Table 3, shows 382

that, overall, metrics exhibit the strongest cor- 383

relation with human judgment on the FT split 384

and the weakest on the LVLM split. This pattern 385

aligns with expectations: the FT captions are 386

littered with more obvious mistakes, such as out-of- 387

context and nonsense errors, while errors stemming 388

from LVLMs are harder to detect since they often 389

demand intricate inferences regarding the data 390

points’ positions relative to the axes, as detailed 391

in Figure 1. Importantly, Our CHARTVE excels on 392

the challenging LVLM split, but less so on the LLM 393

split, likely due to shifts in token distribution, as 394

DePlot + GPT-4 occasionally employs table-centric 395
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Japan has the lowest average
daily usage time, while Thailand
has the highest daily usage time.
Overall, People in Asia spend more
time on mobile web than those in
Europe. 

Input Chart CaptionInput Chart

Generated Table

Chart-to-Table Conversion

GPT-4

Generated Correction

Reasoning:
1. Indonesia has the highest daily
usage of mobile web.
2. The data does not mention
Europe countries.

Correction:
Japan has the lowest average
daily usage time, while Indonesia
has the highest daily usage time. 

Figure 2: An overview of C2TFEC. Our approach
decomposes visual reasoning into image-to-structure
rendering and text-based reasoning, allowing for
interpretability and better correction of chart captions.

terminology (e.g., “columns” and “entries”) absent396

from CHARTVE’s training data. Despite this,397

CHARTVE compares favorably to proprietary398

LVLMs and outperforms LLaVA-1.5-13B, de-399

spite CHARTVE being 64 times smaller in scale.400

Bard and GPT-4V lead on the LLM and FT splits,401

respectively. However, Bard shows a negative cor-402

relation on the LVLM split, hinting at LVLMs’ lim-403

itations in assessing the factuality of chart captions.404

Thus, we advocate for using the best-performing405

metric for each split for evaluation.406

4 Methodology407

In correcting factual errors in generated captions,408

we propose C2TFEC, a two-step, interpretable409

framework, as shown in Figure 2. C2TFEC first410

transforms input charts into data tables (§4.1), then411

rectifies errors in the caption using the tabular data412

(4.2). This framework is motivated by our anal-413

ysis on “DePlot + GPT-4”, which shows that a414

notable proportion of errors in caption generation415

originated from the DePlot component. To mit-416

igate this, we develop a stronger chart-to-table417

model based on UniChart, significantly improved418

with expansive fine-tuning datasets. The advan-419

tage of C2TFEC is its ability to harness the reason-420

ing strengths of GPT-4 to faithfully correct errors,421

boosting caption factuality.6422

6Here, we do not consider approaches based on LVLMs
due to their tendency towards factual errors.

4.1 Chart-To-Table Conversion 423

The training data for our chart-to-table model is 424

sourced from datasets including VisText, Chart-to- 425

Text, ChartQA, and PlotQA, where we repurpose 426

original charts and underlying data tables for our 427

model’s training. We collected a total of 65K in- 428

stances with a train:dev:test split of 61:2:2. Similar 429

to DePlot (Liu et al., 2023a), our model is also 430

trained to generate chart titles, enhancing its ability 431

to contextualize the data represented in table form. 432

Let M denote our proposed model. For a given 433

chart figure E , the model autoregressively gener- 434

ates a chart title T and a corresponding table A (i.e. 435

T ,A = M(E)). 436

4.2 Table-based Error Rectification 437

With the input chart now converted into structured 438

tabular data, the second phase uses the reasoning 439

capacity of LLMs to address the factual inconsis- 440

tency between C and the generated table A. Here, 441

we use GPT-4 as the LLM. GPT-4 first provides an 442

explanatory breakdown of detected factual errors 443

in C based on the table contents. It then uses this 444

explanation to produce a corrected caption Ĉ. This 445

transparent process enables users to validate the 446

reasoning behind each correction. 447

C2TFEC separates the factual verification from 448

language generation, taking advantage of the com- 449

plementary strengths of separate vision and lan- 450

guage models tailored to their respective domains. 451

The symbolic table representation acts as a bridge 452

to enhance and validate factual consistency in chart 453

captions. 454

5 Experimental Settings 455

To assess C2TFECs ability in factual error cor- 456

rection for chart captions, we experiment on the 457

CHOCOLATE dataset. 458

Datasets Our CHOCOLATE dataset includes 459

1,187 chart-caption pairs with factually consistent 460

and inconsistent captions, as detailed in §2. It is 461

split into LVLM, LLM, and FT, reflecting the diver- 462

sity of models that generated the captions. 463

Baselines Since CHOCOLATE does not comprise 464

training data, we compare C2TFEC against zero- 465

shot capable LVLMs and LLMs, including LVLMs, 466

LLaVA-1.5-13B, GPT-4V, Bard, as well as DePlot 467

+ GPT-4. For a fairer comparison between our ap- 468

proach and DePlot, we continue fine-tuning DePlot 469
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Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

Evaluation Metric → CHARTVE (%) Levenshtein GPT-4V (%) Levenshtein Bard (%) Levenshtein
Correction Model ↓

N/A 31.13 0.0 23.47 0.0 43.10 0.0
LLaVA 31.20 19.09 22.45 9.20 52.94 16.94
Bard 14.13 127.83 31.77 77.63 75.69 42.80
GPT-4V 33.30 31.26 52.35 50.57 76.55 30.92
DePlot + GPT-4 32.47 81.37 22.45 21.25 70.31 38.79
DePlotCFT + GPT-4 32.91 84.99 25.51 55.35 70.47 40.12

