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Abstract

Pre-trained language models (LMs) capture strong prior knowledge about the
world. This common sense knowledge can be used in control tasks. However,
directly generating actions from LMs may result in a reasonable narrative, but
not executable by a low level agent. We propose to instead use the knowledge in
LMs to simplify the control problem, and assist the low-level actor training. We
implement a novel question answering framework to simplify observations and an
agent that handles arbitrary roll-out length and action space size based on action
attention. On the Alfworld benchmark for indoor instruction following, we achieve
a significantly higher success rate (50% over the baseline) with our novel object
masking - action attention method.

1 Introduction

Humans can abstractly plan their everyday tasks without execution; for example, given the task
“Make breakfast”, we can roughly plan to first pick up mug and make coffee, then pick up an egg
and scramble it, etc. This capability, if endowed to embodied agents, can help induce generalizable
common-sense and reasoning. Recently, a few works Huang et al. (2022a,b); Ahn et al. (2022);
Yao et al. (2020) have used large language models (LLM) Bommasani et al. (2021) for abstract
planning for embodied or gaming agents. These works have shown incipient success in extracting
procedural world knowledge from LLMs in linguistic forms and matching them with executable
actions conditioned on the environment.

However, recent works operates in a non-executable setting Huang et al. (2022a) or in domains with
limited interactions Huang et al. (2022b); Ahn et al. (2022), primarily just consisting of “moving"
objects. In addition, the scenarios considered have been largely simplified from the real world. Ahn
et al. (2022) provides all available objects and possible interactions at the start and limits tasks to
the set of provided objects/interactions. Huang et al. (2022b) limits the environment to objects on a
single table. On the other hand, to successfully “cut some lettuce” in a real-world room, one has to
“find a knife.”, which can be non-trivial since there can be multiple drawers or cabinets Chaplot et al.
(2020); Min et al. (2021); Blukis et al. (2021).

A more realistic scenario leads to long observation, long roll-outs, and large action spaces (Fig 1).
Specifically, the text description of the observation increases due to the number of receptacles and
objects the agent sees, and the roll-outs accumulated quickly and become too long to fit into any LM.
Furthermore, the large and constantly changing action space makes learning difficult.

In this work, we address the three problems with (1) a novel QA framework to filter irrelevant objects
(Object Masking) and (2) querying long/variable length of actions (Action Attention). Object
Masking reduces the length of observations, and Action Attention enables the agent to handle arbitrary
action space size and roll-out length.
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Figure 1: Overview of Action Attention method. Action Attention block is a transformer-based framework that
computes a key k for each permissible action and output action scores as dot-product between key and query q
from the observations. This method addresses the two problems of: (1) long roll outs and (2) large number of
actions.

Figure 2: Overview of Receptacle Masking method. We use a pre-trained question answering model to filter
irrelevant receptacles/objects in the observation of each scene. As we can see, the original observation is too
long and the receptacles shown in red are not relevant for task completion. These receptacles are filtered by the
QA model making the observation shorter.

We focus on instruction following in indoor households; on the AlfWorld Shridhar et al. (2020)
benchmark. We achieve a significantly higher success rate (absolute 50% over the baseline) with our
novel object masking - action attention method. The strong performance of our method demonstrates
that large language models can be used as knowledge bases to query common sense for closed-loop
intermediate planning.

2 Related Work

Text Games Text-based games are complex, interactive simulations where the game state and
action space are in text. They are fertile ground for language-focused machine learning research.
In addition to language understanding, successful play requires skills like memory and planning,
exploration (trial and error), and common sense. The AlfWorld Shridhar et al. (2020) simulator
extends a common text-based game simulator, TextWorld Côté et al. (2018), to create text-based
analogs of each ALFRED scene.

LMs for Control LMs have been used for planning high-level policies Huang et al. (2022a); Ahn
et al. (2022). Huang et al. (2022a) focus on high-level sub-goals that are not executable directly in
most control environment. Ahn et al. (2022) on the other hand, require few-shot demonstrations of
up to 17 examples, making the length of prompt infeasible for AlfWorld.

3 Methodology

Our method consists of action attention (Fig 1) and receptacle/object masking (Fig 2). The action
attention module scores each permissible action with a transformer-based architecture and is trained
on imitation learning on the expert. Receptacle/object masking uses a zero-shot QA model to filter
out irrelevant objects in the observation.

Problem Setting We define the task description as stask, the observation string at time step t as
st, the list of permissible actions {ati|ati can be executed} as At. For each observation string st, we
define the receptacles and objects within the observation as rti and oti respectively. We are interested
in learning a policy π that outputs the optimal action among permissible actions.
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Action Attention Since the number of permissible actions can vary a lot by environment, the
agent needs to handle arbitrary dimensions of action space. While Shridhar et al. (2020) addresses
this challenge by generating actions token-by-token, such generation process leads to degenerate
performance even on the training set.

We eschew the long roll out/ large action space problems by (1) representing observations by
averaging over history, and (2) individually encoding actions (Fig 1). In our proposed action attention
framework, we first represent historical observations Ht as the average of embeddings of all individual
observations through history, and HA as the list of embeddings of all the current permissible actions
(Eq. 1). Then, in Eq. 2, we compute the query Q using a transformer with a “query” head (MQ)
on task embedding (Ht), the current observation embedding (st), and the list of action embeddings
(HA). In Eq. 3 we compute the key Ki for each action ai using the same transformer with a “key”
head (MK) on task embedding (Ht), the current observation embedding (st), and embedding of
action (ai).

