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ABSTRACT

This paper looks into the critical area of deep learning robustness and challenges
the common belief that classification robustness and explanation robustness in im-
age classification systems are inherently correlated. Through a novel evaluation
approach leveraging clustering for efficient assessment of explanation robustness,
we demonstrate that enhancing explanation robustness does not necessarily flat-
ten the input loss landscape with respect to explanation loss - contrary to flattened
loss landscapes indicating better classification robustness. To further investigate
this contradiction, a training method designed to adjust the loss landscape with
respect to explanation loss is proposed. Through the new training method, we un-
cover that although such adjustments can impact the robustness of explanations,
they do not have an influence on the robustness of classification. These findings
not only challenge the previous assumption of a strong correlation between the
two forms of robustness but also pave new pathways for understanding the rela-
tionship between loss landscape and explanation loss. Codes are provided in the
supplement.

1 INTRODUCTION

In deep learning, the robustness of image classification systems against adversarial instances has
emerged as an important area of research. These systems, integral to modern artificial intelligence,
frequently encounter scenarios where adversarial instances—subtly altered images designed to de-
ceive algorithms—pose significant challenges. At the heart of this challenge lie two critical con-
cepts: classification robustness and explanation robustness. Classification robustness refers to a
model’s ability to maintain accuracy under adversarial attacks ( , ,

), while explanation robustness pertains to the cons1stency of the model’s 1nterpretat1ve outputs
in such adversarial scenarios ( ) , ). Traditionally, there’s
been a prevallmg conclusion within the research commumty ( , ; ,

Conclusion: Classification robustness and explanation robustness are strongly correlated:
Increasing classification robustness can increase explanation robustness and vice versa.

This paper, however, unveils a finding that disrupts this conventional belief: a contradiction in the
assumed correlation between classification robustness and explanation robustness. This revelation
not only challenges established assumptions but also opens new avenues for understanding and
improving the resilience of deep learning models.

Adversarial attacks on classification aim at deceiving image classification models by introducing
perturbations to benign images ( , ). To defend against adversarial examples,
adversarial training (AT) ( , ; , ) is one of the most effective
approaches which explicitly augments the tralnlng process to enhance a model’s inherent robustness
against adversarial samples for classification. Classification robustness typically is referred as the
classification accuracy under adversarial attacks, and AT methods are effective in improving the
classification robustness of a deep learning model.
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(b) Comparison of input loss landscapes be-
tween normal and adversarially trained models
(a) Example of adversarial attack on explanation. on CIFAR-10 shows that the adversarially trained
The explanation maps of original image can be models have much flatter landscapes. Adversarial
manipulated to the target explanation. training can increase classification robustness.

Figure 1: (a) Illustration of an adversarial attack on explanation, demonstrating the manipulation
of explanation maps from the original image to achieve a target, resulting in explanation loss (b) A
visualization of input loss landscape w.r.t classification loss, comparing a normal-trained model to
an adversarial-trained model.

Explanation maps ( , ), also known as saliency maps, are proposed to explain deep
learning methods by feature importance. However explanation maps are themselves also vulnerable
to adversarial attacks ( , ). For example, in Fig. 1a, by
making small visual changes to the mput sample which hardly influences the network’s output, the
explanations can be arbitrarily manipulated ( , ). Explanation robustness is
referred as the error between victim explanation under adversarial attacks on the input and targeted
explanation.

To better understand robustness, one important way is to explore the input loss landscape (

, ). Existing work has found out that a flat mput loss landscape w.r.t classification
loss indicates better classification robustness ( R ), as shown
in Fig. 1b. To visualize the input loss landscape, we add the random perturbation to the inputs with
magnitude « (detailed method in Section 4). The results in Fig. 1b show that models with higher
classification robustness have a flatter input loss landscape w.r.t classification loss.

Then a natural question comes up for explanation robustness:

Q: Does increasing explanation robustness of a model also flatten input loss landscape w.r.t
explanation loss?

We visualize the input loss landscape w.r.t explanation loss in Fig. 4 using models with different
levels of explanation robustness and find that, surprisingly, increasing the explanation robustness
does not flatten the input loss landscape w.r.t explanation loss. Specifically, to obtain models with
different levels of explanation robustness, we consider utilizing adversarial training methods that
allow us to control the emphasis on classification robustness ( , ) since previous
works have proven that increasing classification robustness can also increase explanation robustness.

The previous observation that increasing the explanation robustness does not flatten the input loss
landscape w.r.t explanation loss is strange compared with increasing classification robustness could
flatten the input loss landscape w.r.t classification loss. To further explore this observation, we ask
the previous question in a reverse way:

Q: Does flattening the input loss landscape w.r.t explanation loss not increase the robustness of
explanations as well?

The answer to this question is, flattening the input loss landscape w.r.t explanation loss will decrease
the explanation robustness. Specifically, we propose a new loss function to flatten the loss landscape
w.r.t explanation loss. The results show that adding the loss will decrease the explanation robustness
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but not change the classification robustness measured by adversarial accuracy. This observation,
indicating that influencing explanation robustness does not impact classification robustness, chal-
lenges the previous conclusion: the correlation between explanation robustness and classification
robustness may not hold.

Overall, we summarize our contributions as follows:

e We propose a sampling method based on cluster methods that can choose representative
pairs to evaluate explanation robustness more efficiently.

e We use TRADES ( , ) to control the classification robustness and expla-
nation robustness and visualize the input loss landscape w.r.t explanation loss to find that
increasing the explanation robustness by increasing the classification robustness does not
flatten the input loss landscape.

e We propose a new training method that flattens the input loss landscape w.r.t explanation
loss. The training results show that explanation robustness may not be strongly correlated
to classification robustness.

