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Abstract

In this work, we consider the optimization formulation for symmetric tensor de-
composition recently introduced in the Subspace Power Method (SPM) of Kileel
and Pereira. Unlike popular alternative functionals for tensor decomposition, the
SPM objective function has the desirable properties that its maximal value is known
in advance, and its global optima are exactly the rank-1 components of the tensor
when the input is sufficiently low-rank. We analyze the non-convex optimization
landscape associated with the SPM objective. Our analysis accounts for working
with noisy tensors. We derive quantitative bounds such that any second-order
critical point with SPM objective value exceeding the bound must equal a tensor
component in the noiseless case, and must approximate a tensor component in the
noisy case. For decomposing tensors of size D×m, we obtain a near-global guar-
antee up to rank õ(D⌊m/2⌋) under a random tensor model, and a global guarantee
up to rank O(D) assuming deterministic frame conditions. This implies that SPM
with suitable initialization is a provable, efficient, robust algorithm for low-rank
symmetric tensor decomposition. We conclude with numerics that show a practical
preferability for using the SPM functional over a more established counterpart.

1 Introduction

From applied and computational mathematics [27] to machine learning [36] and multivariate statistics
[29] to many-body quantum systems [41], high-dimensional data sets arise that are naturally organized
into higher-order arrays. Frequently these arrays, known as hypermatrices or tensors, are decomposed
into low-rank representations. In particular, the real symmetric CANDECOMP/PARAFAC (CP)
decomposition [13] is often appropriate:

T =

K∑
i=1

λia
⊗m
i . (1)

Here, we are given T , a real symmetric tensor of size D×m. The goal is to expand T as a sum of K
rank-1 terms, coming from scalar/vector pairs (λi, ai) ∈ R× RD. Importantly, the number of terms
K must be minimal possible for the given tensor, in which case K is called the rank of the input T .

When m > 2 and K = O(Dm), CP decompositions are generically unique (up to permutation and
scaling) by fundamental results in algebraic geometry [10]. An actionable interpretation [3] is that
CP decomposition infers well-defined latent variables {(λi, ai) : i ∈ [K]} encoded by T . Indeed in
learning applications, where symmetric tensors are formed from statistical moments (higher-order
covariances) or multivariate derivatives (higher-order Hessians), CP decomposition has enabled
parameter estimation for mixtures of Gaussians [20, 35], generalized linear models [34], shallow
neural networks [19, 24, 42], deeper networks [17, 18, 30], hidden Markov models [5], among others.

Unfortunately, CP decomposition is NP-hard in the worst case [23]. In fact, it is believed to possess a
computational-to-statistical gap [7], with efficient algorithms expected to exist for random tensors
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Figure 1: Illustration of PM-P objective (left) and SPM-P objective (right) for D = K = 2 and
m = 4, where S1 is mapped to (−π, π]. We set a1 = (1, 0), a2 = (cos θ0, sin θ0) for different values
of θ0. If a1 and a2 are not orthogonal (θ0 ̸= π

2 ), then a1 and a2 do not coincide with global or
local maximizers of PM-P. Too much correlation (θ0 ≤ π

3 ) leads to a collapsing of the two distinct
maxima into one isolated maximum for PM-P. On the other hand, SPM-P is not affected in this way
by correlation: local maxima coincide with global maxima which are the tensor components a1, a2.

only up to rank K = O(Dm/2). For this reason, and due to its non-convexity and high-dimensionality,
CP decomposition has served theoretically as a key testing ground for better understanding mysteries
of non-convex optimization landscapes. To date, this focus has been on the non-convex program

max
x∈RD:∥x∥2=1

〈
T, x⊗m

〉
. (PM-P)

We label the problem PM-P, standing for Power Method Program, because projected gradient ascent
applied to PM-P corresponds to the Shifted Symmetric Higher-Order Power Method of Kolda and
Mayo [28]. Important analyses of PM-P include Ge and Ma’s [21] and the earlier [4] on overcomplete
tensors, as well as [33] for low-rank tensors, and [31] which studied PM-P assuming the tensor
components form a unit-norm tight frame with low incoherence.

