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Abstract

Given taxi-ride counts information between departure and destination locations,
how can we forecast their future demands? In general, given a data stream of
events with seasonal patterns that innovate over time, how can we effectively and
efficiently forecast future events? In this paper, we propose Shifting Seasonal
Matrix Factorization approach, namely SSMF, that can adaptively learn multiple
seasonal patterns (called regimes), as well as switching between them. Our pro-
posed method has the following properties: (a) it accurately forecasts future events
by detecting regime shifts in seasonal patterns as the data stream evolves; (b) it
works in an online setting, i.e., processes each observation in constant time and
memory; (c) it effectively realizes regime shifts without human intervention by
using a lossless data compression scheme. We demonstrate that our algorithm
outperforms state-of-the-art baseline methods by accurately forecasting upcoming
events on three real-world data streams.

1 Introduction

The ubiquity of multi-viewed data has increased the importance of advanced mining algo-
rithms that aim at forecasting future events [Bai et al., 2019, Wu et al., 2019, Deng et al.,
2020], such as forecasting taxi-ride counts based on their departure and destination loca-
tions, and time information, where the events can be represented as a stream of tuples
(departure, destination, time; count). Infection spread rates during epidemics can also be repre-
sented in a similar form as (location, disease, time; count), and the task is to forecast the infection
count. Given such a large data stream produced by user events, how can we effectively forecast future
events? How can we extract meaningful patterns to improve forecasting accuracy? Intuitively, the
problem we wish to solve is as follows:

Problem 1 Given an event data stream that contains seasonal patterns, forecast the number of future
events between each pair of entities in a streaming setting.

As natural periodicity occurs in several types of data, one of the promising directions to understand the
vital dynamics of a data stream is to consider seasonal phenomena. However, high-dimensional data
∗Equal contribution
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Table 1: Relative Advantages of SSMF

SVD/NMF++ RegimeCast TRMF SMF SSMF

Sparse Data X - X X X
Regime Shifts - X - - X

Seasonal Pattern - - X X X
Drifting components some - - X X

structures in sparse time-series pose many challenging tasks to uncover such valuable seasonal patterns
[Chi and Kolda, 2012], while modeling seasonality or periodic patterns has been a well-studied topic
in literature [Takahashi et al., 2017]. Moreover, in a streaming setting, data dynamics vary over time,
and thus the models learned with historical data can be ineffective as we observe new data. Although
online learning schemes, such as [Schaul et al., 2013, Jothimurugesan et al., 2018, Yang et al., 2018,
Nimishakavi et al., 2018, Lu et al., 2019], provide solutions to overcome this concern, disregarding
all past dynamics fails to capture re-occurring patterns in the subsequent processes. On non-stationary
data streams, such approaches no longer converge to the optimal parameters but capture average
patterns for several phenomena, which causes less accurate forecasting. Adequate methods should
retain multiple patterns where each pattern is updated incrementally for prevailing tendencies and
leveraged for forecasting.

In this paper, we focus on online matrix factorization for real-time forecasting with seasonality.
Specifically, we propose a streaming method, Shifting Seasonal Matrix Factorization (SSMF), which
allows the factorization to be aware of multiple smooth time-evolving patterns as well as abrupt
innovations in seasonal patterns, which are retained as regimes. In summary, our contributions are:

1. Accuracy: Outperforms state-of-the-art baseline methods by accurately forecasting 50-steps
ahead of future events.

2. Scalability: Scales linearly with the number of regimes, and uses constant time and memory
for adaptively factorizing data streams.

3. Effectiveness: Finds meaningful seasonal patterns (regimes) throughout the stream and
divides the stream into segments based on incrementally selected patterns. SSMF uses a
lossless data compression scheme to determine the number of regimes.

Reproducibility: Our datasets and source code are publicly available at: https://www.github.
com/kokikwbt/ssmf

2 Related Work

Table 1 summarizes the relative advantages of SSMF, compared with existing methods for matrix
factorization and time series forecasting. Our proposed method satisfies all the requirements. The
following two subsections provide the details of related work on matrix/tensor factorization and time
series modeling.