2 RELATED WORK

Adversarial Attack and Adversarial Training (AT) It has been proven that convolutlonal neural
networks (CNNis) are vulnerable to the adversarial examples (

, ). Noise that is imperceptible to humans, when added to the orlglnal

1nputs can lead to the misclassification of models. Projected Gradient Descent (PGD) ( R

) is one of the most popular methods that generate such a noise or evaluate models’ classifi-

cation robustness by calculating accuracy under its attack. Many methods have been introduced to

defend against adversarial attacks including knowledge distillation ( , ), quantiza-
tion ( s ; s ) and noise purification ( s ; , ).
However, these preprocessing methods do not involve a training process and may be vulnerable to
adaptive attack ( , ). Goodfellow et al. ( , ) first introduced

adversarial training (AT), which trains a model from scratch with adversarial samples. Adversar-
ial Training (AT) proved its performance including adversarial competitions ( , ;
, ). In our paper, we also focus on classification robustness increased by AT.

Many works tend to increase the performance of AT through external datasets (

s ; s ), metric learning ( s ), self-supervised
learnlng ( ), ensemble learning ( s ), label smoothing (
) and Taylor Expansmn ( , ). Wu et al. ( , ) found that obtaining a

flat loss landscape can help increase classification robustness, which inspired the ideas in this paper.
There is also a line of work that attempts to accelerate AT. For example, Shafahi et al. (

, ) reused calculated adversarial noises, Liu et al. ( , ) introduced single-step
training. In this paper, we mainly consider the Madry adversarial training ( , ) and
TRADES ( ,

Explanatlon Robustness Saliency maps ( , ; ) ; )
, ) are widely used to explain image- related tasks in deep learnlng, and
our focus is on the robustness of these explanations. However, similar to an adversarial attack,
it is possible to find an adversarial noise on original images so that it can easily manipulate the
saliency maps w1th0ut changing classification results in both white-box ( , ;
R ; s ) and black-box settings ( s
). Zhang et al. ( , ) further introduced a new method that can attack both
saliency maps and classification results. In order to evaluate the explanation robustness, Wicker et
al. ( , ) introduced the max-sensitivity and average-sensitivity of saliency maps.
Alvarez et al. ( , ) estimated explanation robustness by the Local
Lipschitz of interpretation while Tamam et al. ( , ) directly used attack loss to
evaluate explanation robustness. In this paper, we use attack loss based on the proposed cluster
method to evaluate explanation robustness.

Several works have also aimed to improve explanation robustness. Chen et al. ( , )
introduced a regularization term during training to make the explanation more robust. Boopathy et
al. ( , ) improved the performance by training with noisy labels. Tang et al. (
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Figure 2: How does our method influence the saliency maps calculated from gradient x inputs
on CIFARI10. Intuitively, SE P,,s makes the model consider more input pixels, solely adversarial
training makes the model consider only a few input pixels while SE P,  considers even fewer input
pixels compared with adversarial training. However, models trained with these three methods show
the same classification robustness.

et al., 2022) proposed a first-order gradient-based approach to reduce computational training costs.
Huang et al. (Huang et al., 2023) explored genetic algorithms to optimize explanation robustness.

Relationship between Classification Robustness and Explanation Previous works have demon-
strated that a good explanation is crucial for classification robustness (Simonyan et al., 2019; Wang
et al., 2021), suggesting that a better saliency map correlates with improved classification robust-
ness. Follow-up work by Boopathy et al. (Boopathy et al., 2020), Tang et al. (Tang et al., 2022)
and Huang et al. (Huang et al., 2023) further demonstrated when models are more robust to attacks
manipulating explanations, their robustness to classification attacks also improves and vice versa.
Therefore, increasing explanation robustness can benefit classification robustness.

In our paper, we prove that improving explanation robustness indeed also boosts classification ro-
bustness, specifically under adversarial training regimes using TRADES (Zhang et al., 2019). How-
ever, through further analysis, we prove these two facets of robustness are not inherently the same
- they can be disconnected. Classification robustness is not fundamentally vital for explanation
robustness.

3 METHODS

In the previous section, we observe a strange situation where increasing the explanation robustness
does not flatten the input loss landscape w.r.t explanation robustness. To further explore, we consider
this situation in a reverse way: How Does flattening the input loss landscape w.r.t explanation loss
influence the robustness of explanations? In this section, we propose a new training algorithm to
flatten the input loss landscape w.r.t explanation robustness. To explicitly guide the training with
flattening input loss landscape w.r.t explanation robustness, we decide to add an extra loss:

Lp=|I(z+¢) - ()], (D

where ( is a noise randomly sampled from a standard Gaussian distribution and [ is the explanation
method. We use randomly sampled noise within a standard training framework instead of the min-
max training framework used in the previous flatness-aware methods (Wu et al., 2020) because flat
training methods based on AT (Wu et al., 2020) typically use an untargeted setting while off-the-
shelf explanation adversarial attacks must be executed in a target setting. A victim image and a target
image are required for the explanation of adversarial attacks (Tamam et al., 2022; Dombrowski et al.,
2019). Besides, calculating ¢ through a targeted setting may increase the training time and increase
the probability that the model is overfitting to the chosen pairs.

It is important to note that the new loss function £ s can be incorporated into any training framework,
including Madry adversarial training (Madry et al., 2017), TRADES (Zhang et al., 2019), and normal
training. We will mainly focus on Madry adversarial training plus the new training loss:

L= ﬁsc(f(xadv)v y) + /\£f~ ()
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In Eq. (2), we use the hyperparameter A to
balance two components of the loss. Here

Algorithm 1 Separate Explanation Robustness with
PGD (SEP)

A can be both positive which guides the
loss landscape to become flat and negative
which leads to a sharper loss landscape.
We allow A to take both positive and nega-  3:
tive values to enable a more comprehensive ~ 4:
analysis of the loss landscape. According

to the experimental results, our new method 5:
shows that our method can influence expla-
nation robustness while it does not change

1: Input: Dataset D, total training iteration 7", explanation
method 7, model weights w, and balancing factor A.

2: fort =0toT — 1 do

for batch z in D do

Sample a random noise ¢ from a standard Gaus-
sian distribution.

Get adversarial samples
ZTadv = PGD(z,y).
Calculate loss function with Eq. (2).

(on classification):

Update w <= w — nVL(f(2), f(zaav), y|W)
end for
end for

classification robustness. Since we obtain
Todo Dased on PGD, we name our new
training method with Separate Explanation
robustness with PGD (SEP). We denote the
method as SEP,,s; when ) is positive, and as SEP,,.4 when ) is negative. We summarize our algo-
rithm in Algorithm 1. We also visualize the comparison of saliency maps from models trained with
different algorithms to provide how our methods influence the saliency maps in Fig. 2.

