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ABSTRACT

Federated learning allows multiple clients to jointly learn an ML model while keep-
ing their data private. While synchronous federated learning (Sync-FL) requires
the devices to share local gradients synchronously, to provide better guarantees, it
suffers from the problem of stragglers, slowing the entire training process. Con-
ventional techniques completely drop the updates from the stragglers and lose
the opportunity to learn from the data the stragglers hold, especially relevant in a
non-iid setting. Asynchronous learning (Async-FL) provides a potential solution
to allow the clients to function at their own pace, which typically achieves faster
convergence. We target the video action recognition problem on edge devices as an
exemplar heavyweight task to perform on a realistic edge setup using asynchronous-
FL (Async-FL). Our FL system, KUIPER, leverages Async-FL to learn a heavy
model on video-action-recognition tasks on a heterogeneous edge testbed with
non-IID data. KUIPER introduces a novel aggregation scheme, which solves the
straggler problem, while taking into account the different client data in a non-iid
setting. Although the proposed aggregation technique is catered majorly for video
action recognition, it is task-independent and scalable, and we demonstrate it by
showing experiments on other vision and NLP tasks. KUIPER shows a 11% faster
convergence compared to Oort [OSDI-21], up to 12% and 9% improvement in test
accuracy compared to FedBuff [AISTAT-22] and Oort [OSDI-21] on HMDB51,
and 10% and 9% on UCF101.

1 INTRODUCTION

Federated learning McMahan et al. (2017) has gained great popularity in recent times as it allows
heterogeneous clients to collaborate and benefit from peer data while keeping their own data private.
As a result, the clients learn a better model with collaboration than they would have, individually. The
training process is orchestrated by a central server that broadcasts the global model to the clients while
the clients run local training on their own data and only share the gradient updates with the server.
This has made it possible for clients with limited computational resources to participate in the learning
process. However, heterogeneous clients with varying computational capabilities (we use the term
"computational capabilities" as a shorthand to include heerogeneity in both computational capabilities
on the node as well as the communication capabilities connecting the node to the federation server), if
forced to synchronize, direct the process to progress at the speed of the slowest client Li et al. (2020a).
For example, in our experimental setup of embedded nodes with mobile GPUs, Jetson Nano is 5×
slower than Jetson AGX Xavier; including variation in network speeds adds to this heterogeneity. It
becomes crucial to incorporate even slow clients when the data distribution among clients is non-IID,
as all clients then have distinctive elements to contribute to the learned model.
In this paper, we target a heavyweight learning task, namely, video action recognition, that till date
had been considered out of the reach of embedded devices, i.e., mobile GPUs. The straggler problem
becomes particularly serious for heavyweight learning tasks on heterogeneous edge devices since
the devices are resource constrained relative to the demands of the task and the variance in device
capabilities (processing power, memory, storage) is large (5× in our representative setup). Therefore,
to deal with stragglers an obvious approach seems to be to use synchronous learning. However, this
prevents the global model from learning features specific to the local data of the stragglers, leading to
a model that underfits. This problem becomes more acute as the degree of non-IIDness increases;
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Figure 1: Overview of a working example of KUIPER in action for 5 heterogeneous clients with K (burst
size) =3. The circle denotes that a client is ready with its updates. The dashed vertical line denotes an

aggregation step where we also update τi for the clients aggregated in the burst. The aggregator waits for
3 clients to respond, comprising a burst, denoted by identically colored circles. Within the burst, the

individual client updates are weighed by a function of their local data size and training accuracy. The
burst, as a whole, is then weighed again by the average staleness (t− τi) of the clients comprising the
burst, and the global model is updated. The updated model is sent back to all the clients in that same

burst, and the process goes on.

again, for a distributed edge device scenario, high degrees of non-IIDness are commonly seen Zhao
et al. (2018); Chen et al. (2020b). We empirically observe the severe negative consequence of
discarding stragglers on the learning accuracy (Figure 7(d)). This motivates the use of asynchronous
aggregation, which allows the central server to aggregate the clients’ gradient updates as soon as they
are made available without having to wait for all the clients to respond. However, it has remained an
open problem how to best aggregate the updates sent by all clients in order to maximize information
learned while minimizing any adverse effect from slow updates1.

Our proposed solution KUIPER: We propose KUIPER2 to solve the above problems of heteroge-
neous clients with resource constraints and non-IID data, with the overview shown in Figure 1. We
consider the typical case of FL with non-IID data where although the client might not have training
data for all the classes but wants to have a global model which can work on all the classes (i.e.,
learning from peers). Our solution is based on the idea of scaling the stale updates before aggregation,
depending on the staleness of the updates, and the current iteration’s training error of the clients.
Training error is a measure of how much the local model has made progress on learning from its own
data. This ensures that the global model is not starved of the information that could be learned from
the stragglers’ data. Our scaling policy is designed to ensure high model quality while balancing
the need to incorporate relatively outdated updates if they improve the global model. Further, we
find that a pure asynchronous solution does not work well due to the wide diversity of rates of client
updates. We then batch the updates from a group of clients, quantified by K, the batch size, before
aggregation. This makes KUIPER a buffered asynchronous approach3.

Our contributions can be summarized as follows:

1. We propose a novel scheme to include heterogeneous clients in federated learning by
balancing the utility of their data with their computational (and communication) efficiency.

2. We demonstrate our heterogeneous FL technique through video action recognition, which
is a computationally heavy task and can be accomplished on resource-constrained edge
devices only through the use of FL. In our setting, this task is particularly challenging due
to device heterogeneity, network heterogeneity, and non-IID data.

1There are two recent promising solutions to this problem in Oort Lai et al. (2021) and FedBuff Nguyen et al.
(2022), and we discuss why they fall short and also compare them empirically to our solution.

2KUIPER is a band of small celestial bodies beyond the orbit of Neptune from which many short-period comets
are believed to originate. Similarly, we make the small devices coalesce to achieve big tasks.

3Aspects of this design are shared with FedBuff Nguyen et al. (2022); we explain the differences in Section 2
and empirically demonstrate our superiority (Section 5).

2



Under review as a conference paper at ICLR 2023

3. We provide a convergence analysis and show the effect of the number of clients in the
federation and the non-IID parameter on the convergence.

4. With a comprehensive evaluation of our proposed design on three Video Action Recognition
datasets (Kinetics, HMDB51, and UCF101), we also show scalability of our algorithm on
two other tasks (Image Recognition, and Next-Character Prediction). We provide insights
on the relationship between data staleness and non-IIDness and show how KUIPER achieves,
for the HMDB51 dataset, up to a 12% improvement in the action recognition task’s test
accuracy compared to FedBuff Nguyen et al. (2022), and 9% compared to Oort Lai et al.
(2021), and an improvement of 10% and 9% respectively for the UCF101 dataset. Note
that action recognition is a challenging task and even centralized training does not reach
accuracy of 50% (47.8% to be exact) for a frame rate of 8, making the above (absolute)
gains in accuracy significant.

2 RELATED WORK

FL McMahan et al. (2017) is used in multiple applications that require data privacy, for example, in
healthcare Chen et al. (2020a); Li et al. (2019) and natural language processing on smartphones Llis-
terri Giménez et al. (2022); Leroy et al. (2019). In synchronous FL, the server waits to receive
updates from all the clients before aggregating the global model. FedAvg McMahan et al. (2017) is
the baseline synchronous FL, where the global model is updated by the weighted sum of the gradients,
weighted by the size of the local client data. FedProx Li et al. (2020b), FedAvgM Hsu et al. (2019),
FedAdam Mills et al. (2020), are all modifications made to FedAvg to speed up convergence, albeit
all of these are synchronous FL techniques.

Asynchronous optimization, solves the problem of straggler clients. Its innovation lies in rewarding
and penalizing the clients in terms of the usefulness or staleness of the updates as in Smith et al.
(2017); Xu et al. (2019). FedAsync Xie et al. (2019) sets the local learning rate of clients to be
inversely proportional to the frequency with which the client generates the model updates, in order
to increase the contribution of slower clients. Oort Lai et al. (2021), on the other hand waits for
a fixed number of clients (K) to synchronize and runs FedAVG McMahan et al. (2017) on the
received updates. It prevents starvation of stragglers by maintaining a dynamic utility score for every
participating client. This depends on the staleness and local training loss of the individual clients.
FedBuff Nguyen et al. (2022) also waits for a fixed number of clients (K) to update its gradients but
does not have a client selection policy or a gradient weighing policy according to their performance.
Thus, the model is biased towards the fast clients’ data distribution (as it gives more weight to the fast
clients because of their more frequent updates). When the non-IID bias is high, some slow clients
will have exclusive data, which is important for the overall training and thus need to aggregate that
client’s model with high importance. Its focus is on guarding against an honest-but-curious server
(which it achieves by storing the buffer in a TEE) and in ensuring scalability to hundreds of clients
(which is helped by the buffering).