2.1 Matrix Factorization

The major goal of matrix/tensor factorization, well known as SVD, is to obtain lower-dimensional
linear representation that summarizes important patterns [Chi and Kolda, 2012], and it has a wide
range of applications [Hoang et al., 2017, Yelundur et al., 2019, Tišljarić et al., 2020]. Non-negative
constraint provides an ability to handle sparse data and find interpretable factors [Cichocki et al.,
2009]. [Takahashi et al., 2017] adapted tensor factorization to extract seasonal patterns in time
series as well as the optimal seasonal period in an automatic manner. [Yu et al., 2016] formulated
the temporal regularized matrix factorization (TRMF), which is designed for time series prediction.
[Song et al., 2017, Najafi et al., 2019] addressed stream tensor completion but didn’t extract seasonal
patterns. Recently, SMF [Hooi et al., 2019] proposed an online method that incorporates seasonal
factors into the non-negative matrix factorization framework, and outperforms CPHW [Dunlavy et al.,
2011], which is an offline matrix factorization method. However, SMF misses regime shifts which
should be modeled individually.
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2.2 Time Series Analysis

Statistical models, such as autoregression (AR) and Kalman filter (KF), learn temporal patterns for
forecasting, thus a lot of their extensions have been proposed [Cai et al., 2015, Dabrowski et al.,
2018]. RegimeCast [Matsubara and Sakurai, 2016] focuses on regime detection to obtain compact
factors from data streams effectively but it does not consider updating detected regimes. Also, note
that they do not consider mining sparse data in the non-linear dynamical systems, while handling
missing values has a significant role in time series analysis [Yi et al., 2016, Abedin et al., 2019].
Hidden Markov models are also powerful tools for change detection in time series [Mongillo and
Deneve, 2008, Montanez et al., 2015, Pierson et al., 2018, Kawabata et al., 2019], but these models
represent only short temporal dependency and thus are ineffective for forecasting tasks. Detecting
regime shifts in non-stationary data can be categorized in Concept Drift, and its theory and recent
contributions are well-summarized in [Lu et al., 2019]. In more detail, we consider incremental drift
and reoccurring concepts simultaneously. [Wen et al., 2019] tried to decompose seasonality and
trends in time series on the sparse regularization framework to handle fluctuation and abrupt changes
in seasonal patterns, but this approach does not focus on stream mining [Krempl et al., 2014].

3 Proposed Model

In this section, we propose a model for shifting seasonal matrix factorization. A tensor we consider
consists of a timestamped series of (m× n) matrices X(1), . . . ,X(r), which can be sparse, until the
current time point r. We incrementally observe a new matrix X(r + 1) and r evolves (r = r + 1).
Our goal is to forecast X(t) where r < t by uncovering important factors in the flow of data, whose
characteristics can change over time. As we discussed the effectiveness of handling seasonal patterns,
we incorporate seasonal factors into a switching model that can adaptively recognize recent patterns
in forecasting.

3.1 Modeling Shifting Seasonal Patterns

Figure 1 shows an overview of our model. In matrix factorization, we assume that each attribute,
e.g., a start station where we have a taxi ride, has k latent communities/activities, which is smaller
than m and n, e.g., the number of stations. Considering such latent seasonal activities, an input data
stream is decomposed into the three factors: U with shape (m× k) and V with shape (n× k) for
the row and columns of data X(t), respectively, and seasonal patterns W with period s, i.e., (s× k),
where k is the number of components to decompose. The i-th row vector wi = {w1, . . . , wk} of
W corresponds to the i-th season. Letting Wi be a (k × k) diagonal matrix (zeros on non-diagonal
entries) with diagonal elements as wi, X(t) is approximated as follows.

X(t) ≈ UWiV
T . (1)

More importantly, we extend W by stacking additional W to capture multiple discrete seasonal
patterns as regimes, which is shown as the red tensor in Figure 1. Letting g be the number of regimes,
our model employs a seasonality tensorW = {W(1), . . . ,W(g)}, where each slice W(i) captures
the i-th seasonal pattern individually. By allowing all these components to vary over time, X(t) can
be represented as follows.

X(t) ≈ U(t)W
(z)
i (t)V(t)T , (2)

where z ∈ {1, . . . , g} shows an optimal regime index to represent X(t) in the i-th season. That is,
our approach adaptively selects w(z)

i , as shown in the red-shaded vector in the figure, with regard to
the current season and regime. Finally, the full parameter set we want to estimate is as follows.