In this paper, we perform an analysis of the non-convex optimization landscape associated with the
Subspace Power Method (SPM) for computing symmetric tensor decompositions. The first and third
authors introduced SPM in [25]. This method is based on the following non-convex program:

max
x∈RD:∥x∥2=1

FA(x), (SPM-P)

where FA(x) := ∥PA(x
⊗n)∥2F , n := ⌈m/2⌉, A := Span{a⊗n

1 , . . . , a⊗n
K },

and PA : (RD)⊗n → A is orthogonal projection with respect to Frobenius inner product.

Note that SPM-P is a particular polynomial optimization problem of degree 2n on the unit sphere.

There are at least two motivating reasons to study the optimization landscape of SPM-P. Firstly,
it was observed in numerical experiments in [25] that the SPM algorithm is competitive within its
applicable rank range of K = O(D⌊m/2⌋). It gave a roughly one-order of magnitude speed-up over
the decomposition methods in [26] as implemented in Tensorlab [40], while matching the numerical
stability of FOOBI [14]. Thus SPM is a practical algorithm. Secondly, from a theory standpoint, the
program SPM-P has certain desirable properties which PM-P lacks. Specifically for an input tensor
T =

∑K
i=1 λia

⊗m
i with rank K ≲ D⌊m/2⌋ and Zariski-generic1 {(λi, ai)}Ki=1, SPM-P is such that:

• Each component ±ai is exactly a global maximum, and there are no other global maxima.
• The globally maximal value is known in advance to be exactly 1. So the objective value

gives a certificate for global optimality, and non-global critical points can be discarded.

These properties were shown for SPM-P in [25], but both fail for PM-P (see Figure 1). Thus, SPM-P
is more relevant theoretically than PM-P as a test problem for non-convex CP decomposition.

Prior theory. In [25], it is proven that projected gradient ascent applied to SPM-P, initialized at
almost all starting points with a constant explicitly-bounded step size, must converge to a second-
order critical point of SPM-P at a power rate or faster. However this left open the possible existence

1Zariski-generic means that the failure set can be described by the vanishing non-zero polynomials [22], so
in particular, has Lebesgue measure 0.
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of spurious second-order critical points, i.e., second-order points with reasonably high objective
value that are not global maxima (unequal to, and possibly distant from, each CP component ±ai).
Such critical points could pose trouble for the successful optimization of SPM-P. Furthermore all
theory for SPM-P in [25] was restricted to the clean case: that is, when the input tensor T is exactly
of a sufficiently low rank K. The analysis for PM-P in [21, 31, 33] also assume noiseless inputs.
However, tensors arising in practice are invariably noisy due, e.g., to sampling or measurement errors.

Main contributions. We perform a landscape analysis of SPM-P by characterizing all second-order
critical points, using suitable assumptions on a1, . . . , aK . Under deterministic frame conditions on
a1, . . . aK , which are satisfied by mutually incoherent vectors, near-orthonormal systems, and random
ensembles of size K = O(D), Theorem 7 shows that all second-order critical points of SPM-P
coincide exactly with±ai. Theorem 16 shows the same result for overcomplete random ensembles of
size K = õ(D⌊m/2⌋), however requiring an additional superlevel set condition to exclude maximizers
with vanishing objective values. Both results extend to noisy tensor decomposition, where SPM is
applied to a perturbation T̂ ≈ T . In this setting, second-order critical points with objective values
exceeding O(∥T̂ − T∥F ) are O(∥T̂ − T∥F )-near to one of the components ±ai. We also show in
Lemma 9 that spurious local maximizers (with lower objective values) do exist in the noisy case.

The results imply a clear separation of the functional landscape between near-global maximizers,
with objective values close to 1, and spurious local maximizers with small objective value. Hence,
the SPM objective can be used to validate a final iterate of projected gradient ascent in the noisy case.
In Theorem 18, we combine our landscape analysis with bounds on error propagation incurred during
SPM’s deflation steps. This gives guarantees for end-to-end tensor decomposition using SPM.