Asynchronous FL, however has its own challenges. Previous literature in Asynchronous Learning Xie
et al. (2019); Chen et al. (2020b) penalizes clients for their delayed updates and thus contribution of
a slow client to the global model is curtailed. In such scenarios, the problem arises when the data
that clients have is distributed in a non-IID manner, exacerbated for high non-IID bias values. In
such cases, a few clients may possess useful data while being stragglers. Previous literature does
not consider this aspect and thus performs poorly when the non-IID bias is high (as we empirically
show with FedBuff in Figures 3 and 6). We have evaluated Xie et al. (2019)’s method and it has
comparable, albeit lower, accuracy relative to KUIPER for IID data. However, KUIPER’s performance
is higher than its counterparts for highly skewed data distributions, as would be the case in realistic
mobile computing devices.

The fact that edge devices are often constrained in terms of local resources (compute, memory, and
storage) as well as network resources (low bandwidth connections, intermittent connectivity) has
given rise to fruitful areas of inquiry in communication-efficient federated learning Reisizadeh et al.
(2020); Sattler et al. (2019); Mills et al. (2019), asynchronous learning to deal with stragglers Smith
et al. (2017); Xu et al. (2019), approximate models and computation Zhang et al. (2018); Wu et al.
(2019); Han et al. (2020), and also knowledge distillation to create more succinct models Jang et al.
(2020); Matsubara et al. (2020). Federated distillation Jeong et al. (2018) follows an online version
of knowledge distillation, known as co-distillation (CD) Anil et al. (2018). In CD, each device treats
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itself as a student, and sees the mean model output of all the other devices as its teacher’s output.
Furthermore, non-IID data of on-device ML can be corrected by obtaining the missing local data
samples at each device from the other devices. This can induce significant overhead, so FAug Jeong
et al. (2018) is proposed. FAug generates the missing data on each device. They empirically found that
their approach yields lower overhead and better accuracy for image classification on MNIST LeCun
et al. (1998). Human action recognition approaches can be categorized into visual sensor-based,
non-visual sensor-based, and multi-modal categories Yurur et al. (2014); Ranasinghe et al. (2016). So
far, federated learning for action recognition has only been incorporated into federated learning using
wearable sensors Sozinov et al. (2018); Ek et al. (2020). That is an easier task since the data streams
from these sensors are much lighter compared to the targeted video data.

3 DESIGN AND ANALYSIS OF KUIPER

KUIPER is a buffered asynchronous aggregation technique, which is designed considering the non-IID
biases in the clients’ datasets and heterogeneity in clients’ computational resources.

3.1 DESIGN DETAILS
The global server node and the client nodes conduct the training in a buffered asynchronous manner.
Each client independently trains the model obtained from the server on its local data and shares
the gradient update with the server as soon as it is ready. The server does not wait to hear from all
the clients. Rather, the aggregation works in bursts where a burst consists of K clients that have
responded and are waiting for the server to send them back the aggregated global model. The server
aggregates the received updates according to the client’s local data size and training accuracy, and
their staleness. It then updates the global model with these aggregated gradients and sends it to only
those clients that contributed to the burst. Meanwhile, other clients might have responded to the
server with their gradients and the server again waits until it has heard from K clients to form a burst,
and continue the above described process iteratively until convergence. We demonstrate a working
example in Figure 1 with 5 heterogeneous clients and K = 3.

Problem formulation. We consider a federated learning setup with M devices. We consider a
supervised problem where the data is partitioned across M different clients with D1, D2, .., DM

data. Data samples are different for all the clients, i.e., Di ∩ Dj = ϕ for all the i, j ∈ [M ] and⋃M
i=1 Di = D, where D is the complete training data. Our aim is to find the parameters w that

achieves minF (w), i.e.

wopt = min
w

F (w),whereF (w) =
1

M

M∑
k=1

E[l(w; di)] (1)

Here, di is data sampled from local data Di on the i-th device, and l(·; ·) is a user-specified loss
function. The ith client performs training with a learning rate ηl using data di, which is randomly
sampled from its local dataset Di. We consider the typical case of FL with non-IID data where
although the client might not have training data for all the classes but it wants to have a global model
which can work on all the classes (i.e., learning from peers).

Knowledge distillation. To accommodate the limited resources on the embedded devices, we use
knowledge distillation to train a light-weight model ResNet-18, initialized from ResNet-34, trained
on the Kinetics dataset. We define the knowledge distillation loss LKD as the Mean Squared Error be-
tween the logits from the teacher model zzzt and the student model zzzs, i.e., LKD = ∥zzzt(x)− zzzs(x)∥2.
The overall loss function is a combination of two loss functions, L = αLcls + (1− α)LKD. Lcls is
the conventional cross-entropy loss, computed for the predictions made by the student and the ground
truth corresponding to the input x.

The teacher model cannot effectively transfer its knowledge to the student if the size gap between
them is large Mirzadeh et al. (2020). To alleviate this, the knowledge distillation is done through an
intermediate Teaching Assistant (TA) model, which in our case is ResNet-26.

Fine tuning at the clients. In every epoch, the central server waits for K clients to report their
updates, with these K clients forming a burst. The individual gradients from each client within the
burst are weighed according to three factors and shown in Equation 2: the amount of data at each
client, the current training accuracy at the client, and the speed of the client. For larger non-IID bias,
clients have data only from a subset of classes, and thus their reported gradients become relatively
noisy. Weighted-averaging those gradients first in a burst and then aggregating the burst with the
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global model helps to achieve a better accuracy. Averaging also helps prevent inference attacks, as
mentioned in Nguyen et al. (2022). Later, we experimentally see the importance of this buffering
over the vanilla asynchronous mode for video action recognition (Figure 9 (a)).

Now let us look at the various components of Equation 2.

wct
new,t ←

K∑
i=1

ni

N
wi

new,t{1(t < T0)× e(acctraini
t) + 1(t ≥ T0)} (2)

The term ni/N normalizes each client by the amount of data that it has. 1(·) is the identity function,
which is 1 when the argument is True else 0. This rewards clients which return results within a
latency threshold T0. The function e(acctraini

t) = 1 − acctraini
t, considers this and thus give

more importance to the clients that have a low training accuracy with the current state of the model.
Intuitively, when a client’s training accuracy is high, it means that the global model has already
learned the features corresponding to that client’s data and our global model can focus on other clients
to learn their features.

Now let us consider how the aggregation handles stragglers and penalizes stale updates from clients.
This is achieved in the second level of aggregation, where the weighting factor of the burst is
determined (Equation 3).

βct
t ← β × s(t− τ ct) (3)

Here, ct is the set of clients ({1, 2, .., i, ..,K}) we are considering in the tth update of the model. We
calculate wg

t the global model at epoch t using Equation 4.
wg

t ← (1− βct
t )wg

t−1 + βct
t wct

new,t (4)

To do this, we moderate the mixing hyperparameter, β ∈ (0, 1). Here t − τ ct captures how
delayed the burst is and we calculate staleness of the burst as s(t− τ ct) = (1 + t− τ ct)−α, where
τ ct = avg{τ i,∀i ∈ (1, 2, .., i, ..,K)}, which adaptively changes the mixing parameter βct

t . The
general form of this function is that it monotonically and exponentially decreases with increase in
staleness. The above is presented as a pseudo-code in Algorithm 1 in Appendix B.

3.2 CONVERGENCE ANALYSIS

Here we prove the convergence guarantee of KUIPER. This analysis is influenced from FedBuff
Nguyen et al. (2022) and customized to our model. Specifically, we characterize the effect of non-IID
bias on gradient variances and convergence guarantee.