C2TFEC (Ours) 34.34 72.19 39.29 53.11 81.14 37.36

Table 4: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality
by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard,
when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein
computes the edit distance between the corrected caption and the original caption (denoted as “N/A”). Metric scores
are shown separately for each of the three data splits based on captioning model source. The highest and second
highest performing models per evaluation metric and split are highlighted in boldface and underlines respectively.

for an additional 5,000 steps on VisText, an ap-470

proach which has been shown effective for adapting471

models to unseen domains (Huang et al., 2023b).472

We denote this model as DePlotCFT. The prompts473

used for each model are described in Appendix E.474

Evaluation Metrics We assess the factual consis-475

tency between corrected captions and input charts476

using CHARTVE, GPT-4V, and Bard, according to477

our recommendations in §3.2. In addition, since478

corrections should be made with as few edits as479

possible, we measure the number of edits using the480

Levenshtein distance (Levenshtein et al., 1966).481

6 Results482

6.1 Main Results483

The results in Table 4 demonstrate that our484

C2TFEC achieves the best performance for factual485

consistency on the LVLM and FT splits, and takes486

the second place on the LLM split. This indicates487

that the two-step process of first transforming488

charts into structured data tables and then recti-489

fying factual inconsistencies using table-caption490

alignment is an effective strategy.491

Bard’s underperformance on the LVLM split and492

its negative correlation with human judgments of493

factuality, as shown in Table 3, implies its unreli-494

ability in detecting errors in chart captions. Addi-495

tionally, when used as an evaluator, GPT-4V tends496

to assign high factuality scores to its own corrected497

outputs on all three splits (see Table 8), while other498

metrics show GPT-4V lagging behind C2TFEC.499

This suggests GPT-4V may suffer from the self-500

enhancement bias (Zheng et al., 2023), overesti-501

mating its own performance when used for evalua-502

tion. We thus perform human evaluations in §6.2503

to verify the effectiveness of our approach.504

6.2 Human Evaluation 505

Our human assessments focus on comparing 506

C2TFEC with GPT-4V by using the same anno- 507

tation tasks detailed in §2 for factual error identi- 508

fication, with the same annotators evaluating. We 509

sampled 30 charts from each split of LVLM, LLM, 510

and FT. For each chart, human judges are presented 511

with a caption generated by one of the models. 512

Figure 3 demonstrates C2TFECs superiority in 513

multiple error categories, especially with a substan- 514

tial decrease in Value Errors, over 20% better in 515

the LVLM and LLM splits, and halving the overall 516

error rate compared to GPT-4V. C2TFEC virtually 517

eliminated Trend Errors, highlighting its strong er- 518

ror correction ability, particularly for axes-related 519

errors like Label, Value, and Trend errors. A rep- 520

resentative comparison is shown in Figure 4. GPT- 521

4V’s shortcomings seem to stem from its failure 522

to accurately infer data point values from charts as 523

evidenced in Figure 7. 524

In contrast, GPT-4V is better in addressing Out- 525

of-context Errors, involving information out of the 526

chart’s scope. However, GPT-4V seemed chal- 527

lenged in rectifying errors within captions gen- 528

erated by itself, particularly within the LVLM 529

split. This observation echoes recent findings 530

on LLMs’ inability to self-correct (Huang et al., 531

2023a; Valmeekam et al., 2023), we find that 532

LVLMs also cannot perform self-correction. 533

More importantly, our human evaluation results, 534

combined with our findings in Table 4 and Ta- 535

ble 8, reflect that GPT-4V is subject to serious self- 536

enhancement bias. Consequently, although GPT- 537

4V’s capabilities are formidable, we recommend 538

not using them to assess their own outputs. 539
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Figure 3: Human evaluation results on subsets of the CHOCOLATE dataset, comparing C2TFEC and GPT-4V.
C2TFEC corrects significantly more errors compared to GPT-4V, especially Value, Label, and Trend Errors.