Lastly, we expose the relation between PM-P and SPM-P. Specifically, SPM-P can be expressed
as PM-P with the appropriate insertion of the inverse of the Grammian (Gn)ij := ⟨ai, aj⟩n. The
resulting de-biasing effect on the local maximizers with respect to the components ±ai (cf. Figure 1)
is responsible for many advantages of SPM-P. Along the way, we state a conjecture about the minimal
eigenvalue of Gn when ai are i.i.d. uniform on the sphere, which may be of independent interest.

2 Notation

Vectors and matrices. When x is a vector, ∥x∥p is the ℓp-norm (p ∈ R≥1∪{∞}). For x, y ∈ RD, the
entrywise (or Hadamard) product is x⊙y ∈ RD, and the entrywise power is x⊙s := x⊙. . .⊙x ∈ RD

(s ∈ N). When M is a matrix, ∥M∥2 is the spectral norm. If M is real symmetric, µj(M) is the
eigenvalue of M that is the j-th largest in absolute value. We denote the identity by IdD ∈ RD×D.

Tensors. A real tensor of length D and order m is an array of size D ×D × . . .×D (m times) of
real numbers. Write T m

D :=
(
RD

)⊗m ∼= RDm

for the space of tensors of size D×m. Meanwhile,
Sym(T m

D ) ⊆ T m
D is the subspace of symmetric tensors (i.e., tensors unchanged by any permutation

of indices). The Frobenius inner product and norm are denoted by ⟨·, ·⟩ and ∥·∥F , respectively.
Given any linear subspace of tensors A ⊆ T m

D , let PA : T m
D → A denote the orthogonal pro-

jector onto A with respect to ⟨·, ·⟩. In the case A = Sym(T m
D ), the projector PSym(T m

D ) is the
symmetrization operator, Sym : T m

D → Sym(T m
D ). Given T ∈ T m1

D and S ∈ T m2

D , the tensor
(or outer) product is T ⊗ S ∈ T m1+m2

D , defined by (T ⊗ S)i1,...,im1+m2
:= Ti1,...,im1

Sim1+1,...,im2
.

For T ∈ T m
D and s ∈ N, the tensor power is T⊗s := T ⊗ . . . ⊗ T ∈ T sm

D . For T ∈ T m1

D ,
S ∈ T m2

D with m1 ≥ m2, the contraction T · S ∈ T m1−m2

D is defined by (T · S)i1,...,im1−m2
:=∑

j1,...,jm2
Ti1,...,im1−m2

,j1,...,jm2
Sj1,...,jm2

. Let Reshape(T, [d1, . . . , dℓ]) be the function that re-
shapes the tensor T to have dimensions d1, . . . , dℓ, as in corresponding Matlab/NumPy commands.

Other. The unit sphere in RD is SD−1, and Unif(SD−1) is the associated uniform probability
distribution. Given a function f : RD → R, the Euclidean gradient and Hessian matrix at x ∈ RD

are ∇f(x) ∈ RD and ∇2f(x) ∈ Sym(T 2
D). The Riemannian gradient and Hessian with respect to

SD−1 at x ∈ SD−1 are ∇SD−1f(x) and ∇2
SD−1f(x) (see [1]). Write Span for linear span, [K] :=

{1, . . . ,K}, and |A| for the cardinality of a finite set A. Lastly, we use asymptotic notation freely.
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3 Symmetric tensor decomposition via Subspace Power Method

In this section, we outline the tensor decomposition method SPM of [25], and provide basic insights
on the program SPM-P. Throughout we assume that m ≥ 3 is an integer and define n := ⌈m/2⌉.

SPM algorithm. The input is a tensor T̂ ∈ Sym(T m
D ), with the promise that T̂ ≈ T =

∑K
i=1 λia

⊗m
i

for {(λi, ai)}Ki=1 Zariski-generic and K ≤
(
D+n−1

n

)
−D (if m is even) and K ≤ Dn (if m is odd).