Notation. M denotes total number of clients. gi(w; ζi) denotes stochastic gradient on ith client on a
model with weights w and sampled batch ζi. ∇Fi(w) denotes the gradient with respect to the loss.
σ2
l and σ2

g are local and global variances of the gradients. f(w) is the objective function and f∗ is
the theoretical minima. t is the current iteration and τi is the global iteration when ith client received
gradients from the server.
Assumption 1: (Unbiased client stochastic gradients) E[gi(w; ζi)] = ∇Fi(w).
Assumption 2: (Bounded local and global variance) ∀i ∈ [M ], Eζi|i[||gi(w; ζi)−∇Fi(w)||2] ≤ σ2

l

and 1
M

∑m
i=1 ||∇Fi(w)−∇f(w)||2 ≤ σ2

g .
Assumption 3: (Gradients are bounded) ||∇Fi||2 ≤ G.
Assumption 4: (L-smoothness), ∀i ∈ [M ], the gradient is L-smooth, ||∇Fi(w) − ∇Fi(w

′)||2 ≤
L||w − w′||2.
Assumption 5: (Bounded Staleness) The staleness of stragglers t − τ , where t represents current
global epoch and τ represents the global epoch when the client last synchronized with the server, is
bounded t− τ ≤ τmax,1 which is the maximum across all the clients.
Choosing a constant local learning rate ηl and global learning rate ηg such that ηgηlQ ≤ 1

L , the
global model iterates in KUIPER are bounded by

1

T

T−1∑
t=0

E[||∇f(wt)||2] ≤ 2F ∗

ηgηlQT
+

L

2
ηgηlσ

′2
l + 3L2Q2η2l (η

2
gτ

2
max,K + 1)σ′2 (5)

where F ∗ := f(w0)− f∗, σ′2 := σ′2
l + σ′2

g +G′. σ′
l and σ′

g are the new bounds of local and global
variance, and G′ the updated norm of gradients when the gradient updates are scaled by s(·) and e(·).
Q is the number of local iterations for a client, and T the total number of global iterations. Further,
choosing ηl = O(1/(K

√
TQ)) and ηg = O(K), for all ηg, ηl satisfying ηgηlQ ≤ 1

L and sufficiently
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large T , we have

1

T

T−1∑
t=0

||∇f(wt)||2 ≤ O( F ∗
√
TQ

) +O( σ′2
l√
TQ

) +O(Qσ′2

TK2
) +O(

Qσ′2τ2max,1

TK2
) (6)

For sufficiently large T , the algorithm achieves the convergence rate as shown in Eq. (10). We
provide a detailed proof in the Appendix I. As we can see, the convergence guarantee increases with
increasing K as we tend to go closer to the synchronous aggregation. Also, as non-IID bias increases,
gradient variances increase, and weakens the convergence guarantee.

4 IMPLEMENTATION

The central server in the following experiments has an NVIDIA Tesla V100S 32GB GPU. We use four
types of mobile GPU-equipped clients to demonstrate that our asynchronous federated optimization is
robust to heterogeneous edge devices: NVIDIA Jetson Nano, which has 4GB memory, and a 128-core
Maxwell GPU; NVIDIA Jetson TX2, which has 8GB memory, and a 256-core Pascal GPU; NVIDIA
Jetson Xavier NX, which has a 8GB memory, and a 384-core Volta GPU with 48 Tensor cores; and
NVIDIA Jetson AGX Xavier, which has 32GB memory and 512-core Volta GPU.

We use two different setups where M (Number of clients) = 4 and K (Burst size) = 2, and M=12 and
K=4. For M=4, we use one device each from the above categories of devices, and for the M=12
setup, we use three devices each from the above categories.

The Kinetics Kay et al. (2017) dataset, which we use for knowledge distillation, is present at the
central server. We conduct experiments on two datasets for finetuning: HMDB51 Kuehne et al. (2011)
and UCF101 Soomro et al. (2012). This data is distributed amongst the clients. The Kinetics dataset
contains 400 human action classes, with at least 400 video clips for each action. Each clip lasts for
around 10s and is taken from a different YouTube video. The dataset has 306,245 videos, and is
divided into three splits: one for training, with 250–1000 videos per class; one for validation, with
50 videos per class; and one for testing, with 100 videos per class. The HMDB51 dataset contains
51 classes and a total of 3,312 videos. The UCF101 dataset consists of 101 classes and over 13K
clips (27 hours of video data). We use the HMDB51 dataset for all experimental purposes unless
otherwise stated. The model was trained using a learning rate of 0.001, staleness penalty α of 0.5,
mixing parameter β of 0.7 (Appendix D), batch size of 8 video clips, for 200 global iterations with 3
local epochs per client. We show our algorithm’s scalability to a large number of clients for image
recognition and next-word prediction tasks with other methods.

5 EXPERIMENTAL EVALUATION

Figure 2: Validation accuracy achieved by KUIPER as
compared to individually trained clients across varying degrees

of non-IID bias on HMDB51. Fig. (a) and (b) show the
comparison on a 4-device and 12-device setup respectively, as
described in Section 4. We observe that the improvement in

accuracy achieved with KUIPER increases with higher degree
of non-IIDness.

In our evaluation, we ask, and answer,
the following questions in order: (1) Is
FL feasible for the heavyweight task
of video action recognition on embed-
ded devices? Is Knowledge Distilla-
tion useful for this? (2) How does
KUIPER compare in terms of accuracy
and time to train vis-à-vis the state-
of-the-art in FL with heterogeneous
clients, namely, FedAsync Xie et al.
(2019), FedBuff Nguyen et al. (2022),
and Oort Lai et al. (2021). (3) What is
the effect of the Burst Size (K) on ac-
curacy and time to train KUIPER and
the two baselines, FedBuff and Oort?
(4) What is the effect of a slow client,
on KUIPER as well as the two base-
lines, FedBuff and Oort? (5) Ablation
study of KUIPER showing the effect

of each of its components and the hyperparameters α and β.
Is FL useful for action recognition, a computationally heavy task? In this experiment, we
motivate the use of FL in the action recognition scenario (the HMDB51 dataset). We first train each
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Figure 3: Comparison of KUIPER with the FedAsync, FedBuff, and Oort baselines for varying non-IID
bias. Figure (a) shows the comparison when the training was done on a 4-device setup with HMDB51

dataset. Figure (b) on a 12-device setup with HMDB51 dataset(see Section 4), and Figure (c) on a 4-device
setup with the UCF101 dataset. KUIPER achieves a higher validation accuracy across all non-IID bias
values in all the setups. The change in relative accuracy for KUIPER as compared to the baselines gets

better with higher non-IID bias as we also carefully consider data quality. KUIPER outperforms Oort and
FedBuff in absolute accuracy when non-IID bias=1.0 by (a) 5% and 8% (b) 9% and 12% (c) 9% and 10%.

Figure 4: Accuracy achieved with different number of clients on HMDB51 dataset . Here K = 10 is fixed
across KUIPER, FedBuff and Oort. (a) non-iid = 0.0 and (b) non-iid = 0.5. KUIPER achieves higher
accuracy than other baselines. For a non-iid value of 0.5 and with an increasing number of devices,

achieved accuracy approaches to a random guess accuracy which is 1
number of classes

.
Accuracy achieved with different number of clients on HMDB51 dataset . Here K = 10 is fixed across

KUIPER, FedBuff and Oort. (c) Comparison between Setup-1 and Setup-2. In Setup-1, increasing client
means fewer samples per client; thus, accuracy decreases with the increasing number of clients. In

Setup-2, increasing client means an increase in the training data, and thus accuracy increases with the
increasing number of clients.

client’s model on its own data without collaboration for 50 epochs where the non-IIDness of the
data distribution among the clients is varied. We report each client’s validation accuracy in Figure 2
and compare it with that achieved with our aggregation technique in a buffered asynchronous FL
setting. Error bars correspond to minimum and maximum individual accuracy among the clients and
the curve shows the mean accuracy across the clients. We observe a clear improvement in accuracy
when KUIPER is used, as compared to the accuracy of each client, motivating the use of FL. The
improvement becomes more marked with higher non-IID bias. An improvement of up to 15% and
8% was observed for two setups involving 4 and 12 clients, respectively.

