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Abstract

Hand-crafted, logic-based state and action representations have been widely used
to overcome the intractable computational complexity of long-horizon robot plan-
ning problems, including task and motion planning problems. However, creating
such representations requires experts with strong intuitions and detailed knowl-
edge about the robot and the tasks it may need to accomplish in a given setting.
Removing this dependency on human intuition is a highly active research area.
This paper presents the first approach for autonomously learning generalizable,
logic-based relational representations for abstract states and actions starting from
unannotated high-dimensional, real-valued robot trajectories. The learned rep-
resentations constitute auto-invented PDDL-like domain models. Empirical re-
sults in deterministic settings show that powerful abstract representations can be
learned from just a handful of robot trajectories; the learned relational representa-
tions include but go beyond classical, intuitive notions of high-level actions; and
that the learned models allow planning algorithms to scale to tasks that were pre-
viously beyond the scope of planning without hand-crafted abstractions.

1 Introduction

Abstract, symbolic domain models in PDDL-like languages have emerged as powerful tools for
enabling safe and reliable autonomy, especially in complex robot planning tasks that feature long
horizons [Srivastava et al., 2014, Garrett et al., 2021]. However, such representations require do-
main experts to create a relational vocabulary (e.g., “on(x,y)”, “clear(x)”, etc.) for expressing the
state of the environment, and high-level actions such as “pickup” and “place”, together with their
descriptions in terms of the predicate vocabulary. These processes rely on the intuition of the do-
main expert. Consequently, most symbolic representations in robot planning have been limited to
these hand-crafted actions and capture a limited set of humanoid capabilities. For instance, there are
no non-trivial high-level PDDL actions for a trailer truck to use while autonomously parking itself.
This severely limits the scope and scalability of robot planning in long-horizon tasks.

We take the view that if symbolic, logic-based representations can be learned autonomously with
no human annotation of training data, they can enable more generalizable forms of autonomous and
scalable robot planning. This paper shows for the first time that it is indeed possible to do so.

We present the first approach for learning symbolic predicates and actions from continuous demon-
strations and no a priori labeling. These auto-generated predicates and actions turn out to include
predicates with semantics close to the classically hand-crafted predicates (e.g. “on(x,y)”) and ac-
tions (e.g., “pickup(x)”), but they also go beyond and include new, robot, and task-specific relations
and actions that vastly increase the generalizability of planning. More precisely, our approach takes
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Figure 1: Our overall approach. We start with a set of demonstrations on relatively simple tasks
using a simple robot and learn a symbolic model in the form of a set of predicates and high-level
actions. This symbolic model can be used with any off-the-shelf planner for solving unseen complex
long-horizon planning problems with other similar robots.

as input a small set of demonstrations in the form of time-indexed real-valued trajectories of the
configuration of the robot and the objects in the environment. It uses these real-valued trajectories to
invent a vocabulary in predicate logic and a set of high-level actions together with models in terms
of the invented logical vocabulary. Empirical evaluations in deterministic, fully observable settings
show that these representations generalize beyond the training tasks to problems with significantly
greater numbers of objects and significantly longer horizons.

Figure 2: Our approach with a physical robot. Top:
a few training demonstrations for learning an ini-
tial model for our approach. Bottom: robot solving
an unseen test problem that is significantly more
complex than training tasks.

While prior work indicates that predicate
vocabularies can be learned when high-
level actions or options are available as in-
puts [Konidaris et al., 2018], and that high-
level actions can be learned when a predi-
cate vocabulary is available with demonstra-
tions [Verma et al., 2022, Silver et al., 2022],
this is the first known approach that requires
neither predicate vocabularies nor high-level
skills or options to be included or labeled in the
input. Furthermore, this approach is comple-
mentary to research on integrated task and mo-
tion planning as it provides a general paradigm
for learning domain models that are used as in-
puts in that direction of work. A greater dis-
cussion is presented in Sec. 5.

Intuitively, our approach consists of two
phases. In the first phase, our approach for
few-shot learning uses demonstrations to in-
vent a relational vocabulary and symbolic ac-
tions, which are expressed in PDDL. Next, we use the learned PDDL model with an off-the-shelf
planner to solve new and unseen complex long-horizon planning problems while continually invent-
ing new symbolic predicates and actions for achieving them. Fig. 1 presents some examples of the
scale of demonstrations used, an action in the learned domain, and some examples of the new test
tasks that can be solved using this approach.

Our central contribution is the first approach for inventing a relational predicate vocabulary by learn-
ing to predict salient sets of real-valued relative poses between objects that tend to be frequently
encountered while solving tasks. We formalize this notion of saliency as relational critical regions.
This allows us to discover generalizable high-level actions as transitions to and from relational crit-
ical regions. Our additional key contributions are approaches for (i) learning a relational predicate
vocabulary along with an interpretation function for each learned predicate in a continuous configu-
ration space (ii) learning high-level actions that the robot can perform, along with their definitions
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in a PDDL-like relational representation, and (iii) continual planning and learning of new predicates
and actions facilitated using off-the-shelf planners.

We present an extensive evaluation of our approach with various robots carrying out tasks in deter-
ministic simulated and real-world settings. These empirical results show that the learned abstractions
can be efficiently used with off-the-shelf planners for solving robot planning problems that are sig-
nificantly more complex than those used in the demonstrations provided, with significantly greater
horizons, branching factors, and more objects that need to be manipulated to reach the goal.

2 Preliminaries

We formalize our approach using standard terminology from first order logic and robot planning
literature. A universe of our planning problem consists of various objects and robots. Each object
in the environment is defined as a rigid body that has a 3D geometry and a collision property. A
6D pose represents position and orientation relative to a fixed frame of reference. A “world” frame
serves as a default frame of reference for every object in the environment. We call the pose in the
world frame the absolute pose of the object and refer to it as PWo for an object o. We also refer to
the set of all absolute poses of object o as XW

o .

A robot is a special object. It is defined as a kinematic chain of links and joints that connect two
links. The root link of the robot is referred to as a base link. The link that interacts with other objects
in the environment is known as an end-effector, e.g., a gripper. For the scope of this paper, we say
two robots are similar if the geometries of their end-effectors are similar. A configuration x of the
robot specifies values for each joint of the robot. The set of all possible configurations is known
as a configuration space [LaValle, 2006]. Given the pose of the base link and the configuration of
the robot, a forward kinematic function can be used to compute the pose for every link of the robot.
Therefore, we define the state of a robot as as a tuple ⟨Pbase, x⟩ where Pbase is the pose of the base
link of the robot and x is a configuration of the robot. We abuse the notation and define Xr as a set
of all states for a robot r.

We assume a fully observable setting. Given an environment with a set of objects O =
{o1, . . . , on, r1, . . . rm}, the state-space of the environment X is defined as X = Xri × Xoj for
every robot ri ∈ O and every object oj ∈ O. Given a collision function c, the state-space X can be
partitioned as X = Xfree ∪ Xobs where Xfree defines the set of collision-free states and Xobs defines
the set of states with collisions.

Our approach extensively uses relative poses. Every object in the environment also defines a frame
of reference. A relative pose defines the pose of an object in the reference frame of another object.
Basis transformations from linear algebra can be used to compute relative transformations of objects
w.r.t to other objects in the environment. This is explained in detail in appendix A. We refer to the
pose of an object o1 relative to an object o2 as P o2o1 . Let X̃ o2

o1 define a relative state-space for the pair
of objects o1 and o2, i.e., the set of all poses of the object o1 in the relative frame of the object o2.
and X̃ define the set of relative state spaces such that X̃ = {X̃ oi

oj |oi, oj ∈ O ∧ oi ̸= oj}. Lastly, we
define a transformation function ξ : X → X̃ that computes the relative state for each absolute state
of the environment.

Primitive actions (low-level actions) enable a robot to change its state, i.e., the configuration of the
robot and/or the pose of the base link. This allows robots to move around in the environment and
manipulate different objects in the environment. Formally, a primitive action a defines a determin-
istic function a : x 7→ x′. Here, x ∈ X and x′ ∈ X are environment states such that applying an
action a in an environment state x results in an environment state x′.

Now, we define a domain for a robot planning problem.

Definition 1 A robot planning domain is defined as a tuple ⟨O, T ,X ,A⟩ where O is a set of ob-
jects, T is a set of object types, X is a state space, and A is an uncountably infinite set of primitive
deterministic actions.

Similarly, a robot planning problem can be defined as follows.

Definition 2 A robot planning problem is defined as a tuple ⟨xi,Xg⟩ where xi ∈ Xfree is an initial
state and Xg ⊆ Xfree is a set of goal states.
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A solution to a planning problem is a sequence of primitive actions a0, . . . , an such that
an(. . . (a0(xi))) ∈ Xg .