As a first step, SPM obtains the orthogonal projector PÂ : T m
D → Â that projects onto the column

span of Reshape(T̂ , [Dn, Dm−n]), by using matrix singular value decomposition. Provided that
T̂ ≈ T , the associated subspace approximation error Â ≈ A = span{a⊗n

1 , . . . , a⊗n
K } defined by

∆A :=
∥∥PA − PÂ

∥∥
F→F

= sup
T∈T n

D , ∥T∥F=1

∥∥PA(T )− PÂ(T )
∥∥
F
, (2)

can be bounded as follows. (Note that by [9, Lem. 2.3], we know ∆A ≤ 1 a priori.)
Lemma 1 (Error in subspace). Let m ≥ 3, n = ⌈m2 ⌉, T ∈ Sym(T m

D ) and assume that M :=
Reshape(T, [Dn, Dm−n]) has exactly K nonzero singular values σ1(M) ≥ . . . ≥ σK(M) > 0. Let
T̂ ∈ Sym(T m

D ), M̂ := Reshape(T, [Dn, Dm−n]). Assume ∆M := ∥M − M̂∥2 < σK(M). Then∥∥∥PIm(M) − PImK(M̂)

∥∥∥
2
≤ ∆M

σK(M)−∆M
, (3)

where Im(M) ⊆ RDn

denotes the image of M and ImK(M̂) ⊆ RDn

denotes the subspace
spanned by the K leading left singular vectors of M̂ . In particular, if T =

∑K
i=1 λia

⊗2n
i ,

A = span{a⊗n
i : i ∈ [K]}, dim(A) = K, and Â is the subspace spanned by K leading tensorized

left singular vectors of M̂ , the right-hand side of (3) upper-bounds ∆A.

Remark 2. If T =
∑K

i=1 λia
⊗m
i , one coefficient λi is small and the vectors {ai : i ∈ [K]} are

not too correlated, then the flattened tensor Reshape(T, [Dn, Dm−n]) has a small eigenvalue. This
makes estimating the corresponding eigenvector sensitive to noise. See Remark S.41 in the appendix.

Given Â, SPM seeks one tensor component ai by solving the noisy variant of SPM-P defined by

max
x∈SD−1

FÂ(x), where FÂ(x) :=
∥∥PÂ(x

⊗n)
∥∥2
F
. (nSPM-P)

Starting from a random initial point x0 ∼ Unif(SD−1), the projected gradient ascent iteration

x←
x+ γPÂ(x

⊗n) · x⊗(n−1)

∥x+ γPÂ(x
⊗n) · x⊗(n−1)∥2

, (4)

with a constant step-size γ, is guaranteed to converge to a second-order critical point of nSPM-P
almost surely by [25]. Here we require that the step-size γ is less than an explicit upper bound given
in [25]. Denoting by âi the final iterate obtained by SPM, we accept the candidate approximate tensor
component âi if FÂ(âi) is large enough; otherwise we draw a new starting point x0 and re-run (4).

Next given âi, SPM evaluates a deflation formula based on Wedderburn rank reduction [12] from
matrix algebra to compute the corresponding weight λ̂i. Then, we update the tensor T̂ ← T̂ − λ̂iâ

⊗m
i .

To finish the tensor decomposition, SPM performs the projected gradient ascent and deflation steps
K times to compute all of the tensor components and weights {(λ̂i, âi)}Ki=1.

Preparatory material about nSPM-P. The goal of this paper is to show that second-order critical
points of nSPM-P with reasonable function value must be near the global maximizers±a1, . . . ,±aK
of SPM-P, under suitable incoherence assumptions on the rank-one components a1, . . . , aK . Natu-
rally, the optimality conditions for nSPM-P play an important part in this analysis.
Proposition 3 (Optimality conditions). Let x ∈ SD−1 be first and second-order critical for nSPM-P.
Then for each z ∈ SD−1 with z ⊥ x, we have

PÂ(x
n) · xn−1 = FÂ(x)x, (5)

FÂ(x) ≥ n∥PÂ(x
n−1z)∥2F + (n− 1)⟨PÂ(x

n), xn−2z2⟩. (6)

Furthermore, for any y ∈ SD−1 we have

FÂ(x) ≥ n
∥∥PÂ(x

n−1y)
∥∥2
F
+ (n− 1)⟨PÂ(x

n), xn−2y2⟩ − 2(n− 1)FÂ(x)⟨x, y⟩
2. (7)
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In the analysis later, we make frequent use of expressing the objective FA(x) using the Gram matrix

Gn ∈ Sym(T 2
D) defined by (Gn)ij := ⟨a⊗n

i , a⊗n
j ⟩ = ⟨ai, aj⟩

n. (8)

Under linear independence of the tensors a⊗n
1 , . . . , a⊗n

K , which is implied by our assumptions made
later, the inverse G−1

n exists and the noiseless program SPM-P can be expressed as follows.

