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Abstract

Recent advancements in massively multilingual001
machine translation systems have significantly002
enhanced translation accuracy; however, even003
the best performing systems still generate hallu-004
cinations, severely impacting user trust. Detect-005
ing hallucinations in Machine Translation (MT)006
remains a critical challenge, particularly since007
existing methods excel with High-Resource008
Languages (HRLs) but exhibit substantial lim-009
itations when applied to Low-Resource Lan-010
guages (LRLs). This paper evaluates halluci-011
nation detection approaches using Large Lan-012
guage Models (LLMs) and semantic similar-013
ity within massively multilingual embeddings.014
Our study spans 16 language directions, cover-015
ing HRLs, LRLs, with diverse scripts. We find016
that the choice of model is essential for perfor-017
mance. On average, for HRLs, Llama3-70B018
outperforms the previous state of the art by019
as much as 0.16 MCC (Matthews Correlation020
Coefficient). However, for LRLs we observe021
that Claude Sonnet outperforms other LLMs022
on average by 0.03 MCC. The key takeaway023
from our study is that LLMs can achieve per-024
formance comparable or even better than pre-025
viously proposed models, despite not being ex-026
plicitly trained for any machine translation task.027
However, their advantage is less significant for028
LRLs. 1029

1 Introduction030

Text generation models have drastically improved031

in recent years especially with the capabilities of032

LLMs in producing realistic and fluent output.033

However, hallucination continues to undermine034

user trust, as it generates and propagates misinfor-035

mation and sometimes nonsensical outputs (Agar-036

wal et al., 2018; Xu et al., 2023a; Guerreiro et al.,037

2023b).038

One practical way of reducing hallucination039

in MT is by building more robust models, espe-040

1Code will be released upon acceptance

Figure 1: Illustration of how a selection of the evaluated
methods perform from Yoruba to Spanish and from
Arabic to English.

cially for LRL which tend to exhibit significantly 041

higher hallucination rates. There are several efforts 042

on scaling MT models to LRLs, such as M2M- 043

100 (Fan et al., 2020), NLLB-200 (Team et al., 044

2022), MADLAD-400 (Kudugunta et al., 2023) etc. 045

Despite initiatives to minimize hallucinations dur- 046

ing the MT process, issues still persists. Therefore, 047

detecting hallucinations post-translation remains a 048

critical alternative approach to ensure the reliability 049

and trustworthiness of the translated content. 050

Previous work on post-translation evaluation has 051

mainly focused on a single English-centric (EN) 052

to a HRL direction, while studies including LRL 053

remain limited (Raunak et al., 2022; Xu et al., 054

2023b). Recently, Dale et al. (2023) introduced 055

HalOmi— a benchmark dataset for detecting hal- 056

lucination in MT that includes EN↔HRLs (ten di- 057

rections) and EN↔LRLs (six directions), as well 058

as two non-English directions HRL↔LRL, includ- 059

ing different scripts. BLASER-QE (Communication 060

et al., 2023), the state-of-the-art (SOTA) hallucina- 061

tion detector, is reported as the top performer on 062

the HalOmi benchmark. It calculates a translation 063
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quality score by evaluating the similarity between064