LN

4 Lo0SS LANDSCAPE VISUALIZATION

In this section, we discuss our strategy for obtaining models with varying levels of explana-
tion robustness and detail our method for visualizing the input loss landscape. Research has
shown a correlation between increased classification robustness and enhanced explanation robust-
ness (Huang et al., 2023). To achieve models with different classification robustness levels, we use
TRADES (Zhang et al., 2019), which offers detailed control over classification robustness compared
to methods like Madry adversarial training (Madry et al., 2017).

Background of TRADES TRADES (Zhang et al., 2019) is an adversarial training technique that
balances classification and adversarial robustness using the loss function:

Lrva = Lse(f(%),y) + aLaay(f (%), f(Tadv)), 3)

where f(z) is the model output, L. is the standard classification loss, x4, is an adversarial exam-
ple, and L4, computes the KL divergence between original and adversarial representations. The
parameter « controls the importance of classification robustness, allowing precise regulation of ro-

bustness levels.

Explanation Loss The objective, used to guide ad-
versarial attacks on explanations, is defined to find
a small noise € as:

e = argmin||I(z, + €) — I'(a¢)]l, 4)
where I represents the explanation method, x; are
target images, and x,, are victim images. We for-
mally define explanation loss as follows.

Definition 1 (Explanation Loss). L.(z,+€, 1) =
(o + €) — I(z)]l.

To prevent € from being too large, additional clas-
sification loss is used to ensure manipulated im-
ages yield the same classification results (Dom-
browski et al., 2019; Tamam et al., 2022).

Explanation Robustness Evaluation To measure
explanation robustness, we propose using a repre-
sentative subset of test images, chosen via cluster-
ing. Clustering aims that intra-cluster pairs share
similar explanations. We cluster images based on

Cluster3(airplane)

Cluster3(ship) Cluster5(horse)

Cluster3(ship) Explanation

Cluster3(airplane) Explanation  Cluster5(horse) Explanation

E 2

Figure 3: The explanations from different clusters
generated by our clustering method on CIFARI10.
The two images with different labels in the same
cluster share a similar explanation while they both
show a different explanation with the image from
another cluster. The results show that our method
can choose the most representative images w.r.t ex-
planation.
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the output from the last layer before the classification layer of a pre-trained ResNet18 ( ,
) using k-means ( , ) with k£ = 10 by the guidance of elbow method. Visualizations
of saliency maps show that images from the same cluster have similar explanations (see Fig. 3). We
also report the explanation loss for intra-cluster and inter-cluster pairs to show that our clustering
method indeed makes intra-cluster pairs share similar explanations quantitatively in Appendix C.

We select 15 images from each cluster to Table 1: Comparison of classification robustness and ex-

form a subset D, of the test set, containing planation robustness of models trained with TRADES and

150 images and 22,350 (150 x 149) pairs. We different o on CIFAR10. Within a certain range, using the

report the mean explanation loss for all pairs TRADES training method and increasing the value of «

in D, using a white-box attack method ( can not only improve the classification robustness but also
© ) to evaluate explanation improve the explanation robustness.

robustness in the rest Of the paper' We also re- Metric ‘ Expl at Start(le — 7) ‘ Expl at End ‘ Clean Acc(%) ‘ Adv Acc(%)

port the explanation loss at attack starts (EXpl a | Explanation Robustness | Classification Robustness
at Start) and loss at attack ends (Expl at End) 0‘?5 igg;g 1%?&60 ;ggg 2"3-%‘)7
to provide a comprehensive analysis of both 1.0 17.271 10.946 72.63 2831
robustness and flatness. A higher explana- 70 laoo 1056 i n
tion loss indicates better explanation robust- 5.0 18.278 11.469 64.50 33.98

100 18.643 11,592 60.26 34.87

ness because the model is harder to attack.

Analysis In Table 1, we provide an evalua-

tion of classification robustness and explanation robustness for models trained with TRADES and
different o on CIFAR10. From Table 1, it is easy to see that, with the increase of «, both the classifi-
cation and explanation robustness of the model increase. Therefore, we obtain models with different
explanation robustness.

Visualization After getting the models with
different explanation robustness, the next step Trade Weight 0.5
is to visualize input loss landscape w.r.t ex- — Trade Weight 1.0
. . . . —— Trade Weight 5.0
planation loss. We visualize the input loss
landscape by plotting the change of explana- \/\_/
tion loss when we add a random noise d to the
victim image x,, with different magnitude ~:

() = Le(zo +7d, 24), Q)

=
©
)

=
~
o

Explanation Loss
!—‘ L
(o)) ~
w o

=
o
o

where d is sampled from a standard Gaussian
distribution. We provide the mean explana-
tion loss for all pairs in the subset we build, -04 02 0.0 0.2 04
with the results displayed in Fig. 4. We can
see that the adversarially trained models have

Y
Figure 4: Input Loss landscape w.r.t explanation loss
. for models trained with different with different o in
bf:tter. eXp lanation rc.)bustness' because of the TRADES. The loss landscape does not show a clear dif-
high initial explanation IOS.S 1ns}ead of a flat  ference between models that vary in explanation robust-
loss landscape. We also visualize compared pegs because the loss change remains the same.
with normal training and Madry adversarial

training (MAT) in Appendix Fig. 7, and it shows similar results: increasing explanation robustness
will not flatten the input loss landscape w.r.t explanation loss. Previous work on classification ro-
bustness ( , ; , ) has proven that a model with good classification
robustness has a flat loss landscape w.r.t classification loss. However, different from the conclusions
drawn in classification robustness, adversarially trained models don’t exhibit a flat loss landscape
w.r.t explanation loss. This phenomenon motivates us to propose the method in the following section
to flatten the input loss landscape w.r.t explanation robustness.