Lemma 4. Let A := [a1| . . . |aK ] ∈ RD×K and {a⊗n
i : i ∈ [K]} be linearly independent. We have

FA(x) =
∥∥PA(x

⊗n)
∥∥2
F
=

(
(A⊤x)⊙n

)⊤
G−1

n

(
(A⊤x)⊙n

)
. (9)

Lemma 4 exposes the relation between SPM-P and PM-P. While PM-P can be rewritten ⟨T, x⊗m⟩ =
⟨(A⊤x)⊙n, (A⊤x)⊙n⟩ if m is even, SPM-P takes into account correlations among the tensors
a⊗n
1 , . . . , a⊗n

K and inserts the Grammian G−1
n into (9). Consequently, correlations among the tensor

components are considered in SPM-P, without any a priori knowledge of the tensors a⊗n
1 , . . . , a⊗n

K .

In the special case of orthonormal systems, or more generally systems that resemble equiangular tight
frames [16, 37], the SPM-P and PM-P objectives coincide up to shift and scaling.

Lemma 5. Assume there exist ρ ∈ (−1, 1) \ { −1
K−1} and M ∈ R such that ⟨ai, aj⟩n = ρ for all

i ̸= j and
∑

i∈[K]⟨x, ai⟩n = M for all x ∈ SD−1. Denote A = [a1| . . . |aK ] ∈ RD×K . Then

FA(x) = (1− ρ)−1∥A⊤x∥2n2n −
(
(1− ρ)2 +Kρ(1− ρ)

)−1
ρM2. (10)

4 Main results

In this section, we present the main results about local maximizers of the nSPM-P program. Section
4.1 is tailored to low-rank tensor models with K = O(D) components that satisfy certain determinis-
tic frame conditions. Section 4.2 then considers the overcomplete case K = õ(D⌊m/2⌋) in an average
case scenario, where a1, . . . , aK are modeled as independent copies of an isotropic random vector.

4.1 Low-rank tensors under deterministic frame conditions

Motivated by frame constants in frame theory [11], we measure the incoherence of the ensemble
a1, . . . , aK by scalars ρs ∈ R≥0, which are defined via

ρs := sup
x∈SD−1

K∑
i=1

|⟨x, ai⟩|s − 1. (11)

They satisfy the order relation ρs ≤ ρs′ for s′ ≤ s, due to ∥ai∥2 = 1, and can be related to extremal
eigenvalues of Grammians Gs and G⌊s/2⌋ as shown in the following result.

Lemma 6. Let {ai : i ∈ [K]} ⊆ SD−1 and (Gs)ij := ⟨ai, aj⟩s for s ∈ N. Then

1− ρs ≤ µK(Gs) ≤ µ1(Gs) ≤ 1 + ρs ≤ µ1(G⌊s/2⌋). (12)

The characterization in Lemma 6 allows to compute bounds for ρs for low-rank tensors with mutually
incoherent components or rank-O(D) tensor with random components. We provide details on this in
Remark 8 below, but first state the main guarantee about local maximizers using ρ2 and ρn.

Theorem 7 (Main deterministic result). Let {ai : i ∈ [K]} ⊆ SD−1 and A = Span{ani : i ∈ [K]}.
Let Â ⊆ Sym(T n

D ) be a perturbation of A with ∆A = ∥PA − PÂ∥F→F . Let

τ :=
1

6
− n2ρ2 − (n2 + n)ρn and ∆0 :=

2τ

2 + 4τ + 3n2
. (13)

Then, if ∆A < ∆0, the program nSPM-P has exactly 2K second-order critical points in the
superlevel set where

FÂ(x) ≥
2 + 2τ + 3n2

2τ
∆A. (14)
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Each of these critical points is a strict local maximizer for FÂ. Further for each such point x∗, there
exists unique i ∈ [K] and s ∈ {−1, 1} such that

∥x∗ − sai∥22 ≤
2∆A

n
. (15)

In the noiseless case (∆A = 0), if τ ≥ 0 then there are precisely 2K second-order critical points of
SPM-P with positive functional value, and they are the global maximizers sai (i ∈ [K], s ∈ {−1, 1}).
Remark 8. Using Lemma 6, we identify two situations where ρ2 and ρn can be bounded from above.