Baseline comparison Previous asynchronous aggregation methods like FedAsync Xie et al. (2019),
penalize all the lagging clients uniformly without considering the data quality a client holds. This
usually leads to under-utilization of a client’s updates and the system suffers an accuracy drop.
FedBuff Nguyen et al. (2022) does not consider the quality of the data that clients have. Oort Lai
et al. (2021) considers both forms of utility of a client — how resource rich it is and how valuable is
its data — to decide on client selection. However, once chosen, it gives the same weight to all clients’
updates. With KUIPER, we appropriately balance the delay penalty and data quality reward and thus
perform better than the three baselines for both HMDB51 and UCF101. Experiments are performed
with 4 and with 12 devices, following the setup described in 4. We vary the non-IID bias and observe
that the improvement over all baselines increases with increasing non-IID bias as shown in Figure 3.
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Figure 5: Scalability: Comparison of KUIPER with other methods on different tasks. Image recognition
on a) MNIST b) FMNIST c) CIFAR10, and d) Next character prediction task on Shakespeare dataset.

Scalability: Large number of clients In this section, to analyze the scalability of KUIPER, we
propose two different setups: Setup-1: Data samples per client decreasing with increasing number
of clients: Here, the total number of data samples is constant in every run, and with an increasing
number of clients, we partition the dataset equally among the clients . For example, HMDB51 datasets
have 8062 samples when we have eight frames per clip. When we consider four clients, each client
gets 2013 data samples. For 100 clients, each client gets around 80 samples. With 80 data samples
per client, we get around 1-2 samples per class when we have iid distribution. It gets challenging
to train models on such small data samples, and we can see the achieved test accuracy decreasing
with an increasing number of clients (Figure 4 setup-1). Due to this reason, we limit our analysis to a
maximum of 100 clients. Figure 4 (b) validates how even with 50 clients and a 0.5 non-iid bias value,
it is not possible to train the model as achieved accuracy is equivalent to random prediction accuracy.

Setup-2: Data samples per client increasing with increasing number of clients: In a real-world
scenario, more clients bring more data and thus help learn a model with good feature representation,
which we have tried to mimic in this setup. In this section, unlike decreasing samples, we first create
50 data slices from the total data. We assign one to every participating client. So, in this setup, if 20
clients participate, we have 40% of the total dataset in that training experiment. So, total training data
increases with increasing clients as it should be in a real-world scenario. (Figure 4 Setup-2).
Comparative performance on other tasks In Figure 5, we show how KUIPER performs compared
to other methods with up to 1,000 devices. Shakespeare dataset is used for the next-character
prediction task. We have used perplexity loss (lower the better) for comparison (Figure 5 (d)). We
used MNIST, FMNIST, and CIFAR10 datasets (Figure 5 (a, b, c)) for the image recognition task. We
use accuracy as a metric for the comparison here. We thus see that KUIPER is a scalable solution
and the advantage of KUIPER over the state-of-the-art baselines is maintained even at large scales.
Effect of burst size (K) parameter We show the effect of varying Burst Size (K) on KUIPER as
well as the two baselines, FedBuff and Oort (Figure 6) (this is a 12-device experiment on HMDB51;
UCF101 analyzed in the Supplement). As K becomes higher, the protocols become closer to
synchronous aggregation. We see that KUIPER outperforms others for any given value of K. Another
way of looking at this is that to reach the same accuracy as KUIPER, FedBuff and Oort will need
higher values of K. Consequently in Figure 6(b), we see that the time taken to reach a given accuracy
is lowest in KUIPER. In Figure 6(c) we see that a synchronous approach like Oort takes much longer
per aggregation round compared to FedBuff and KUIPER (KUIPER being slightly lower than FedBuff).
This is due to Oort always waiting for the K chosen clients in each epoch.
Effect of stragglers A straggler is a slow client and we incorporate their inputs in our aggregation
technique by weighing the updates in accordance with their staleness and quality as described in
Section 3. Figure 12 (a, b) compares the two setups where all four devices are homogeneous (NX))
vs. three devices are the same (NX), and one slow device (Nano) is there. Updates of this device are
delayed and thus stale. With a slow device, accuracy decreases (Figure 12 (a)), and the time taken to
reach a specific accuracy increases. Here, note that Oort waits explicitly for the K clients depending
on their utility scores, and waiting for the delayed client makes Oort slower than FedBuff even though
it was faster in the homogeneous case (Appendix G).
Figure 7 (a, b) shows the analysis with 12 clients, 4 with no delay, 4 with 3× delay, and 4 with 5×
delay — these delays are a multiple of the natural delay. The delay ratios have been chosen in order to
mimic a realistic scenario. For example, the Jetson Nano device is ∼ 5X slower, and the Jetson TX2
device is ∼ 3X slower than Jetson AGX Xavier. For (a) the aggregation technique used is KUIPER in
all the cases. Here, 8 with delay means, 8 devices are aggregated and 4 slowest are dropped. From
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Figure 6: Comparison of KUIPER with baselines Oort Lai et al. (2021) and FedBuff Nguyen et al. (2022).
(a) shows the effect of the parameter K on the accuracy. As we increase K, it gets more synchronous, and
thus accuracy increases, but the time taken for each round increases. (b) shows time taken to reach 40%

accuracy. Here, Oort is using K=6 and FedBuff K=7 because they didn’t achieve 40% accuracy with
K=4. KUIPER is 11% faster than Oort and 10% faster than FedBuff. (c) Time taken per aggregation
round. As we increase K, time taken for each aggregation round increases. Oort waits for specific K
clients but FedBuff and KUIPER aggregate the first K clients thus taking less time per aggregation.

this we conclude that dropping large numbers of stragglers hurts performance. The overall results
from (a) and (b) show the robustness of KUIPER in the presence of stragglers across the entire range
of non-IIDness in data, without any significant drop in the validation accuracy and is not much below
the ideal accuracy case of “Sync 12 homogeneous devices". All the other baselines degrade much
faster than KUIPER, with increasing non-IID bias.

6 TAKEAWAYS

Figure 7: Figures (a) and (b) show results on a 12
device setup: 4 devices with no delay, 4 with 3x delay,
and 4 with 5x delay. Validation accuracy achieved

when a straggler’s updates are dropped as compared
to (a) different delays (5x, 3x, no delay) and (b)
weighing the stale updates in KUIPER. Highest

validation accuracy is achieved by KUIPER because
it considers updates from all clients. The

improvement in accuracy increases with high
non-IIDness.

Here we have solved a heavyweight ML task,
distributed action recognition, on edge devices
with mobile GPUs using asynchronous FL as
we have shown synchronous FL heavily suffers
with the stragglers problem. We have considered
a realistic scenario where all the clients might
not have samples from each class (non-IID data
distribution). Given the scarcity of the previous
literature in asynchronous FL on heterogeneous
and resource-constrained edge devices, we have
proposed a new method called KUIPER, which
is designed to handle both non-IID differences
and heterogeneity in network speed and com-
pute power of the clients. A unique design idea
that we have developed in KUIPER is to consider
both the speed of clients as well as the intrinsic
value of the data at each client, when perform-
ing aggregation of gradient updates from each
client. We have seen that a pure asynchronous
approach does not work well and hence we have

introduced a buffering strategy with a customizable “burst size" leading to a buffered asynchronous
FL approach. We present a convergence proof of our approach, extending the analysis of FedBuff.
Then, we empirically see that our KUIPER solution produces more accurate results on HMDB51 than
the baselines (9% better than Oort, 12% than FedBuff, and 9% than FedAsync). For a comparable
buffer size to reach the same accuracy, we are 11% and 10% faster than Oort and FedBuff respectively.
Importantly, with hyperparameter tuning, we show that the per-clip accuracy achievable for buffered
asynchronous federated learning (46.15%) is comparable to the case of a central server (47.8%)
with no clients. Thus, we for the first time empirically show that it is possible to achieve activity
recognition on edge devices that are already available for general release today. In future work, one
may consider how to handle non-iid data in a personalized way to help cater to the specific needs of
clients. One should also consider the effect of non-IIDness in feature space rather than just in classes.
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APPENDIX

INTRODUCTION

In the supplementary material, we show the following:

• Link to our anonymized source code repository

• Algorithm

• Scalability of KUIPER: Performance with large number of devices (M=1000)

• Experiments on the UCF101 dataset with the 12-device setup

• Effect of number of clients and non-IID bias in final accuracy

• Effect of number of frames per clip in final accuracy

• Systematic delay experiment with the 4-device setup

• Knowledge distillation and effect of TA

• Convergence proof of KUIPER

A SOURCE CODE

We provide the source code of KUIPER at https://anonymous.4open.science/r/
fedact_code-7513/). We have described in the README file how the edge devices can
be prepared for running KUIPER.
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B ALGORITHM

Algorithm 1 KUIPER

1: T : total iterations, k ∈ [1,K]: counter for
clients reported in burst, ct: set of clients in
burst, ni: samples present on ith device.