encoded source texts and machine-translated texts065

within the SONAR embedding space (Duquenne066

et al., 2023).067

In this paper, we evaluate the performance of068

LLMs and embedding based methods as halluci-069

nation detectors, aiming to enhance performance070

in both HRLs and LRLs. To this end, we use the071

HalOmi benchmark dataset with a binary halluci-072

nation detection approach. For our evaluation, we073

include 14 methods: eight LLMs with different074

prompt variations, and four embedding spaces by075

computing the cosine similarity between source076

and translated texts.077

We find that LLMs are highly effective for hal-078

lucination detection across both high and low re-079

source languages, although the optimal model se-080

lection depends on specific contexts. For HRLs, on081

average across directions, the Llama3-70B model082

significantly surpasses the previous SOTA method,083

BLASER-QE, by 16 points. Moreover, embedding-084

based methods have also demonstrated superior per-085

formance over the current SOTA in high resource086

contexts. However, for LRLs, Claude Sonnet087

is the best performing model, improving previ-088

ous methods by a smaller difference. More pre-089

cisely, LLMs outperformed BLASER-QE in five out090

of eight LRL translation directions, including the091

non-English-centric ones.092

Finally, our research makes the following pri-093

mary contributions: First, we evaluate a wide range094

of LLMs for MT hallucination detection and estab-095

lish that LLMs, despite not being explicitly trained096

for the task, are competitive and greatly outper-097

form even the previous SOTA for HRLs. Second,098

large multilingual embedding spaces improve upon099

previously proposed methods and show that they re-100

main competitive for HRLs, but struggle for LRLs.101

Third, we establish a new SOTA for 13 of the 16102

languages that we evaluate on, including high and103

low resource languages. Surpassing the previous104

SOTA, which was explicitly trained for the task, on105

average by 2 MCC points.106

2 Experimental setup107

2.1 Quality assessment of the dataset108

We evaluated our methods on the HalOmi dataset.109

A first dataset filtration involved selecting only nat-110

ural translations, without perturbations, as findings111

from perturbed data may not be applicable to the de-112

tection of natural hallucinations (Dale et al., 2023).113

The validation and test split was decided based 114

on the translation direction. For the validation set, 115

we selected the two translation directions DE↔EN, 116

which encompasses 301 sentences. This choice 117

was made as extensive resources and established 118

benchmarks are available for this language pair 119

(Guerreiro et al., 2023a), with the expectation that 120

the models would exhibit generalizability to less 121

frequently used language pairs. For the test set, 122

the other 16 pairs were used: more precisely, it in- 123

cludes four pairs with English and a HRL (EN↔AR , 124

EN↔ZH, EN↔RU, EN↔ES), three pairs with English 125

and a LRL (EN↔KS, EN↔MN, and EN↔YO), and one 126

non-English HRL-LRL pair (ES↔YO). The test set 127

includes 2,558 sentence pairs. This test set ex- 128

cludes six sentence pairs that were removed due to 129

sensitive content flagged and filtered out by LLMs. 130

A more detailed description of the dataset is avail- 131

able in Appendix B. 132

2.2 Hallucination detection setting 133

We consider two settings: (1) Severity ranking 134

introduced by the authors of HalOmi. (2) Binary 135

detection—a new setting we added due to data 136

imbalance and ease of evaluation. 137

Severity ranking the classification of hallucina- 138

tions was based on four severity levels: No Halluci- 139

nation, Small Hallucination, Partial Hallucination, 140

and Full Hallucination. This fine-grained catego- 141

rization aimed to capture the nuances in the extent 142

and impact of hallucinations on the translated out- 143

put. We use this setting only as ablation study in 144

Appendix C., both for consistency with the HalOmi 145

benchmark, but also to assess the relevance of our 146

binary detection approach. 147

Binary detection In this setting, all three in- 148

stances of hallucinations were labelled as Halluci- 149

nation, regardless of their severity. We also change 150

the way the evaluation was done in HalOmi, with 151

an appropriate prompt (Appendix D), and thresh- 152

old calculation for binary classification for embed- 153

dings cosine similarity, see subsection 2.4. The 154

primary reason for choosing this setting is the sig- 155

nificant class imbalance in HalOmi, largely due 156

to the scarcity of hallucinations across different 157

severity levels. Some translation directions have 158

particularly imbalanced data, for example EN→RU, 159

with the following distribution: out of 148 sentence 160

pairs, we have 141 No Hallucination (96.6%), 1 161

Small (0.68%), 2 Partial (1.4%), and 4 Full (2.8%). 162

High class imbalance can affect the ability of model 163
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to perform well (Prusa et al., 2016; Sordo and Zeng,164

2005; Fernández et al., 2013).165

2.3 LLMs for hallucination detection166

We assessed the performances of eight LLMs, mix-167

ing capabilities models across LLMs families. We168

evaluate OpenAI’s GPT4-turbo and GPT4o; Co-169

here’s Command R and Command R+; Mistral’s170

Mistral-8x22b; Anthropic’s Claude Sonnet and171

Claude Opus and Meta’s Llama3-70B.2 More de-172

tails about the selection are in subsection E.2.173

First, we built our prompt design by differen-174

tiated system and user prompts for better results175

(Kong et al., 2024). The system prompt contained176

the task description, and optionally, the inclusion177

of Chain-of-Thought (CoT), while the user prompt178

contained, for each sentence pair, the source text179

and MT text, as well as a direct hallucination clas-180

sification question.181

We derived the task description prompts from182

the Evaluate Hallucination and Evaluate Coher-183

ence in the Summarization Task prompts in G-Eval184

(Liu et al., 2023). The CoT prompts were inspired185

by Evaluation Steps from G-Eval, and by the hu-186

man annotation guidelines and severity level defini-187

tions from HalOmi. All prompts are available Ap-188

pendix D. More details about the chosen hyperpa-189

rameters with LLMs can be found in Appendix E.190

We determined the optimal prompts for each191

model using the DE↔EN validation set, evaluating192

three prompts and two CoT proposals for binary193

detection. The best prompt for each model was194

selected based on the average MCC across both195

translation directions. The MCC was chosen as the196

primary metric for binary detection due to its su-197

periority in providing a single, easily interpretable198

value between -1 and +1. This value encapsulates199

the model’s performance for the confusion matrix200

scores, making it more robust to class imbalance.201

2.4 Embeddings202

We assessed the performance of three203

LLM-related embedding spaces: OpenAI’s204

text-embedding-3-large, Cohere’s Embed v3,205

and Mistral’s mistral-embed. Additionally, we206

included SONAR, the multilingual embedding space207

used as the base for BLASER-QE. Specifically, we208

calculated the cosine distance between embeddings209

of the source text and the machine-translated210

2GPT3.5, Mistral Large and Llama3-8B were initially
taken into account, but were excluded due to poor task under-
standing.

Figure 2: MCC scores for hallucination binary detection
across 16 translation directions per method.

text. This approach draws on previous studies 211

showing that hallucinated translations tend to have 212

embeddings that are significantly distanced from 213

those of the source text (Dale et al., 2022). 214

We binarised the cosine similarity scores of em- 215

beddings using an optimal threshold value deter- 216

mined from the validation set. This threshold, es- 217

tablished by maximizing the F1-score from the 218

precision-recall curve, was then applied to the test 219

set for binary hallucination detection across all lan- 220

guage pairs. Each embedding space was indepen- 221

dently processed to maintain the integrity of the 222

evaluation. 223

3 Results 224

LLMs are the new SOTA for hallucination de- 225

tection The results in Figure 2 demonstrate that 226

LLMs have the best overall performance across lan- 227

guages for binary hallucination detection. Specifi- 228

cally, Llama3-70B surpasses the previous best per- 229

forming model, BLASER-QE, by +5 points, with 230

an MCC of 0.43. For HRLs, 10 out of 12 evalu- 231

ated methods outperform BLASER-QE (0.46), with 232

Llama3-70B greatly improving over the baseline 233

by 16 points (0.63). Notably, the results show that 234

the choice of LLM should rely on the resource 235
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level; as for LRLs, Claude Sonnet achieves the236

