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Figure 1: Underwater 3D terrain generation: Given 2D images of the real world seafloor col-
lected by robots, we distill 3D geometry and semantic information from visual foundation models
and train diffusion model that generate realistic 3D underwater scenes. (All visual contents shown
in this figure are generated)

ABSTRACT

This paper tackles the problem of generating representations of underwater 3D
terrain. Off-the-shelf generative models, trained on Internet-scale data but not
on specialized underwater images, exhibit downgraded realism, as images of the
seafloor are relatively uncommon. To this end, we introduce DreamSea, a gen-
erative model to generate hyper-realistic underwater scenes. DreamSea is trained
on real-world image databases collected from underwater robot surveys. Images
from these surveys contain massive real seafloor observations and covering large
areas, but are prone to noise and artifacts from the real world. We extract 3D
geometry and semantics from the data with visual foundation models, and train a
diffusion model that generates realistic seafloor images in RGBD channels, con-
ditioned on novel fractal distribution-based latent embeddings. We then fuse the
generated images into a 3D map, building a 3D Gaussian Splatting (3DGS) model
supervised by 2D diffusion priors which allows photorealistic novel view ren-
dering. DreamSea is rigorously evaluated, demonstrating the ability to robustly
generate large-scale underwater scenes that are consistent, diverse, and photoreal-
istic. Our work drives impact in multiple domains, spanning filming, gaming, and
robot simulation.

1 INTRODUCTION

Scene generation is widely studied today, with deep neural networks capable of creating realistic
3D environments trained on large-scale visual data. This technology has a significant impact across
various fields, including the film and gaming industries, as well as robotics and autonomous vehicle
simulations. In this paper, we explore the application of deep generative models to the unique setting
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of underwater environments. Without sufficient data and annotations, the following questions for
underwater scene generation remains open:

• What kind of data can we use to train an underwater generative model?

• How can we train the underwater 3D generative model without 3D scans?

• How can we control the sampling process while the data come with no captions or annota-
tions?

• How can we generate underwater terrain with natural-looking variation in appearance?

• What techniques can we use from off-the-shelf 3D generative models and what is lacking
in current open-source models?

In this work, we tackle the problem from the perspective of robot perception. Underwater robots
and autonomous underwater vehicles (AUVs) are designed to travel long distances under the sea,
maintaining altitude and route to survey the designated area autonomously Iscar et al. (2018); Zheng
et al. (2025). Compared to typical images and videos on the Internet, underwater robotic images
cover much larger areas of the terrain. However, the massive amounts of data collected by underwa-
ter robots present unique challenges: It is difficult to acquire 3D information directly from sensory
streams, as depth sensors and LiDARs commonly do not work well underwater. In addition, natural
water bodies are highly dynamic, and visibility is low as a result of light scattering and absorption in
the medium. Therefore, Structure-from-Motion (SfM) Agarwal et al. (2011) and Simultaneous Lo-
calization and Mapping (SLAM) Mur-Artal et al. (2015); Song et al. (2024) solutions have unstable
performance. As a result, a significant amount of robotic data comes with no camera poses, and the
cost of expert annotation is extremely high.

This paper introduces DreamSea, a diffusion-based generative model that can infinitely generate
photorealistic 3D underwater scenes. DreamSea is trained on RGB images captured by under-
water robots without any 3D sensory information, SfM poses or human annotations. After
training, scenes generated by DreamSea are spatially consistent in geometry with natural-looking
variations in appearance. The contributions of this paper are as follows:

1. A novel approach that leverages a fractal distribution of latent embeddings to control the
appearance of generated terrains;

2. Integration of visual foundation models (VFMs) on unseen underwater images to exploit
semantic and 3D geometric information for scene generation; and

3. A pipeline that integrates the state-of-the-art developments image diffusion, inpainting,
VFMs and 3DGS Kerbl et al. (2023), to allow the generation of photorealistic 3D terrains
from unannotated images.