7 Related Work540

7.1 Chart Captioning541

Chart captioning is essential for accurately inter-542

preting and communicating the information con-543

veyed by chart images, particularly in news ar-544

ticles and social media, where factuality is im-545

perative to prevent misinformation. While cur-546

rent datasets like FigureQA (Kahou et al., 2017),547

DVQA (Kafle et al., 2018), PlotQA (Methani et al.,548

2020), VisText (Tang et al., 2023a), and Chart-to-549

Text (Kantharaj et al., 2022) offer chart image de-550

scriptions and question-answer pairs to train mod-551

els, advancements in vision-language models like552

ChartT5 (Zhou et al., 2023), MatCha (Liu et al.,553

2023b), and UniChart (Masry et al., 2023) have554

largely prioritized relevance and fluency over fac-555

tual accuracy. Our work provides a rigorous charac-556

terization of factual errors in chart captioning and557

comparisons of methods to address this gap. By558

focusing on faithfulness and correction, we com-559

plement the emphasis of prior work and aim to560

produce more trustworthy chart captions.561

7.2 Factual Error Correction562

Prior research in factual error correction has mainly563

targeted text summarization and fact-checking.564

Within summarization, the bulk of work has been565

carried out in the news domain and often involves566

methods that substitute inconsistent entities from567

the source text. Some studies have enhanced568

this approach through entity-replacement rerank-569

ing techniques (Chen et al., 2021), autoregressive570

models for rewriting and perturbation filtering (Cao571

et al., 2020; Zhu et al., 2021; Adams et al., 2022),572

and editing strategies that focus on selective dele-573

tion (Wan and Bansal, 2022). In contrast, Fab-574

bri et al. (2022a) employed sentence compression575

datasets to train their models. More recently, Gao576

et al. (2023) have expanded the focus of these stud-577

ies to include dialogue summarization.578

Moving to the domain of fact-checking, this area 579

has experienced a flurry of activity, particularly 580

with the increased attention on combating misin- 581

formation (Fung et al., 2021; Wu et al., 2022; Fung 582

et al., 2022; Huang et al., 2023d,c; Qiu et al., 2023). 583

Early approaches train a distantly supervised model 584

that involves a masker and a corrector (Shah et al., 585

2020; Thorne and Vlachos, 2021). Thorne and Vla- 586

chos (2021) made significant strides by developing 587

the first factual error correction dataset for fact- 588

checking, thus enabling fully supervised training 589

for error correctors. Recently, Huang et al. (2023b) 590

propose an interpretable framework that breaks 591

down the process of fact-checking into individual 592

components. Our study builds on these insights 593

and extends them to a multimodal context, which 594

challenges models to understand the chart images 595

and the consistency between different modalities. 596

8 Conclusion 597

Our study exposes the prevalent issue of factual 598

errors in chart captions generated by various chart 599

captioning models and introduces CHOCOLATE 600

to scrutinize these errors. We establish the Chart 601

Caption Factual Error Correction task to propel 602

the creation of trustworthy captioning systems and 603

present CHARTVE, an evaluation model surpass- 604

ing LVLMs in mirroring human assessments of 605

caption factuality. Our two-stage correction frame- 606

work, C2TFEC, provides an interpretable means 607

of improving caption factuality by transforming 608

visual data into structured tables for more faith- 609

ful error corrections. Our work marks an essential 610

step in ensuring verifiable and trustworthy chart 611

captions. Future directions include extending our 612

approach to multimodal contexts beyond charts, 613

developing more sophisticated error detection and 614

correction algorithms, and creating datasets cover- 615

ing a broader range of visual content. 616
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9 Ethical Considerations617

Text generation models pre-trained on information618

from the Web are known to demonstrate various619

biases. Despite the primary focus on models and620

datasets that represent the English-speaking popula-621

tion’s culture, manual examinations of the CHOCO-622

LATE dataset reveal no evidence of biases related to623

gender, age, race, or other socioeconomic factors.624

In §2 and §6.2, we recruited annotators to assess625

the factual consistency of chart captions. The an-626

notators were fairly compensated for their efforts,627

as detailed in Appendix B. During the annotation628

process, we made provisions for open communica-629

tion, allowing the annotators the flexibility to work630

at their preferred pace and the freedom to withdraw631

from the project at any point. Additionally, we632

took measures to protect the anonymity of the con-633

tributors by excluding any personally identifiable634

information from the dataset.635

10 Limitations636

We acknowledge that our study did not rigorously637

examine the sensitivity of different systems to the638

variations in the prompts used. The effectiveness of639

several natural language processing tasks is known640

to be influenced by the design of the input prompts.641

Our omission of a systematic sensitivity analysis642

means that there could be a range of responses643

to different prompts that we have not accounted644

for, which may affect the generalization of our re-645

sults. However, we did not perform prompt tuning646

to craft prompts that benefit our proposed model.647

Therefore, the comparisons across all models are648

fair. Due to the scope of our study, we leave the649

prompt sensitivity experiments for future work.650

In addition, charts in the datasets we used are651

mostly line plots and bar plots. Future efforts can652

extend our work with additional analyses for other653

types of charts, such as violin plots and distribution654

plots.655
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Michalski, Ákos Kádár, Adam Trischler, and Yoshua756
Bengio. 2017. Figureqa: An annotated figure dataset757
for visual reasoning. ArXiv, abs/1710.07300.758

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,759
Ahmed Masry, Megh Thakkar, Enamul Hoque, and760
Shafiq Joty. 2022. Chart-to-text: A large-scale bench-761
mark for chart summarization. In Proceedings of the762
60th Annual Meeting of the Association for Compu-763
tational Linguistics (Volume 1: Long Papers), pages764
4005–4023, Dublin, Ireland. Association for Compu-765
tational Linguistics.766

Maurice G Kendall. 1938. A new measure of rank767
correlation. Biometrika, 30(1/2):81–93.768

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and769
Marti A. Hearst. 2022. SummaC: Re-visiting NLI-770
based models for inconsistency detection in summa-771
rization. Transactions of the Association for Compu-772
tational Linguistics, 10:163–177.773

Vladimir I Levenshtein et al. 1966. Binary codes capa-774
ble of correcting deletions, insertions, and reversals.775
In Soviet physics doklady, volume 10, pages 707–710.776
Soviet Union.777

Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, 778
Syrine Krichene, Chenxi Pang, Kenton Lee, Man- 779
dar Joshi, Wenhu Chen, Nigel Collier, and Yasemin 780
Altun. 2023a. DePlot: One-shot visual language rea- 781
soning by plot-to-table translation. In Findings of 782
the Association for Computational Linguistics: ACL 783
2023, pages 10381–10399, Toronto, Canada. Associ- 784
ation for Computational Linguistics. 785