highest average MCC. However, GPT4o was the237

more robust LLM across all languages, with the238

lowest standard deviation. Finally, for 13 out of the239

16 evaluated translation directions, the evaluated240

methods outperform BLASER-QE, with the excep-241

tion of KS→EN, YO→EN and EN→MNI. Our findings242

on LLMs’ superior hallucination detection capabil-243

ities align with prior research on their effectiveness244

in MT quality assessment (Kocmi and Federmann,245

2023).246

Embedding-based hallucination detectors re-247

main competitive for HRLs For HRLs, simple248

embedding-based methods display competitive ca-249

pabilities, outperforming more sophisticated mod-250

els in five out of eight translation directions. For251

instance, although BLASER-QE is a more advanced252

model based on SONAR, SONAR exhibits compara-253

ble or superior performances in most HRLs direc-254

tions. This suggests that the effectiveness of these255

methods may be highly sensitive on their train-256

ing data, and hence to the resource level, as we257

observe SOTA performances for HRLs and subop-258

timal results for LRLs. Additionally, the embed-259

dings’ performance may be highly dependent on260

the threshold chosen using the EN↔DE validation261

set, generalizing well for HRLs but not for LRLs.262

LLMs’ contrastive performances across LRLs263

First, while Llama3-70B obtains the best perfor-264

mance overall, it was outperformed in most trans-265

lation directions, especially in LRL. This result266

reveals a HRLs-centric approach of the model but267

also concludes that there is not one-LLM fits all268

resource levels. Secondly, for LRLs, models such269

as Sonnet, Opus, GPT4o, and Mistral —in order270

of decreasing performances, achieve higher scores,271

supporting the feasibility of employing LLMs in272

settings encompassing a wide range of languages.273

These results should be contrasted with a wide274

difference of hallucination distribution across re-275

source levels, for example with the MN→EN direc-276

tion which only has 28% No hallucination sentence277

pairs. More precisely, Sonnet and BLASER-QE per-278

form on par for LRL, with the particularity that279

BLASER-QE has a significantly higher rate of false280

negatives, while Sonnet maintains a more balanced281

ratio of false positives to negatives. Moreover,282

BLASER-QE performs well in translations from En-283

glish and comparably to Sonnet in translations to284

English, but falls short in non-English-centric trans-285

lations, which follows the same trends as previ-286

ously reported models in (Dale et al., 2023). Fig- 287

ure 14 provides a more detailed view of these per- 288

formance metrics. 289

Embeddings are high performers for non-Latin 290

scripts, while LLMs can generalise to non- 291

English centric translations For HRLs→EN di- 292

rections with source scripts different than Latin 293

(AR,RU,ZH), embeddings are the best performers, 294

suggesting high capabilities with cross-script trans- 295

fer learning. These observations align with the find- 296

ings of Hada et al. (2023), who report decreased 297

performance for non-Latin scripts in LLM-based 298

evaluators. In the two non-English centric trans- 299

lation directions (ES↔YO), Opus outperforms by 300

far both BLASER-QE (0.11) and the best embed- 301

ding Mistral (0.12), with a score of 0.28. Un- 302

like the overall LRLs trends, Opus outperforms 303

Sonnet for this direction pair: this can suggest that 304

the advanced analytical capabilities of LLMs can 305

generate improved results even in scenarios with 306

limited relevant training data. Remarkably, in the 307

YO→ES translation direction, six out of our four- 308

teen methods and BLASER-QE exhibit scores close 309

to random guessing (within the [–1, +1] range). 310

This observation underscores the pressing need for 311

enhanced capabilities in detecting hallucinations 312

in non-English-centric translation settings. Fig- 313

ure 1 presents two examples that highlight the chal- 314

lenges faced by LLMs when dealing with non-Latin 315

scripts, with the exception of Llama3-70B. Addi- 316

tionally, it illustrates how embeddings may struggle 317

with reasoning capabilities in non-English centric 318

contexts. 319

4 Conclusion 320

In this work, we demonstrates that LLMs and em- 321

bedding semantic similarity are highly effective 322

for hallucination detection in machine translation, 323

with LLMs establishing a new state-of-the-art per- 324

formance across both high and low-resource lan- 325

guages. Our findings suggest that the optimal 326

model selection depends on specific contexts, such 327

as resource level, script, and translation direction. 328

Our study highlight the need for further research 329

to enhance hallucination detection capabilities, par- 330

ticularly in low-resource and non-English-centric 331

translation settings. 332
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Limitations333