2 RELATED WORK

2.1 PROCEDURAL TERRAIN GENERATION

Early studies on procedural terrain generation focus on generating elevation maps that resemble the
3D structure of real-world terrain Miller (1986). In particular, explicit mathematical models such as
fractional Brownian motion (fBm) Mandelbrot (1983), the diamond square algorithm Fournier et al.
(1998), and Perlin noise Perlin (1985) are commonly used to approximate natural variations. Modern
approaches have enabled the generation of 3D scenes consisting of a variety of assets procedurally
and rendered with photorealistic quality Raistrick et al. (2023). Similar procedural strategies have
also been applied to generate room layouts Deitke et al. (2022) and object-level Greff et al. (2022)
layouts that can be used to train embodied AI algorithms. However, those modern approaches are
based on pre-modeled 3D assets. While it is feasible to specify these assets in advance for commonly
seen objects and scenes, e.g. indoor environment, this is not the case for unseen environments such
as the deep sea. When applying the contemporary procedural generator Infingen Raistrick et al.
(2023) to the underwater domain, the resulting generated scenes are filled with repeated assets with
lower rendering quality than scenes generated in more typical domains. We illustrate attempts to
generate underwater scenes using large off-the-shelf models in Figure 2.
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Figure 2: Off-the-shelf solution for generating underwater scenes: ChatGPT and SORA are able to
generate scenes with diverse appearances, but present heavy artificial effects even though prompted
with the “photorealistic style” keyword. Simulation environments Song et al. (2025) based on classic
rendering pipelines, e.g. UNav-Sim Amer et al. (2023) and Infinigen Raistrick et al. (2023), present
limited performance when generating diverse and uncommon 3D assets.

2.2 DEEP GENERATIVE MODELS

Given an image dataset, an image generation model learns the distribution of this dataset. Unseen
image samples can be generated as samples drawn from this distribution. Early techniques such as
Variational Autoencoders (VAEs) Kingma & Welling (2014) and Generative Adversarial Networks
(GANs) Goodfellow et al. (2020) are able to generate realistic images. In recent years, models such
as DDPM Ho et al. (2020), Stable Diffusion Rombach et al. (2022) and DiT Peebles & Xie (2023)
allow high-quality generation that can be conditioned on language inputs. These technologies have
also led to commercialized models such as ChatGPT and SORA. While these models are capable
of creating arbitrary scenes, we find, empirically, that the quality of generated underwater scenes is
significantly lower than other more common environments. It can be hypothesized that the training
data for underwater scenes is scarce and unbalanced. The development of specialized models with
curated data for underwater scenes is still an open problem. In this work, our DreamSea model
leverages a DDPM Ho et al. (2020) network with the RePaint Lugmayr et al. (2022) framework as a
backbone image generation and inpainting model.

2.3 3D SCENE REPRESENTATION AND GENERATION

Three-dimensional scenes are often represented as point clouds, meshes or implicit functions, and
generative models can be trained on 3D datasets such as ScanNet Dai et al. (2017) to create 3D
assets and scenes. Recent advancements in neural radiance fields (NeRFs) Mildenhall et al. (2021)
techniques enable 3D scene reconstruction with photorealistic quality by optimizing directly over
photometric loss. Building upon NeRFs, 3DGS Kerbl et al. (2023) developed an explicit representa-
tion which enables efficient training and rendering at 100+ fps, making it a great fit for creating 3D
scenes and simulating robot perception Yuan et al. (2024). It is common to use 2D diffusion priors
to support generation of 3D assets either using NeRFs Poole et al. or 3DGS Tang et al.; Yi et al.
(2024).

2.4 VISUAL FOUNDATION MODELS

Underwater robotic field tests typically result in massive amounts of images that are extremely chal-
lenging to annotate and often lack 3D information. In this work, we leverage visual foundation
models, which are trained on internet-scale data to infer semantic and geometric information by
the images collected by our robots. CLIP Radford et al. (2021) is a vision-language model (VLM)
trained on internet-scale image-caption pairs and generalizes to unseen images. DINOv2 Oquab
et al. (2024) is another foundation model that encodes an RGB image in a vector representation.
In this work, we train the image diffusion model conditioned on DINO v2 representations, so the
diffusion can be controlled in the latent space. Depth Anything v2 Yang et al. (2024) is a depth
foundation model that predicts depth from RGB images. In many cases this is used to generate
RGB+Depth (RGBD) images from RGB image inputs. Using foundation models in a zero-shot
manner is widespread in fields such as robotics Zhi et al. (2024a;b), where labels are not abundant.
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Figure 3: Overview of Training: Given RGB-only images collected from underwater surveys, we
generate depth channels and embeddings with visual foundation models Yang et al. (2024); Oquab
et al. (2024). A DDPM network is then trained with an RGBD image as input conditioned on
embeddings.

3 DREAMSEA

At the center of DreamSea is a terrain generation model that varies in spatial coordinates. This
model can then generate a set of consistent images spanning a desired spatial region, which can
be used to construct 3DGS representations. Particular care needs to be taken to ensure that the
generated images reflect both the biological and landscape diversity of marine environments, while
being spatially-consistent.