Fangyu Liu, Francesco Piccinno, Syrine Krichene, 786
Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin 787
Altun, Nigel Collier, and Julian Eisenschlos. 2023b. 788
MatCha: Enhancing visual language pretraining with 789
math reasoning and chart derendering. In Proceed- 790
ings of the 61st Annual Meeting of the Association for 791
Computational Linguistics (Volume 1: Long Papers), 792
pages 12756–12770, Toronto, Canada. Association 793
for Computational Linguistics. 794

Fuxiao Liu, Yinghan Wang, Tianlu Wang, and Vicente 795
Ordonez. 2021. Visual news: Benchmark and chal- 796
lenges in news image captioning. In Proceedings of 797
the 2021 Conference on Empirical Methods in Natu- 798
ral Language Processing, pages 6761–6771, Online 799
and Punta Cana, Dominican Republic. Association 800
for Computational Linguistics. 801

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 802
Lee. 2023c. Improved baselines with visual instruc- 803
tion tuning. 804

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, 805
and Enamul Hoque. 2022. ChartQA: A benchmark 806
for question answering about charts with visual and 807
logical reasoning. In Findings of the Association for 808
Computational Linguistics: ACL 2022, pages 2263– 809
2279, Dublin, Ireland. Association for Computational 810
Linguistics. 811

Ahmed Masry, Parsa Kavehzadeh, Xuan Long Do, Ena- 812
mul Hoque, and Shafiq Joty. 2023. Unichart: A 813
universal vision-language pretrained model for chart 814
comprehension and reasoning. 815

Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, 816
and Pratyush Kumar. 2020. Plotqa: Reasoning over 817
scientific plots. In The IEEE Winter Conference on 818
Applications of Computer Vision (WACV). 819

João Monteiro, Asanobu Kitamoto, and Bruno Martins. 820
2017. Situational awareness from social media pho- 821
tographs using automated image captioning. In 2017 822
IEEE International Conference on Data Science and 823
Advanced Analytics (DSAA), pages 203–211. IEEE. 824

OpenAI. 2023a. Gpt-4 technical report. arXiv preprint 825
arXiv:2303.08774. 826

OpenAI. 2023b. Gpt-4v(ision) system card. 827

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia 828
Tsvetkov. 2021. Understanding factuality in abstrac- 829
tive summarization with FRANK: A benchmark for 830

10

https://bard.google.com/
https://deepmind.google/technologies/gemini
https://doi.org/10.18653/v1/2023.acl-long.311
https://doi.org/10.18653/v1/2023.acl-long.815
https://doi.org/10.18653/v1/2023.acl-long.815
https://doi.org/10.18653/v1/2023.acl-long.815
https://doi.org/10.18653/v1/2023.acl-long.815
https://doi.org/10.18653/v1/2023.acl-long.815
https://api.semanticscholar.org/CorpusID:3535069
https://api.semanticscholar.org/CorpusID:3535069
https://api.semanticscholar.org/CorpusID:3535069
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.18653/v1/2022.acl-long.277
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.1162/tacl_a_00453
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.findings-acl.660
https://doi.org/10.18653/v1/2023.acl-long.714
https://doi.org/10.18653/v1/2023.acl-long.714
https://doi.org/10.18653/v1/2023.acl-long.714
https://doi.org/10.18653/v1/2021.emnlp-main.542
https://doi.org/10.18653/v1/2021.emnlp-main.542
https://doi.org/10.18653/v1/2021.emnlp-main.542
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
https://doi.org/10.18653/v1/2022.findings-acl.177
http://arxiv.org/abs/2305.14761
http://arxiv.org/abs/2305.14761
http://arxiv.org/abs/2305.14761
http://arxiv.org/abs/2305.14761
http://arxiv.org/abs/2305.14761
https://openai.com/research/gpt-4v-system-card
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2021.naacl-main.383


factuality metrics. In Proceedings of the 2021 Con-831
ference of the North American Chapter of the Asso-832
ciation for Computational Linguistics: Human Lan-833
guage Technologies, pages 4812–4829, Online. As-834
sociation for Computational Linguistics.835

Haoyi Qiu, Kung-Hsiang Huang, Jingnong Qu, and836
Nanyun Peng. 2023. Amrfact: Enhancing summa-837
rization factuality evaluation with amr-driven training838
data generation. arXiv preprint arXiv:2311.09521.839

Darsh Shah, Tal Schuster, and Regina Barzilay. 2020.840
Automatic fact-guided sentence modification. In Pro-841
ceedings of the AAAI Conference on Artificial Intelli-842
gence, volume 34, pages 8791–8798.843

Benny Tang, Angie Boggust, and Arvind Satyanarayan.844
2023a. VisText: A benchmark for semantically rich845
chart captioning. In Proceedings of the 61st Annual846
Meeting of the Association for Computational Lin-847
guistics (Volume 1: Long Papers), pages 7268–7298,848
Toronto, Canada. Association for Computational Lin-849
guistics.850

Liyan Tang, Tanya Goyal, Alex Fabbri, Philippe La-851
ban, Jiacheng Xu, Semih Yavuz, Wojciech Kryscin-852
ski, Justin Rousseau, and Greg Durrett. 2023b. Un-853
derstanding factual errors in summarization: Errors,854
summarizers, datasets, error detectors. In Proceed-855
ings of the 61st Annual Meeting of the Association for856
Computational Linguistics (Volume 1: Long Papers),857
pages 11626–11644, Toronto, Canada. Association858
for Computational Linguistics.859