Despite the promising results obtained by LLMs334

and embedding-based methods in our evaluation,335

there are certain limitations that should be noted.336

First, the dataset shows distribution imbalance337

across translation directions, with different trends338

for high and low resource languages, even after339

binarisation (see Appendix B): The HRLs show340

a pronounced data imbalance towards No Halluci-341

nation labels, with distribution between 79% and342

94%. Moreover, for LRLs, there’s a broader inter-343

val, from 28% to 85%. This imbalance often results344

in models that classify translations as No hallucina-345

tion being more frequently correct for HRLs than346

for LRLs, thereby introducing a bias into the binary347

evaluation. Moreover, the translation direction dis-348

play a qualitative bias, as shown subsection B.3:349

HRLs and LRLs don’t have the same selection dis-350

tribution which display a potential bias towards351

hallucination. Future dataset improvements should352

prioritize larger, more diverse samples, non-Latin353

scripts, and non-English centric translations. Using354

consistent source text across languages and bal-355

ancing hallucination severity levels would enable356

more sophisticated methods, improve generaliz-357

ability, and allow for a fair evaluation of models’358

hallucination detection capabilities.359

The validation set used to identify the opti-360

mal threshold for non-LLM methods and the best361

prompt for LLMs only included EN↔DE transla-362

tions. To improve parameter optimization and gen-363

eralization across various translation directions, es-364

pecially for low-resource languages (LRLs), cross-365

validation is recommended for future research,366

as suggested by Dale et al. (2023) and initially367

planned for our study. However, financial con-368

straints associated with benchmarking non-open369

source models prevented the implementation of this370

approach. Future work should focus on developing371

novel approaches that perform well on well-studied372

high-resource languages (HRLs) while generaliz-373

ing effectively to LRLs, assessing robustness, or374

exploring alternative methods to address this chal-375

lenge within the limitations of dataset size.376

Finally, for benchmarking purposes, only the377

previous state-of-the-art (SOTA) was included for378

comparison against the newly evaluated methods.379

Therefore, for a more comprehensive analysis, it is380

recommended to include additional methods previ-381

ously evaluated by HalOmi.382
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A Related Work557

Significant advancements have been made in au-558

tomatic machine translation evaluation, but these559

have predominantly focused on general translation560

errors. As a result, hallucinations are often over-561

looked, and evaluation scores may not reflect their562

impact due to their relatively low frequency com-563

pared to less severe errors like omissions (Guerreiro564

et al., 2023a).565

Previous studies have demonstrated that sen-566

tence similarity measures between source and trans-567

lated texts, using cross-lingual embeddings such568

as LASER (Heffernan et al., 2022) and LaBSE569

(Feng et al., 2022), can effectively identify severe570

hallucinations (Dale et al., 2022). However, the571

recently introduced Halomi dataset, A Manually572

Annotated Benchmark for Multilingual Hallucina-573

tion and Omission Detection in Machine Transla-574

tion (Dale et al., 2023), which expands to include575

LRLs and non-English-centric translation direc-576

tions, reveals the limitations of embedding seman-577

tic similarity methods primarily with LRLs. Con-578

versely, the BLASER model (Communication et al.,579

2023)—utilizing the SONAR embedding space580

(Duquenne et al., 2023)—demonstrates greater ro-581

bustness across language resources, establishing it582

as the latest state-of-the-art. This model notably583

improves performance in LRLs compared to previ-584

ous methods, yet it still shows deficiencies in some585

non-English-centric directions.586

Recent works have underlined the capabilities of587

LLMs in multilingual MT evaluation, demonstrat-588

ing strong performances across various languages,589

although discrepancies are noted in LRLs (Zhu590

et al., 2023; Xu et al., 2023b). G-Eval (Liu et al.,591

2023) introduces a robust prompting framework592

for hallucination detection and demonstrates that593

LLMs can be used as automatic metrics to gen-594

erate a single quality score. Furthermore, Kocmi595

and Federmann (2023) showed that LLMs, when596

appropriately prompted, can assess the quality of597

machine-generated translations, achieving state-of-598

the-art performance in system-level quality evalua-599

tion. Moreover, Fernandes et al. (2023) pioneered600

the evaluation of LLMs for MT tasks in LRLs using601

a new prompting technique, although its focus is602

primarily on broader translation errors rather than603

specifically on hallucination detection.604

B Dataset description 605

B.1 Language acronyms mapping 606

The languages acronyms follow this mapping 607

throughout the paper: Arabic (AR), Chinese (ZH), 608

English (EN), German (DE), Kashmiri (KA), Ma- 609

nipuri (MN), Russian (RU), Spanish (ES), and Yoruba 610

(YO). 611

B.2 Hallucination distribution 612

B.2.1 Distribution of Hallucination in the 613

severity ranking framework 614

DirectionTotal 1 No 2 Small 3 Partial 4 Full

DE→EN 155 140
90.32%

2
1.29%

2
1.29%

11
7.10%

EN→DE 146 132
90.41%

3
2.05%

2
1.37%

9
6.16%

Total 301 272
68.25%

5
1.25%

4
1.00%

20
5.01%

615

616

DirectionTotal 1 No 2 Small 3 Partial 4 Full

EN→AR 144 136
94.44%

2
1.39%

2
1.39%

4
2.78%

AR→EN 156 132
84.62%

5
3.21%

2
1.28%

17
10.90%

EN→RU 146 141
96.58%

1
0.68%

2
1.37%

2
1.37%

RU→EN 158 146
92.41%

3
1.90%

2
1.27%

7
4.43%

EN→ES 153 131
85.62%

8
5.23%

3
1.96%

11
7.19%

ES→EN 160 127
79.38%

17
10.63%

4
2.50%

12
7.50%

EN→ZH 160 131
81.88%

5
3.13%

4
2.50%

20
12.50%

ZH→EN 159 127
79.87%

9
5.66%

7
4.40%

16
10.06%

EN→KA 184 111
60.33%

8
4.35%

30
16.30%

35
19.02%

KA→EN 151 89
58.94%

15
9.93%

32
21.19%

15
9.93%

EN→YO 195 166
85.13%

4
2.05%

11
5.64%

14
7.18%

YO→EN 146 124
84.93%

4
2.74%

10
6.85%

8
5.48%

EN→MN 197 78
39.59%

52
26.40%

54
27.41%

13
6.60%

MN→EN 152 43
28.29%

45
29.61%

58
38.16%

6
3.95%

ES→YO 151 97
64.24%

16
10.60%

29
19.21%

9
5.96%

YO→ES 152 80
52.63%

26
17.11%

37
24.34%

9
5.92%

Total 2564 1859
72.47%

220
8.58%

287
11.19%

198
7.72%

Table 1: Although fine-grained severity ranking is ad-
vantageous for most applications, the rarity of occur-
rences within each hallucination category may lead to
results that lack significance and generalizability due to
constrained sample sizes. Notably, within the HalOmi
dataset, 11 of the 18 language directions include fewer
than five samples in at least one hallucination category.
To address this limitation, we propose a shift toward
binary hallucination detection, where all instances of
hallucinations are classified as such, irrespective of their
severity. This approach enhances the robustness of the
analysis and the significance of results while still evalu-
ating the model’s ability to separate even Small halluci-
nation (one word in a sentence) from No hallucinations.
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B.2.2 Distribution of Hallucination in the617

binary detection framework618

Direction Total 0 No Hallucination 1 Hallucination

DEU→EN 155 140
90.32%

15
9.68%

EN→DE 146 132
90.41%

14
10.00%

Total 301 272
68.25%

29
31.75%

Table 2: Validation set distribution for binary de-
tection, across translation directions, for HRLs and
LRLS