2: Server
3: Initialize w0 from Knowledge Distillation

model.
4: for t = 1 to T do
5: if Receive (wi

new,t, τ
i) from any client

then
6: if t < T0 then
7: wct

new,t ← ni ·wi
new,t×e(acctraini

t),
8: else
9: wct

new,t ← ni · wi
new,t

10: end if
11: ct ← ct ∪ {i}
12: τ ct ← τ ct + τ i

13: k ← k + 1
14: N ← N + ni

15: end if
16: if k == K then

17: wct
new,t ←

w
ct
new,t

N

18: τ ct ← τct

K
19: βct

t ← β×s(t−τ ct) , s(·) is a function
of the staleness

20: wg
t ← (1− βct

t )wg
t−1 + βct

t wk
new

21: send wg
t to clientj ∀j ∈ ct

22: wct
new,t ← 0, k ← 0, N ← 0,ct ← {}

23: end if
24: end for
25: Client
26: for i ∈ {1, . . . , n} in parallel do
27: receive global model and time stamp

(wg
t , t)

28: τ ← t , w ← wg
t

29: for local iteration h = 1 : H do
30: wh ← wh−1 − η∇gwh

31: end for
32: Send (wH , τ) to the server
33: end for

C UCF101 EXPERIMENT FOR 12-DEVICE SETUP

Figure 8 shows the 12-device experiment on UCF101 dataset with K = 4 complementing the
experiment (shown in Fig. 3(b) of the main paper with the HMDB51 dataset). This experiment
compares KUIPER with the other three baselines - FedAsync, FedBuff, and Oort. As KUIPER
appropriately balances the delay penalty and data quality reward, it performs better than the other
baselines. It is also interesting to observe that Oort takes more time than FedBuff when non-iid bias
is zero. This is because it waits for specific clients according to their statistical utility and all the
clients have the same data distribution in an iid setting. However, when the non-iid bias is 0.8, Oort
takes less time than FedBuff to reach 25% accuracy as selecting the specific clients with more useful
data helps to aggregate a better global model (Figure 8 (b)).

D KUIPER COMPONENTS AND HYPERPARAMETERS

Figure 9(a) shows how each component is KUIPER affects the accuracy. When non-iid=0 (iid case),
the error reward term is not improving any accuracy as the data among all the clients is IID and the
model can equally learn from any client. Figure 9(b, c) shows the effect of staleness penalty α and
mixing hyperparameter β. For higher non-IID bias, increasing α reduces accuracy drastically (4%
for non-IID=0.5 and 8% for non-IID=0.8); when we change α from 0.7 to 1.0, slow clients have
exclusive data, and global model can learn even from the stale gradients. β controls how much the
global model should change with the new model updates. We find expectedly that too slow a change
as well as too fast a change hurts accuracy.

E EFFECT OF NON-IID BIAS AND NUMBER OF CLIENTS

Figure 10 shows how accuracy changes with different numbers of clients and non-IID bias. We have
shown this analysis for three image recognition datasets (MNIST, FMNIST, and CIFAR10). For a
high number of clients, increasing non-IID bias results in a drastic decrease in the accuracy compared
to the case where the number of clients is low.
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Figure 8: Comparison of KUIPER with the FedAsync, FedBuff, and Oort baselines for 12 device setup for
UCF101 dataset (a) Accuracy achieved with different non-iid bias values and (b) Time taken to reach

accuracy of 25% when non-iid bias is 0 and 15% when non-iid bias is 0.8. KUIPER achieves higher
accuracy and takes less time to reach the accuracy than the other baselines with a low and high non-iid

value.

Figure 9: (a) Performance improvement due to each of the three design elements of KUIPER, (b) Effect of
α: As non-IID factor increases (0.5 to 0.8), penalizing from α=0.7 to α=1.0 shows significant drop in
accuracy, (c) Effect of β parameter with varying non-iid bias. When β=0. the model is stuck with the

initial weights and prediction is random. Too high a β causes a drop in accuracy.

F EFFECT OF NUMBER OF FRAMES PER CLIP IN FINAL ACCURACY

Figure 11 shows how accuracy changes with the number of frames. With more frames per video, it is
easier for the model to recognize the action, and thus accuracy increases as the number of frames per
video increases. Due to limited computational resources, we cannot increase the number of frames
and thus fix it to 8 frames for the HMDB51 dataset and 32 for the UCF101.

G EFFECT OF STRAGGLERS: DELAY EXPERIMENT

Figure 12 shows how the inclusion of heterogeneous devices changes the training trajectory. Figure 12
(a, b) compares the two setups where all four devices are homogeneous (NX)) vs. three devices are
the same (NX), and one slow device (Nano) is there. Updates of this device are delayed and thus
stale. With a slow device, accuracy decreases (Figure 12 (a)), and the time taken to reach a specific
accuracy increases. Here, note that Oort waits explicitly for the K clients depending on their utility
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Figure 10: Changing accuracy with changing number of clients and Non-IID bias for (a) MNIST (b)
FMNIST (c) CIFAR10

Figure 11: Centralized training with different number of frames for (a) HMDB51 and (b) UCF101.
Accuracy increases as the number of frames per video increases.

scores, and waiting for the delayed client makes Oort slower than FedBuff even though it was faster
in the homogeneous case

Figure 13 shows the effect of delay in a 4-device setup, similar to Fig.5(c, d) in the main paper. In this
experiment, 1x, 3x, 5x delays are a multiple of natural delay. The delay ratios have been chosen in
order to mimic a realistic scenario, as described in "Effect of stragglers” in Experimental Evaluation
section of the main paper. Here, the accuracy when the slowest device is dropped, is comparable to
others for non-iid values of 0 and 0.5, but it gets drastically reduced for 0.8 non-iid value. Because
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Figure 12: Comparison when all four devices are homogeneous vs. three devices are homogeneous and
one device is slow. (a) Accuracy achieved with three different methods (b) Time taken to reach 38%

accuracy in two setups.

Figure 13: Four device setup: one devices with no delay, one with 1x delay, one with 3x delay, and one
with 5x delay. Validation accuracy achieved when a straggler’s updates are dropped as compared to (a)
different delays (5x, 3x, 1x, no delay) and (b) weighing the stale updates in KUIPER. Highest validation

accuracy is achieved by KUIPER because it considers updates from all clients. The improvement in
accuracy increases with high non-iidness.

with high non-iid value, clients get more data of some specific classes and losing that client means
losing the training data for that class (Figure 13(b)).

H KNOWLEDGE DISTILLATION

In the first stage of our pipeline, we perform knowledge distillation from a larger model, trained on
the Kinetics dataset. We compare three approaches in order to validate using knowledge distillation
with an intermediate TA. For these experiments, we use a batch size of 128, learning rate η = 0.1, and
an SGD optimizer with a weight decay 0.001 and momentum 0.9. In the first experiment, we train a
ResNet-18 model from scratch on the Kinetics dataset and the per-clip top-1 accuracy achieved is
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Table 1: ResNet-18 training time per epoch. For HMDB51 and UCF101, each client has approximately
500MB and 1.73GB of video data respectively

Dataset Device Train Time (per local epoch)

HMDB51 NVIDIA Jetson Nano 391.1 seconds
HMDB51 NVIDIA Jetson TX2 293.1 seconds
HMDB51 NVIDIA Jetson Xavier NX 121.3 seconds
HMDB51 NVIDIA Jetson AGX Xavier 84.5 seconds
UCF101 NVIDIA Jetson Nano 2691.6 seconds
UCF101 NVIDIA Jetson TX2 2001.4 seconds
UCF101 NVIDIA Jetson Xavier NX 821.9 seconds
UCF101 NVIDIA Jetson AGX Xavier 572.1 seconds

Table 2: ResNet-18 evaluated on the entire test dataset. The device heterogeneity is reflected in the
inference times

Dataset Device Test Time

HMDB51 NVIDIA Jetson Nano 181.4 seconds
HMDB51 NVIDIA Jetson TX2 116.3 seconds
HMDB51 NVIDIA Jetson Xavier NX 89.4 seconds
HMDB51 NVIDIA Jetson AGX Xavier 68.3 seconds
UCF101 NVIDIA Jetson Nano 621.3 seconds
UCF101 NVIDIA Jetson TX2 381.2 seconds
UCF101 NVIDIA Jetson Xavier NX 322.5 seconds
UCF101 NVIDIA Jetson AGX Xavier 217.7 seconds

50.2%. Using knowledge distillation, the accuracy is improved to 53.8% when we distill directly from
ResNet-34 to ResNet-18, and 54.6% when we use a ResNet-26 as the intermediate TA between the
teacher and student. From Figure 14, it is evident that using a distilled ResNet-18 is better than using
a ResNet-18 trained from scratch. There is a counter pull from the training time — the KD approach
(discounting the time to train the ResNet-34) takes 43% longer than training from scratch (ResNet-18).
This can be explained by the fact that “Train from scratch" includes only forward-backward passes
on ResNet-18 with optimization using only cross-entropy loss. On the other hand, KD involves
forward passes on the larger ResNet-34, forward-backward passes on ResNet-18, and optimization
on ResNet-18 using a combination of both cross-entropy loss and the MSE on the logits (recall that
we are fine-tuning only the last FC layer). This timing result is consistent with prior works that report
on the timing performance of knowledge distillation Hinton et al. (2015); Sun et al. (2019).