James Thorne and Andreas Vlachos. 2021. Evidence-860
based factual error correction. In Proceedings of the861
59th Annual Meeting of the Association for Compu-862
tational Linguistics and the 11th International Joint863
Conference on Natural Language Processing (Vol-864
ume 1: Long Papers), pages 3298–3309, Online. As-865
sociation for Computational Linguistics.866

Karthik Valmeekam, Matthew Marquez, and Subbarao867
Kambhampati. 2023. Can large language models868
really improve by self-critiquing their own plans?869
arXiv preprint arXiv:2310.08118.870

David Wan and Mohit Bansal. 2022. FactPEGASUS:871
Factuality-aware pre-training and fine-tuning for ab-872
stractive summarization. In Proceedings of the 2022873
Conference of the North American Chapter of the874
Association for Computational Linguistics: Human875
Language Technologies, pages 1010–1028, Seattle,876
United States. Association for Computational Lin-877
guistics.878

Zhenhailong Wang, Ansel Blume, Sha Li, Genglin Liu,879
Jaemin Cho, Zineng Tang, Mohit Bansal, and Heng Ji.880
2023. Paxion: Patching video-language foundation881
models with action knowledge. In Proc. 2023 Con-882
ference on Neural Information Processing Systems883
(NeurIPS2023) [Spotlight Paper].884

Xueqing Wu, Kung-Hsiang Huang, Yi Fung, and Heng885
Ji. 2022. Cross-document misinformation detection886
based on event graph reasoning. In Proceedings of887

the 2022 Conference of the North American Chapter 888
of the Association for Computational Linguistics: Hu- 889
man Language Technologies, pages 543–558, Seattle, 890
United States. Association for Computational Lin- 891
guistics. 892

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 893
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 894
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 895
Judging llm-as-a-judge with mt-bench and chatbot 896
arena. arXiv preprint arXiv:2306.05685. 897

Mingyang Zhou, Yi Fung, Long Chen, Christopher 898
Thomas, Heng Ji, and Shih-Fu Chang. 2023. En- 899
hanced chart understanding via visual language pre- 900
training on plot table pairs. In Findings of the As- 901
sociation for Computational Linguistics: ACL 2023, 902
pages 1314–1326, Toronto, Canada. Association for 903
Computational Linguistics. 904

Chenguang Zhu, William Hinthorn, Ruochen Xu, 905
Qingkai Zeng, Michael Zeng, Xuedong Huang, and 906
Meng Jiang. 2021. Enhancing factual consistency 907
of abstractive summarization. In Proceedings of the 908
2021 Conference of the North American Chapter of 909
the Association for Computational Linguistics: Hu- 910
man Language Technologies, pages 718–733, Online. 911
Association for Computational Linguistics. 912

11

https://doi.org/10.18653/v1/2021.naacl-main.383
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.401
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2021.acl-long.256
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.74
https://doi.org/10.18653/v1/2022.naacl-main.40
https://doi.org/10.18653/v1/2022.naacl-main.40
https://doi.org/10.18653/v1/2022.naacl-main.40
https://doi.org/10.18653/v1/2023.findings-acl.85
https://doi.org/10.18653/v1/2023.findings-acl.85
https://doi.org/10.18653/v1/2023.findings-acl.85
https://doi.org/10.18653/v1/2023.findings-acl.85
https://doi.org/10.18653/v1/2023.findings-acl.85
https://doi.org/10.18653/v1/2021.naacl-main.58
https://doi.org/10.18653/v1/2021.naacl-main.58
https://doi.org/10.18653/v1/2021.naacl-main.58