Problem 2 (Shifting seasonal matrix factorization: SSMF) Given: a tensor stream X(1), . . . ,
X(r) that evolves at each time point, Maintain: community factors: U(t),V(t), seasonal factors:
W(t), and the number of regime g in a streaming fashion.

3.2 Streaming Lossless Data Compression

In the SSMF model, deciding the number of regimes, g, is a crucial problem for accurate modeling
because it should change as we observe a new pattern to shift. It is also unreliable to obtain any error
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Figure 1: An overview of our model: it smoothly updates all the components, U(t),V(t), and W(t), to
continuously describe data stream X(t). If required, (1) increases the number of regimes, g, by extracting a
new seasonal pattern in the last season X = {X(t− s+ 1), . . . ,X(t)}. Then, (2) selects the best w(z)

i (t) in
regimes to describe X(t).

thresholds to decide the time when employing a new regime before online processing. Instead, we
want the model to employ a new regime incrementally so that it can keep concise yet effective to
summarize patterns. The minimum description length (MDL) principle [Grünwald and Grunwald,
2007] realizes this approach, which is defined as follows.

< X;U,V,W >︸ ︷︷ ︸
Total MDL cost

= < U > + < V > + <W >︸ ︷︷ ︸
Model description cost

+< X|U,V,W >︸ ︷︷ ︸
Data encoding cost

, (3)

where < X;U,V,W > is the total MDL cost of X when given a set of factors, U,V andW .

Model description cost, < · >, measures the complexity of a given model, based on the following
equations.

< U > = |U| · (log(m) + log(k) + cF ),

< V > = |V| · (log(n) + log(k) + cF ),

<W > = |W| · (log(g) + log(s) + log(k) + cF ),

where | · | shows the number of nonzero elements in a given matrix/tensor, cF is the float point cost2.

Data encoding cost, < X|· >, measures how well a given model compress original data, for which
the Huffman coding scheme [adl, 2001] assigns a number of bits to each element in X. Letting
x̂ ∈ X̂ be a reconstructed data, the data encoding cost is represented by the negative log-likelihood
under a Gaussian distribution with mean µ and variance σ2 over errors, as follows.

< X|U,V,W >=
∑
x∈X

− log2 Pµ,σ(x− x̂). (4)

While we cannot compute the cost with all historical data in a streaming setting, a straightforward
approach obtains the best number of regimes so that the total description cost is minimized. To
compute the total cost incrementally and individually when provide with new data, we decompose
<W > approximately into:

<W > ≈
g∑
i=1

<W(i) > =

g∑
i=1

|W(i)| · (log(s) + log(k) + cF ). (5)

When a new matrix X arrives, we decide whether the currentW should increase the number g. by
comparing the total costs for existing regimes with the total costs for estimated regime.

Wbest = arg min
W′∈{W(i),...,W(g+1)}

< X;U,V,W′ >, (6)

= arg min
W′∈{W(i),...,W(g+1)}

< U > + < V > + <W′ > + < X|U,V,W′ > .

2We used cF = 32 bits.
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If W(g+1) gives the minimum total cost of X, then it belongs to the fullW for subsequent modeling.
In other words, the size ofW is encouraged to be small unless we find significant changes in seasonal
patterns.

4 Proposed Algorithm

We propose an online algorithm for SSMF on large data streams containing seasonal patterns. Algo-
rithm 1 summarizes the overall procedure of our proposed method: it first detects the best regime for
the most recent season through a two-step process, namely, RegimeSelection and RegimeExtraction.
Then it smoothly updates the entire factors based on the selected regime with non-negative constraints.
When deciding the number and assignment of regimes, the algorithm evaluates the cost, Equation (6),
for the most recent season, to ensure the smoothness of consecutive regime-switching during a season.
Thus, the algorithm keeps a sub-tensor X , which consists of the matrices from time point t− s+1 to
t, as a queue while receiving a new X(t). Given a X , the best regime at time point t is obtained as
follows.

• RegimeSelection, which aims to choose the best regime WRS that minimizes Equation (6)
in {W(1), . . . ,W(g)}, using the two previous factors U(t− 1) and V(t− 1). We compute
the total cost, CRS by using U(t− 1),V(t− 1) and WRS for X .

• RegimeExtraction, which obtains a new regime WRE , focuses on current seasonality, by
applying the gradient descent method to U(t− 1),V(t− 1) and WRS over the whole X .
The initialization with WRS prevents WRE from overfitting to X because temporal data,
X , can be sparse. It then computes CRE with U(t− 1),V(t− 1) and WRE for X .