DirectionTotal 0 No Hallucination 1 Hallucination

EN→AR 144 136
94.44%

8
5.56%

AR→EN 156 132
84.62%

24
15.38%

EN→RU 146 141
96.58%

5
3.42%

RU→EN 158 146
92.41%

12
7.59%

EN→ES 153 131
85.62%

22
14.38%

ES→EN 160 127
79.38%

33
20.63%

EN→ZH 160 131
81.88%

29
18.13%

ZH→EN 159 127
79.87%

32
20.13%

EN→KA 184 111
60.33%

73
39.67%

KA→EN 151 89
58.94%

62
41.06%

EN→YO 195 166
85.13%

29
14.87%

YO→EN 146 124
84.93%

22
15.07%

EN→MN 197 78
39.59%

119
60.41%

MN→EN 152 43
28.29%

109
71.71%

ES→YO 151 97
64.24%

54
35.76%

YO→ES 152 80
52.63%

72
47.37%

Total 2564 1859
72.47%

705
27.53%

Table 3: Testing set distribution for binary detection,
across translation directions, for HRLs and LRLS

B.3 Selection distribution619

The selection information from the HalOmi dataset620

indicates the sampling strategy used to select sen-621

tence pairs for each translation direction and data622

source, which includes uniform sampling to main-623

tain data diversity, biased sampling favoring po-624

tentially problematic translations based on detector625

quantiles, and worst sampling, according to the626

detectors to increase the likelihood of capturing627

hallucinations. A closer look at the selection distri-628

bution is available Figure 3629

Figure 3: Selection type distribution This graph shows
that the three EN→LRLs not only have more sentences,
but also have way more biased sentences than other dire-
tions, which suggests a higher propensity to hallucinate.

C Ablation study 630

The ablation study focus on hallucination severity 631

ranking. We present results for comparability with 632

Dale et al. (2023), which assesses the methods’ abil- 633

ities to accurately rank hallucinations by severity 634

(e.g.,full hallucinations ranked higher than partial 635

ones, and any hallucinations ranked above non- 636

hallucinations). The employed metric is an adapta- 637

tion of the ROC AUC for multiclass tasks, which 638

calculates the percentage of incorrectly ranked sen- 639

tence pairs with different labels and subtracts this 640

value from the perfect score of 1. We compute 641

these metrics separately for each translation direc- 642

tion to assess the detector’s performance across 643

different language pairs. 644

C.1 LLMs for severity ranking 645

C.1.1 Prompt design 646

We designed tailored prompts for this approach, 647

just as for our main binary approach, this time 648

to generate multiclass predictions. For severity 649

ranking, each prompt has a different assigned CoT. 650

Severity ranking, Prompt1: G-Eval inspired 651

See Figure 4 652

Severity ranking, Prompt2: G-Eval inspired, 653

with HalOmi’s hallucination deifnition See Fig- 654

ure 5 655

Severity ranking, Prompt3: G-Eval inspired, 656

with HalOmi’s hallucination deifnition, and lan- 657

guage precision See Figure 6 658

Chain of Thoughts for severity ranking See 659

Figure 7 and Figure 8 660
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System:
Human Evaluation of Machine Translation
Systems:
Hallucination Evaluation Criteria: Does
the translated text contain information unre-
lated to the source text?

• No hallucination: The translated text
does not contain any hallucinated words.

• Small hallucination: The translated text
contains 1-2 hallucinated words.

• Partial hallucination: The translated
text includes at least 3 hallucinated
words, but not all words are hallucinated.

• Full hallucination: Nearly all words in
the translated text are hallucinated, with
the exception of perhaps 1-2 words.

Note: The labels are mutually exclusive; for
example, a translation with a partial hallucina-
tion does not qualify as a full hallucination.:
User:
Source Text: src_text
Translated Text: mt_text
Respond with the hallucination level la-
bel ONLY. Answer (Labels=[‘No hallucina-
tion’,‘Small hallucination’,‘Partial hallucina-
tion’,’Full hallucination’])