5 EXPERIMENTAL RESULTS

In this section, we conduct verification experiments on multiple datasets and models to effectively
demonstrate the ability of our proposed method to differentiate explanatory robustness from classi-
fication robustness.
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Table 2: Performance of models trained with ConvNet and ResNet18 on various datasets is evaluated
using four training methods, w.r.t. explanation loss at start, at end, and adversarial accuracy. Higher
explanation loss at end indicates better explanation robustness; higher adversarial accuracy denotes
better classification robustness. Explanation loss at start is also included to show our method’s
influence on explanation robustness. The best performance in explanation and classification ro-
bustness and the worst performance in explanation robustness are highlighted. There is no positive
correlation between explanation and classification robustness achieved through SEP s and SEP ¢4
training methods, compared to MAT.

ConvNet ResNet18

MNIST

Method Expl at Start (10~ 7) ‘ ExplatEnd | Clean Acc(%) ‘ Adv Acc(%) ‘ Expl at Start | ExplatEnd | Clean Acc(%) ‘ Adv Acc (%)

Normal 261.183 204.825 99.29 0.00 266.834 146.16 99.36 0.00
MAT 373.262 298.729 99.00 89.92 916.017 778.003 99.28 94.60
SEPpos 93.033 61.545 98.8 89.4 92.371 59.278 98.4 91.63
SEPneg 806.204 657.180 98.97 90.34 9356.306 8248.627 99.4 93.95
FMNIST
Method Expl at Start (10*7) Expl at End Clean Acc(%) Adv Acc(%) Expl at Start Expl at End Clean Acc(%) Adv Acc (%)
Normal 106.530 72.198 92.32 0.00 128.640 69.847 91.57 0.00
MAT 386.370 274.267 62.85 73.98 588.610 417.031 79.22 67.10
SEPpos 35.588 22.465 69.88 86.81 32.466 22.512 68.75 56.51
SEPneg 1811.969 994.818 62.75 76.89 8050.942 7593.650 70.23 57.55
CIFAR10
Method Expl at Start (10*7) Expl at End Clean Acc(%) Adv Acc(%) Expl at Start Expl at End Clean Acc(%) Adv Acc(%)
Normal 10.375 6.206 79.08 0.00 13.982 6.130 81.32 0.00
MAT 16.913 6.906 64.85 35.11 31.959 21.879 67.22 29.09
SEPpos 3.565 1.269 64.94 35.25 11.962 7.958 66.68 29.69
SEPneg 19.002 7.590 64.56 34.86 70.159 36.276 39.17 29.32
CIFAR100
Method Expl at Start (10~ 7) | ExplatEnd | Clean Acc(%) | Adv Acc(%) | ExplatStart | ExplatEnd | Clean Acc(%) Adv Acc(%)
Normal 10.099 6.140 48.39 0.05 12.044 4.716 41.24 0.00
MAT 20.642 13.650 36.4 17.35 33.456 22.623 36.14 15.70
SEPpos 13.650 9.932 37.41 17.98 19.217 12.744 34.83 15.16
SEPneg 22.506 14.970 36.17 17.43 35.525 24.289 34.80 15.87
TinyImageNet
Method Expl at Start (10_7) Expl at End Clean Acc(%) Adv Acc(%) Expl at Start Expl at End Clean Acc(%) Adv Acc(%)
Normal 0.966 0.633 28.71 0.00 1.131 0.528 28.34 0.00
MAT 2.426 1.728 25.13 9.55 3.119 2.349 26.34 10.81
SEPpos 2.242 1.571 24.83 9.63 1.967 1.435 25.96 10.83
SEPneg 3.873 2.610 24.31 9.61 4.413 3.016 26.11 10.74

5.1 EXPERIMENTAL SETTINGS

Datasets To thoroughly demonstrate the impact of our proposed training method and the result-
ing conclusions, we conduct model training on five publicly available datasets for experiments:

CIFAR10 ( , ), CIFAR100 ( , ), MNIST (
), Fashion MNIST ( s ), and TinyImageNet ( s ). Their detaﬂed
descriptions can be found in Appendix A. We also consider using ImageNet ( , ) and

the experiment results for ImageNet can be found in Appendix E.3.
Model Architecture In addition to utilizing diverse datasets, we have also designed four dis-
tinct models for training on these datasets, further reinforcing our conclusions. We conduct exper-

iments on ConvNet, ResNet ( s ), Wide ResNet ( R ) and
MoblieNetV2 ( ; s ). The ConvNet model consists of three con-
volutional layers and one fully connected layer from Gidaris et al. ( ).

For ResNet and Wide ResNet, we use a standard ResNet18 and Wide-ResNet-28, respectlvely We
also adjust the ResNet, Wide ResNet, and MoblieNetV2 so that they can fit into all datasets we use.

All four models employ the softplus ( , ) activation function because it is better for
the explanation attack method we use ( s ).
Explanation Methods We mainly use: Gradient( , ), Gradient x In-
put( , ), Guided Backpropagation( , ),Deep Lift (
R ) and Integrated Gradients ( R ). We use Captum (
s ) for all explanation methods.

Training Methods We mainly consider 2 baselines: i) normal training (Normal), ii) Madry ad-
versarial training (MAT) ( , ). As mentioned in the Section 3, we explore two types
of proposed method: SEP,,s and SEP,4. In the rest of this paper, unless specified, we will use
A = 50000 for SEP s and A = —3000 for SEP,¢g.
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Table 3: Performance of different explanation methods (Gradient and Guide Propagation) in the
training phase is evaluated w.r.t. explanation loss at start, at end, and adversarial accuracy on CI-
FAR10. Higher explanation loss at end indicates better explanation robustness, while higher adver-
sarial accuracy denotes better classification robustness. The best and worst performances in expla-
nation robustness and classification robustness are highlighted. Under various explanation methods,
SEPpos shows a lower explanation loss compared to SEP .4, with similar adversarial accuracy.