Typically, a motion planner can be used to compute such solutions. However, continuous action
spaces and an infinite branching factor make it infeasible for primitive actions to be used for long-
horizon robot planning problems.

Symbolic abstractions Symbolic abstractions convert a continuous robot planning problem to a
symbolic PDDL [McDermott et al., 1998] problem. We define an abstract symbolic PDDL model
for a continuous robot planning domain D as a tuple M = ⟨T ,P, Ā⟩. T is a set of types for objects
in the universe. P is a set of symbolic predicates. Each predicate p ∈ P is parameterized by typed
parameters and represents a relation between these objects. Each predicate p ∈ P can be grounded
using the objects in the universe of the model. We refer to a predicate as p and a grounded predicate
as p′. Each grounded predicate p′ defines a Boolean classifier that evaluates true in a low-level state
x (denoted as p′x = 1) if the corresponding relation holds true between the objects used to ground
the predicate in the state x. We also define an abstraction function α : x 7→ s′ that evaluates every
grounded predicate in a low-level state x ∈ X and returns an abstract grounded state s′ ∈ 2P

′
. Here,

the symbolic grounded state s′ is defined as a set of grounded predicates that are true in the low-level
state x. We refer to the symbolic grounded state as s′ and to the symbolic lifted state as s (s ∈ 2P ).

Ā defines the set of symbolic lifted actions defined using the set of lifted predicates P . Each abstract
action ā ∈ Ā is parameterized with typed symbolic parameters. Each action ā is defined as a
tuple ⟨preā, effā⟩. Here, preā is a conjunctive formula of parameterized predicates from the set of
predicates P . effa is the effect of the action ā. It is defined as a tuple effā = ⟨addā, delā⟩ where addā
is a set of predicates that are added to the state and delā is a set of predicates that are removed from
the state when the action ā is executed. Similarly to the predicates, an action ā can be grounded
using the objects yielding a grounded action ā′. This also generates grounded precondition preā′
and grounded effect effā′ . A grounded action ā′ is applicable in a state s if and only if preā′ |= s.
Formally, every deterministic grounded action ā′ ∈ Ā′ defines a function ā′ : si 7→ sj that maps
each symbolic state si to the resulting state sj .

Our objective in this paper is to automatically invent symbolic abstractions for robot planning
problems in PDDL-like representations. A symbolic robot planning problem is defined as a tuple
⟨Ō, s′i,S ′

g⟩. Here, Ō is a set of symbolic references (mainly names) for the objects in the environ-
ment, and s′i is an initial grounded state and S ′

g ⊆ S ′ is the set of grounded goal states. A solution
to a symbolic planning problem is a sequence of grounded symbolic actions ā′0, . . . , ā

′
n such that

ā′n(. . . (ā
′
0(si))) ∈ S ′

g . A planner such as FF [Hoffmann, 2001] or FD [Helmert, 2006] can be used
to compute such a solution.

Symbolic plans cannot be executed by a robot. It needs to be converted to a sequence of primitive
actions that a robot can execute. Task and motion planning approaches use abstract symbolic models
along with pose generators for computing a sequence of primitive actions for planning problems.
A pose generator defines an inverse abstraction function. Let γp be a pose generator for a lifted
symbolic predicate p ∈ P . For a grounded predicate p′, a pose generator γp′ = {x|x ∈ X ∧p′x = 1}.
A pose generator for a grounded state s′ is defined as

⋂
∀p′∈s′ γp′ .

Critical regions We use the concept of critical regions for automatically inventing a predicate
vocabulary. Molina et al. [2020] and Shah and Srivastava [2022] propose the concept of a critical
region in the configuration space of a robot for learning propositional symbolic abstractions. Critical
regions generalize the concepts of hubs or access points and bottlenecks or pinch points in a single
concept. Earlier work defines critical regions in a goal-agnostic manner, however, in this work
we consider goal-conditioned critical regions. Intuitively, as the name suggests, goal-conditioned
critical regions learn critical regions for a specific training problem. In this work, we learn goal-
conditioned critical regions for each training task and combine them in order to compute the set of
critical regions. Given a robot with a configuration space X , goal-conditioned regions are defined
as follows.

Definition 3 Given a set of solutions for a robot planning problem T , the measure of criticality of a
Lebesgue-measurable open set ρ ⊆ X , µ(ρ), is defined as limsn→+r

f(r)
v(sn)

where f(r) is a fraction
of observed motion plans solving the task T that pass through sn, v(sn) is the measure of sn under a
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Algorithm 1: LAMP: Learning Abstract Model for Planning
Input: A set of demonstrations Dtrain for training tasks Ttrain, a set of objectsO, a set of types of objects T
Output: PDDL DomainM
/* Prepare data */

1 Use ξ to compute trajectories with relative poses of each object
/* Invent predicates */

2 Compute sets of relative critical regions Ψ for each pair of object types τi, τj ∈ T
3 R← discover_relations(Ψ,O, T )
4 R̃ ← discover_auxilary_relations(R);
5 P ← generate_predicate_vocabulary(R,Ψ)
/* Invent actions */

6 Ā ← invent_actions(D, P);
7 M← generate_PDDL(T ,O,R,Ā);
8 returnM;

reference density (usually uniform), and →+ denotes the limit from above along any sequence {sn}
of sets containing ρ (ρ ⊆ sn, ∀n).

3 Our approach

This work’s central idea is to learn state and action abstractions that can be transferred to settings
with different robots and goals. In this context, different goals are characterized by different numbers
and configurations of the objects. We formally define the abstraction learning problem as follows.

Definition 4 Let Ttrain be a set of training problems and Dtrain be a set of demonstrations that suc-
cessfully solve the training problems. We define the abstraction learning problem as learning 1)
a predicate vocabulary P , 2) a set of high-level actions Ā, and 3) a set of generators Γ for each
learned predicate.

Figure 3: An example of relational critical regions. The
gripper g is tasked to grasp the object o. Stages 1 and 3
show an initial configuration of the gripper g and stages
2 and 4 show the final configuration. The inset figures
show the pose of the gripper for stages 2 and 4 in the
relative reference frame of the object and the blue re-
gion shows the identified relative critical region.

The core contribution of this paper is the
first known approach for simultaneously
inventing a predicate vocabulary and ab-
stract actions that solve unseen test prob-
lems Ttest with similar robots and types
of objects but significantly varying goals.
We now present our approach -- Learn-
ing Abstract Model for Planning (LAMP)
-- that automatically learns these abstrac-
tions in a continual fashion and represents
them as a PDDL domain. The next sec-
tion (Sec. 3.1) presents our approach for
automatically inventing a predicate vocab-
ulary and generators and then we present
our approach for inventing symbolic ac-
tions (Sec. 3.2). Lastly, Sec. 3.3 presents a
method for using the learned abstractions
for planning for novel test problems and
continually updating the abstractions.

3.1 Inventing Predicates

We now discuss our approach for automatically discovering a predicate vocabulary only using the
set of training demonstrations Dtrain for solving the set of training problems Ttrain.

Def. 3 define critical regions in the configuration space of a robot. However, these critical regions fail
to capture relationships between different objects in the environment. E.g., consider a simple task
of grasping an object in a 2D setting with a gripper shown in Fig. 3. Here, every problem instance
would have a different initial state and hence a different pose of the object o. This would require a
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different configuration of the gripper in order to grasp the object for every problem, and therefore
the critical regions in the configuration space of the robot (as defined by Shah and Srivastava [2022])
would fail to identify any useful abstractions.

3.1.1 Relational Critical Regions

In this work, we propose the concept of relational critical regions (RCR) that overcome shortcom-
ings of critical regions. Relational critical regions extend the notion of critical regions to the relative
spaces between two objects in order to capture salient relationships between objects that only exist
in these spaces. E.g., in Fig. 3, the absolute poses of the gripper g and object o do not have a specific
relationship, however, the relative poses of the object and the gripper display a “holding” relation-
ship. The inset images in Fig 3 show the “holding” relation between the object and the gripper and
its corresponding relational critical region (blue regions in the inset images). Given a pair of objects
o1 and o2 and the relative state space X o1

o2 , relational critical regions can be defined similarly to
critical regions (Def. 3) by considering the relative spaces between two objects (X o1

o2 ) instead of the
configuration space of the robot (Xr). Formally, a criticality threshold υ, relational critical regions
can be defined as follows.

Definition 5 Let T be a robot planning problem and DT be a set of solution trajectories for the
planning problem T. Let o1, o2 ∈ O be a pair of objects and let X o1

o2 define the relative state space
for object o2 in the relative reference frame of object o1. The measure of criticality of a Lebesgue-
measurable open set ρ ⊆ X o1

o2 , µ(ρ), is defined as limsn→+ρ
f(r)
v(sn)

where f(ρ) is a fraction of
observed solution trajectories solving for the planning problem T that contains a relative pose P o1o2
such that P o1o2 ∈ ρ, v(sn) is the measure of sn under a reference density (usually uniform), and →+

denotes the limit from above along any sequence {sn} of sets containing ρ (ρ ⊆ sn, ∀n).