Figure 4: Severity Ranking Prompt 1 - from G-Eval

C.1.2 Prompt evaluation661

We evaluated three prompts and two CoT varia-662

tions on the validation set to select the best prompt663

(Table 4). The prompt that achieved the highest664

average ROC AUC for both directions (DE↔EN)665

was chosen for each method. Subsequently, in the666

testing phase, each model was assessed with its667

optimal prompt.668

C.2 Embeddings for severity ranking669

We computed the cosine similarity between the670

source text and machine-translated text embed-671

dings for each embedding space and took the neg-672

ative of these results. This approach ensures that673

hallucinations (indicative of embeddings that are674

farther apart) correspond to higher numbers, con-675

sistent with the ranking scale used in hallucination676

evaluation. Since this method does not require pa-677

rameter tuning, the validation set was not utilized678

for thresholding in contrast to the binary approach. 679

C.3 Results 680

In the same way as in the binary detection set- 681

ting, the validation results Table 4 allowed to se- 682

lect the otpimal prompt for each LLM, and then 683

evaluate this best prompt across the test set, using 684

here the ROC AUC score. Testing results aredis- 685

played Table 5, and presents ROC AUC scores for 686

all methods per translation direction. For HRLs, 687

embeddings’ high performance remains consistent 688

with the binary hallucination approach. However, 689

BLASER-QE remains the state-of-the-art in overall 690

performance for severity ranking. The generaliz- 691

ability of these results requires further evaluation 692

due to significant class imbalances in the dataset. 693

Notably, in 11 of the 18 language directions, fewer 694

than five samples are present in at least one halluci- 695

nation severity category, see Appendix B. 696

D Prompts 697

We used two types of CoTs: One based on the 698

human guidelines for hallucination detection, and 699

the other based on the severity level definition, that 700

was readapted to each case. For binary detection, 701

two CoTs were tested for three prompts. 702

Binary detection, Prompt1 - from G-Eval See 703

Figure 9 704

Binary detection, Prompt2 - from G-Eval with 705

language precision See Figure 10 706

Binary detection, Prompt3 - Human designed 707

prompt See Figure 11 708

Binary detection, Chain of Thoughts See Fig- 709

ure 12 and Figure 13 710

E LLMs experiments 711

E.1 LLMs hyperparameters 712

For the evaluation of LLMs, we used LangChain 713

to ensure reproducibility of results, except for 714

Llama3-70B that was ran locally. We set the 715

TEMPERATURE to 0 for minimum randomness and 716

the MAX_OUTPUT_TOKEN to 15 to avoid verbose.All 717

the experiments were zero-shot, with an exhaustive 718

label (for example, [’Hallucination’, ’No Hallu- 719

cination’] for binary detection). These choices 720

showed the highest performances in previous re- 721

search (Kocmi and Federmann, 2023) (Wei et al., 722

2022). 723
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Prompt1 Prompt2 Prompt3 AVG
Model no CoT CoT1 no CoT CoT2 no CoT CoT2 Mean Std.
GPT4-Turbo 0.78 0.70 0.83 0.81 0.82 0.81 0.79 0.05
GPT4o 0.81 0.82 0.83 0.83 0.83 0.83 0.83 0.01
Command R 0.82 0.79 0.77 0.80 0.83 0.79 0.80 0.02
Command R+ 0.75 0.76 0.79 0.80 0.77 0.75 0.77 0.02
Mistral 8x22b 0.57 0.58 0.77 0.67 0.69 0.67 0.66 0.07
Sonnet 0.82 0.83 0.82 0.79 0.81 0.83 0.82 0.01
Opus 0.79 0.80 0.82 0.83 0.85 0.77 0.81 0.03
Llama3-70B 0.80 0.81 0.81 0.78 0.81 0.78 0.80 0.01

Table 4: Validation results for hallucination detection across prompt variations for severity ranking.

EN→HRL HRL→EN EN→LRL LRL→EN ES→YO YO→ES AVG
Model AR RU ES ZH AR RU ES ZH KA YO MN KA YO MN HRL LRL Overall

GPT text-embedding-3-large 0.89 0.82 0.84 0.92 0.91 0.94 0.87 0.87 0.71 0.7 0.54 0.56 0.68 0.6 0.62 0.51 0.88 0.62 0.75
Cohere Embed v3 0.84 0.87 0.83 0.88 0.9 0.96 0.89 0.83 0.75 0.73 0.54 0.58 0.74 0.64 0.65 0.59 0.88 0.65 0.76
Mistral-embed 0.92 0.88 0.82 0.85 0.92 0.86 0.86 0.83 0.72 0.7 0.56 0.53 0.68 0.61 0.63 0.53 0.87 0.62 0.74
SONAR 0.89 0.79 0.85 0.77 0.93 0.93 0.85 0.87 0.81 0.8 0.69 0.73 0.79 0.73 0.69 0.62 0.86 0.73 0.8

GPT4-Turbo 0.8 0.72 0.65 0.8 0.86 0.91 0.86 0.79 0.61 0.57 0.26 0.47 0.43 0.31 0.38 0.4 0.8 0.43 0.61
GPT4o 0.71 0.74 0.65 0.8 0.86 0.86 0.74 0.8 0.64 0.58 0.3 0.47 0.59 0.4 0.45 0.41 0.77 0.48 0.63
Command R 0.56 0.88 0.61 0.83 0.86 0.84 0.77 0.68 0.47 0.51 0.19 0.16 0.19 0.33 0.37 0.3 0.75 0.32 0.53
Command R+ 0.59 0.56 0.65 0.7 0.91 0.91 0.76 0.74 0.34 0.39 0.04 0.41 0.43 0.26 0.15 0.4 0.73 0.3 0.51
Mistral 8x22b 0.25 0.59 0.53 0.67 0.84 0.94 0.74 0.77 0.51 0.4 0.08 0.46 0.52 0.5 0.33 0.46 0.67 0.41 0.54
Sonnet 0.7 0.75 0.61 0.8 0.84 0.89 0.7 0.69 0.64 0.62 0.41 0.56 0.58 0.55 0.53 0.47 0.75 0.55 0.65
Opus 0.6 0.91 0.69 0.83 0.88 0.9 0.83 0.76 0.66 0.54 0.2 0.49 0.7 0.53 0.33 0.49 0.8 0.49 0.65
Llama3-70B 0.6 0.91 0.69 0.83 0.88 0.9 0.83 0.76 0.66 0.54 0.2 0.49 0.7 0.53 0.33 0.49 0.8 0.49 0.65

BLASER 2.0-QE 0.9 0.89 0.85 0.78 0.94 0.92 0.87 0.87 0.81 0.83 0.79 0.73 0.78 0.8 0.68 0.58 0.88 0.75 0.81

Table 5: ROC-AUC results for severity hallucination ranking across HRL and LRL directions.
Bold values indicate the best performing prompt per model.