This section elaborates on the design consideration and methodology details of DreamSea, and is
structured as follows. In section 3.1, we outline the extraction of relative depth from diverse under-
water data from different expeditions. In section 3.2, we introduce our diffusion-based generative
model that is conditioned on zero-shot visual features, enabling the controlled generation on varied
underwater environments. In section 3.3, we introduce our novel fractal-based generation approach,
which enables a set of spatially consistent underwater images to be generated and allows explicit
control of the diversity of the generated terrain. Finally, in section 3.4, we leverage the terrain gen-
erated by our generative model to construct a 3DGS representation supervised by the 2D diffusion
prior. An overview of our training procedure is outlined in Figure 3, and the generation procedure is
sketched in Figure 4.

3.1 3D STRUCTURE FROM DEPTH FOUNDATION MODEL

To build more consistent 3D structures underwater, we seek to incorporate depth into the diffusion-
based generative model. This, however, can be challenging. While traditional 3D reconstruction
and mapping methods such as SfM and SLAM have been demonstrated on underwater data, the
community struggles to scale up the application of these methods due to challenging underwater
environments. These challenges often manifest via low visibility, dynamic surroundings, heavy
motion blur under low light, and different sensor set-ups between expeditions to collect data. In
this paper, we use the depth foundation model, Depth Anything v2 Yang et al. (2024), to generate a
depth map from 2D image data. Depth foundation models are good at predicting the relative depth
distribution in single frames. We normalize this prediction to [0, 1]. In this work, we consider depths
up to a scale factor, and do not require absolute metric depth. The metric scale can be recovered
with additional sensors or classic stereo-matching methods. Estimated depths are used as additional
channels for the real-world training data.

3.2 CONDITIONAL DIFFUSION ON ZERO-SHOT FEATURES

Underwater robotic images do not come with captions. Additionally, annotating underwater data
is also exceedingly challenging and requires a massive expert-level effort. Relying on manual la-
bels would both be costly and difficult to scale. In light of this, we leverage the foundation visual
model, DINO v2 Oquab et al. (2024), to extract zero-shot features from underwater images: for the
image data set, we first generate DINO v2 features and then apply Principal Component Analysis
(PCA) on the feature set to project high-dimensional features to the low-dimensional space. This
reduced dimensional feature vector then acts as a descriptor of the contents within the image. Sim-
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Figure 4: Overview of Generation: Our approach generates fractal embedding with the diamond-
square method first, then generates images conditioned on these embeddings. We use RePaint Lug-
mayr et al. (2022) to stitch the images together into a dense RGBD map. The RGBD map can be
converted into a 3D point cloud and initialized as a 3DGS model Kerbl et al. (2023). The 3DGS
model is further refined with 2D diffusion priors using Score Distillation Sampling (SDS) loss al-
lowing realistic rendering from novel views.

ilar ideas have been explored in LangSplat Qin et al. (2024) in which a Variational Autoencoder
(VAE) Kingma & Welling (2014) is trained to project CLIP Radford et al. (2021) features onto a
low-dimension space. Early work by Zhang et al. Zhang & Johnson-Roberson (2022) takes a simi-
lar approach on seafloor mapping data with self-supervised training. However, here, by integrating
foundation models, we are not required to train large neural networks from scratch to extract fea-
tures, and can instead apply weights pre-trained on Internet-scale data.

After obtaining a reduced-dimensional feature vector for each image, we train a diffusion model
conditional on feature vectors, to generate both RGB and depth images.

Let us denote the feature vector as
ϕ← PCA(DINOv2(I)), (1)

where I is an image and PCA(DINOv2(·)) indicates applying PCA to the feature vector outputted
by the DINO model, reducing dimensionality. During inference, our conditional generative model
can be expressed as, I ∼ P (I|ϕ), where ϕ is a visual feature vector we condition upon. Generating
spatially-consistent and yet diverse landscape images, requires controlling the evolution of ϕ over
the spatial domain, which alters the generative distribution of the terrain.

3.3 FRACTAL LATENT TERRAIN GENERATION

An inherent property of naturally-occurring terrains is that coordinate points that are close in ge-
ometric distance should have similar attributes. The spatial distribution of natural terrain is often
modeled using fractal processes to approximate natural-looking variations. We imbue this inductive
bias into DreamSea through a novel fractal embeddings framework, which assumes that the latent
vectors over the spatial domain follow fractal processes.

We begin by initializing the latent vectors at the corners of an arbitrary square region for which
we seek to generate terrain. We seek to sample a latent function Φ : R2 → Rd, where d is the
dimensionality of the latent vector after PCA reduction. Specifically, Φ(·) outputs a latent vector ϕ
for a given coordinate (x, y), which can then be used to control the image generation.
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Figure 5: The Diamond-Square algorithm, which recursively interpolates on a spatial grid, is used
to generate latent embeddings in our approach. The red arrows start from the vertices of the existing
square and diamond shapes from the previous iteration, and point towards the new center points.

