Tackling AlfWorld with Action Attention and Common Sense from Pretrained LMs

Anonymous Author(s)

Affiliation

Address

Abstract

Pre-trained language models (LMs) capture strong prior knowledge about the world. This common sense knowledge can be used in control tasks. However, directly generating actions from LMs may result in a reasonable narrative, but not executable by a low level agent. We propose to instead use the knowledge in LMs to simplify the control problem, and assist the low-level actor training. We implement a novel question answering framework to simplify observations and an agent that handles arbitrary roll-out length and action space size based on action attention. On the AlfWorld benchmark for indoor instruction following, we achieve a significantly higher success rate (50% over the baseline) with our novel object masking - action attention method.

1 Introduction

Humans can abstractly plan for their everyday tasks without execution; for example, given the task “Make breakfast”, we can roughly plan to first pick up mug and make coffee, then pick up egg and scramble it, etc. This capability, if endowed to embodied agents, can help induce generalizable common-sense and reasoning. Recently, a few works Huang et al. (2022a,b), Ahn et al. (2022); Yao et al. (2020) have used large language models (LLM) Bommasani et al. (2021) for abstract planning for embodied or gaming agents. These works have shown incipient success in extracting procedural world knowledge from LLMs in linguistic forms and matching them with executable actions conditioned on the environment.

However, most of recent progress neglects two aspects of abstract planning that are essential at execution time. First, Huang et al. (2022a,b); Ahn et al. (2022); Yao et al. (2020) only deal with open-loop planning. Since closed-loop planning enables the agent to adapt/correct its policies upon observations, it provides more flexibility at execution. Second, recent works do not address the intermediate planning for finding certain objects; for example, to actually execute the planned subtask “Find toothbrush”, there is the concern of “where.” The problem of “where to look” is non-trivial at the execution time of a mobile agent Chaplot et al. (2020); Min et al. (2021); Blukis et al. (2021), since there can be many receptacles and some, such as cabinets and drawers, even occlude small objects. While it is ideal that these two aspects are considered for abstract planning, addressing these concerns lead to long rollouts and large action spaces (Fig 1). More specifically, the rollouts accumulated in a closed-loop setting may be too long to fit into any LM, and the large number of actions makes learning with behavior cloning or reinforcement learning extremely difficult; these two challenges make closed-loop, intermediate planning very difficult in the textual domain.

In this work, we address these two major problems with (1) a novel question answering framework to filter irrelevant objects (Object Masking) and (2) querying long/variable length of actions (Action Attention). We focus on instruction following in indoor households; on the Alfworld benchmark, we achieve a significantly higher success rate (absolute 50% over the baseline) with our novel object
Figure 1: Overview of Action Attention method. Action Attention block is a transformer-based framework that computes a key k for each permissible action and output action scores as dot-product between key and query q from the observations. This method addresses the two problems of: (1) long roll outs and (2) large number of actions.

Figure 2: Overview of Receptacle Masking method. We use a pre-trained question answering model to filter irrelevant receptacles/objects in the observation of each scene. As we can see, the original observation is too long and the receptacles shown in red are not relevant for task completion. These receptacles are filtered by the QA model making the observation shorter.

masking - action attention method. The strong performance of our method demonstrates that large language models can be used as knowledge bases to query common sense for closed-loop intermediate planning.

2 Related Work

Text Games Text-based games are complex, interactive simulations where the game state and action space are in text. They are fertile ground for language-focused machine learning research. In addition to language understanding, successful play requires skills like memory and planning, exploration (trial and error), and common sense. The AlfWorld simulator extends a common text-based game simulator, TextWorld [Côté et al. (2018)], to create text-based analogs of each ALFRED scene.

LMs for Control LMs have been used for planning high-level policies [Huang et al. (2022a), Ahn et al. (2022)], [Huang et al. (2022a)] focus on high-level sub-goals that are not executable directly in most control environment, [Ahn et al. (2022)] on the other hand, require few-shot demonstrations of up to 17 examples, making the length of prompt infeasible for AlfWorld.

3 Methodology

Our method consists of action attention (Fig 1) and receptacle/object masking (Fig 2). The action attention module scores each permissible action with a transformer-based architecture and is trained on imitation learning on the expert. Receptacle/object masking uses a zero-shot QA model to filter out irrelevant objects in the observation.

Problem Setting We define the task description as s_{task}, the observation string at time step t as s^t, the list of permissible actions $\{a^t_i | a^t_i \text{ can be executed}\}$ as A^t. For each observation string s^t, we define the receptacles and objects within the observation as r^t_i and o^t_i respectively. We are interested in learning a policy π that outputs the optimal action among permissible actions.

Action Attention Since the number of permissible actions can vary a lot by environment, the agent needs to handle arbitrary dimensions of action space. While Shridhar et al. (2020) addresses
this challenge by generating actions token-by-token, such generation process leads to degenerate performance even on the training set.

We eschew the long roll out/ large action space problems by (1) representing observations by averaging over history, and (2) individually encoding actions (Fig 1). In our proposed action attention framework, we first represent historical observations \(H^t\) as the average of the embeddings of all individual observations through history, and \(H^A\) is a list of embeddings of all the current permissible actions (Eq. 1). Then, as shown in Eq. 2, we compute the query \(Q\) with a transformer \((\mathcal{M})\) on the task embedding \((H^t)\), the embedding of current observation \((s^t)\), and the list of action embeddings \((H^A)\). In Eq. 3 the key \(K_t\) is computed for each action \(a_t\) with the transformer \((\mathcal{M})\) on the task embedding \((H^t)\), the embedding of current observation \((s^t)\), and the embedding of action \((a_t)\).