E.2 LLMs selection724

We selected the following models for our evalu-725

ation: GPT4-turbo, widely adopted in both aca-726

demic research and industrial applications due to727

its robust performance and versatility; GPT4o, the728

latest GPT model, optimised for better human-729

computer interaction; Command-R, known for its730

large context window, well-suited for tasks that re-731

quire extended language understanding and gen-732

eration; Command R+, an enhanced version of733

Command R, demonstrating strong performance in734

multilingual tasks, achieving impressive BLEU735

scores in benchmark datasets such as FLoRES736

and WMT23; Mistral 8x22b, currently the most737

performant open model from Mistral, excelling in738

various language tasks; Claude Sonnet, showing739

strong capabilities in multilingual tasks, similar to740

Command R+; Claude Opus, known as the "most741

intelligent" Claude model, offering advanced lan-742

guage understanding and generation capabilities;743

and LLama3-70B, the most capable openly avail-744

able LLM from Meta, evaluated in its 70B size745

for comprehensive performance analysis. These746

models were chosen based on their demonstrated747

performance in various benchmarks and their po-748

tential to handle a wide range of language tasks749

effectively.750
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System:
You will be given a ’Source Text’ and its trans-
lation, the ’Translated Text’. Your task is to
identify the hallucination level of the trans-
lated text.
Definition of Hallucination:
A word in the translated text is considered a
hallucination if it introduces information that
is completely unrelated to the source text.
Hallucination labels:

• No hallucination: The translated text
does not contain any hallucinated words.

• Small hallucination: The translated text
contains 1-2 hallucinated words.

• Partial hallucination: The translated
text includes at least 3 hallucinated
words, but not all words are hallucinated.

• Full hallucination: Nearly all words in
the translated text are hallucinated, with
the exception of perhaps 1-2 words.

Note: The labels are mutually exclusive; for
example, a translation with a partial hallucina-
tion does not qualify as a full hallucination.:
User:
Source Text: src_text
Translated Text: mt_text
Provide exactly one of the following halluci-
nation level labels as your response. Do not
include any additional text or explanation:

• No hallucination

• Small hallucination

• Partial hallucination

• Full hallucination

Figure 5: Severity Ranking Prompt 2 - from G-Eval
with Hallucination definition

System:
You will be given a ’Source Text’ in src_lang
and its translation in tgt_lang, the ’Trans-
lated Text’. Your task is to identify the hal-
lucination level of the translated text. Please
make sure you read and understand these in-
structions carefully. Please keep this docu-
ment open while reviewing, and refer to it as
needed.
Definition of Hallucination:
A word in the translated text is considered a
hallucination if it introduces information that
is completely unrelated to the source text.
Hallucination labels:

• No hallucination: The translated text
does not contain any hallucinated words.

• Small hallucination: The translated text
contains 1-2 hallucinated words.

• Partial hallucination: The translated
text includes at least 3 hallucinated
words, but not all words are hallucinated.

• Full hallucination: Nearly all words in
the translated text are hallucinated, with
the exception of perhaps 1-2 words.

Note: The labels are mutually exclusive; for
example, a translation with a partial hallucina-
tion does not qualify as a full hallucination.:
User:
Source Text: src_text
Translated Text: mt_text
Provide exactly one of the following halluci-
nation level labels as your response. Do not
include any additional text or explanation:

• No hallucination

• Small hallucination

• Partial hallucination

• Full hallucination

Figure 6: Severity Ranking Prompt 3 - from G-Eval
with Hallucination definition and language precision
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Evaluation Steps:

1. Read the source text and the translated
text carefully.

2. To decide whether the translated text con-
tains hallucinations check if the source
word “corresponds” to erroneous target
tokens. For each work answer:

• Does this source word fall into the
common meaning category as this
target word?

• Does this source word have a se-
mantic connection with this target
word?

• Can you try to come up with a rea-
sonable theory on how this source
word is associated with this target
word?

• If “no” to all the questions above,
then hallucination. Keep a count of
the number of hallucinated words
for each sentence pair.

3. After reading all the source and trans-
lated text, assign a label to the pair based
on the number of hallucinated words.

Figure 7: Severity Ranking CoT 1 - from HalOmi’s
human guidelines

Evaluation Steps:

1. Read the source text and the translated
text carefully.

2. Initialize a counter ‘n = 0‘ for the number
of hallucinated words.

3. For each word in the translated text, per-
form the following checks to determine
if it is a hallucinated word:

• Does this source word fall into the
common meaning category as this
target word?

• Does this source word have a se-
mantic connection with this target
word?

• Can you try to come up with a rea-
sonable theory on how this source
word is associated with this target
word?

• If "no" to all the questions above,
then it is considered a hallucination.
Increment ‘n‘ by 1.

4. After analyzing each word in the trans-
lated text:

• If ‘n == 0‘, assign the label ’No hal-
lucination’.

• If ‘n‘ is 1 or 2, assign the label
’Small hallucination’.

• If ‘n‘ is 3 or more but not all words
are hallucinated, assign the label
’Partial hallucination’.

• If nearly all words are hallucinated,
assign the label ’Full hallucina-
tion’.’

Figure 8: Severity Ranking CoT 2 - counting the num-
ber of hallucinated words
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System:
Human Evaluation of Machine Translation
Systems:
Hallucination Evaluation Criteria: Does the
translated text contain information completely
unrelated to the source text?
- Hallucination: there is hallucination.
- No Hallucination: there is no hallucination.