Now, we describe our approach for learning a set of relational critical regions.

Learning relational critical regions Alg. 1 describes our approach for learning symbolic ab-
stractions. We start with the set of demonstrations Dtrain that solves the set of training problems
Ttrain. Recall the function ξ defined in Sec. 2. Our approach uses the function ξ to convert training
demonstrations Dtrain containing absolute poses of the objects and robot to relative demonstrations in
relative state space X̃ (line 1) and use these trajectories to identify relational critical regions (Def. 5).

Our approach assumes that objects of similar types interact similarly. E.g., the relational critical
region between the object o and the gripper g generalizes to every similar object and gripper in the
environment. Therefore, Alg. 1 accumulates demonstrations for similar types of objects and then
identifies critical regions between two types of objects. Alg. 1 first identifies task-specific relational
critical regions and then combines them in order to construct the complete set of relational critical
regions. Let Ψ be this set of automatically identified relational critical regions.

Once a set of relational critical regions Ψ is constructed, our approach uses Gaussian parameters to
parameterize the hypotheses space of the relational critical regions. Formally, let Ψij ⊂ Ψ be a set
of relational critical regions between the pair of object types τi and τj . Given a pre-defined threshold
ϵ, our approach uses Gaussian mixture model (GMM) to estimate Gaussian parameters µψ and Σψ
for every relational critical region ψ ∈ Ψij such that support for every pose P ∈ ψ is greater than
epsilon, i.e., for every pose P ∈ ψ, for every relational critical region ψ ∈ Ψij , support for every
pose P ∈ ψ is Pr (P |N (µψ,Σψ)) > ϵ.

Now, we describe our approach for inventing relations using the learned relational critical regions.

3.1.2 Represetning Invented Critical Regions as Relations

We use the identified relational critical regions to define a set of relations between objects in the envi-
ronment. Let τi, τj be a pair of object types from the set of types T and let Ψij = {ψ1, . . . , ψn} ⊂ Ψ
be the set of critical regions for the type of objects τi and τj . For each pair of object types
τi, τj ∈ T , we define a parameterized functional relation rij : Oτi × Oτj × Ψij → {T, F}.
Given a pair of low-level objects oi and oj of object types τi and τj respectively and a relation
critical region ψk ∈ Ψij , a grounded relation rij (oi, oj , ψk) is true in a low-level state x ∈ X
if P oioj ∈ ψk. Additionally, we define a relation such that for a given pair of objects oi and oj
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Algorithm 2: Inventing Symbolic Actions
Input: Set of demonstrations Dtrain, learned predicates P
Output: Set of lifted actions Ā

1 D̄′
train ← get_abstract_demonstrations(Dtrain,P);

2 D̄train ← lift_demonstrations(D̄′
train);

3 changed_predicates← [];
4 foreach dk ∈ D̄ do
5 foreach consecutive state si, sj ∈ dk do
6 +Ck

ij ← sj \ si; −Ck
ij ← si \ sj ;

7 Ck
ij ← ⟨+Ck

ij ,
− Ck

ij⟩;
8 changed_predicates.add(Ck

ij);

9 C ← create_clusters(D̄train, changed_predicates);
10 Ā ← [];
11 foreach (Si → Sj), C ∈ C do
12 eff← ⟨add = +C, del = −C⟩;
13 pre← ∩s∈Sis;
14 pre←prune_precondition(pre);
15 param← extract_params(Si → Sj);
16 Ā.add(create_action(param, pre, eff));

17 return Ā

rij(oi, oj , ψ0) =⇒ [∀ψk ∈ Ψij ,¬rij(oi, oj , ψk)]. E.g., Fig. 3 shows low-level states where the
relation rog(o, g, ψ0) is true for configurations 1 and 3 and the relation rog(o, g, ψ1) is true for con-
figurations 2 and 3. Let R be the set of all relations between each pair of types of objects.

We define an auxiliary relation for each relation r ∈ R using a key geometrical property of the
relational critical regions. Intuitively, this relation captures the number of objects that a relational
critical region can occupy. Auxiliary relations are defined using the free volume of the critical region
and the volume of the objects that are supposed to occupy the region. Formally, let ψk ∈ Ψij define
a relational critical region for object types τi and τj . Let ρ(ψk) (or ρ(oi)) define the total volume of
the region ψk (or object oi) and let ρfree(ψk) define the free volume of the region ψk given a current
state x ∈ X . For every relation rij ∈ R, we define an auxiliary relation r̃ij : Oτi × Ψk → {0, 1}
such that given a pair of objects oi and oj of object types τi and τj and a relational critical region
ψk ∈ Ψij , r̃ij(oi, ψk) =⇒ ρfree(ψk) > ρ(oj). Let R̃ be the set of these auxiliary relations.

A critical advantage of inventing relations in such a bottom-up fashion is that the pose generators
(Sec. 2) do not have to be explicitly defined. Instead, automatically learned relational critical regions
also serve as learned pose generators. This is explained in detail in Sec. 3.3.

Generating predicate vocabulary Relations invented by our approaches can be easily translated
into PDDL representation (or any other representation). For a given pair of object types τi, τj ∈ T ,
let Ψij ⊂ Ψ be the set of critical regions. For each relational critical region ψk ∈ Ψij , each relation
rij can be translated into a binary predicate (pψk

ij ?yi ?yj) where ?yi is a typed parameter of type τi
and ?yj is a typed parameter of type τj . Similarly, each auxiliary predicate r̃ij can be translated to
a unary predicate (~pψk

ij ?yi) where ?yi is a typed parameter of type τi. Let P be a set of predicates
for all relations (line 5).

Now, we describe our approach for inventing high-level actions using the identified predicates.

3.2 Inventing Symbolic Actions

In this work, we aim to learn relational actions that can be used efficiently for transfer and general-
ization. To achieve this, our approach invents high-level lifted actions, each of which corresponds to
at least one change in the abstract state represented using the predicates discovered earlier (Sec. 3.1).
Alg. 2 explains our approach for inventing high-level actions. This corresponds to line 6 in Alg. 1.
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3.2.1 Identifying High-Level Actions

The first step in inventing high-level actions is to first identify these actions. In order to identify
high-level actions, we first abstract every training demonstration in d = ⟨x0, x1, . . . , xn⟩, where
d ∈ Dtrain, to an abstract demonstration ⟨s′0, s′1, . . . , s′n⟩ using the invented predicates P such that
s′i ∈ 2P

′
(line 1) and then to a lifted demonstration ⟨s0, s1, . . . , sn⟩ such that si ∈ 2P (line 2).

Given the set of abstract demonstrations D̄train, line 7 computes a set of changed predicates C for
each transition in every lifted demonstration in D̄train. Precisely, for a demonstration dk ∈ D̄train
and a pair of consecutive lifted states si, sj ∈ dk, let +Ckij = sj \ si and −Ckij = si \ sj and let
Ckij be ⟨+Ckij ,− Ckij⟩. Line 9 uses these sets of changed predicates and cluster transitions such that
each cluster has all the transitions corresponding to the same set of changed predicates. Let C denote
these clusters where each cluster c = ⟨Si → Sj , Cij⟩ is a tuple of the set of transitions (Si → Sj)
that has the similar changed predicates Cij . Each cluster ci ∈ C induces a high-level action āi ∈ Ā.
This approach is similar to Verma et al. [2022] and Silver et al. [2022]. However, they use grounded
states to identify actions while our approach uses lifted predicates (lines 10-15). Next, we discuss
our approach for learning effects, preconditions, and parameters for each invented action and explain
it in detail in appendix B.

3.2.2 Learning Symbolic Action Model

Once a set of high-level actions Ā is identified, we use associative learning in order to learn a sym-
bolic model for each automatically identified action ā ∈ Ā. A symbolic model for an action is
represented in terms of its symbolic effects, symbolic preconditions, and action parameters. Our
approach also learns the symbolic model for each high-level action using the set of training demon-
strations Dtrain as follows.

Learning effects In our setting, effect of an action ā is represented as effā = ⟨addā, delā⟩ (Sec. 2).
Each cluster ci ∈ C is generated by clustering transitions in D̄ over the sets of changed predicates.
These changed predicates correspond to added and removed predicates as an effect of executing the
action induced by the cluster. Therefore, for an action āi induced by the cluster ci with a set of
changed predicates Ci = ⟨+Ci,− Ci⟩, addāi =

+Ci and delāi =
−Ci (line 12).

Learning preconditions To learn the precondition of an action, we take the intersection of all
states where the action is applicable. Given a possible set of predicates, this approach generates a
maximal precondition that is conservative yet sound [Wang, 1994, Stern and Juba, 2017]. To do this,
given an action ā ∈ Ā corresponding to a cluster c = ⟨Si → Sj , Cij⟩, preā = ∩s∈Si

s (line 13).