We further investigate using multiple TAs. From Table 4, we see that the introduction of one TA
increases the train time from 44 hours 58 minutes to 55 hours 23 minutes and the corresponding
increase in per-clip accuracy is 0.8%. Hence, there is a trade-off between increased training time
and increased accuracy. Furthermore, the introduction of a TA almost always increases accuracy
but the optimal number of TAs and size of each is an open research question Mirzadeh et al. (2020).
Additionally, TAs are used to bridge the gap between the student and teacher: by using a ResNet-26
between ResNet-34 and ResNet-18 we already accomplish this. If the gap between the teacher and
student were larger, using additional TAs would be of benefit at the expense of increased computation
and train time required. In order to reduce the train times and achieve comparable accuracy to the
baselines, we use one TA.

From Figure 14, we conclude that using KD does give an improvement to all FL algorithms, with the
improvement being most significant for FedAsync (a 6% increase). KUIPER enjoys an improvement
of 3%.

We further investigate the effects of using additional TAs in our pipeline.

In all these experiments, distillation is performed from teacher ResNet-34 to student ResNet-18. In
the first experiment, we do not use any TAs. In the next experiment, we use ResNet-26 as a TA. The
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Figure 14: (a) Accuracy on the Kinetics validation dataset for 3 experiments: 1. Training a ResNet-18
from scratch (Vanilla); 2. Knowledge distillation from ResNet-34 to ResNet-18 (Knowledge Distillation
with no TA); 3. Knowledge distillation with ResNet-34 Teacher, ResNet-26 TA, and ResNet-18 Student

(Knowledge Distillation with TA) (b) Ablation study to show the importance of KD (Knowledge
Distillation).

Table 3: Knowledge distillation is performed by varying the number of intermediate Teaching Assistants
(TAs)

# TAs Epochs Time (hrs, mins) (Increase) Per-Clip Accuracy

0 200 44 h 58 m (0%) 53.8%
1 200 55 h 23 m (23.2%) 54.6%
2 200 69 h 35 m (54.7%) 54.8%
3 200 85 h 47 m (90.8%) 54.9%
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Figure 15: (a) The central server first performs knowledge distillation using the Kinetics dataset: from
teacher to teaching assistant (TA) and from TA to student. The students (compressed models) are then

fine-tuned on the smaller dataset using an asynchronous federated optimization. (b) ResNet-34,
ResNet-26, and ResNet-18 architectures derived from the basic building block.

Figure 16: Central server: (a) ResNet-18, distilled from ResNet-34, via a ResNet-26 Teaching assistant,
and fine-tuned on UCF101, performed at the central server without any clients (b) ResNet-18, distilled

from ResNet-34, via a ResNet-26 Teaching assistant, and fine-tuned on HMDB51. The fine-tuning is
performed at the central server without any clients

third experiment is performed using two TAs: ResNet-28 and ResNet-24, and in the final experiment,
we use three TAs: ResNet-30, ResNet-26, and ResNet-22. The architectures have been outlined in
Figure 15. From Table 3, we see that while the increase in per-clip top-1 accuracy is appreciable
when one TA is introduced, using additional TAs does not produce any considerable improvement
in accuracy. The training time increases sharply as more TAs are added. Hence, in the subsequent
stages in our pipeline, we chose to use a single TA.

For the rest of the experiments, we perform fine-tuning, by reinitializing the fully connected layer
— the last layer in the ResNet-18 model. The ResNet-18 being used is the model distilled from
ResNet-34 (trained on the Kinetics dataset) via a ResNet-26 TA.

Datasets The Kinetics-400 dataset requires an approximate disk space of 400GB to store. Amongst
the edge devices we are using in these experiments, the most well-endowed, NVIDIA Jetson AGX
Xavier has only 32GB storage. Hence, edge devices can only accommodate smaller-sized datasets on
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Table 4: The time required for various stages shown in Figure 15 (a) and the baseline experiments. KD
refers to Knowledge Distillation, synchronous refers to fine-tuning using FedAvg, asynchronous refers to
fine-tuning using asynchronous federated optimization. The fine-tuning is performed using ResNet-18,

distilled from ResNet-34 via a ResNet-26 Teaching assistant

Dataset Task Epochs Time

Kinetics Train from scratch 200 31 hrs 26 mins
Kinetics KD (No TA) 200 44 hrs 58 mins
Kinetics KD (TA) 200 55 hrs 23 mins
HMDB51 Fine-tune no clients 80 3hrs 15mins
HMDB51 Synchronous 80 10 hrs 54 mins
HMDB51 Asynchronous 80 6 hrs 31 mins
UCF101 Fine-tune no clients 80 22 hrs 5 mins
UCF101 Synchronous 80 74 hrs 27 mins
UCf101 Asynchronous 80 44 hrs 7 mins

them4. In this section, we use the HMDB51 dataset and the UCF101 for evaluation. The HMDB51
which has a size of 2,062MB and is distributed amongst the clients in such a way that requires
approximately 500MB of storage space on each client. The UCF101 is 6.9GB and each client has
about 1.725GB of data. Once we have distilled knowledge from the larger ResNet-34, trained on the
Kinetics dataset to the ResNet-18 architecture via a TA, the next step is to fine-tune on the smaller
dataset; i.e., HMDB51 or UCF101.

From Table 4, refer to the HMDB51 experiments. We see that the time required for a synchronous
optimization is 10 hours and 54 minutes. In contrast, the asynchronous federated algorithm takes
only 6 hours and 31 minutes, a 40% decrease. This can be attributed to the clients having different
computing resources, and hence requiring different amounts of time to complete the local epochs
as given in Table 1. While the synchronous algorithm has to wait for the slowest client to send its
update, the asynchronous algorithm continues its optimization. A similar effect is observed in the
case of UCF101.

One may wonder that it is beneficial to use the approach of fine tuning at the server without any
clients (for HMDB51 and UCF101) and thus not having to use our approach. This alternate method
runs into the problem that it does not leverage federated learning, which has its traditional benefits of
scaling to a large number of clients (and thus not needing heavyweight server) and preserving privacy
of client data. The same argument applies to why we would not want to train for the Kinetics data
from scratch (this would obviously have to be done at the server).

I CONVERGENCE PROOF

Here we provide the complete convergence analysis of KUIPER. This analysis is influenced by
FedBuff Nguyen et al. (2022) and is customized to our model. Specifically, we have characterized
the effect of non-iid bias on gradient variances and the convergence guarantee.