1. Mutually incoherent ensembles. Let a1, . . . , aK have mutual incoherence ρ :=
max
i ̸=j
|⟨ai, aj⟩|. Using Gershgorin’s circle theorem, we obtain

ρs ≤ µ1(G⌊s/2⌋)− 1 ≤ max
i∈[K]

∑
j ̸=i

|⟨ai, aj⟩|⌊s/2⌋ ≤ (K − 1)ρ⌊s/2⌋ for any s ∈ N≥2,

which implies that the conditions of Theorem 7 are saisfied if Kρ is sufficiently small. This
setting is comparable to the analysis for PM-P in [33]. Moreover, if K = D and a1, . . . , aK
are mutually orthogonal, then ρs = 0 for each s ≥ 2. Therefore Theorem 7 holds with
τ = 1/6 for orthogonally decomposable tensors [6].

2. Low-rank random ensembles. Let a1, . . . , aK be independent copies of an isotropic unit-
norm random vector a with sub-Gaussian norm O(1/

√
D) (e.g., ai ∼ Unif(SD−1)). With

high probability, the ensemble can achieve arbitrarily small ρ2, provided that K ≤ CD
for a sufficiently small constant C > 0. The proof of this fact relies on A = [a1| . . . |aK ]
satisfying, with high probability, the so-called (K, δ) restricted isometry property [38,
Thm. 5.65] as defined in Definition 10 in the next section. We note that despite requiring
conditions milder than those in the unit-norm tight frame analysis for PM-P in [31], we
achieve a comparable scaling of K = O(D).

In the noiseless case where ∆A = 0, Theorem 7 shows that all local maximizers coincide with
global maximizers ±a1, . . . ,±aK , provided the tensor components are sufficiently incoherent to
ensure τ ≥ 0. In the noisy case, all local maximizers with objective values FÂ(x) ≥ C(n, τ)∆A
are O(∆A)-close to the global optimizers of the noiseless objective FA, where the constant C(n, τ)
increases as the incoherence of the vectors a1, . . . , aK shrinks. Unfortunately, the presence of
spurious local maximizers of FÂ with small objective values cannot be avoided under a deterministic
noise model, as the next result shows.
Lemma 9. Let δ ∈ (0, 1), a ∈ SD−1 and A = span{a⊗n}. Then there exists a subspace Â ⊆
Sym(T n

D ) with dim(Â) = 1 and ∥PA − PÂ∥F→F = δ such that nSPM-P possesses a strict local
maximizer of objective value exactly δ2.

4.2 Average case analysis of overcomplete tensors

The overcomplete case with K = õ(D⌊m/2⌋) falls outside the range of Theorem 7, because τ in
(13) becomes negative when K ≫ D. Instead, our analysis for the overcomplete case relies on A =
[a1| . . . |aK ] ∈ RD×K obeying the (p, δ)-restricted isometry property (RIP) for p = O(D/ log(K)).
Definition 10. Let A ∈ RD×K , 1 ≤ p ≤ K be an integer, and δ ∈ (0, 1). We say that A is (p, δ)-RIP
if every D × p submatrix Ap of A satisfies ∥A⊤

p Ap − Idp∥2 ≤ δ.