Each action can have spurious preconditions corresponding to static relations that do not change on
applying the action but are still true in all the pre-states s ∈ Si. Therefore, we remove predicates
(line 14) from the learned precondition that (i) are not parameterized by any of the objects that are
changed by the action, and (ii) are not changed at any point in any of the demonstrations. This
removes any predicate from the precondition that is spurious with respect to the data.

Learning action parameters Once the precondition and effect of an action are learned, the final
step is to learn the parameters of the action, that can be replaced with objects in order to ground the
action. In this step, the predicates in precondition and effect are processed in order. These predicates
are processed in alphanumeric order and each of their parameters is added to the action’s parameter
list, if not added already. This process leads to an ordered list of parameters of the action, which can
be grounded with compatible objects (line 15).

Now, we describe our approach for using the learned abstractions with any off-the-shelf task and
motion planner while continually learning new relations and actions.

3.3 Planning with Learned Abstractions and Continual Learning

This section discusses our approach for using the symbolic model learned using Alg. 3 for solving
new unseen long-horizon planning problems. Planning (Alg. 3) starts with the learned symbolic
model M = ⟨T ,P, Ā⟩, a set of learned generators Γ, a motion planner MP, an initial state xi ∈
Xfree, and a set of goal states Xg ⊆ Xfree. Line 1 uses the set of learned predicates P to compute the
symbolic initial state si.
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Algorithm 3: Planning with Learned Model
Input: Test environment Etest, an initial state xi ∈ Xfree, a goal state xg ∈ Xfree, learned symbolic model

M, a motion planner MP, a set of generators Γ, k, training demonstrations Dtrain

Output: A plan of primitive actions π, updated modelM
1 si ← get_abstract_state(xi);
2 G← create_relation_graph(xg ,P);
3 update_model← False;
4 π ← [] ;
5 Rmissing ← {};
6 while solution not found or G has no edges do
7 sg ← create_symbolic_goal(G);
8 Π̄← compute_k_symbolic_plans(M, O, si, sg , k);
9 if Π̄ = ∅ then

10 p← relax the relation graph G;
11 Pmissing.add(p);
12 update_model← True;
13 continue;

14 foreach π̄ ∈ Π̄ do
15 foreach ā ∈ π̄ do
16 a← refine_action(ā, Γ);
17 if refinement fails then
18 update_model← True;
19 identify missing relation pmissing in G;
20 Pmissing.add(pmissing);
21 goto to next symbolic plan;

22 π.append(a);

23 if update_model then
24 Pnew ←P ∪ Pmissing;
25 generate a trajectory Dπ using π;
26 M← learn_actions(D ∪ {Dπ},Pnew);

27 return π,M
28 return failure, M

After computing the abstract initial state, line 2 utilizes the set of goal states Xg and the learned
predicate vocabulary P to create a relation graph G corresponding to the specified goal states. A
relation graph is a directed graph with objects in the environment as nodes and predicates between
objects as edges. Given the relation graph, lines 7 and 8 generate a PDDL goal and use a top-
k-planner to compute a set of distinct high-level plans Π̄. Once high-level plans are generated,
any off-the-shelf task and motion planner can be used to refine one of these plans and generate a
sequence of primitive actions π.

Learning pose generators Typically, a task and motion planner requires pose generators to be
provided as input. However, due to the fact that Alg. 1 invents predicates in a bottom-up manner
using relational critical regions, the relational critical regions can serve as sampling-based pose gen-
erators for the learned predicates. Given a predicate (pψk

ij ?yi?yj) defined using a relation between
object types τi and τj with a relational critical regions ψk ∈ Ψij , a pose generator Γr can be imple-
mented as a sampler that samples a relative pose P from the distribution N (µψk

,Σψk
). A pose P is

a valid sample iff Pr (P |N (µψk
,Σψk

)) > ϵ. Here each pose generator defines a relative pose. The
grounded generator for a given low-level state x ∈ X . It can be computed using concepts of basis
transformations outlined in Appendix A.

Updating abstractions Our approach relies on associative learning from passively collected data
to invent symbolic predicates and actions, and to learn the action models. Therefore, it is possible
that learned abstractions can be incorrect. Our approach uses continual learning for continuously
updating the set of predicates, the set of actions, and the action model.
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One potential issue arises if the invented actions are insufficient to achieve the goal, leading the
top-k-planner to fail in computing any high-level plan (see line 9). In this case, Alg. 3 relaxes the
relation graph G by removing an edge from the relation graph at random. It uses the relaxed relation
graph to generate a new goal and compute high-level solutions for it. Every time Alg. 3 relaxes the
relation graph G by removing an edge from the graph, it stores the corresponding predicate in the
set of missing predicates Pmissing (line 11). These predicates are used to update the symbolic model.
This process is repeated until at least one high-level plan is found or the relation graph G does not
have any edges.

Inaccurate action model or insufficient predicate vocabulary can also cause task and motion planning
failures leading to unrefineable high-level plans. If refinement for an action fails, line 19 uses an
arbitrary computational geometry package to extract a missing relation (pmissing) from the goal xg .
The computational geometry package is used to evaluate the contact points of the objects involved
in the failed action in order to identify a potential relation that was not captured in the training data.
Alg. 3 then moves to refining the next high-level plan from the set of high-level plans Π̄ (line 21).

Finally, if Alg. 3 had failed to find high-level plans without relaxing the relation graph or computing
refinement for an action, we update the symbolic model M using the predicates in the set of missing
predicates Pmissing. Let Dπ be the trajectory induced by the soltion π. In order to update the model,
Alg. 3 simply re-invents the actions and re-learns the actions models using predicates P ∪ Pmissing
and training demonstrations Dtrain ∪ {Dπ}.

We now present a thorough evaluation of our approach in various settings with different robots.

4 Empirical Evaluation

We present the salient aspects of our implementation, setup, and observations here. Our empiri-
cal evaluation is designed to answer the following key questions: 1) Are the learned abstractions
sound and generalizable to unseen complex planning problems?; 2) Are the learned abstractions
transferrable to different similar robots?; and 3) How close the learned abstractions are to human
intuition?

Results across various different environments show that the presented approach learns powerful
abstractions that are effective in solving new unseen problems that are far more complex than the
demonstrations used to learn these abstractions. We now present our evaluation framework and
results in detail.

Evaluation framework We evaluate our approach as follows. Given an environment E, we use
a set of training demonstrations for learning a symbolic model ME = ⟨T ,P, Ā⟩ if the model is
not already learned. Once a symbolic model is learned, we evaluate the model using a set of test
problems where each problem is defined as a pair ⟨O, xi,Xg⟩ where O is the set of objects, xi is an
initial state and Xg is a set of goal states such that each test problem can have a different number of
objects, different initial poses of the objects, and/or different target poses of the object.

We measure the generalizability of our domain by evaluating the success rate of solving unseen test
problems using the learned model. We consider a test successful when Alg. 3 successfully computes
a sequence of low-level action using the learned symbolic model. In a subset of test environments
(detailed later), we use different robots to learn the symbolic model and evaluate it in order to test
the transferability of the learned abstract model. This allows us to use simpler robots at the time
of training to generate demonstrations. Lastly, we also evaluate the semantic interpretation of the
learned model by carrying out a manual analysis of learned predicates and actions. We now discuss
the test environments and robots used to evaluate our approach.

Test environments and robots We evaluate our approach in the following different environments.

(i) Building Keva structures (Keva): The first environment uses a robot and Keva planks to
construct 3D structures. The robot can pick and place the planks to construct these 3D struc-
tures. Building these complex structures requires long-horizon planning with a large number
of objects and actions that achieve various configurations of the planks. Appendix C shows
the structures used to learn the model and evaluate our approach. We use two different robots
to learn and evaluate the abstractions in this environment showing the transferability of the
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Figure 4: Different relations invented by our approach and their corresponding critical regions.
Each image shows one binary predicate and its semantic interpretation. The red dots shows sampled
possible poses for the object in the relational critical region.

learned abstractions. We use a simple disembodied gripper to learn symbolic abstractions and
use the ABB YuMi robot with a 7-DOF arm in test tasks to evaluate the leaned abstractions.

(ii) Delivering items in a cafe (CafeWorld): A fetch robot is tasked to deliver items to different
tables. The fetch robot is a mobile manipulator with an omnidirectional base and an 8-DOF
arm. We use this environment to show the effectiveness of our learned abstractions in mobile
manipulation tasks where different actions involve moving the robot base or its arm.

(iii) Packing cans in a box (Packing): This is a popular task and motion planning test environment
where a robot is tasked to pack multiple objects in a small box. We use a disembodied gripper
for this environment that works as a suspended robot in a factory picking objects from the top.