ConvNet ResNet18
Gradient
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc (%) Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 7.977 4.591 79.08 0.00 11.310 4.671 81.32 0.00
MAT 13.810 8.705 64.85 35.11 26.899 18.215 67.22 29.09
SEPpos 0.876 0.503 52.89 29.68 11.317 6.604 66.76 37.69
SEPneg 13.964 9.290 53.23 29.56 8282.990 7236.182 49.38 32.28
Guide Propagation
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 8.075 4.639 79.08 0.00 11.515 4.736 81.32 0.00
MAT 14.012 8.813 64.85 35.11 27.012 18.311 67.22 29.09
SEPpos 1.023 0.506 60.27 33.57 12.004 7.593 67.16 30.64
SEPneg 14.643 9.110 59.74 33.78 27.422 18.940 66.48 30.72

Hyperparameters For all experiments, we train our models 25 epochs with 64 as the batch size.
We also consider different training epochs and our conclusion remains the same in Appendix E.5.
To accelerate the training process, we use Adam ( , ) as the optimizer. We list
the detailed hyperparameters for CIFAR10 in the Appendix Table 8. We use the standard settings in
adversarial training ( s ), with ¢ = 8/255 in PGD for RGB images and ¢ = 0.3 for
grayscale images, and steps in PGD are set to 10 for all experiments.

Metrics As mentioned in Section 4, we measure explanation robustness using the explanation
loss at the end (after attack). A higher explanation loss indicates a worse attack and thus better
explanation robustness. We also report the explanation loss at the start (before attack) to show the
influence of our method on the explanation loss landscape. For classification robustness, we report
adversarial accuracy, with higher values indicating better robustness. Additionally, we include clean
accuracy to ensure the models function normally in non-adversarial settings.

5.2 SEPARATING EXPLANATION AND CLASSIFICATION ROBUSTNESS

We conducted a series of experiments involving multiple models and datasets on Gradient x Input
and results are shown in Table 2 for ConvNet and ResNet18. We have the following observations:

e Onone hand, SEPs, SEP ¢4, and MAT have very similar adversarial accuracy, indicating
their classification robustness is similar in all datasets and models. On the other hand,
SEP s shows the weakest explanation robustness by having the lowest explanation loss
at end. Similarly, SEP,,., shows the strongest explanation robustness. These results show
that there is no inherent relationship between explanation robustness and classification
robustness. The different performance w.r.t. explanation loss at end for SEP,,,; and SEP ¢4
is mainly induced by the difference in explanation loss at start, which is influenced by our
training method by setting different \.

o In the setting of CIFAR10 and ResNet18, increasing the explanation robustness by SEP ¢
hurts the clean accuracy while it still does not change classification robustness. This obser-
vation further validates our argument: classification robustness and explanation robustness
may not be strongly correlated. We provide the results for W-ResNet and MoblieNetV2
in the Appendix Table 6 and the results show a very similar conclusion to the results of
ConvNet and ResNet.

5.3 INFLUENCE OF DIFFERENT EXPLANATION METHODS IN TRAINING PHASE

In the previous experiment, we demonstrated that our methods achieve similar classification ro-
bustness while exhibiting significantly different explanation robustness under the Gradient x Input
explanation method. To further investigate whether this conclusion holds for different explanation
methods, we trained models using Gradient and Guide Propagation. The results are based on CI-
FAR10 and are summarized in Table 5 with more datasets and more explanation methods including
Deep Lift and Integrated Gradients can be found in Appendix E.4. Our observations are as follows:
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Figure 5: Performance of varying explanation methods in the testing phase, w.r.t. explanation loss
at start, at end, and adversarial accuracy. Models are trained with Gradient x Input and tested
on different explanation methods. All models are trained on CIFAR10. Even if the explanation
methods during training and testing are different, SEP s shows a lower explanation loss compared
t0 SEP ¢4, While they have similar adversarial accuracy.
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2 %0 E} e ResNet18_TRADE Weight:5

Loss

0
TRADE TRADE + SEP_pos TRADE + SEP_neg TRADE  TRADE + SEP_pos TRADE + SEP_neg TRADE TRADE + SEP_pos TRADE + SEP_neg

Figure 6: The test results of the model trained using the TRADE training method with CIFAR10,
combined with our approach, are presented. The findings indicate that when we apply our method
to TRADE, an alternative adversarial training method distinct from MAT, we can still deduce that
classification robustness and explanation robustness are not inherently interconnected. This outcome
demonstrates the universal applicability of our proposed method.

e Our methods achieve similar classification robustness under various explanation methods,
yet they exhibit notably different explanation robustness. In most cases, SEPp,s shows
lower explanation loss compared to SEP,,.,, despite similar adversarial accuracy.

e Compared to MAT, our method SEP,,,s shows comparable adversarial accuracy, indicating
similar classification robustness, but it demonstrates distinct explanation loss characteris-
tics. This suggests that explanation robustness and classification robustness may not be
strongly correlated.

5.4 INFLUENCE OF DIFFERENT EXPLANATION METHODS IN TESTING PHASE

In the previous experiments, the same explanation methods were used during both training and
testing. To test if our findings hold when using different explanation methods during testing, in this
experiment, we use the same model trained with Gradient x Input (thus the classification robustness
is the same for different testing phases), but change two different explanation methods (Gradient
and Guide Propagation) in the testing phase. The results on CIFARI10 are shown in Fig. 5, where
the detailed value of this experiment can be found in Appendix Table 9. While with the same
classification robustness (as shown in Table 2, under adversarial accuracy in CIFAR10), there is a
huge difference between SEP,,,s and SEP,., W.r.t the explanation losses (both at the start and the
end). This indicates even with different explanation methods in the testing phase, the explanation
robustness still does not show strong correlations with adversarial robustness.

5.5 INFLUENCE OF DIFFERENT ADVERSARIAL TRAINING METHODS
All previous experiments utilized MAT (Madry et al,, 2017) as the default adversarial training

method. To assess the generalizability of our approach across different adversarial training meth-
ods, we employed TRADES (Zhang et al., 2019) in this experiment. Results in Fig. 6 (details in



Under review as a conference paper at ICLR 2025

Appendix Table 10) indicate that our SEP method impacts explanation robustness without altering
classification robustness, suggesting a weak correlation between the two robustnesses.

5.6 PARAMETER SENSITIVITY ANALYSIS

In this section, we examine how different regularization weights \ affect the results (more results in
the Appendix). We trained ConvNet networks on CIFAR10 with various A values. Testing results
are presented in Table 4. We observe that the choice of A influences both the exploration rate at start
and end. When ) is greater than 10* or less than —3 * 103, the explanation loss changes intensely.