If CRS is less than CRE , the best regime index z becomes one of {1, . . . , g}. Otherwise, z = g + 1,
W(g × s× k) is extended toW((g + 1)× s× k), and then g is incremented.

4.1 Regime-Aware Gradient Descent Method

Given a new observation X(t), we consider obtaining the current factors, U(t),V(t),W(t) via the
previous ones U(t− 1),V(t− 1),W(t− 1) by minimizing error with respect to X(t). This allows
the model to fit current dynamics smoothly while considering the past patterns. Thus, our algorithm
performs the gradient descent method with a small learning rate α > 0. The gradient step keeps
the error with respect to X(t) low. Letting z be the current regime index, and X̂(t) be the predicted
matrix of X(t) with the previous parameters:

X̂(t) = U(t− 1)W(z)(t− s)V(t− 1)T , (7)

the gradient update to ui(t) and vi(t) is given by:

ui(t)←ui(t− 1)+α(X(t)− X̂(t))vi(t− 1)w
(z)
i (t− s), (8)

vi(t)←vi(t− 1)+α(X(t)− X̂(t))Tui(t− 1)w
(z)
i (t− s). (9)

The updated ui(t) and vi(t) are projected such that

ui(t)← max(0,ui(t));vi(t)← max(0,vi(t)) (10)

to keep the parameters non-negative. After all, the algorithm normalizes ui(t) and vi(t) by dividing
by their norms ‖ui(t)‖ and ‖vi(t)‖, respectively:

ui(t)← ui(t)/‖ui(t)‖; vi(t)← vi(t)/‖vi(t)‖, (11)

and then w(z)
i multiplied by the two norms keeps the normalization constraint:

w
(z)
i ← w

(z)
i (t− s) · ‖ui(t)‖ · ‖vi(t)‖, (12)

which captures the seasonal adjustments for the i-th component.
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Algorithm 1 SSMF
Input: (a) New observation X(t) and previous factors U(t− 1),V(t− 1),W(t− 1),
Output: Updated factors: U(t),V(t),W(t)
1: /* Update the queue to keep the most recent season */
2: X ← {X(t− s+ 1), . . . ,X(t)};
3: /* (1) RegimeSelection */
4: WRS ← arg min

W′∈{W(1),...,W(g)}
< X ;U(t− 1),V(t− 1),W′ >;

5: /* (2) RegimeExtraction */
6: WRE ← arg min

W′
< X|U(t− 1),V(t− 1),W′ >;

7: CRS =< X ;U(t− 1),V(t− 1),WRS >; CRE =< X ;U(t− 1),V(t− 1),WRE >;
8: if CRS is less than CRE then
9: W(z) = diag(WRS(t));

10: else
11: W(z) = diag(WRE(t)); W(t) =W(t− 1) ∪WRE ; g = g + 1;
12: end if
13: /* Perform gradient updates */
14: X̂(t)← U(t− 1)W(z)(t− s)V(t− 1)T ;
15: U(t)← U(t− 1) + α(X(t)− X̂(t))V(t− 1)W(z)(t− s);
16: V(t)← V(t− 1) + α(X(t)− X̂(t))TU(t− 1)W(z)(t− s);
17: for i = 1 : k do
18: /* Project onto non-negative constraint */
19: ui(t)← max(0,ui(t)); vi(t)← max(0,vi(t))
20: /* Renormalize all the factors */
21: w

(z)
i ← w

(z)
i (t− s) · ‖ui(t)‖ · ‖vi(t)‖;

22: ui(t)← ui(t)/‖ui(t)‖; vi(t)← vi(t)/‖vi(t)‖;
23: end for
24: return U(t),V(t),W(t)

4.2 Forecasting

To forecast t-steps ahead values for a given t > r, we use the latest factors, U(r), V(r), and W
(z)
ts (r),

where ts is the most recent season observed before time r, which corresponds to the season at time
t. Namely, ts = r − (r − t mod s). By choosing the best regime z, which gives the minimum
description cost in the last one season, the predicted matrix for time t is thus computed as follows.

X̂(t) = U(r)W
(i)
ts (r)V(r). (13)

4.3 Theoretical Analysis

We show the time and memory complexity of SSMF. The key advantage is that both of the complexi-
ties are constant with regard to a given tensor length, even if it evolves without bound.