Baseline selection This is the first known approach that automatically invents symbolic predicate
vocabularies, symbolic actions, and models for high-level planning directly from raw demonstra-
tions. Therefore, there are no suitable baselines that inputs the same information and generates the
same output. Nevertheless, we compare our approach with Code-as-policies (CoP) [Liang et al.,
2023]. CoP takes input the high-level actions that the robot can execute and Python code snippets
to execute these actions and uses a pre-trained LLM to compute a high-level plan. We also compare
our approach with oracle abstractions generated by an expert used with an off-the-shelf task and
motion planner [Srivastava et al., 2014]. We set a timeout of 3600 seconds for our approach and
baselines to compute high-level plans and refine them into a sequence of primitive actions.

We now discuss the analysis of the results on our test setup.

4.1 Analysis of Results

Can we automatically learn meaningful abstractions? The core contribution of this paper is
autonomously learning symbolic abstractions for robot planning problems. However, for these ab-
stractions to be useful, they need to be meaningful. Therefore, we carefully examine the invented
predicates as well as high-level actions.

Notably, our approach autonomously invented meaningful relations despite the absence of anno-
tations or labels in the training demonstrations, demonstrating its capability to derive semantic
interpretations automatically. This does not only make abstractions invented by our approach ef-
fective, but also makes them interpretable. Fig.4 illustrates a subset of invented relations by our
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Figure 5: An automatically invented high-level action by our approach. The top figure shows the
states before and after executing the high-level action. The bottom part shows the automatically
learned precondition and effect of the high-level action.

approach. These predicates include predicates invented in the initial model using training demon-
strations shown in Fig. 1 as well as All these predicates are invented while solving the set of test
problems with an initial model constructed using training demonstrations shown in Fig. 1. Red re-
gions depict approximations of the learned relational critical regions for corresponding objects using
sampled poses. It can be seen from Fig. 4 that our approach autonomously capture crucial relations
between objects in terms of the invented predicates. E.g., our approach automatically invents pred-
icates that represent robot near the table and gripper at the grasp pose of the object in the mobile
manipulation domain CafeWorld, and it invents relations between different planks such as parallel,
on top vertically, and on top horizontally in the Keva domain.

Our approach also learns meaningful and human interpretable actions. E.g., fig. 4 shows one of the
automatically invented high-level actions. One a careful examination, we can say that it corresponds
to a high-level action that places a plank parallel to an already placed plank. More specifically,
when grounded with the objects in the figure, the grounded action (a9 plank2 plank1 gripper)
is placing plank2 parallel to plank1 using the gripper. Fig. 4 also shows preconditions and
effects for the automatically invented “place parallel” action. The learned preconditions include:
(i) plank1 should have been placed, (ii) gripper should be holding plank2, (iii) plank1 and
plank2 should not be parallel, (iv) no plank should be parallel to plank1, and (v) plank2 should
not be already placed. Similarly, the effects include relations corresponding to (i) plank1 and
plank2 are parallel and (ii) plank2 is placed. This highlights ability of our approach to learn
effective, yet, intuitive high-level actions. We provide full auto-generated PDDL domains for all test
domain in appendix D.

Domain |Dtrain| |Otrain| |Otest| |P| |Ā| Used |P| Used |Ā| Success
rate

Avg.
plan

length

Avg.
planning

time
(seconds)

Avg.
refinement

time
(seconds)

CafeWorld 500 1 3-8 22 12 21 11 1.0 74 0.17 658.23
Keva 50 1-2 3-24 24 12 17 8 1.0 50 1.92 92.89
Packing 50 1 2-4 8 5 8 5 0.96 20 0.11 476.82

Table 1: Detailed statistics about the empirical evaluation and invented abstractions. The success
rate is an average of 50 independent test tasks with 5 random seeds.
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How scalable are the learned abstractions? Table 1 presents key observations for our empirical
evaluation. It reports the number of training trajectories (|Dtrain|), number of objects in the train-
ing demonstrations (|Otrain|), and number of objects in the test tasks (|Otrain|), number of invented
predicates (|P|) and actions (|Ā|), number of predicates and actions that were used in one of the
test problems, number of objects in the training demonstrations (|Otrain|), and number of objects in
the test tasks, success rate averaged over 50 randomly generated test tasks, and average plan length
in test tasks. We also report average times (in seconds) needed to compute high-level plan using
off-the-shelf planner task planner [Speck et al., 2020] and times taken by an off-the-shelf task and
motion planner [Srivastava et al., 2014] to refine a high-level plan.

It is evident from table 1 that our approach is able to invent effective abstractions from a few of
demonstrations that generalize to significantly difficult test problems with significantly high num-
ber of objects as well as large branching factor and long horizons. E.g., our approach was able to
automatically invent abstractions using only 50 demonstrations (including ∼ 50% random demon-
strations that do not achieve the goal) that included not more than 2 planks and a gripper and use it to
compute successful solutions for test tasks than contained up to 24 planks, highlighting scalability
of the invented abstractions.

Solver

Domain |Dtrain| LAMP (our approach) Code as
Policies TAMP

20% 40% 60% 80% 100%

CafeWorld 500 0.00 ± 0.00 0.98 ± 0.04 0.98 ± 0.04 0.98 ± 0.04 1.00 ± 0.00 0.00 ± 0.00 1.0 ± 0.0
Keva 50 0.00 ± 0.00 0.92 ± 0.00 0.95 ± 0.04 0.95 ± 0.04 1.00 ± 0.00 0.00 ± 0.00 1.0 ± 0.0
Packing 50 0.10 ± 0.11 0.92 ± 0.04 0.96 ± 0.05 0.92 ± 0.08 0.90 ± 0.13 0.00 ± 0.00 0.95 ± 0.07

Table 2: Ablation study of our approach with decreased training demonstrations and comparison
with baseline approaches. Success rate for our approach and baselines averaged over 10 differ-
ent unseen test tasks and 5 random executions. The percentages represent the fraction of training
demonstrations used for learning the initial state and action abstractions.

How does our approach compare against the baselines? In Table 2, we present the percentage of
successfully solved test tasks using abstractions learned by our method, alongside the performance
of two recent approaches that use expert-crafted abstractions as discussed above. These values are
averaged across 10 diverse test tasks and through 5 random executions of our approach. Notably, the
test tasks are more demanding than the training tasks, each involving at least three times the number
of objects compared to any task in the training set used for learning initial symbolic abstractions.
Executions of solutions computed by LAMP (our approach) for various test tasks are provided in
Appendix C. We can see from Table 2 that our approach significantly outperformed CoP and per-
formed as good as the TAMP oracle. CoP used human-crafted high-level actions as well as needed
manual effort to resolve syntactical errors in the output code. Yet, it failed to solve a single task
from the set of test tasks across every domain.

Are the invented abstractions robust to variation in the training data? Table 2 also illustrates
the number of training demonstrations utilized for different evaluations of our approach, empha-
sizing the scalability and generalizability of our method even with limited data. With a modest
number of training demonstrations, our approach outperformed the baselines in complex problems.
It successfully tackled most tasks with abstractions learned in a few-shot manner. Specifically, our
approach achieved a 100% success rate in tasks involving building structures with Keva planks and
packing cans in a box, needing only 50 trajectories. This underscores the data-efficiency of our ap-
proach and its ability to generalize effectively from a small number of demonstrations. Despite the
non-trivial nature of learning abstractions for a mobile manipulation problem, our method efficiently
solved 100% of these tasks in a cafe setting. However, for more intricate trajectories, such as grasp-
ing cans from different sides while positioning the robot on various sides of the table, it required a
relatively higher number of trajectories (500). These training demonstrations, as noted above, also
include ∼ 50% randomly demonstrations that do not achieve the goal.
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Are the invented abstractions transferrable to a different robot? Our approach invents abstrac-
tions in portable fashion. The invented abstractions can also be transferred between different robots.
In order to evaluate transferrability of the invented abstractions, we use different robots to learn the
abstractions and evaluate them. For the tasks involving building structures with Keva planks, we use
disembodied gripper as a robot in the training demonstrations. Fig. 1 and Fig. 4 show the disem-
bodied gripper used to learn the abstractions. However, all the test tasks were solved using an ABB
YuMi robot with a constrained 7-DOF arm, shown in Fig. 1. This underscores our approach’s ability
to invent abstractions that can be transferred between robots with different kinematic constraints but
similar geometries.

5 Related Work

The presented approach directly relates to various concepts in task and motion planning, model
learning, and abstraction learning. However, to the best of our knowledge, this is the first work that
automatically invents generalizable symbolic predicates and high-level actions simultaneously using
a set of low-level trajectories.