Table 4: The evaluation of the ConvNet trained on CIFAR10 under different A conditions reveals
that the relationship between explanation and classification robustness is not positively correlated
when an appropriate A is selected during model training.

ConvNet, CIFAR10

A Expl at Start (1077) Expl at End Clean Acc (%) Adv Acc (%)
0 (MAT) 16913 6.206 64.85 35.11
5% 104 3.565 1.269 64.94 35.25
10* 15.436 5.870 64.39 35.18
10! 17.646 6.819 64.45 35.02
—10? 17.820 6.934 64.67 35.14
—3%10° 19.002 7.590 64.56 34.86

Table 5: Performance of different explanation methods (Gradient and Guide Propagation) in the
training phase is evaluated w.r.t. explanation loss at start, at end, and adversarial accuracy on CI-
FAR10. Higher explanation loss at end indicates better explanation robustness, while higher adver-
sarial accuracy denotes better classification robustness. The best and worst performances in expla-
nation robustness and classification robustness are highlighted. Under various explanation methods,
SEPpos shows a lower explanation loss compared to SEP .4, with similar adversarial accuracy.

ConvNet ResNet18
Gradient
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc (%) Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 7.977 4.591 79.08 0.00 11.310 4.671 81.32 0.00
MAT 13.810 8.705 64.85 35.11 26.899 18.215 67.22 29.09
SEPpos 0.876 0.503 52.89 29.68 11.317 6.604 66.76 37.69
SEPneg 13.964 9.290 53.23 29.56 8282.990 7236.182 49.38 32.28
Guide Propagation
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 8.075 4.639 79.08 0.00 11.515 4.736 81.32 0.00
MAT 14.012 8.813 64.85 35.11 27.012 18.311 67.22 29.09
SEPpos 1.023 0.506 60.27 33.57 12.004 7.593 67.16 30.64
SEPneg 14.643 9.110 59.74 33.78 27.422 18.940 66.48 30.72

6 CONCLUSION

In summary, our study challenges the previous conclusion that explanation robustness and classifica-
tion robustness are strongly correlated. Using TRADES ( , ) to control explanation
robustness by adjusting classification robustness, we found that increasing explanation robustness
does not necessarily lead to a flatter input loss landscape for explanation loss. This contrasts with
the observation that enhancing classification robustness results in a flatter input loss landscape for
classification robustness. We introduce a novel algorithm to flatten the input loss landscape for
explanation loss, addressing this contradiction. Our results show that our algorithm effectively im-
proves explanation robustness without changing classification robustness, indicating a potential lack
of strong correlation between the two. Our results reveal the importance of considering and opti-
mizing both aspects separately to ensure the overall reliability and trustworthiness of Al systems
in sensitive areas such as healthcare. For our future works, we hope to dive into two different ro-
bustness to understand why adversarial training can increase explanation robustness and what might
be the inner difference between two robustness to understand more about the inner mechanism of
adversarial attacks and explanations.

10
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Table 6:

Test results of models trained by Wide ResNet network and MobileNet network on various

data sets according to four training methods. The results presented indicate that the performance
of models trained using the Wide ResNet network and MobileNet network on different datasets
suggests that there is no positive correlation between the model’s explanation robustness and clas-
sification robustness achieved through the SEP,,; and SEP,.4 training methods, as compared to

the MAT training method.
Wide ResNet MobileNet
MNIST
Method | Explatstart(le-7) | Explatend | Clean Acc(%) | Adv Acc | Explatstart | Explatend | Clean Acc | Adv Acc
Normal 267.050 206.194 99.58 0.00 287.061 188.700 99.08 0.02
MAT 842.648 736.839 98.92 82.82 4328.176 3356.135 98.29 94.19
SEP_pos 109.383 99.891 99.01 82.77 319.629 273.256 98.36 94.25
SEP_neg 937.845 744.698 98.87 82.71 8134.157 4454.656 98.33 94.23
FMNIST
Method | Explatstart(le-7) | Explatend | Clean Acc(%) | Adv Acc | Explatstart | Explatend | Clean Acc | Adv Acc
Normal 120.037 69.593 92.79 0.00 180.159 103.941 91.93 0
MAT 328.817 257.523 78.10 68.26 4470.448 3571.210 68.72 57.19
SEP_pos 109.996 74.324 77.69 67.79 236.547 172.200 65.11 57.42
SEP_neg 398.006 304.927 78.21 68.05 6032.190 4809.288 66.86 58.16
CIFARI10
Method | Explatstart(le-7) | Explatend | Clean Acc(%) | Adv Acc | Explatstart | Explatend | Clean Acc | Adv Acc
Normal 17.920 8.029 85.47 0.16 14.797 6.551 77.48 0
MAT 41513 27.136 60.01 24.22 21.502 13.223 51.51 23.81
SEP_pos 26.343 16.217 59.87 24.89 14.756 7.907 4991 23.27
SEP_neg 43278 27.575 60.15 25.08 26.811 16.420 35.43 15.30
CIFAR100
Method | Explatstart(le-7) | Explatend | Clean Acc(%) | Adv Acc | Explatstart | Explatend | Clean Acc | Adv Acc
Normal 13.677 5.606 59.13 0 17.015 9.351 4391 0
MAT 30.027 18.389 36.69 16.12 20.054 10.836 21.19 8.64
SEP_pos 22.046 13.704 33.88 13.19 15.234 8.510 21.82 10.05
SEP_neg 31.889 20.045 35.74 15.55 21.544 13.843 2135 7.88
A CODE AND DATA
This is our open source code link: open source code.
We conduct model training on five publicly available datasets for experiments:
e CIFARI10 ( ): consisting of 60k 32 x 32 color images in 10 classes
including 50k training and 10k test images.
e CIFAR100 ( ): containing the same images as CIFAR10 but has a
more refined label with 100 categories.
e MNIST ( ): containing 60k training samples and 10k test samples from
10 digit classes. Each digit is a 28 x 28 grayscale image.
e Fashion MNIST ( ): consisting of 60k training samples and 10k test sam-
ples from 10 classes. Each sample is a 28 x 28 grayscale image in a clothes category.
e TinyImageNet ( ): itis a subset of ImageNet ( ) with 64x64

pixels and 200 categories

B MORE VISUALIZATION RESULTS

Firstly,

we visualize the input loss landscape w.r.t explanation loss using a normal trained model

and model trained with Madry adversarial training in Fig. 7. The results show that increasing the
explanation robustness does not flatten the input loss landscape. Besides, we also visualize more
saliency maps with more explanation methods with images from different clusters in Fig. 8. They
all prove that we can choose the most representative saliency maps.
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Figure 7: Comparison of input loss landscape w.r.t explanation loss with adversarial training and
normal training. The results show that there is no obvious difference in input loss landscape.
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Figure 8: Explanation of images from different clusters. The results show that images from the same
cluster that even have different labels still have similar saliency maps on various explanation meth-
ods. Besides, images with the same label from different clusters still have different explanations.
These results show that our method can sample the most representative subset of explanations.