Finally, we compute the dot-product of query and key as action scores for the policy \(\pi\) (Eq. 4).

\[
H^t = \text{avg}_{j \in [1..t-1]} \text{Embed}(s^j), \quad H^A = \left[\text{Embed}(a_1^t), \ldots, \text{Embed}(a_n^t)\right]
\]

\[
Q = \mathcal{M}\left(\left[\text{Embed}(s_{\text{task}}), H^t, \text{Embed}(s^t)\right], H^A\right)
\]

\[
K_t = \mathcal{M}\left(\text{Embed}(s_{\text{task}}), H^t, \text{Embed}(s^t), \text{Embed}(a_t^t)\right)
\]

\[
\pi = \text{softmax}(Q \cdot K)
\]

Receptacle/Object Masking Typical Alfworld scenes can start with around 15 receptacles, each containing up to 15 objects. An agent starting with no knowledge about where to look for objects that are relevant to solving the task at hand can easily get stuck. We make the observation that many receptacles and objects are irrelevant to specific tasks during both training and evaluation, and can be easily filtered with common-sense about the tasks. For example, in Fig 2 the task is to pick up and wash a knife. By removing the irrelevant receptacles like the toaster, fridge, stoveburners, we could significantly shorten our observation.

We propose to leverage commonsense knowledge captured by large pre-trained QA models. Note that we do not finetune the pre-trained QA model for our particular task but we use it in a zero-shot manner. We create prompt in the format “Your task is to: <task string>. Where should you go to?” for receptacles and “Your task is to: <task string>. Which objects will be relevant?” for objects. We then obtain scores from the pre-trained QA model representing whether the model believe that the receptacle/object is relevant, and we mask out irrelevant receptacles/objects that have scores below a threshold.

4 Experiments and Results

Hyper-parameters. For the common-sense language model we choose Macaw-11b \cite{Tafjord}, which is reported to have common sense QA performance on par with GPT3 \cite{Brown}. While being order of magnitudes smaller. For embedding of actions and observations, we use pretrained RoBERTa-large \cite{Liu} with embedding dimension 1024. Our transformer \((\mathcal{M})\) is a 12-layer transformer with 12 heads and hidden dimension 768. For receptacle/object masking, we use a score threshold of 0.4 below which the objects are masked out.

Baselines. We use the BUTLER::BRAIN (BUTLER+CG) agent presented in \cite{Shridhar}, which consists of an encoder, an aggregator, and a decoder. At each time step \(t\), the encoder takes initial observation \(s^0\), current observation \(s^t\), and task string \(s_{\text{task}}\) and generates representation \(r^t\). The recurrent aggregator combines \(r^t\) with last recurrent state \(h^{t-1}\) to produce \(h^t\), which is then decoded into a string \(a^t\) representing action. In addition, the BUTLER agent uses beam search to get out of stucked conditions in the event of failed action. Our second baseline (BUTLER+AC) is an implementation by \cite{Shridhar} to allow BUTLER to directly choose from admissible commands. Both BUTLER agents are trained with an online imitation learning curriculum, DAgger \cite{Ross}, assisted by a rule-based expert.

4.1 Results

The results of both DAgger and Behavior Cloning are shown in Table 1. We observe that both the baselines and our models benefit greatly from DAgger training. However, DAgger assumes an expert
Table 1: Average completion rate with DAgger and Behavior Cloning. *Shridhar et al. (2020) did not provide evaluation for BUTLER+AC, so we report the performance from our own experiment.

<table>
<thead>
<tr>
<th>Model</th>
<th>DAgger</th>
<th>Behavior Cloning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>seen</td>
<td>unseen</td>
</tr>
<tr>
<td>BUTLER + CG</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>BUTLER + AC</td>
<td>61.7</td>
<td>16.89</td>
</tr>
<tr>
<td>Action Attention</td>
<td>90.41 ± 0.02</td>
<td>33.42 ± 0.05</td>
</tr>
<tr>
<td>Action Attention + Masking</td>
<td>90.53 ± 0.02</td>
<td>34.92 ± 0.03</td>
</tr>
</tbody>
</table>

that is well-defined at all observation spaces, which is infeasible in most practical scenarios. We also observe that training is 100x slower with DAgger compared to behavior cloning (3 weeks for DAgger v.s. 6 hours for Behavior Cloning).

In the DAgger training scenario, our action attention agent greatly exceeds baseline performance in seen evaluation (we observe a 50.41% absolute improvement), and receptacle/object masking further improves the performance on unseen evaluation.

In the behavior cloning scenario, where there is not enough training data, we observe that Receptacle/Object Masking is more effective in the behavior cloning setting (we observe a 22.2% relative improvement).

Quality of Pre-trained QA for receptacle/object masking We evaluate the zero-shot receptacle/object masking performance of Macaw on the three splits of AlfWorld. In Fig 3 we plot the AUC curve of the relevance-score that the model assigns to the objects v.s. objects that the rule-based expert interacted with when completing each task. In practice decision threshold of 0.4 retains around 80% relevant objects, 70% relevant receptacles and reduces the length of observations by 50% on average. In addition, the zero-shot QA model demonstrates consistent masking performance on all three splits of the environment, even on the unseen split.

Figure 3: Plot of AUC scores of zero-shot relevance identification across all tasks in the Alfworld-Thor environment, with the Macaw-11b model. The ground truth is obtained as receptacles/objects accessed by the rule-based expert. Top: Receptacle relevance identification. Bottom: Object relevance identification. The QA model achieves average AUC-ROC score of 65 for receptacles, and 76 on objects.

5 Conclusion

In this work, we present (1) a novel question answering framework to simplify observation and (2) an action attention framework to handle large and variable size action space. Future works can focus on adding ways from which LMs can assist learning of the policy, such as providing high-level plans.
References