The latent function can be seen as a sample from a fractal process, generated from the Diamond-
Square Algorithm applied to estimate the function output over a dense grid that covers the desired
region. Here, the outputs are estimated recursively through a recursive two step process. First, in
the diamond step we estimate the function value at the spatial mid-points of each square regions
using the four corners of each square - forming four new diamonds. Next, we apply a square step,
to estimate the mid-points of diamond regions from the corner points of each diamond — forming
squares that subdivided the original square. In each step, we compute the latent vector values at the
centers of square and diamond shape patterns as the mean of the corner points of the regions plus
some random noise. Let us denote the set of vertices of a square or diamond shape as the set K, and
the center point of the square or diamond as rc, the latent vector value at the center is given by

Φ(rc) =
1

|K|
∑
r∈K

Φ(r) + sσ, σ ∼ N (0, I). (2)

Here, s is a scaling factor that controls the variability of the landscape. This factor s is gradually
decayed. Therefore, starting with latent vector values at the vertices of a square, we can recursively
estimate latent vector values over the entire square region.

A single iteration of this process, along with illustrated vertices, is shown in Figure 5. The end
result of this step is a 2D spatial field of latent fractal embeddings that can be used to conditionally
generate a set of images with strong spatial dependency.

To accomplish this, we train a diffusion model using RGB images from real underwater imagery
augmented with depth generated using Depth Anything v2 Yang et al. (2024). The resulting model is
used to generate an RGBD image for each vertex in the spatial latent field and then RePaint Lugmayr
et al. (2022) is used to in-fill any gaps between each pair of neighboring images, to form a spatially
consistent map in the form of an RGBD point cloud.

Here, we highlight that the function of images over the 2D spatial domain is drawn from a doubly
stochastic process. The set of generated images, {Ix}x∈R2 , can be considered as a function drawn
from the conditional diffusion model, which itself is dependent on a latent function, Φ(x), drawn
from a fractal process, governed by the scale factor s. Specifically,

{Ix}x∈R2 ∼ P (I|Φ(x))︸ ︷︷ ︸
Diffusion Model

, Φ(x) ∼ P (Φ|s)︸ ︷︷ ︸
Fractal Process

. (3)

We note that the doubly stochastic nature of our image generation enables highly diverse terrains to
be generated.

3.4 3D SCENE GENERATION VIA GAUSSIAN SPLATTING

In this section, we convert the RGBD point cloud generated in the previous step into a geometrically-
consistent 3DGS model that uses the generated images as a strong prior. The resulting model pro-
vides us with a 3D structure that is dense and allows for the generation of novel images from arbitrary
viewing poses.

We begin by using the depth channels from the generated images to initialize 3D Gaussians follow-
ing the default method Kerbl et al. (2023). Then we freeze the 3D positions of the Gaussian cloud
and refine the appearance with 2D diffusion priors. Given a cloud of Gaussians G initialized, each
Gaussian gi includes the following attributes: position pi, covariance Σi, opacity αi and radiance
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ci, that gi = {pi,Σi, αi, ci} ∈ G. With a subset of Gaussians N ∈ G ordered along a camera
ray, the pixel value in an image can be rendered from 3DGS models with the following rendering
equation:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (4)

Here pi is initialized from the depths of the generated images and frozen when optimizing the
Gaussians. Our reasons for doing so are three-fold: 1. Our point cloud is already sufficiently
dense; 2. optimizing position often comes with Gaussian duplication operations leading to memory
overflow for large generated scenes; and 3. supervising the geometry with an up-to-scale depth
diffusion model is not well studied. We use the Score Distillation Sampling (SDS) loss introduced
in DreamFusion Poole et al. to optimize the 3D Gaussian model from 2D diffusion prior:

∇θLSDS(I
r) ≜ Et,ϵ

[
w(t) (ϵ̂(t)− ϵ)

∂Ir

∂θ

]
(5)

here θ is the parameters of Gaussian cloud G to be optimized, Ir is the rendered image; ϵ̂ and ϵ are
predicted noise and added noise; t is the timestep in the diffusion process and w(t) is the weighting
function following the implementation in Poole et al. (parameter y and zt in the original paper are
omitted here for brevity).