16



Under review as a conference paper at ICLR 2025

C EXPLANATION LOSS FOR INTRA-CLUSTER AND INTER-CLUSTER PAIRS

In the paper, we use Fig. 2&.8 to show the images within the same cluster share similar explana-
tions qualitatively. Here, Table 7 shows the quantitative results of explanation loss at start for the
intra-cluster and inter-cluster on ResNet18. We will add more results and demonstrations in the
final version.

ResNet18 Expl at start (1e-7)

Intra-cluster 13.726

Inter-cluster 15.437
Table 7: Explanation loss at start of intra and inter clusters. The smaller explanation loss in the
intra-cluster shows that images in the same cluster have similar explanations.

D DETAILED HYPERPARAMETER

In this section, we provide the detailed hyperparameter for our CIFAR10 dataset in Table 8.

Table 8: Comparison of explanation loss for intra-cluster sample and inter-cluster sample on CI-
FAR10. The results show that our cluster method indeed the cluster images with similar explana-
tions.

Models | Learning Rate | A
SEP_pos

ConvNet 0.01 S5e4

ResNet18 0.001 Se4

Wide ResNet 0.001 S5e4

MobileNet 0.01 S5e4
SEP_neg

ConvNet 0.01 -3e3

ResNet18 0.001 -1.9¢3

Wide ResNet 0.001 -1.9¢3

MobileNet 0.01 -1.25e3

E MORE EXPERIMENTAL RESULTS

E.1 EXPERIMENTS ON W-RESNET AND MOBILENET

We list the main results using Gradient X Inputs as training and testing explanation methods for
W-ResNet and MobileNetV2 in Table 6. We have the following observations:

e Once again, the adversarial accuracy for MAT, SEP,.s, and SEP,,, is similar in most
scenarios for W-ResNet and MobileNet, while SE P, always has a smaller explanation
loss compared with MAT, and SEP,., always has a larger explanation loss compared
with MAT. These results show that influencing explanation robustness does not necessarily
change classification robustness.

e For W-ResNet and MobileNet, the adversarial accuracy for CIFAR100 fluctuates. For Mo-
bileNet and CIFAR100, compared with MAT, SEP,,, increases classification robustness
while SE P,  decreases it. However, this observation also indicates that the positive corre-
lation between explanation robustness and classification robustness might not be true since
SEP,,s decreases explanation robustness while increasing classification robustness.

E.2 DETAILED VALUES FOR TRANSFERABLITY EXPERIMENTS
The detailed values for Transferablity experiments can be found in Table 9 and the detailed values

for experiments using TRADES for our method can be found in Table 10. The analysis of these
results can be found in the main paper.
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Table 9: Test results for transferability of explanation robustness. Models are trained with Gradient
x Input and tested on different explanation methods.All models are trained on CIFAR10. Even if
the interpretation methods during training and testing are different, comparing the training results
of our proposed method with the AT training method of the corresponding configuration in Table 2,
we can still draw our previous conclusions, which also shows that our conclusions are transferable.

ConvNet ResNet18
Train:Gradient X Input, Test:Gradient
Method Expl at start(le-7) | Explatend | Explatstart(le-7) | Expl atend
SEPpos 3.054 1.901 9.555 5.903
SEPycq 15.093 9.513 55.526 33.176
Train:Gradient X Input, Test:Integrated_Grad
Method Expl at start(le-7) | Expl atend Expl at start Expl at end
SEPp.s 3.767 2.404 9.209 6.720
SEPypcqy 17.066 10.923 58.730 38.433

Table 10: The test results of the model trained using the TRADE training method, combined with
our approach. The findings indicate that when we apply our method to TRADE, an alternative
adversarial training method distinct from MAT, we can still deduce that classification robustness
and interpretation robustness are not inherently interconnected.

ConvNet
CIFAR10, TRADE Weight:5
Method Expl at start(1e-7) Expl at end Clean Acc(%) Adv Acc(%)
TRADE 18.278 11.470 64.5 33.98
TRADE + SEP_pos 3.878 2.285 63.84 33.85
TRADE + SEP_neg 19.781 12.424 64.37 34.07
ConvNet
CIFAR10, TRADE Weight:1
Method Expl at start(1e-7) Expl at end Clean Acc(%) Adv Acc(%)
TRADE 17.271 10.965 72.63 28.31
TRADE + SEP_pos 4.089 2.296 72.41 28.20
TRADE + SEP_neg 18.504 11.662 72.90 28.34
ResNet18
CIFAR10, TRADE Weight:5
Method Expl at start(le-7) Expl at end Clean Acc(%) Adv Acc(%)
TRADE 18.278 11.469 64.50 33.98
TRADE + SEP_pos 12.232 7.527 63.49 34.93
TRADE + SEP_neg 22.571 14.881 63.42 33.30

E.3 EXPERIMENTS ON IMAGENET

Here, we present our experiments on ImageNet with ResNetl8 in Table 11. We can find that the
conclusion of ImageNet experiments is the same as the main paper: Increasing or decreasing expla-
nation robustness will not necessarily influence the classification robustness.

Expl at start (le-7) Expl at end (le-7) Adv Acc (%)
Normal 114.70 63.52 0.00
AT 1281.71 742.43 19.36
SEPpos 287.64 156.16 17.63
SEPpcq 1427.33 905.25 17.44

Table 11: Experiments for ImageNet on ResNet18. The results are aligned with the conclusion made
in the main paper.