Notation. M denotes total number of clients. gi(w; ζi) denotes stochastic gradient on ith client on a
model with weights w and sampled batch ζi. ∇Fi(w) denotes the gradient with respect to the loss.
σ2
l and σ2

g are local and global variances of the gradients. f(w) is the objective function as described
below, and f∗ is its theoretical minima. t is the current iteration count and τi is the global iteration
count when ith client received gradients from the server where every client runs Q local iterations
before communicating with the server.
The objective function is formally defined as

min
w∈Rd

f(w) :=
1

m

m∑
i=1

piFi(w) (7)

4One may argue that adding cheap external storage such as through Flash cards can alleviate this problem.
However, reading from external storage is orders of magnitude slower than reading from internal storage and
will thus increase the training time to an infeasible level.
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where pi is the weight assigned to the updates coming from client i. We make the following
assumptions for proving the convergence of KUIPER. Assumptions 1-4 are standard assumptions
made for the convergence analysis of any synchronous FL system. Assumption 5 pertains to an
asynchronous FL system.
Assumption 1: (Unbiased client stochastic gradients) E[gi(w; ζi)] = ∇Fi(w).
Assumption 2: (Bounded local and global variance) ∀i ∈ [M ], Eζi|i[||gi(w; ζi)−∇Fi(w)||2] ≤ σ2

l

and 1
M

∑m
i=1 ||∇Fi(w)−∇f(w)||2 ≤ σ2

g .
Assumption 3: (Gradients are bounded) ||∇Fi||2 ≤ G.
Assumption 4: (L-smoothness), ∀i ∈ [M ], the gradient is L-smooth, ||∇Fi(w) − ∇Fi(w

′)||2 ≤
L||w − w′||2.
Assumption 5: (Bounded Staleness) The staleness of stragglers t − τ , where t represents current
global epoch and τ represents the global epoch when the client last synchronized with the server, is
bounded t− τ ≤ τmax,1 which is the maximum across all the clients.
Theorem 1- Let η(q)l be the local learning rate of client SGD in the q-th step, and define α1(Q) :=∑Q−1

q=0 η
(q)
l and α2(Q) :=

∑Q−1
q=0 (η

(q)
l )2. Choosing ηgη

(q)
l Q ≤ 1

L for all local steps q = 0, ..., Q−1,
the global model iterates in Algorithm 1 achieves the following ergodic convergence rate

1

T

T−1∑
t=0

∥∥∇f

(
wt
)∥∥2 ⩽

2
(
f
(
w0
)
− f∗)

ηgα1(Q)T
+

L

2

ηgα2(Q)

α1(Q)
σ2
l

+ 3L2Qα2(Q)
(
η2gτ

2
max,K + 1

) (
σ2
l + σ2

g +G
)

(8)

Corollary 1- Choosing a constant local learning rate ηl and global learning rate ηg such that
ηgηlQ ≤ 1

L , the global model iterates in KUIPER are bounded by

1

T

T−1∑
t=0

E[∥∇f(wt)∥2] ≤ 2F ∗

ηgηlQT
+

L

2
ηgηlσ

′2
l + 3L2Q2η2l (η

2
gτ

2
max,K + 1)σ′2 (9)

where F ∗ := f(w0)− f∗, σ2 := σ′2
l + σ′2

g +G′. In KUIPER, we rescale the client’s gradients by
e(·), which is bounded by 0 at the lower and 1 at the higher end. Specifically, ∇F ′

i (w) = ∇Fi(w)×
e(errori), thus introducing σ′

l, σ
′
g , and G′ as the new bounds of local variance, global variance, and

norm of gradients when the gradient updates respectively. Q is the number of local iterations for
a client, and T the total number of global iterations. Further, choosing ηl = O(1/(K

√
TQ)) and

ηg = O(K), for all ηg, ηl satisfying ηgηlQ ≤ 1
L and sufficiently large T , we have

1

T

T−1∑
t=0

||∇f(wt)||2 ≤ O( F ∗
√
TQ

) +O( σ′2
l√
TQ

) +O(Qσ′2

TK2
) +O(

Qσ′2τ2max,1

TK2
) (10)

Reacall tha, in KUIPER, we rescale ηg with s(·) that is bounded by 0 at the lower and 1 at the upper
end. Specifically, β = ηg × s(t− τ). The modified global rate β is therefore still bounded by O(K)
and satisfies the above results. For sufficiently large T , the algorithm achieves the convergence rate as
shown in Eq. (10). As we can see, convergence guarantee increases with increasing K as we tend to
go closer to the synchronous aggregation. Also, as non-iid bias increases, gradient variances increase,
and weakens the convergence guarantee. Having described how the two modifications in KUIPER do
not affect further analysis, we describe the rest of the formal proof without the two modifications for
simplicity.
We now state a useful Lemma that will help us prove the above theorem.
Lemma 1- E

[
∥gk∥2

]
⩽ 3

(
σ2
l + σ2

g +G1

)
, where the total expectation E[·] is evaluated over the

randomness with respect to client participation and the stochastic gradient taken by a client.

Proof of Lemma 1- From the law of total expectation we have E = Ek∼[m]Eζk|k. Hence,

E
[
∥gk(w)∥2

]
= Ek∼[m]Fg|k

[
∥gk(w)−∇Fk(w) +∇Fk(w)−∇f(w) +∇f(w)∥2

]
≤ 3Ek∼[m]Eg|k

[
∥gk(w)−∇Fk(w)∥2 + ∥∇Fk(w)−∇f(w)∥2 + ∥∇f(w)∥2

]
= 3(σ2

l + σ2
g +G) (11)
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We now define Theorem 2 which we will use to prove Theorem 1.

Theorem 2-
Let η(q)l be the local learning rate of client SGD in the q-th step, and define α1(Q) :=

∑Q−1
q=0 η

(q)
l ,

α2(Q) :=
∑Q−1

q=0 (η
(q)
l )2. Choosing ηgη

(q)
l Q ≤ 1

L for all local steps q = 0, .., Q − 1, the global
model iterates in Algorithm 1 achieves the following ergodic convergence rate

1

T

T−1∑
t=0

||∇f(wt)||2 ≤ 2(f(w0)− f(w∗))

ηgα1(Q)T
+ 3L2Qα2(Q)(η2gτ

2
max,K + 1)(σ2

l + σ2
g +G) +

L

2

ηgα2(Q)

α1(Q)
σ2
l .

(12)

Proof of Theorem 2- By L-smoothness assumption,

f
(
wt+1

)
≤ f

(
wt
)
− ηg⟨∇f

(
wt
)
,∆

t⟩+ L
η2g
2
∥∆t∥2

≤ f
(
wt
)
− ηg

K

∑
k∈St

〈
∇f

(
wt
)
,∆t−τk

k

〉
︸ ︷︷ ︸

T1

+
Lη2g
2K2
∥
∑
k∈St

∥∆t−τk
k ∥2︸ ︷︷ ︸

T2

(13)

where ∆t−τk
k is the client delta which is trained from using the global model after t− τk updates as

initialization. We will next derive the upper bounds on T1 and T2. To begin,

T1 = −ηg
K

∑
k∈St

〈
∇f

(
wt
)
,

Q−1∑
q=0

η
(q)
l gk

(
yk,q

t−τk
)〉

= −ηg
K

∑
k∈St

Q−1∑
q=0

η
(q)
l

〈
∇f

(
wt
)
, gk
(
yk,q

t−τk
)〉

(14)

Using conditional expectation, the expectation operator can be written as

E[·] := EHEi∼[m]Egi|i,H[·]

where EH is the expectation over the history of the iterates, Ei∼[M ] is evaluated over the randomness
over the distribution of clients i ∼ [M ] checking in at time-step t, and the inner expectation operates
over the stochastic gradient of one step on a client. Hence, following unbiasedness,

E [T1] = −E

[
ηg
K

∑
k∈St

Q−1∑
q=0

η
(q)
l

〈
∇f

(
wt
)
, gk

(
yt−τk
k,q

)〉]

= −ηgEH

[
1

m

m∑
i=0

Q−1∑
q=0

η
(q)
l Egi|i∼[m]

〈
∇f

(
wt
)
, gi
(
yt−τi
i,q

)〉]

= −ηg
m

EH

[
m∑
i=0

Q−1∑
q=0

η
(q)
l

〈
∇f

(
wt
)
,∇Fi

(
yt−τi
i,q

)〉]

= −ηg
m

EH

[
Q−1∑
q=0

η
(q)
l

〈
∇f

(
wt
)
,
1

m

m∑
i=0

∇Fi

(
yt−τi
i,q

)〉]
(15)

From the identity,

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
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we have

E [T1] =
−ηg
2

(
Q−1∑
q=0

η
(q)
l

)∥∥∇f (wt
)∥∥2 + Q−1∑

q=0

ηgη
(q)
l

2

(
−EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi

(
yt−τi
i,q

)∥∥∥∥∥
+EH

∥∥∥∥∥∇f (wt
)
− 1

m

m∑
i=1

∇Fi

(
yt−τi
i,q

)∥∥∥∥∥
2


︸ ︷︷ ︸
T3

(16)