A Further Discussions913

Captioning Model Analysis In addition the find-914

ings we summarize in §2.2, we also found that915

the error distribution for each model differs on916

different datasets. Almost all models make signif-917

icantly more Nonsense Errors on the Pew dataset.918

In addition, task-specific models observe a non-919

negligible increase in Out-of-context Errors on the920

Pew dataset. Both observations could be explained921

by the fact that these models are sometimes con-922

fused about the charts in Pew, which are often as-923

sociated with more complicated structures.924

Furthermore, in Figure 1, the error rates are925

computed as the number of such errors divided926

by the number of sentences. While this pro-927

vides an overview of the frequency for each928

error, it does not indicate the likelihood of a929

value/label/trend/magnitude-related mention in the930

generated captions being factual. This limitation931

can result in an underrepresentation of certain error932

types – for instance, the infrequent occurrence of933

Magnitude Errors as shown in Figure 1 is more a934

consequence of the scarcity of magnitude-related935

mentions in the captions rather than an indication of936

the models’ superior trend variance comprehension.937

To address this, we sample 30 generated captions938

for each model from each dataset and compute 939

another error rate as the number of sentences con- 940

taining such non-factual mentions over the number 941

of sentences containing such mentions. The results 942

are shown in Table 5. The outcomes corroborate 943

the observations in §2.2, while Table 5 offers a 944

supplementary perspective on model performance. 945

Meta-evaluation Results For the text-based met- 946

rics presented in Table 3, they both perform weakly 947

in determining the factuality of the generated cap- 948

tion. This is largely because charts often contain 949

much denser information compared to the corre- 950

sponding reference. As a result, text-only factuality 951

metrics are unsuitable for assessing factual consis- 952

tency between charts and captions. 953

Main Results We see that C2TFEC outperforms 954

the pipeline approaches of DePlot/DePlotCFT + 955

GPT-4 across the board. While both methods 956

utilize an intermediate tabular representation and 957

leverage GPT-4 for language generation/correction, 958

C2TFEC employs a superior chart-to-table conver- 959

sion model with much more comprehensive train- 960

ing datasets. This results in extracted tables that 961

more faithfully capture the underlying chart data, 962

better facilitating the downstream factual error cor- 963

... The two most important issues are health and social security (47%) and the
environment, climate and energy issues (39%). The next most important issues
are the education system (26%), crime (21%), and immigration (20%). The least
important issues are government debt (1%), terrorism (2%), rising
prices/inflation/cost of living (3%), unemployment (4%), taxation (4%), pensions
(6%), and housing (11%)...

Corrected Caption by C2TFEC

Input Chart

... The two most important issues are crime (44%) and rising prices/ inflation/ cost
of living (40%). The next most important issues are immigration (32%), healthcare
and social security (30%), and the environment, climate and energy (25%). The
least important issues are unemployment (7%), terrorism (6%), pensions (6%),
taxation (5%), government debt (4%), housing (4%), and the education system
(3%)...

Original Caption

... The two most important issues are rising prices/inflation/cost of living (40%) and
crime (44%). The next most important issues are health and social security (30%),
immigration (32%), and the environment, climate and energy (25%). The least
important issues are taxation (5%), the education system (3%), unemployment
(7%), terrorism (6%), pensions (6%), housing (4%), and government debt (4%)...

Corrected Caption by GPT-4V

Generated Table

Figure 4: An example showing how decomposing the visual reasoning process into image-to-structure rendering
and text-based reasoning allows C2TFEC to accurately rectify errors in chart captions. Texts marked in red indicate
non-factual information units in the caption, whereas those marked in blue represent information units faithful to the
chart. In this instance, C2TFEC successfully corrects all Value and Label Errors presented in the original caption.
Conversely, GPT-4V fails to identify the factual inconsistencies and merely reorders the entities in the caption.
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Dataset → VisText Pew

Error Type → Value Label Trend Magnitude Value Label Trend Magnitude
Model ↓

ChartT5 92.31 (12/13) 64.71 (33/51) 32.00 (8/25) 100.00 (3/3) 66.67 (2/3) 100.00 (2/2) N/A (0/0) N/A (0/0)
MatCha 71.43 (5/7) 50.00 (13/26) 23.33 (7/30) 50.00 (1/2) 100.00 (2/2) 66.67 (2/3) N/A (0/0) N/A (0/0)
UniChart 33.33 (3/9) 29.41 (10/34) 0.00 (0/14) 50.00 (2/4) 51.72 (15/29) 46.67 (14/30) 100.00 (1/1) N/A (0/0)
DePlot + GPT-4 51.52 (34/66) 44.78 (30/67) 30.77 (8/26) 0.00 (0/7) 49.25 (33/67) 34.48 (10/29) 46.15 (6/13) 0.00 (0/3)
Bard 69.12 (47/69) 69.39 (34/49) 43.75 (14/32) 15.38 (2/13) 38.10 (40/105) 27.71 (23/83) 11.11 (2/18) 40.00 (2/5)
GPT-4V 40.48 (17/42) 33.33 (17/51) 20.75 (11/53) 23.53 (4/17) 8.20 (10/122) 9.02 (11/122) 16.67 (2/12) 33.33 (2/6)

Table 5: Error rates (%) are calculated by dividing the number of sentences containing such non-factual mentions
(e.g. non-factual mentions of values) by the number of sentences containing such mentions (e.g. all mentions of
values). The lower the error rate, the better the performance.

Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

Evaluation Metric → CHARTVE (%) Levenshtein GPT-4V (%) Levenshtein Bard (%) Levenshtein
Correction Model ↓

C2TFEC 29.29 62.85 40.63 35.63 49.49 23.48
C2TFEC (w/ GT Table) 29.90 52.82 40.69 32.59 50.93 23.47

Table 6: Correction performance of different models on the CHOCOLATE dataset. CHARTVE measures factuality
by computing the entailment probability from each chart to the corresponding caption sentences. GPT-4V and Bard,
when used as evaluation metrics, rate each chart caption as factually consistent with the chart or not. Levenshtein
computes the edit distance between the corrected caption and the original caption. Metric scores are shown separately
for each of the three data splits. Note that the Bard metric corresponds to Gemini Pro (Google, 2023b) since the
experiments were conducted after its release.