User:
Source Text: src_text
Translated Text: mt_text
Does the translation contain hallucination?
Answer (label ONLY: ’Hallucination’ OR ’No
Hallucination’):

Figure 9: Binary detection Prompt 1 - from G-Eval

System:
Instructions for Evaluating Machine Transla-
tion:
You will be given a source text in src_lang
and a machine translated text in tgt_lang.
Your task is to identify if the machine trans-
lated text has hallucination or not.
Please make sure you read and understand
these instructions carefully.
Please keep this document open while review-
ing, and refer to it as needed.
Evaluation Criteria:
Hallucination: Does the translated text con-
tain information completely unrelated to the
source text?
- Hallucination: there is hallucination.
- No Hallucination: there is no hallucination.

User:
Source Text: src_text
Translated Text: mt_text
Does the translation contain hallucination?
Answer (label ONLY: ’Hallucination’ OR ’No
Hallucination’):

Figure 10: Binary detection Prompt 2 - from G-Eval
with language precision

System:
Instructions for Evaluating Machine Transla-
tion:
You will be given a source text in src_lang
and a machine translated text in mt_lang.
Your task is to identify if the machine trans-
lated text has hallucination or not. Your task
is to identify if the translated text is a halluci-
nation. Please make sure you read and under-
stand these instructions carefully. Please keep
this document open while reviewing, and refer
to it as needed.
Definition of Hallucination: The translated
text is considered a hallucination if it intro-
duces information that is completely unrelated
to the source text.
Hallucination labels:

• Hallucination: there is hallucination.

• No hallucination: there is no hallucina-
tion.

User:
Source Text: src_text
Translated Text: mt_text
Provide exactly one of the following halluci-
nation labels as your response. Do not include
any additional text or explanation:

• Hallucination

• No hallucination:

Figure 11: Binary detection Prompt 3 - Human de-
signed prompt
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Evaluation Steps:
1. Read the source text and the translated text
carefully.
2. To decide whether the translated text con-
tains hallucinations check if the source tokens
"correspond" to erroneous target tokens. For
each token answer:

• Does this source word fall into the com-
mon meaning category as this target
word?

• Does this source word have a semantic
connection with this target word?

• Can you try to come up with a reason-
able theory on how this source word is
associated with this target word?

3. If "no" to all the questions above, then
hallucination

Figure 12: Binary detection - CoT1: from HalOmi’s
human guidelines

Evaluation Steps:

1. Read the source text and the translated
text carefully.

2. Initialize a counter ‘n = 0‘ for the number
of hallucinated words.

3. To decide whether the translated text con-
tains hallucinations check if the source
tokens "correspond" to erroneous target
tokens. For each token answer:

• Does this source word fall into the
common meaning category as this
target word?

• Does this source word have a se-
mantic connection with this target
word?

• Can you try to come up with a rea-
sonable theory on how this source
word is associated with this target
word?

• If "no" to all the questions above,
then hallucination

4. After analyzing each word in the trans-
lated text:

• If ‘n == 0‘, assign the label ’No hal-
lucination’.

• If ‘n‘ is 1 or more, assign the label
’Hallucination’.”’

Figure 13: Binary detection - CoT2: from HalOmi’s
human guidelines and counting strategy
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F Binary detection results751

F.1 Validation results752

Table 6 provides MCC scores per LLM for each753

of the prompts and CoT variations evaluated on754

the validation set. The most robust LLMs across755

prompt variations in the validation set, specifically756

Sonnet, GPT4o, and Llama3-70B, exhibit superior757

performance across language resource settings in758

the test set. This suggests that extensive prompt759

engineering might not be required for these models760

in the current task, as the performance using the761

optimal prompt from the validation set aligns with762

high performance on the test set.763

F.2 Test results764

Figure 14 displays the performances of evaluated765

methods on the test set grouped by translation direc-766

tions and resource setting. The results indicate that767

the highest scores for HRLs are achieved in trans-768

lations to English, whereas for LRLs, the highest769

scores are from translations originating in English770

or Spanish. Additionally, these findings underscore771

that no single model uniformly excels across all772

translation directions.773
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Prompt1 Prompt2 Prompt3 AVG
Model no CoT CoT1 no CoT CoT1 no CoT CoT1 CoT2 Mean Std.

Binary Detection (MCC)

GPT4-Turbo 0.53 0.55 0.55 0.50 0.45 0.51 0.47 0.51 0.04
GPT4o 0.44 0.44 0.51 0.45 0.44 0.47 0.48 0.46 0.03
Command R 0.43 0.37 0.54 0.47 0.51 0.53 0.55 0.49 0.07
Command R+ 0.72 0.72 0.57 0.69 0.54 0.72 0.64 0.66 0.08
Mistral 8x22b 0.51 0.57 0.52 0.61 0.69 0.65 0.69 0.61 0.07
Sonnet 0.67 0.68 0.69 0.68 0.68 0.69 0.68 0.68 0.01
Opus 0.57 0.50 0.53 0.56 0.73 0.64 0.59 0.59 0.08
Llama3-70B 0.74 0.76 0.74 0.72 0.81 0.79 0.79 0.76 0.03

Table 6: Validation results for binary hallucination detection across prompt variations. Bold values indicate the best
performing prompt per model. In the case of ties, we favor shorter prompts without CoT.

Figure 14: MCC average score across high and low resource levels, for different directions. The best performing
models differ significantlly between HRLs and LRLs. For HRLs, Llama3-70B greatly outperforms other methods,
whereas for LRLs, best performers differ from and to LRLs, with Claude and GPT models closely competing.
Embeddings demonstrate impressive results, particularly for the EN→HRL directions.
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