Task and motion planning approaches [Srivastava et al., 2014, Dantam et al., 2018, Garrett et al.,
2020, Shah et al., 2020] develop approaches for autonomously solving long-horizon robot planning
problems. These approaches are complementary to the presented approach as they focus on us-
ing provided abstractions for efficiently solving the robot planning problems. Shah and Srivastava
[2022, 2024] learn state and action abstractions for long-horizon motion planning problems. An or-
thogonal research direction [Mishra et al., 2023, Cheng et al., 2023, Fang et al., 2023] learns implicit
abstractions (low-level generators or high-level skills) for task and motion planning in the form of
generative models. However, these approaches do not learn generalizable relational representations
as well as complex high-level relations and actions which is the focus of our work.

Several approaches invent symbolic vocabularies given a set of high-level actions (or skills)
[Konidaris et al., 2014, Ugur and Piater, 2015, Konidaris et al., 2015, Andersen and Konidaris,
2017, Konidaris et al., 2018, Bonet and Geffner, 2019, James et al., 2020]. Ahmetoglu et al. [2022],
Asai et al. [2022], Liang and Boularias [2023] learn symbolic predicates in the form of latent spaces
of deep neural networks and use them for high-level symbolic planning. However, these approaches
assume high-level actions to be provided as input. On the other hand, the approach presented in this
paper automatically learns high-level actions along with symbolic predicates.

Numerous approaches [Yang et al., 2007, Cresswell et al., 2009, Zhuo and Kambhampati, 2013,
Aineto et al., 2019, Verma et al., 2021] have focused on learning preconditions and effects for high-
level actions, i.e., action model. A few approaches [Čertický, 2014, Lamanna et al., 2021] have
also focused on continually learning action models while collecting experience in the environment.
Bryce et al. [2016] and Nayyar et al. [2022] focus on updating a known model using inconsistent
observations. However, these approaches require a set of symbolic predicates and/or high-level
action signatures as input whereas our approach automatically invents these predicates and actions.
Several approaches [Silver et al., 2021, Verma et al., 2022, Chitnis et al., 2022, Silver et al., 2022,
Kumar et al., 2023, Silver et al., 2023] have been able to automatically invent high-level actions that
are induced by state abstraction akin to the presented approach. However, unlike our approach, these
approaches do not automatically learn symbolic predicates and/or low-level samplers and require
them as input.

LLMs for robot planning Recent years have also seen significantly increased interest in using
foundational models such as LLM (large language model), VLM (visual language model), and
transformers for robot planning and control owing to their success in other fields such as NLP,
text generation, and vision. Several approaches [Brohan et al., 2022, Goyal et al., 2023, Shridhar
et al., 2023, Vuong et al., 2023] use transformer architecture for learning reactive policies for short-
horizon robot control problems. Problems tackled by these approaches are analogous to individual
actions learned by our approach.

Several directions of research explore the use of LLMs for utilize LLMs as high-level planners to
generate sequences comprising of high-level, expert crafted actions [Yu et al., 2023, Liang et al.,
2023, Huang et al., 2022, Rana et al., 2023, Lin et al., 2023, Huang et al., 2023b, Ahn et al., 2023].
These methods make progress on the problem of near-natural language communication with robots
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and are complementary to the proposed work. However, there is a strong evidence against the
soundness of LLMs as planners. Valmeekam et al. [2023] show that LLMs are only ∼ 36% accurate
as planners even in simple block stacking settings not involving more than 5 object.

On the other hand, approaches that utilize LLMs to translate user requirements to formal specifi-
cations [Yu et al., 2023, Ding et al., 2023, Liu et al., 2023b,a, Kwon et al., 2023, Huang et al.,
2023a] are complimentary to our approach. These approaches input a set of symbolic predicates and
use LLMs for automatically generating symbolic goals from natural language specifications. These
goals can be further used by existing planners.

6 Conclusion

This paper presents the first known approach for using continuous low-level demonstration to invent
symbolic state and action abstractions that generalize to different robots and unseen problem set-
tings. Thorough evaluation in simulated and real-world settings shows that the learned abstractions
are efficient and sound, as well as generate comprehensible abstractions. In the future, we aim to
utilize these automatically learned abstractions to allow non-experts to operate robots. Currently,
we assume a deterministic setting. However, most real-world scenarios require handling stochas-
ticity. Therefore, we aim to remove this assumption and learn abstractions for stochastic settings
in the future. Our approach relies on associative learning with passively collected data for learning
action models, which is prone to making errors. We also aim to use active learning in order to learn
accurate models and provide guarantees on learned action models.
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A Relative Poses

Figure 6: An illustration for
computing relative poses

Let o be an object in the environment and g be a gripper. PWo
represents the pose of the object o in the world reference frame.
Similarly, PWg represents the pose of the gripper g in the world
reference frame. These poses are also called absolute poses of the
object o and gripper g.

Relative poses are defined between a pair of objects. Relative pose
of an object defines a pose for the objects in the reference frame
defined by another object. E.g., relative pose of object o w.r.t. to
gripper g defines the pose of the object relative to the gripper.

Concepts from the basis transformations from linear algebra can be
used to compute these relative poses. In this case, we can re-write
the equation for the absolute pose of the object o as following,

PWo = PWg P go

Using this, we can derive the following equation for the relative
pose of the object o in the reference frame of the gripper g that only
uses absolute poses of the objects as follows.

P go = P gWP
W
o

P go =
(
PWg

)−1
PWo

B Example of Learning Actions

Let the set of predicates invented in Sec. 3.1 be the following:

• (table-can0 ?table ?can): Can is not on the table.

• (table-can1 ?table ?can): Can is on the table.

• (can-gripper1 ?can ?gripper): Gripper is at grasp pose (not holding/grasping yet).

• (can-gripper2 ?can ?gripper): Gripper has grasped the object.

• (base-gripper0 ?base ?gripper): Robot’s base link and robot’s gripper link does not
have any relation.

• (base-gripper1 ?base ?gripper): Robot’s arm is tucked so there is a specific relative
pose between the robot’s base link and the robot’s gripper link.

• (base-table1 ?base ?table): Robot’s base link is located in a way such that the
robot’s arm can reach objects on the table.

𝑆!": Gripper in grasp pose and
      not holding the yellow cup.

𝑆#" : Gripper in grasp pose and
     holding the yellow cup.

𝑆$" : Gripper holding the yellow
      cup, which is not on table.

𝑆%" : Gripper holding the yellow
      cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 7: Trajectory T1 = ⟨S′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a yellow cup
from the table. The state description below each image explains that image in English. These state
descriptions are added here for ease of understanding only.
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𝑆!": Gripper in grasp pose and
      not holding the green cup.

𝑆#" : Gripper in grasp pose and
     holding the green cup.

𝑆$" : Gripper holding the green
      cup, which is not on table.

𝑆%" : Gripper holding the green
      cup. Robot’s arm is tucked.

t=1 t=2 t=3 t=4

Figure 8: Trajectory T2 = ⟨S′

1, S
′

2, S
′

3, S
′

4⟩ corresponding to the process of picking up a green cup
from the table. The state description below each image explains that image in English. These state
descriptions are added here for ease of understanding only.

Now, consider the two trajectories T1 and T2 as shown in Fig. 7 and Fig. 8, respectively. Here T1
corresponds to the Fetch robot picking a yellow cup, and T2 corresponds to the robot picking up a
green cup (kept at a different location on the table compared to that of the yellow cup). Here these
two trajectories are expressed in terms of grounded objects. These are converted to a lifted form
using line 2 of Alg. 2 in terms of the predicates shown earlier. For T1 and T2 both, the lifted states
will be:

• S1 : {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

• S2 : {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

• S3 : {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper0
?base ?gripper), (base-table1 ?base ?table)}.

• S4 : {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper), (base-gripper1
?base ?gripper), (base-table1 ?base ?table)}.

Note that we only show partial states here for brevity. The actual states will also have predicates
like (table-can1 ?table ?can2), (table-can1 ?table ?can3), (table-can1 ?table
?can4), (table-can1 ?table ?bowl1), (table-can1 ?table ?bowl2), (table-can1
?table ?bowl3), etc. corresponding to other objects kept on the table.

Learning effects Alg. 2 creates the following three clusters (lines 4-9) based on these states.

• C12 = ⟨+C12 = {(can-gripper2 ?can ?gripper)},− C12 = {(can-gripper1 ?can
?gripper)}⟩.

• C23 = ⟨+C23 = {(table-can0 ?table ?can)},− C23 = {(table-can1 ?table ?can)}⟩.
• C34 = ⟨+C34 = {(base-gripper1 ?base ?gripper)},− C34 = {(base-gripper0 ?base
?gripper)}⟩.