Lemma 1 The time complexity of SSMF is O(sgkmn+ sk2(m+ n)) per time point.

Proof 1 The algorithm first computes the model description cost between X(t) and X̂(t) using g
regimes inO(gkmn), which is repeated over t = t−s+1, . . . , r. To obtain a new regime, it performs
the gradient descent update to X , which takesO(s(kmn+k2(m+n))). Then, for a selected regimes,
it performs the gradient descent update, which requires O(kmn+ k2(m+ n)). The projection to
non-negative values and normalization require O(m+ n) for k loops, thus O(k(m+ n)) in total.
Overall, the time complexity of SSMF is O(sgkmn+ sk2(m+ n)) per time point.

Lemma 2 The memory complexity of SSMF is O(k(m+ n+ gs) + |X |) per time point.

Proof 2 SSMF retains the two consecutive factors, U and V with shape (m × k) and (n × k),
respectively, which requires O(k(m+ n)). For seasonal factors in g regimes, it maintains a tensor
W with shape (g× s× k). It also needs a space to retain a sparse tensor, |X |, which is the number of
observed elements. Therefore, the total memory space required for SSMF is O(k(m+n+ gs)+ |X |)
per time point.
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Table 2: Dataset Description

Name Rows Columns Duration Sparsity Frequency s rtest

NYC-YT 265 265 4368 98.3% Hourly 168 500
NYC-CB 409 64 35785 96.2% Hourly 168 500
DISEASE 57 36 3370 92.4% Weekly 52 200

5 Experiments

In this section, we show how our proposed method works on real tensor streams. The experiments
were designed to answer the following questions.

Q1. Accuracy: How accurately does it predict future events?
Q2. Scalability: How does it scale with input tensor length?
Q3. Effectiveness: How well does it extract meaningful latent dynamics/components?

We implemented our algorithm in Python (ver. 3.7.4) and all the experiments were conducted on an
Intel Xeon W-2123 3.6GHz quad-core CPU with 128GB of memory and running Linux. Table 2
shows the datasets used to evaluate our method:

NYC-YT.3 NYC Yellow Taxi trip records during the term from 2020-01-01 to 2020-06-30 in the
pairs of 265 pick-up and drop-off locations.

NYC-CB.4 NYC CitiBike ride trips from 2017-03-01 to 2021-03-01. We only considered stations
that had at-least 50k rentals during the term, and extracted 409 stations. We then categorized users by
age from 17 to 80 and obtained the stream of ride counts at the 409 stations.

DISEASE.5 A stream of the weekly number of infections by 36 kinds of diseases at the 57
states/regions in the US, which were collected from 1950-01-01 to 2014-07-27.

5.1 Accuracy

We first describe a comparison in terms of forecasting using Root Mean Square Error (RMSE).
Since [Hooi et al., 2019] outperforms several baselines including CPHW and TSVDCWT, we omit
the baselines from our experiments. Our baseline methods include (1) matrix/tensor factorization
approaches: NCP [Xu and Yin, 2013]: a non-negative CP decomposition, optimized by a block
coordinate descent method for sparse data. (2) SMF [Hooi et al., 2019]: an online algorithm for
seasonal matrix factorization, which manages a single seasonal factor. (3) TRMF [Yu et al., 2016]: a
method to take into account temporal and seasonal patterns in matrix factorization.

For each method, the initialization process was conducted on the first three seasons of an input
tensor. For TRMF, we searched for the best three regularization coefficients, λI , λAR, λLag,
in λ = {0.0001, 0.001, 0.01, 0.1, 1, 10}. Auto-coefficients of TRMF are set for at time points
r − 1, . . . , r − ds/2e as well as at three time points r − s, r − (s + 1), r − (s + 2) to consider
seasonality. For SSMF and SMF, we determined a learning rate α in α = {0.1, 0.2, 0.3, 0.4} by
cross-validation in each training data. The number of components k was set to 15 among all these
methods for a fair comparison. After the initialization, each algorithm takes the first rtrain time steps,
and forecasts the next rtest steps, as defined in Table 2. This procedure was repeated for every rtest
steps, for example, rtrain = {500, 1000, 1500, . . . } in NYC-YT dataset.