Now for T3, from the definition of f(wt),

EH[T3] = EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi

(
wt
)
− 1

m

m∑
i=1

∇Fi

(
yt−τi
i,q

)∥∥∥∥∥
2

≤ 1

m

m∑
i=1

EH
∥∥∇Fi

(
wt
)
−∇Fi

(
yt−τi
i,q ;

)∥∥2 (17)

Further, by telescoping, T3 can be decomposed as

E [T3] =
1

m

m∑
i=1

EH
∥∥∇Fi

(
wt
)
−∇Fi

(
wt−τi

)
+∇Fi

(
wt−τi

)
−∇Fi

(
yt−τi
i,q

)∥∥2
⩽

2

m

m∑
i=1

EH (
∥∥∇Fi

(
wt
)
−∇Fi

(
wt−τi

)∥∥2︸ ︷︷ ︸
staleness

+ ∥∇Fi

(
wt−τi)−∇Fi

(
yt−τi
i,q

)
∥2
)︸ ︷︷ ︸

local drift

(18)

⩽
2

m

m∑
i=1

(
L2EH

∥∥wt − wt−τi
∥∥2 + L2EH

∥∥wt−τi − yt−τi
i,q

∥∥2)
The upper bound on T3 can be understood as sums of bounds on the effect of staleness and local drift
during client training, and local variance induced by client-side SGD. Further, we need to produce an
upper bound on the staleness of initial model from which the client models are trained.

∥∥wt − wt−τi
∥∥2 =

∥∥∥∥∥
i−1∑

ρ=t−τi

(
wρ+1 − wρ

)∥∥∥∥∥
2

=

∥∥∥∥∥∥
t−1∑

ρ=t−τi

ηg
K

∑
jρ∈Sρ

∆ρ
jρ

∥∥∥∥∥∥
2

=
η2g
K2

∥∥∥∥∥∥
t−1∑

ρ=t−τi

∑
jρ∈Sρ

Q−1∑
l=0

η
(l)
l gjρ

(
yρjρ,l

)∥∥∥∥∥∥
2

(19)

Taking the expectation in terms ofH,

|EH
∥∥wt − wt−τi

∥∥2 ≤ η2gQτi

K

t−1∑
ρ=t−τi

∑
jρ∈Sρ

Q−1∑
l=0

(η
(l)
l )2E∥gjρ(y

ρ
jρ,l

)∥2

⩽ 3η2gQmax
τi

τ2i

(
Q−1∑
l=0

(
ηl

(l)
)2)(

σ2
1 + σ2

g +G
)

⩽ 3η2gQτ2max,K

(
Q−1∑
l=0

(
ηl

(l)
)2)(

σ2
1 + σ2

g +G
)

(20)

where the last inequality follows from the assumption on maximal delay and applying Lemma 1
(Eqn. 11). Similarly, the local drift term can be upper-bounded by

E
∥∥wt−τi − yt−τi

i,q

∥∥2 = E
∥∥yt−τi

i,0 − yt−τi
i,q

∥∥2
≤ E

∥∥∥∥∥
q−1∑
l=0

η
(l)
l gi

(
yt−τi
i,l

)∥∥∥∥∥
2

⩽ 3q

(
q−1∑
l=0

(
η
(l
l

)2)(
σ2
l + σ2

g +G
)
. (21)
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Thus, the upper bound on T3 becomes:

E [T3] ⩽ 6

(
L2η2gQτ2max,k

(
Q−1∑
i=0

(
η
(l)
l

)2)(
σ2
l + σ2

g +G
)
+ L2q

(
q−1∑
i=0

(
η
(l)
l

)2)(
σ2
l + σ2

g +G
))

⩽ 6L2

(
Q−1∑
i=0

(
η
(l)
l

)2)(
η2gQτ2max,k + q

) (
σ2
l + σ2

g +G
)

⩽ 6L2Q

(
Q−1∑
i=0

(
η
(l)
l

)2)(
η2gτ

2
max,k + 1

) (
σ2
l + σ2

g +G
)

(22)

Inserting the upper bound on T3 into Eqn.( 16), we have,

E [T1] ≤
−ηg
2

(
Q−1∑
q=0

η
(q)
1

)∥∥∇f (wt
)∥∥2 + Q−1∑

q=0

ηgη
(q)
l

2
E [T3]−

Q−1∑
q=0

ηgη
(q)
l

2
EH∥

1

m

m∑
i=1

∇Fi

(
yt−τi
i,q

)
∥2

(23)

Let α1(Q) :=
∑Q−1

q=0 η
(q)
l and α2(Q) :=

∑Q−1
q=0 (η

(q)
l )2. Then

E [T1] ≤
−ηgα1(Q)

2
∥∇f(wt)∥2 + 3ηgL

2Qα1(Q)α2 (Q)
(
η2τ2max,K + 1

) (
σ2
l + σ2

g +G
)

−
Q−1∑
q=0

ηgη
(q)
l

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(y
t−τ
i,q )

∥∥∥∥∥
2

︸ ︷︷ ︸
T4

(24)

To derive the upperbound on the R.H.S. of Eqn.( 13), we now need to upper bound E[T2]. We proceed
by adding and subtracting the expected gradient within the norm,

E [T2] = E

Lη2g
2k2

∥∥∥∥∥∑
k∈St

Q−1∑
q=0

η
(q)
l gk

(
yt−τk
k,q

)∥∥∥∥∥
2


≤
Lη2gα2(Q)σ2

l

2
+

LQη2g
2m

Q−1∑
q=0

m∑
i=1

(η
(q)
l )2EH

[
∥∇Fi

(
yt−τi
i,q ∥

2
]

︸ ︷︷ ︸
T5

(25)

We now show that T4 + T5 ≤ 0

(T4 + T5) = −
Q−1∑
q=0

ηgη
(q)
l

2
EH

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi(y
t−τ
i,q )

∥∥∥∥∥
2

+
LQη2g
2m

Q−1∑
q=0

m∑
i=1

(η
(q)
l )2EH

[
∥∇Fi

(
yt−τi
i,q ∥

2
]

=

Q−1∑
q=0

m∑
i=1

(
−
ηgη

(q)
l

2m
+

LQη2g(η
(q)
l )2

2m

)
EH
∥∥∇Fi(y

t−τ
i,q )

∥∥2
(26)

To ensure T4 +T5 ≤ 0, it is sufficient to choose ηgη
(q)
l ≤ 1

L for all local steps q = 0, ..., Q− 1. Now,
plugging (24), (25), and (26) into (13),

E[f
(
wt+1

)]
≤ E

[
f
(
wt
)]
− ηgα1(Q)

2

∥∥∇f (wt
)∥∥2 + 3ηgL

2Qα1(Q)α2(Q)
(
η2gτmax,K + 1

) (
σ2
1 + σ2

g +G
)

+
L

2
η2gα2(Q)σ2

l (27)
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Summing up t from 1 to T and rearrange, yields

T−1∑
t=0

ηgα1(Q)
∥∥∇f

(
wt
)∥∥2 ≤ T−1∑

t=0

2
(
E
[
f
(
wt
)]
− E

[
f
(
wt+1

)])
+ 3

T−1∑
t=0

ηgL
2Qα1(Q)α2(Q)

(
η2gτ

2
max,K + 1

) (
σ2
1 + σ2

g +G
)

+
L

2
η2gα2(Q)σ2

l

≤ 2
(
f
(
w0
)
− f (w∗)

)
+ 3

T−1∑
t=0

ηgL
2α1(Q)α2(Q)

(
η2gτ

2
max,k +Q

) (
σ2
l + σ2

g +G
)

+
L

2
η2gα2(Q)σ2

l (28)

Thus we have

1

T

T−1∑
t=0

∥∥∇f (wt
)∥∥2 ⩽

2
(
f
(
w0
)
− f (w∗)

)
ηgα1(Q)T

+ 3L2Qα2(Q)
(
η2gτmax,k + 1

) (
σ2
l + σ2

g +G
)
+

L

2

ηgα2(Q)

α1(Q)
σ2
l (29)

For sufficiently large T , the algorithm achieves the convergence rate as shown in Equation 29. As
we can see, the convergence guarantee increases with increasing K as we tend to go closer to the
synchronous aggregation. Also, as non-IID bias increases, gradient variances increase, and weakens
the convergence guarantee.
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