rection. C2TFEC also requires a relatively small964

number of edits to captions according to Leven-965

shtein distance, making focused changes to im-966

prove factuality while minimizing revisions. An967

example output from C2TFEC is shown in Figure 4.968

By comparison, the proprietary LVLM Bard pro-969

duces corrected captions requiring 127.83 as many970

character-level edits on average. This signals exces-971

sive rewriting rather than targeted error correction.972

After manually inspecting Bard’s outputs, we found973

the reason is that Bard oftentimes try to improve974

the fluency of the caption by paraphrasing. Hence,975

it makes more edits to the generated captions.976

Understanding The Upper Bound We seek to977

understand the performance upper bound of our978

proposed two-stage framework by replacing gener-979

ated tables with ground-truth data tables. Since the980

ground-truth data tables in Pew are not available,981

we experiment with only the instances from the982

VisText dataset. The results are demonstrated in983

Table 6.984

B Annotation Details985

In this section, we present the details of our human986

annotation conducted in §2.987

B.1 Worker Qualification988

We laid out specific preliminary criteria for the989

recruitment of MTurk workers with impressive per-990

formance records. These prerequisites comprise a 991

HIT approval percentage of 99% or above, a mini- 992

mum of 10,000 approved HITs, and the worker’s 993

location within the United Kingdom, Canada, or 994

the United States. 995

Moreover, beyond these initial criteria, suitable 996

workers have to successfully pass two staged qual- 997

ification examinations focused on identifying fac- 998

tual errors in generated chart captions. To optimize 999

the qualification procedure, the authors manually 1000

annotate two HITs, each consisting of one chart 1001

and one caption produced by one of our chart cap- 1002

tioning models. In every qualification round, anno- 1003

tators are exposed to one of these annotated exam- 1004

ples. Workers whose annotations fail to correspond 1005

closely with ours are eliminated from the selection 1006

procedure. 1007

Finally, a group of 7 annotators who successfully 1008

navigated all three stages of qualification tests were 1009

chosen. Additionally, each HIT was meticulously 1010

crafted to ensure that annotators could achieve an 1011

equivalent hourly pay rate of $15 - $20, assuming 1012

they work without interruption. 1013

B.2 Annotation Guidelines 1014

In this task, you will evaluate the factual errors for 1015

a generated caption with regard to the reference 1016

chart. To correctly solve this task, follow these 1017

steps: 1018

• Carefully read the generated caption and the 1019
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reference chart.1020

• Compare the generated caption against the1021

reference chart and decide whether the caption1022

contains any factual error defined below.1023

• You should click/press the button if an error1024

occurs. A blue button indicates the caption1025

contains the corresponding factual error, while1026

a white button means the caption does not1027

contain such an error.1028

Warning: Annotations will be checked for qual-1029

ity against control labels, low-quality work will be1030

rejected.1031

Error definition1032

• Value error: A quantitative data value is in-1033

correct.1034

• Label error: A non-quantitative data value is1035

incorrect.1036

• Trend error: The direction of a trend is1037

wrong.1038

• Magnitude error: The magnitude or variance1039

of a trend is wrong.1040

• Out-of-context error: The caption introduces1041

concepts that are not present in the chart.1042

• Grammatical error: The grammar of the cap-1043

tion is wrong.1044

• Nonsense error: The caption is incomplete1045

or does not make sense at all.1046

B.3 Annotation Interface1047

The interface for our human annotation is shown in1048

Figure 5.1049

C Dataset Details 1050

Table 7 presents the detailed statistics of each split 1051

in our dataset. 1052

D Implementation Details 1053

D.1 Details of the Chart-To-Table Model 1054

Our chart-to-table model takes in as input a graphi- 1055

cal chart and outputs a linearized data table for- 1056

mat, using \t to delimit columns and &&& for 1057

row separation. The backbone of our approach 1058

is UniChart (Masry et al., 2023), due to its di- 1059

verse chart-oriented pre-training objectives that 1060

have demonstrated strong performance on relevant 1061

tasks. 1062

D.2 Table-guided Negative Data Generation 1063

In Algorithm 1, we depict the details of how we 1064

generate negative data for our CHARTVE model. 1065

D.3 Model Training 1066

The Chart-To-Table model and CHARTVE are op- 1067

timized using AdamW for a maximum of 20,000 1068

and 50,000 steps, respectively. The learning rates 1069

for both models are set to 5e-5. During inference 1070

time, the Chart-To-Table model uses beam search 1071

with a beam width of 4. 1072

E Prompts 1073

The prompts for using LVLM and LLM as evalua- 1074

tion metrics are displayed in Figure 8 and Figure 9, 1075

Figure 5: Human annotation interface for our data collection discussed in §2. Examples of each type of error from
Table 1 are also displayed in the annotation interface. We were not able to show these examples in this figure due to
space limits.
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CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT

# Factual # Non-factual # Factual # Non-factual # Factual # Non-factual

Sentence 1,683 1,270 518 469 360 1,023
Caption 74 321 27 169 112 484

Table 7: Dataset statistics per split. A sentence is considered factual if and only if it does not contain any factual
error. A caption is considered factual if all its sentences are factual.

The bar chart presents data on the number of prevalent cancer cases worldwide
in 2018, categorized by region and expressed per 100,000 population. The
regions from highest to lowest number of cases are: North America, Europe, Latin
America and the Caribbean, Asia, Oceania, and Africa. North America shows the
highest prevalence, with over 400 cases per 100,000 population, while Africa
shows the lowest, with fewer than 100 cases per 100,000 population. The data
suggests significant regional disparities in the prevalence of cancer cases.

Generated Caption w/o Value Labeling

The chart presents the number of prevalent cancer cases worldwide in the year
2018, categorized by region and expressed per 100,000 population. The following
observations can be made from the chart:

- North America has the highest prevalence, with 545.9 cases per 100,000
population.
- Africa has the lowest prevalence, with 43.2 cases per 100,000 population.
- Oceania also shows a high prevalence, with 518.5 cases per 100,000
population, slightly less than North America.
- Europe has the third-highest prevalence, with 435.1 cases per 100,000
population.
- Latin America and the Caribbean have a moderate prevalence rate of 145.2
cases per 100,000 population.
- Asia has the second-lowest prevalence, with 117.0 cases per 100,000
population.