4 EXPERIMENTS

4.1 DATASETS

The results presented throughout the paper are trained on real-world data collected from four differ-
ent locations with three different robot platforms, spanning a time from 2009 to 2024 (see Figure. 6).
The Scott Reef and Batemans datasets were collected from 2009 to 2015 with a Seabed-class AUV,
Sirius, which features a dual-hull design for stabilized imaging underwater. We post-process the raw
images, hosted on Squidle.org, to have normal exposure. The Hawaii dataset was collected in
April 2024 with an Iver AUV, the torpedo design allowed it to travel long distances and sample
images from the seafloor. The Florida dataset was collected in August 2023 with a customized
remotely operated vehicle (ROV) equipped with ZED cameras. Each location presents a unique
benthic appearance and is reflected in our model.

Figure 6: Results demonstrated in this paper are trained on data collected from 4 different sites with
3 different robot platforms.

4.2 IMPLEMENTATION DETAILS

Our model’s implementation is adapted from DDPM networks. We train each model on a single
NVIDIA RTX4090 GPU with 24GB VRAM for 2000 epochs, with a batch size of 12. Although
the size of each data set differs, it usually takes ∼ 200 hours to train on a dataset with 10k images,
at the resolution of 224 × 224. We use the first two main components from PCA results on DINO
v2 embeddings. From our empirical study, we find it to be sufficient to describe the variation in
appearance of underwater environments. This is consistent with the practice in Zhang & Johnson-
Roberson (2022); Qin et al. (2024).
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4.3 QUALITATIVE EVALUATION

We train the model on the dataset collected from various locations capturing diverse underwater
appearances. At a glance, the generated images resemble the real images well, as shown in Figure 7.
The generated relative depth also aligns well with human perception, indicating that our training
pipeline successfully learns the visual distribution of real underwater datasets and distills the 3D
information from the depth foundation model.

Figure 7: Our diffusion model is able to output realistic images as well as depth estimation distilled
from depth anything v2 Yang et al. (2024).

Figure 8: Examples of image generation conditioned on interpolated DINO embeddings. A smooth
transition can be observed.

4.4 LATENT CONTROLLED GENERATION

Generating images and maps with latent embedding control plays a critical role in creating terrain
with appearance aligned with human preference and natural variation. We demonstrate a smooth
image transition over the latent space: Figure 8 shows images generated with latent embedding
interpolated in latent space. We can see how the appearance of the images smoothly transits and we
can recognize how the content of the image shifts smoothly, demonstrating that latent embeddings
from VFMs controls underwater image generation smoothly and can be well aligned with human
perception.
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Figure 9: Latent Controlled Generation on fractal embeddings, with s = 0.6. Diversity observed
even locally.

We further show the 2D map generated from a fractal latent field. In Figure 9, where the latent
field is generated with s = 0.6. We observe that the added stochasticity injected into the latent
process visibly enhances the diversity of the generated terrain. In the s = 0 case, the generated
patterns repeat locally, while when s = 0.6, we observe diverse patterns and elevations even when
considering a local region. This locally diversity can be governed by tuning the scale factor s, further
motivating our doubly stochastic formulation.

5 LIMITATIONS AND OPPORTUNITIES

Our current model only estimates relative as opposed to metric scale. The metric scale could op-
tionally be acquired by auxiliary sensors such as IMUs, calibrated cameras, calibration targets, or
single/multi-beam acoustic sensors.

Viewing angles are only from the top down. Although the datasets we use are collected with different
robot platforms, they are all from top-down view. This is constrained by the fact that each robot is
designed to be passively stable in a hydrodynamic environment. This work further motivates the
design of new robot and perception systems to allow for more diverse viewing angles Liu et al.
(2024).

It will also be useful to generate images which can integrate partial expert annotations to semi-
supervise DreamSea. Determining how to bridge such a system with broader marine science, biog-
raphy and geography community is still an open problem.

6 CONCLUSION

Generating realistic and diverse underwater terrains and scene representations has a wide variety
of applications, spanning video games, movies, robotics, and marine science. Existing generative
methods struggle to generate sufficiently varied and physically accurate underwater images. To
tackle this, we introduce DreamSea, a diffusion-based generative model which we train on a col-
lection of large-scale unannotated underwater imagery collected by robots at different locations.
Our approach conditions generation upon visual latent embeddings extracted using foundation mod-
els. Furthermore, DreamSea imbues spatial awareness into the generative model via a novel fractal
embedding algorithm. The resulting terrain generation allows for the generation of highly diverse
underwater environments, while considering spatial-dependencies. The resulting terrain visuals and
estimated depths are integrated as priors to construct 3DGS models, which provide 3D geometry
and enable novel-view images to be produced. DreamSea is rigorously evaluated and demonstrates
the capability to generate large-scale hyper-realistic underwater scenes.
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