Finally, we compute the dot-product of the query and keys as action scores for the policy π (Eq. 4).

Ht = avgj∈[1,t−1]Embed(sj), HA =
[
Embed(at1), ...,Embed(atn)

]
(1)

Q = MQ
(
Embed(stask), H

t,Embed(st), HA
)

(2)

Ki = MK
(
Embed(stask), H

t,Embed(st),Embed(ati)
)

(3)

π = softmax ([Q ·Ki|i ∈ all permissible actions]) (4)

Receptacle/Object Masking Typical Alfworld scenes can start with around 15 receptacles, each
containing up to 15 objects. An agent starting with no knowledge about where to look for objects
that are relevant to solving the task at hand can easily get stuck. We make the observation that many
receptacles and objects are irrelevant to specific tasks during both training and evaluation, and can be
easily filtered with common-sense about the tasks. For example, in Fig 2 the task is to pick up and
wash a knife. By removing the irrelevant receptacles like the toaster, fridge, stoveburners, we could
significantly shorten our observation.

We propose to leverage commonsense knowledge captured by large pre-trained QA models. Note
that we do not fine-tune the pre-trained QA model for our particular task but we use it in a zero-shot
manner. We create prompt in the format "Your task is to: <task string>. Where should you go to?"
for receptacles and "Your task is to: <task string>. Which objects will be relevant?" for objects. We
then obtain scores from the pre-trained QA model representing whether the model believe that the
receptacle/object is relevant, and we mask out irrelevant receptacles/objects that have scores below a
threshold.

4 Experiments and Results

Hyper-parameters. For the common-sense language model we choose Macaw-11b Tafjord and
Clark (2021), which is reported to have common sense QA performance on par with GPT3 Brown
et al. (2020) while being order of magnitudes smaller. For embedding of actions and observations, we
use pretrained RoBERTa-large Liu et al. (2019) with embedding dimension 1024. Our transformer
(MQ and MK) is a 12-layer transformer with 12 heads and hidden dimension 768. The last layer is
then fed into two linear heads to generate K and Q. For receptacle/object masking, we use a score
threshold of 0.4 below which the objects are masked out.

Baselines. We use the BUTLER::BRAIN (BUTLER+CG) agent presented in Shridhar et al. (2020),
which consists of an encoder, an aggregator, and a decoder. At each time step t, the encoder takes
initial observation s0, current observation st, and task string stask and generates representation rt.
The recurrent aggregator combines rt with last recurrent state ht−1 to produce ht, which is then
decoded into a string at representing action. In addition, the BUTLER agent uses beam search to
get out of stucked conditions in the event of failed action. Our second baseline (BUTLER+AC) is
an implementation by Shridhar et al. (2020) to allow BUTLER to directly choose from admissible
commands. Both BUTLER agents are trained with an online imitation learning curriculum, DAgger
Ross et al. (2011), assisted by a rule-based expert.
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Model DAgger Behavior Cloning
seen unseen train seen unseen

BUTLER + CG Shridhar et al. (2020) 40 35 9 10 9
BUTLER + AC* Shridhar et al. (2020) 61.7 16.89 - - -
Action Attention 90.41 ± 0.02 33.42 ± 0.05 30 25 9
Action Attention + Masking 90.53 ± 0.02 34.92 ± 0.03 30 25 11

Table 1: Average completion rate with DAgger and Behavior Cloning. * Shridhar et al. (2020) did
not provide evaluation for BUTLER+AC, so we report the performance from our own experiment.

4.1 Results

The results of both DAgger and Behavior Cloning are shown in Table 1. We observe that both the
baselines and our models benefit greatly from DAgger training. However, DAgger assumes an expert
that is well-defined at all observation spaces, which is infeasible in most practical scenarios. We also
observe that training is 100x slower with DAgger compared to behavior cloning (3 weeks for DAgger
v.s. 6 hours for Behavior Cloning).

In the DAgger training scenario, our action attention agent greatly exceeds baseline performance in
seen evaluation (we observe a 50.41% absolute improvement), and receptacle/object masking further
improves the performance on unseen evaluation.

In the behavior cloning scenario, where there is not enough training data, we observe that Recepta-
cle/Object Masking is more effective in the behavior cloning setting (we observe a 22.2% relative
improvement).

Quality of Pre-trained QA for receptacle/object masking We evaluate the zero-shot recepta-
cle/object masking performance of Macaw on the three splits of AlfWorld. In Fig 3, we plot the AUC
curve of the relevance-score that the model assigns to the objects v.s. objects that the rule-based
expert interacted with when completing each task. In practice decision threshold of 0.4 retains around
80% relevant objects, 70% relevant receptacles and reduces the length of observations by 50% on
average. In addition, the zero-shot QA model demonstrates consistent masking performance on all
three splits of the environment, even on the unseen split.

Figure 3: Plot of AUC scores of zero-shot relevance identification across all tasks in the Alfworld-Thor
environment, with the Macaw-11b model. The ground truth is obtained as receptacles/objects accessed by the
rule-based expert. Top: Receptacle relevance identification. Bottom: Object relevance identification. The QA
model achieves average AUC-ROC score of 65 for receptacles, and 76 on objects.

5 Conclusion

In this work, we present (1) a novel question answering framework to simplify observation and (2) an
action attention framework to handle large and variable size action space. Future works can focus on
adding ways from which LMs can assist learning of the policy, such as providing high-level plans.
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