A consequence of the RIP, which is particularly useful in the analysis of overcomplete tensor models,
is that the correlation coefficients {⟨ai, x⟩ : i ∈ [K]} can naturally be split into two groups.
Lemma 11 (RIP-induce partitioning of correlation coefficients). Suppose that A = [a1| . . . |aK ] ∈
RD×K satisfies the (p, δ)-RIP for p = ⌈cδD/ log(K)⌉. Let c̃δ := (1+ δ)/cδ . Then for all x ∈ SD−1

there is a subset of indices I(x) ⊆ [K] with cardinality p such that

1− δ ≤
∑

i∈I(x)

⟨ai, x⟩2 ≤ 1 + δ and ⟨ai, x⟩2 ≤ c̃δ
log(K)

D
for i ̸∈ I(x), (16)

Let us now collect all assumptions needed to analyze the overcomplete case.
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Figure 2: The average smallest eigenvalue of the Grammian (Gn)ij = ⟨ai, aj⟩n for a random
ensemble a1, . . . , aK consisting of independent copies of the random vector a ∼ Unif(SD−1), over
100 runs per K,D, n. From left to right, we consider different tensor orders n = 2, 3, 4. As long as
K ≤ C(n)Dn for some constant C(n) depending only on n (red line), inverting the Grammian is
well-posed and the smallest eigenvalue of Gn is bounded from below, in accord with Conjecture 15.

Definition 12. Let A := [a1| . . . |aK ]. We require the following assumptions:

A1 There exists cδ > 0, depending only on δ, such that A is (⌈cδD/ log(K)⌉, δ)-RIP.

A2 There exists c1 > 0, independent of K,D, such that maxi,j:i ̸=j⟨ai, aj⟩2 ≤ c1 log(K)/D.

A3 There exists c2 > 0, independent of K,D, such that
∥∥G−1

n

∥∥
2
≤ c2.

To the best of our knowledge, there are no known deterministically constructed systems of size
K = õ(D⌊m/2⌋) which satisfy A1 - A3 for small δ ≪ 1 and constants cδ, c1, c2 that do not depend
on K,D. However, by modeling components via a sufficiently-spread random vector, i.e., by
considering an average case scenario with ai ∼ Unif(SD−1), they hold with high probability.
Proposition 13 (A1 - A3 for random ensembles). Let a ∼ Unif(SD−1) and assume a1, . . . , aK are
K independent copies of a, where log(K) = o(D). Fix an arbitrary constant δ ∈ (0, 1). There exist
constants C > 0 and D0 ∈ N depending only on δ such that for all D ≥ D0, and with probability at
least 1−K−1 − 2 exp(−Cδ2D), conditions A1 and A2 (with c1 ≤ C) hold. Furthermore, if n = 2

and K = o(D2), A3 holds with probability 1− C(eD/
√
K)−C

√
K for c2 ≤ C.

Remark 14 (A3 when n > 2). Following [2, 15], we give a self-contained proof for A3 when n = 2
in the appendix. We are currently not able to extend the proof to n > 2, because some technical tools
such as the Hanson-Wright inequality [32] and an extension of [2, Thm. 3.3], which ensures the RIP
for matrices whose columns have sub-exponential tails, have not yet been fully developed for random
vectors with dependent entries and heavier tails (so-called α-sub-exponential tails or sub-Weibull
tails). However we strongly believe that A3 holds for n > 2 and K = o(Dn). For now, we formulate
this as a conjecture, supplemented with numerical evidence presented in Figure 2. We also add that
the conjecture, once proven, would complement recent advances on the well-posedness of random
tensors with fewer statistical dependencies among the components [8, 39].

Conjecture 15 (Grammians of independent symmetric rank-one tensors). Let a1, . . . , aK be inde-
pendent copies of the random vector a ∼ Unif(SD−1) and fix ϵ > 0 arbitrarily. Then there exists
some constant κn > 0 and an increasing function γn : (0, κn)→ (0, 1), both depending only on n,
such that γn(κ)→ 1 as κ→ 0, and if K ≤ κDn for some κ < κn we have

P(
∥∥G−1

n

∥∥
2
≥ γn(κ)− ϵ)→ 1 as D →∞. (17)

In particular, if K = o(Dn) then ∥G−1
n ∥2 → 1 as D →∞.