Generated Caption w/ Value Labeling

Input Chart w/o Value Labeling Input Chart w/ Value Labeling

Figure 6: The impact of value labeling. We prompted GPT-4V to generate captions of two charts we created using
the Seaborn library from an underlying table sampled from the Chart-to-Text dataset, with or without labeling the
values of the bars on the chart. We see that when the labeled values are presented in the chart, GPT-4V is capable of
producing more factual captions.

while the prompts for factual error correction are1076

shown in Figure 10 and Figure 11.1077
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Algorithm 1: Table-guided Negative Data
Generation
Input: Data table AEi for chart Ei, Positive

caption sentence c
+
i .

Output: Set of negative caption sentences
C

−
i = {c−i,value, c

−
i,trend, c

−
i,context}.

1 Initialize C
−
i as an empty set;

2 Define a lexicon of trend terms T ;
3 Define entailment threshold τ ;
4 // Generate Value and Label Errors;
5 for each cell value v in AEi do
6 if v is a substring of c+i then
7 Randomly sample a new value v

′

from the same column in AEi ;
8 Replace v in c

+
i with v

′ to get
c
−
i,value;

9 Add c
−
i,value to C

−
i ;

10 // Generate Trend Errors;
11 for each trend term t in T do
12 if t is found in c

+
i then

13 Replace t in c
+
i with its antonym to

get c−i,trend;
14 Add c

−
i,trend to C

−
i ;

15 // Generate Out-of-Context Errors;
16 Randomly select a different chart Ej where

j ≠ i;
17 Pair Ei with unrelated caption sentence c+j to

get c−i,context;
18 Add c

−
i,context to C

−
i ;

19 return C
−
i ;

Input Chart Extracted Table Using GPT-4V

Figure 7: An example showing GPT-4V cannot accurately extract tables from charts. This indicates its inability to
infer the actual value of each data point within the chart.

16



Dataset Split → CHOCOLATE-LVLM CHOCOLATE-LLM CHOCOLATE-FT
Evaluation Metric → GPT-4V GPT-4V GPT-4V
Correction Model ↓

N/A 50.89 23.47 24.83
LLaVA 29.87 22.45 39.45
Bard 37.37 31.77 44.86
GPT-4V 61.34 52.35 74.79
DePlot + GPT-4 23.79 22.45 40.63

C2TFEC (Ours) 35.96 39.29 55.56

Table 8: Correction performance on CHOCOLATE using GPT-4V as the evaluation metric. GPT-4V, when used as an
evaluator, assigns significantly higher scores to its own generations. This suggests potential self-enhancement bias
of GPT-4V. Note that GPT-4V also assign a high scores to the original captions (i.e. N/A) on the LVLM split. This is
because half of these captions are directly generated from GPT-4V.

You are given a chart and a caption, you are tasked to detect whether the caption is factually
consistent with the chart.
[Start of Caption]
{caption}
[End of Caption]
You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

LVLM Evaluation Prompt

Figure 8: Prompts for using GPT-4V, Bard, and LLaVA-1.5 as a evaluator.

You are given a table extracted from a chart and a caption. The table uses "<0x0A>" to
delimit rows and "|" to delimit columns. The first row is the extracted chart title. You are
tasked to detect whether the caption is factually consistent with the table.

[Start of Extracted Table]
{table}
[End of Extracted Table]
[Start of Caption]
{caption}
[End of Caption]

You should answer 'Answer: Yes' or 'Answer: No'. Do not provide explanation or other thing.

LLM Evaluation Prompt

Figure 9: Prompts for using DePlot + GPT-4 as a evaluator.
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You are given a chart and a chart caption. Your task is to correct errors in the caption based
on the given chart. You should correct factual errors in the caption by as few substitution,
insertion, and deletion operations as possible.
            
[Start of Caption]
{caption}
[End of Caption]
========

You must give your response in a structured JSON format that can be directly parsed with
json.loads. Your response should contain two fields and two fields only: 
"corrected_caption": the corrected caption based on the chart provided
"explanation": an explanation of your correction
Please follow the below rules:
1. Do not include "```json" in your response so that your output can be directly parsed with
json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is
no error, "corrected_caption" should be the same as input caption.

LVLM Correction Prompt

Figure 10: Prompts for using GPT-4V, Bard, and LLaVA as a factual error corrector.

You are given a Markdown table, a chart title and a chart caption. The linearized table is
assumed to faithfully represent the chart correpsonding to the caption. Your task is to correct
errors in the caption based on the Markdown table and the chart title. You should correct
factual errors in the caption by as few substitution, insertion, and deletion operations as
possible.
            
[Start of Table]
{extracted_table}
[End of Table]

[Start of Chart Title]
{extracted_title}
[End of Chart Title]

[Start of Caption]
{caption}
[End of Caption]
========

You must give your in a structured JSON format that can be directly parsed with json.loads.
Your response should contain two fields and two fields only: 
"explanation"; an explanation of your correction
"corrected_caption": the corrected caption based on the table provided
Please follow the below rules:
1. Do not include "```json" in your response so that your output can be directly parsed with
json.loads.
2. There are likely multiple errors in the caption. Please correct all factual errors. If there is
no error, "corrected_caption" should be the same as input caption.

LLM Correction Prompt

Figure 11: Prompts used for using DePlot + GPT-4 as a factual error corrector.
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