Learning preconditions Learning preconditions involve taking intersection of states in
which all the actions in the same cluster were executed. Here S1 to S3 mentioned be-
low will remain the same for the three clusters. For e.g., precondition of C12 =
{(table-can1 ?table ?can), (can-gripper1 ?can ?gripper), (base-gripper0 ?base
?gripper), (base-table1 ?base ?table)}. Alg. 2 will prune out (base-table1 ?base
?table) from the precondition as (i) it is unchanged between S1 and S2, and (ii) none of its parame-
ters (?base and ?table) are part of any other predicate that is changed. Using this, the precondition
for each action will be:

• pre(C12) = {(table-can1 ?table ?can), (can-gripper1 ?can ?gripper),
(base-gripper0 ?base ?gripper)}.

• pre(C23) = {(table-can1 ?table ?can), (can-gripper2 ?can ?gripper),
(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.

• pre(C34) = {(table-can0 ?table ?can), (can-gripper2 ?can ?gripper),
(base-gripper0 ?base ?gripper), (base-table1 ?base ?table)}.
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Learning parameters Learning parameters from an action’s precondition and effect is straight-
forward. All the unique parameters in predicates in the precondition and effect are added to the
parameter list of an action representing a cluster. Using this notion, the parameters for the three
clusters will be the following:

• param(C12) =(?table ?can ?gripper ?base).

• param(C23) =(?table ?can ?gripper ?base).

• param(C34) =(?table ?can ?gripper ?base).

C Test Environments

We show snippets of some of our different simulated and real-world experiments.

i) Building structures with Keva planks using a total of 20 random training demonstrations.

ii) Delivering items in a cafe

iii) Packing cans in a box
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D Learned PDDL Domains

D.1 Domain: Keva

(define (domain Keva)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)
(:types

goalLoc
plank
gripper

)

(:constants
goalLoc_Const - goalLoc

)

(:predicates
(gripper_plank_0 ?x - gripper ?y - plank)
(gripper_plank_1 ?x - gripper ?y - plank)
(gripper_plank_2 ?x - gripper ?y - plank)
(gripper_plank_3 ?x - gripper ?y - plank)
(gripper_plank_4 ?x - gripper ?y - plank)
(plank_plank_0 ?x - plank ?y - plank)
(plank_plank_1 ?x - plank ?y - plank)
(goalLoc_plank_0 ?x - goalLoc ?y - plank)
(goalLoc_plank_1 ?x - goalLoc ?y - plank)
(aux3_gripper_plank_0 ?x - gripper)
(aux3_gripper_plank_1 ?x - gripper)
(aux3_plank_plank_1 ?x - plank)
(aux3_gripper_plank_2 ?x - gripper)
(aux3_gripper_plank_3 ?x - gripper)
(aux3_gripper_plank_4 ?x - gripper)

)

(:action a1
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_1 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
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(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(aux3_gripper_plank_2 ?gripper_p1)
(not (aux3_gripper_plank_1 ?gripper_p1))

)
)

(:action a2
:parameters ( ?gripper_extra_p1 - gripper ?plank_p1 - plank )
:precondition (and

(gripper_plank_1 ?gripper_extra_p1 ?plank_p1)
(goalLoc_plank_0 goalLoc_Const ?plank_p1)

)
:effect (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(not (goalLoc_plank_0 goalLoc_Const ?plank_p1))

)
)

(:action a3
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_2 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(aux3_gripper_plank_0 ?gripper_p1)
(not (aux3_gripper_plank_2 ?gripper_p1))

)
)

(:action a4
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(gripper_plank_2 ?gripper_p1 ?plank_p1)
(aux3_gripper_plank_0 ?gripper_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(aux3_gripper_plank_2 ?gripper_p1)
(not (aux3_gripper_plank_0 ?gripper_p1))

)
)
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(:action a5
:parameters ( ?plank_p2 - plank ?plank_p1 - plank ?

gripper_p1 - gripper )
:precondition (and

(not (= ?plank_p2 ?plank_p1))
(plank_plank_0 ?plank_p2 ?plank_p1)
(gripper_plank_4 ?gripper_p1 ?plank_p1)
(gripper_plank_2 ?gripper_p1 ?plank_p2)
(plank_plank_1 ?plank_p1 ?plank_p2)
(goalLoc_plank_1 goalLoc_Const ?plank_p2)
(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(aux3_gripper_plank_0 ?gripper_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)

)
:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(gripper_plank_0 ?gripper_p1 ?plank_p2)
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p2))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p2))
(not (gripper_plank_1 ?gripper_p1 ?plank_p2))
(not (gripper_plank_3 ?gripper_p1 ?plank_p2))
(aux3_gripper_plank_2 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)
(not (aux3_gripper_plank_0 ?gripper_p1))

)
)

(:action a6
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(gripper_plank_2 ?gripper_p1 ?plank_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(aux3_gripper_plank_2 ?gripper_p1)

)
)

(:action a7
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(gripper_plank_1 ?gripper_p1 ?plank_p1)
(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(aux3_gripper_plank_2 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)

)
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:effect (and
(gripper_plank_2 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(aux3_gripper_plank_1 ?gripper_p1)
(not (aux3_gripper_plank_2 ?gripper_p1))

)
)

(:action a8
:parameters ( ?plank_p1 - plank ?gripper_p1 - gripper )
:precondition (and

(gripper_plank_0 ?gripper_p1 ?plank_p1)
(aux3_gripper_plank_1 ?gripper_p1)
(aux3_gripper_plank_2 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_2 ?gripper_p1 ?plank_p1)
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_4 ?gripper_p1 ?plank_p1))
(not (aux3_gripper_plank_2 ?gripper_p1))

)
)

(:action a9
:parameters ( ?plank_p2 - plank ?plank_p1 - plank

?gripper_p1 - gripper )
:precondition (and

(not (= ?plank_p2 ?plank_p1))
(plank_plank_0 ?plank_p1 ?plank_p2)
(plank_plank_0 ?plank_p2 ?plank_p1)
(gripper_plank_0 ?gripper_p1 ?plank_p1)
(goalLoc_plank_0 goalLoc_Const ?plank_p2)
(gripper_plank_1 ?gripper_p1 ?plank_p2)
(goalLoc_plank_1 goalLoc_Const ?plank_p1)
(aux3_gripper_plank_2 ?gripper_p1)
(aux3_gripper_plank_3 ?gripper_p1)
(aux3_plank_plank_1 ?plank_p2)
(aux3_plank_plank_1 ?plank_p1)
(aux3_gripper_plank_4 ?gripper_p1)

)
:effect (and

(gripper_plank_4 ?gripper_p1 ?plank_p1)
(goalLoc_plank_1 goalLoc_Const ?plank_p2)
(plank_plank_1 ?plank_p1 ?plank_p2)
(not (gripper_plank_3 ?gripper_p1 ?plank_p1))
(not (plank_plank_0 ?plank_p1 ?plank_p2))
(not (gripper_plank_0 ?gripper_p1 ?plank_p1))
(not (gripper_plank_1 ?gripper_p1 ?plank_p1))
(not (gripper_plank_2 ?gripper_p1 ?plank_p1))
(not (goalLoc_plank_0 goalLoc_Const ?plank_p2))
(aux3_gripper_plank_0 ?gripper_p1)
(not (aux3_gripper_plank_4 ?gripper_p1))
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(not (aux3_plank_plank_1 ?plank_p1))
)

)
)

D.2 Domain: CafeWorld

(define (domain CafeWorld)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)
(:types

goalLoc
freight
can
gripper
surface

)

(:constants
goalLoc_Const - goalLoc

)

(:predicates
(gripper_can_0 ?x - gripper ?y - can)
(gripper_can_1 ?x - gripper ?y - can)
(gripper_can_2 ?x - gripper ?y - can)
(freight_surface_0 ?x - freight ?y - surface)
(freight_surface_1 ?x - freight ?y - surface)
(freight_gripper_0 ?x - freight ?y - gripper)
(freight_gripper_1 ?x - freight ?y - gripper)
(freight_can_0 ?x - freight ?y - can)
(freight_can_1 ?x - freight ?y - can)
(can_surface_0 ?x - can ?y - surface)
(can_surface_1 ?x - can ?y - surface)
(aux3_can_surface_1 ?x - can)
(aux3_freight_can_1 ?x - freight)
(aux3_freight_surface_1 ?x - freight)
(aux3_freight_surface_0 ?x - freight)
(aux3_can_surface_0 ?x - can)
(aux3_gripper_can_2 ?x - gripper)
(aux3_freight_gripper_1 ?x - freight)
(aux3_gripper_can_1 ?x - gripper)
(aux3_gripper_can_0 ?x - gripper)
(aux3_freight_gripper_0 ?x - freight)
(aux3_freight_can_0 ?x - freight)

)

(:action a1
:parameters ( ?can_p1 - can ?freight_p1 - freight ?

surface_extra_p1 - surface ?gripper_p1 - gripper )
:precondition (and

(can_surface_1 ?can_p1 ?surface_extra_p1)
(gripper_can_0 ?gripper_p1 ?can_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_gripper_can_2 ?gripper_p1)
(aux3_gripper_can_1 ?gripper_p1)