E.4 MORE EXPERIMENTS ON DIFFERENT EXPLANATION METHODS

We provide more results for FashionMnist and TinyImageNet on ConvNet and ResNet using Guide
Propagation as the explanation method in Table 15. We also provide the experimental results for
DeepLift and Integrated Gradients in Table 12. The results show a similar conclusion in the main
text, where it is possible to influence the explanation robustness without changing adversarial robust-
ness, which demonstrates that our conclusion works in general for different explanation methods.
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Table 12: Performance of using DeepLift and Intergrated Gradients as explanation methods with
ConvNet. Higher explanation loss at end indicates better explanation robustness, while higher ad-
versarial accuracy denotes better classification robustness. The best and worst performances in
explanation robustness and classification robustness are highlighted. Under various explanation
methods, SEP,, shows a lower explanation loss compared to SEP,.,, with similar adversarial
accuracy.

DeepLift Integrated Gradients
MNIST

Method Explat Start (10~7) | ExplatEnd | CleanAcc(%) | AdvAcc(%) | ExplatStart | ExplatEnd | Clean Acc(%) | Adv Acc (%)
MAT 369.153 294.053 99.00 89.92 239.650 224.745 99.00 89.92
SEPpos 82.959 57.408 98.93 95.97 76.284 50.603 98.42 93.19
SEPpeq 1101.038 896.157 98.97 96.16 778.663 534.113 98.68 92.76

FMNIST
Method Expl at Start (10’7) Expl at End Clean Acc(%) Adv Acc(%) Expl at Start Expl at End Clean Acc(%) Adv Acc (%)
MAT 386.377 274.130 62.85 73.98 237.727 234.109 62.85 73.98
SEPpos 33.824 21.429 60.75 65.52 21.425 16.048 60.85 72.05
SEPpcqy 4739.769 3153.331 60.62 70.05 3624.231 2748.976 62.92 70.36

CIFAR10
Method Expl at Start (10*7) Explat End | Clean Acc(%) Adv Acc(%) | ExplatStart | ExplatEnd | Clean Acc(%) Adv Acc(%)
MAT 18.137 11.562 64.85 35.11 16.887 14.007 64.85 3511
SEPpos 2.593 1.273 65.76 35.38 3.696 2.523 60.19 32.33
SEPpcqy 21.329 13.819 64.20 3491 19.568 14.803 60.86 3243

CIFAR100
Method Expl at Start (10*7) Expl at End Clean Acc(%) Adv Acc(%) Expl at Start Expl at End Clean Acc(%) Adv Acc(%)
MAT 19.683 12.766 36.40 17.35 16.754 10.779 36.40 17.35
SEPpos 14.208 9.201 39.10 18.23 5.320 3.218 34.73 16.74
SEPyey 20.389 13.694 39.78 18.32 17.011 11.356 35.10 16.60

E.5 MORE PARAMETER SENSITIVITY STUDIES

Training Epochs We conducted experiments on the ConvNet network using the CIFAR10 dataset
to show that our chosen training epoch is reasonable. The results, as presented in Table 13, indicate
that the model’s performance undergoes only marginal changes after 25 rounds for ConvNet, despite
the epoch count continuing to increase. Choosing 25 epochs does not hurt the reliability of our
argument. Besides, the results also support our conclusion. With the increase of training epochs, the
classification robustness still increases while the explanation robustness actually decreases.

Table 13: The test results of ConvNet network at different training epochs on the CIFAR10 data
set.The findings indicate that as we increase the number of training epochs from 25, there is only
marginal improvement in the model’s performance for ConvNet. Therefore, we have decided to
select 25 epochs as the final number of training epochs for all our models. This choice will not
impact our final conclusions, while also allowing for faster training speed.

ConvNet, CIFAR10

Training Epoch Expl at start(le-7) Expl at end Clean Acc(%) Adv Acc (%)
25 4.388 1.605 64.94 35.25
50 3.885 1.431 65.69 35.94
75 3.671 1.378 66.33 36.27
100 3.557 1.339 66.74 36.50

Table 14: The results of ResNet18 with different training epochs on CIFAR10. The results show
that with increasing training epochs, the accuracy of ResNet18 on CIFAR10 keeps increasing while
our conclusion remains the same.

Training Epochs 70
Method Expl at start(le-7) Expl at end Clean Acc(%) Adv Acc(%)
MAT 33.620 24.310 68.16 3943
MAT + SEP_pos 11.594 9.604 68.67 39.58
Training Epoch 100
Method Expl at start(le-7) Expl at end Clean Acc(%) Adv Acc(%)
MAT 34.706 25.179 71.31 40.55
MAT + SEP_pos 9.682 8.294 71.18 40.43
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Table 15: Performance of using Guide Propagation in the training phase with Fashion-MNIST and
TinyImageNet. Higher explanation loss at end indicates better explanation robustness, while higher
adversarial accuracy denotes better classification robustness. The best and worst performances in
explanation robustness and classification robustness are highlighted. Under various explanation
methods, SEP,,s shows a lower explanation loss compared to SE P4, with similar adversarial
accuracy.

ConvNet ResNet18
FMNIST
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc (%) Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 30.932 18.451 92.79 0.00 66.131 29.110 91.57 0.00
MAT 97.726 72.402 62.85 73.98 608.486 467.815 79.22 67.10
SEPpos 48.368 34.672 78.46 67.28 97.703 78.354 77.55 62.09
SEPpey 542.540 425.948 65.07 77.17 4219.351 3839.408 80.11 72.21
TinyImageNet
Method Expl at Start (10’7) Expl at End Clean Acc (%) Adv Acc Expl at Start Expl at End Clean Acc (%) Adv Acc (%)
Normal 0.559 0.281 28.71 0.00 0.617 0.216 28.34 0.00
MAT 1.356 0.787 25.13 9.55 2.577 1.411 26.33 10.81
SEPpos 0.983 0.625 25.16 5.97 1.767 1.226 28 68 11.47
SEPpecy 1.566 0.977 24.89 4.99 3.403 1.761 26.79 11.23
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