Figure 2 shows the results of RMSE on all three datasets, where SSMF consistently outperforms
its baselines. We observe that our method shows a better improvement on (b) NYC-CB than (a)
NYC-YT, whereas the two datasets have similar characteristics because detecting regime shifts is
more effective in forecasting in a longer data duration. DISEASE dataset contains repetitive regime
shifts caused by pandemics and developments of vaccines, therefore, SSMF performs forecasting
effectively.

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://s3.amazonaws.com/tripdata/index.html
5https://www.tycho.pitt.edu/data/
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Figure 2: Forecasting performance in terms of RMSE: SSMF consistently outperforms the baselines thereby
showing that regime shift detection adapts the model to recent patterns more quickly and effectively than the
baselines.
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Figure 3: Wall clock time vs. data stream length: SSMF efficiently monitors data streams to find regimes.

5.2 Scalability

We discuss the performance of SSMF in terms of computational time on the three datasets. Figure 3
shows the wall clock time vs. data stream length, where the experimental setting is same as of
subsection 5.1. The figures show that our proposed method is scalable for mining and forecasting
large sparse streams. Although the scalability of SSMF is linear along the number of regimes, the
growth rate of its running time is greatly less than that of the other offline baselines. This is because
the proposed method can summarize distinct seasonal patterns as regimes effectively. SMF is the
fastest algorithm but it does not consider regime shifts in online processing. As described in the
accuracy comparison section, our method is more effective when data streams have significant pattern
shifts, which cannot be captured only with smooth updates on a single, fixed component.

5.3 Real-world Effectiveness

In this section, we show an example of the real-world effectiveness of our approach using the NYC-
YT dataset. Figure 4 shows the overview of the two representative regimes detected by SSMF, where
we selected two of the fifteen components to describe. The bottom bar represents the timeline of
regime detection. SSMF kept using the initial regime during the blue term, while it generated new
regimes during the red term. The three rows of plots are the visualization of W, U, V, where the
first two columns correspond to the blue regimes, and the next two to the red.

In mid March 2020, New York City’s governor issued stay-at-home orders, and SSMF detected the
event as the regime shifts to adapt to the changed demands of taxi rides. Separating regimes and
learning individual patterns help us to interpret the results as follows: Component 1 of the blue regime
shows a seasonal pattern that follows a weekday/weekend pattern. According to the above two maps,
more taxi rides are concentrated around Manhattan before the pandemic. In the red regime, however,
the strength of the seasonal component became about 10% weaker than the one before. Accordingly,
the frequent pickup and dropoff became smaller. This area has a large number of bars and restaurants,
suggesting that this component corresponds roughly to entertainment-related trips, whose demands
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Figure 4: SSMF can automatically detect regime shifts caused by a pandemic based on multiple seasonal factors:
Component 1, corresponding roughly to entertainment, decays in the pandemic, while component 2, representing
trips between Manhattan and Kennedy Airport, experiences a shift toward trips from the airport to wide areas of
New York City.

are strongly affected by the pandemic. Component 2, in contrast, is concentrated between Manhattan
and Kennedy Airport, suggesting that this component captures trips to and fro the airport. Under the
pandemic situation, this component shifted toward trips from the airport to destinations scattered
around New York City. This observation could suggest that customers arrived at the airport, and then
used a taxi to avoid public transit. After this phase, our method switched to the first regime again,
returning to the previous seasonal pattern. The demand for taxi rides began to recover, which roughly
aligns with reopening in New York City, which began in early June. Consequently, regime shifts
allow us to distinguish significant changes in seasonal behavior as well as contextual information
between attributes. In online learning, the mechanism also supports for quick adaptation and updates,
which contributes to improving forecasting accuracy.

6 Conclusion

In this paper, we proposed Shifting Seasonal Matrix Factorization (SSMF) method, for effectively
and efficiently forecasting future activities in data streams. The model employs multiple distinct
seasonal factors to summarize temporal characteristics as regimes, in which the number of regimes
is adaptively increased based on a lossless data encoding scheme. We empirically demonstrate that
on three real-world data streams, our forecasting method SSMF has the following advantages over
the baseline methods: (a) By using the proposed switching mechanism in an online manner, SSMF
accurately forecasts future activities. (b) Scales linearly by learning matrix factorization in constant
time and memory. (c) Helps understand data streams by effectively extracting complex time-varying
patterns.
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