)
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:effect (and
(gripper_can_1 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(aux3_gripper_can_0 ?gripper_p1)
(not (aux3_gripper_can_1 ?gripper_p1))

)
)

(:action a2
:parameters ( ?gripper_extra_p1 - gripper ?can_p1 - can

?freight_extra_p1 - freight ?surface_p1 - surface )
:precondition (and

(freight_surface_1 ?freight_extra_p1 ?surface_p1)
(gripper_can_2 ?gripper_extra_p1 ?can_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(can_surface_1 ?can_p1 ?surface_p1)

)
:effect (and

(can_surface_0 ?can_p1 ?surface_p1)
(not (can_surface_1 ?can_p1 ?surface_p1))
(aux3_can_surface_1 ?can_p1)

)
)

(:action a3
:parameters ( ?gripper_p1 - gripper ?surface_p1 - surface

?freight_p1 - freight )
:precondition (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_0 ?freight_p1 ?surface_p1)
(aux3_freight_surface_1 ?freight_p1)

)
:effect (and

(freight_surface_1 ?freight_p1 ?surface_p1)
(not (freight_surface_0 ?freight_p1 ?surface_p1))
(not (aux3_freight_surface_1 ?freight_p1))

)
)

(:action a4
:parameters ( ?surface_extra_p2 - surface

?gripper_p1 - gripper ?surface_p1 - surface
?freight_p1 - freight )

:precondition (and
(not (= ?surface_extra_p2 ?surface_p1))
(freight_surface_1 ?freight_p1 ?surface_p1)
(freight_surface_0 ?freight_p1 ?surface_extra_p2)
(freight_gripper_1 ?freight_p1 ?gripper_p1)

)

:effect (and
(freight_surface_0 ?freight_p1 ?surface_p1)
(not (freight_surface_1 ?freight_p1 ?surface_p1))
(aux3_freight_surface_1 ?freight_p1)

)
)
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(:action a5
:parameters ( ?gripper_extra_p1 - gripper ?can_p1 - can

?freight_extra_p1 - freight ?surface_p1 - surface )
:precondition (and

(freight_surface_1 ?freight_extra_p1 ?surface_p1)
(gripper_can_2 ?gripper_extra_p1 ?can_p1)
(can_surface_0 ?can_p1 ?surface_p1)
(freight_gripper_0 ?freight_extra_p1 ?gripper_extra_p1)
(aux3_can_surface_1 ?can_p1)

)
:effect (and

(can_surface_1 ?can_p1 ?surface_p1)
(not (can_surface_0 ?can_p1 ?surface_p1))
(not (aux3_can_surface_1 ?can_p1))

)
)

(:action a6
:parameters ( ?can_p1 - can ?freight_p1 - freight

?surface_extra_p1 - surface ?gripper_p1 - gripper )
:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(freight_can_1 ?freight_p1 ?can_p1)
(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(aux3_freight_can_0 ?freight_p1)
(aux3_freight_gripper_0 ?freight_p1)

)
:effect (and

(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(not (freight_can_1 ?freight_p1 ?can_p1))
(aux3_freight_can_1 ?freight_p1)
(aux3_freight_gripper_1 ?freight_p1)
(not (aux3_freight_can_0 ?freight_p1))
(not (aux3_freight_gripper_0 ?freight_p1))

)
)

(:action a7
:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )
:precondition (and

(can_surface_1 ?can_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(aux3_gripper_can_1 ?gripper_p1)
(not (aux3_gripper_can_2 ?gripper_p1))
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)
)

(:action a8
:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )
:precondition (and

(freight_can_0 ?freight_p1 ?can_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(aux3_gripper_can_1 ?gripper_p1)
(not (aux3_gripper_can_0 ?gripper_p1))

)
)

(:action a9
:parameters ( ?can_p1 - can ?gripper_p1 - gripper

?surface_extra_p1 - surface ?freight_p1 - freight )
:precondition (and

(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(gripper_can_2 ?gripper_p1 ?can_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(aux3_gripper_can_2 ?gripper_p1)
(not (aux3_gripper_can_1 ?gripper_p1))

)
)

(:action a10
:parameters ( ?gripper_p1 - gripper ?surface_extra_p1 - surface

?freight_p1 - freight )
:precondition (and

(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_freight_gripper_1 ?freight_p1)

)
:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(aux3_freight_gripper_0 ?freight_p1)
(not (aux3_freight_gripper_1 ?freight_p1))

)
)
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(:action a11
:parameters ( ?gripper_p1 - gripper ?surface_extra_p1 - surface

?freight_p1 - freight )
:precondition (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(aux3_freight_gripper_0 ?freight_p1)

)
:effect (and

(freight_gripper_0 ?freight_p1 ?gripper_p1)
(not (freight_gripper_1 ?freight_p1 ?gripper_p1))
(aux3_freight_gripper_1 ?freight_p1)
(not (aux3_freight_gripper_0 ?freight_p1))

)
)

(:action a12
:parameters ( ?can_p1 - can ?freight_p1 - freight

?surface_extra_p1 - surface ?gripper_p1 - gripper )
:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(can_surface_0 ?can_p1 ?surface_extra_p1)
(freight_surface_1 ?freight_p1 ?surface_extra_p1)
(freight_can_0 ?freight_p1 ?can_p1)
(freight_gripper_0 ?freight_p1 ?gripper_p1)
(aux3_freight_can_1 ?freight_p1)
(aux3_freight_gripper_1 ?freight_p1)

)
:effect (and

(freight_gripper_1 ?freight_p1 ?gripper_p1)
(freight_can_1 ?freight_p1 ?can_p1)
(not (freight_can_0 ?freight_p1 ?can_p1))
(not (freight_gripper_0 ?freight_p1 ?gripper_p1))
(aux3_freight_can_0 ?freight_p1)
(aux3_freight_gripper_0 ?freight_p1)
(not (aux3_freight_can_1 ?freight_p1))
(not (aux3_freight_gripper_1 ?freight_p1))

)
)
)

D.3 Domain: Packing

(define (domain Packing)
(:requirements :strips :typing :equality :conditional-effects

:existential-preconditions :universal-preconditions)
(:types

can
gripper
surface

)

(:predicates
(gripper_can_0 ?x - gripper ?y - can)
(gripper_can_1 ?x - gripper ?y - can)
(gripper_can_2 ?x - gripper ?y - can)
(can_surface_0 ?x - can ?y - surface)
(can_surface_1 ?x - can ?y - surface)
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(aux3_gripper_can_1 ?x - gripper)
(aux3_gripper_can_2 ?x - gripper)
(aux3_gripper_can_0 ?x - gripper)

)

(:action a1
:parameters ( ?can_p1 - can ?gripper_p1 - gripper )
:precondition (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(aux3_gripper_can_2 ?gripper_p1)
(aux3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(aux3_gripper_can_0 ?gripper_p1)
(not (aux3_gripper_can_2 ?gripper_p1))

)
)

(:action a2
:parameters ( ?can_p1 - can ?surface_extra_p1 - surface

?gripper_p1 - gripper )
:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(can_surface_1 ?can_p1 ?surface_extra_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_0 ?gripper_p1 ?can_p1)
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(aux3_gripper_can_2 ?gripper_p1)
(not (aux3_gripper_can_0 ?gripper_p1))

)
)

(:action a3
:parameters ( ?can_p1 - can ?gripper_p1 - gripper )
:precondition (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_1 ?gripper_p1)

)
:effect (and

(gripper_can_1 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_2 ?gripper_p1 ?can_p1))
(aux3_gripper_can_2 ?gripper_p1)
(not (aux3_gripper_can_1 ?gripper_p1))

)
)

(:action a4
:parameters ( ?can_p1 - can ?surface_extra_p1 - surface

?gripper_p1 - gripper )
:precondition (and
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(can_surface_1 ?can_p1 ?surface_extra_p1)
(gripper_can_1 ?gripper_p1 ?can_p1)
(aux3_gripper_can_0 ?gripper_p1)
(aux3_gripper_can_2 ?gripper_p1)

)
:effect (and

(gripper_can_2 ?gripper_p1 ?can_p1)
(not (gripper_can_0 ?gripper_p1 ?can_p1))
(not (gripper_can_1 ?gripper_p1 ?can_p1))
(aux3_gripper_can_1 ?gripper_p1)
(not (aux3_gripper_can_2 ?gripper_p1))

)
)

(:action a5
:parameters ( ?can_p1 - can ?gripper_extra_p1 - gripper

?surface_p1 - surface )
:precondition (and

(can_surface_0 ?can_p1 ?surface_p1)
(gripper_can_1 ?gripper_extra_p1 ?can_p1)

)
:effect (and

(can_surface_1 ?can_p1 ?surface_p1)
(not (can_surface_0 ?can_p1 ?surface_p1))

)
)
)
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