We now present our main theorem about local maximizers of nSPM-P in the overcomplete case.
Theorem 16 (Main random overcomplete result). Let K,D ∈ N, define εK := K logn(K)/Dn,
and suppose that limD→∞ εK = 0. Assume a1, . . . , aK ∈ RD satisfy A1 - A3 for some δ, c1, c2 > 0.
Then there exist δ0, depending only on n, c1 and c2, and D0,∆0, C, which depend additionally on cδ ,
such that if δ < δ0, D > D0, and ∆A ≤ ∆0, the program nSPM-P has exactly 2K second-order
critical points in the superlevel set{

x ∈ SD−1 : FÂ(x) ≥ CεK + 5∆A
}
. (18)
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Figure 3: The empirical average of FA(x) over 10000 trials of a random ensemble a1, . . . , aK , x
consisting of K + 1 independent copies of the random vector a ∼ Unif(SD−1) for different scalings
of K and D. The shaded areas indicate plus/minus one empirical standard deviation.

Each of these critical points is a strict local maximizer for FÂ. Further for each such point x∗, there
exists unique i ∈ [K] and s ∈ {−1, 1} such that

∥x∗ − sai∥22 ≤
2∆A

n
. (19)

In particular, in the noiseless case (∆A = 0), the second-order critical points in the superlevel set
(18) are exactly the global maximizers sai (i ∈ [K], s ∈ {−1, 1}).

By Theorem 16, all non-degenerate local maximizers in the superlevel set (18) are close to global
maximizers of the noiseless objective FA. In the noiseless case ∆A = 0, they coincide with global
maximizers and the right hand side in (18) tends to 0 as D →∞. Hence, we have a clear separation
between the global maximizers ±a1, . . . ,±aK and degenerate local maximizers with vanishing ob-
jective value, so that the objective value acts as a certificate for the validity of an identified maximizer.

Theorem 16 is not a global guarantee because a random starting point x0 ∼ Unif(SD−1), used for
starting the projected gradient ascent iteration (4), is, with high probability, not contained in (18).

Remark 17 (Objective value at random initialization). For a random sample x0 ∼ Unif(SD−1) in
the clean case ∆A = 0, we empirically observe the objective value FA(x0) ≈ CK/Dn as illustrated
in Figure 3. As such, we conjecture Ex0,a1,...,ak∼Unif(SD−1)[FA(x0)] = O( K

Dn ). Comparing the
objective to the level set condition in Theorem 16,{

x ∈ SD−1 : FA(x) ≥ C
K logn(K)

Dn
+ 5∆A

}
, (20)

a random starting point x0 therefore falls short of satisfying (20) by a logn(K)-factor only. In this
sense, Theorem 16 furnishes a “near-global" guarantee for nSPM-P in the random overcomplete case.

4.3 End-to-end tensor decomposition

By combining our landscape analyses with bounds for error propagation during deflation, we obtain
a theorem about end-to-end tensor decomposition using the SPM algorithm. That is, under the
conditions of Theorem 7 or 16, a tweaking of SPM (Algorithm 1 in the appendix) recovers the
entire CP decomposition exactly in the noiseless case (T̂ = T ). In the noisy regime, it obtains an
approximate CP decomposition, and we bound the error in terms of ∆A. Due to space constraints,
we leave precise descriptions of Algorithm 1 and our deflation bounds to the supplementary material.

Theorem 18 (Main result on end-to-end tensor decomposition). Let T =
∑K

i=1 λia
⊗m
i ∈ Sym(T m

D )
and M := Reshape(T, [Dn, Dm−n]). Let σ1(M) ≥ . . . ≥ σK(M) be the singular values of M ,
and assume σK(M) > 0. For other tensor T̂ ∈ Sym(T m

D ), let M̂ = Reshape(T̂ , [Dn, Dm−n]),
assume ∆M := ∥M − M̂∥2 < 1

2σK(M) and let ∆̂A = ∆M

σK(M)−∆M
. Suppose that T satisfies the

assumptions of either Theorem 7 or Theorem 16, define ∆0 as in the corresponding theorem statement
and let ℓ(∆A) be the corresponding level set threshold.2 Then there exist constants C1, C2, not
depending on T̂ or ∆M , such that if we define ∆̃A := C1∆̂A+C2

√
∆̂A the following holds. Assume

2In both theorem statements, the level set threshold depends on ∆A.
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(a) Recovering individual tensor components ai using PM-P and nSPM-P in the noiseless case;

(b) PM-P and nSPM-P applied to
noisy tensors;

(c) Error of individual recovery with nSPM-P after k deflations.

Figure 4: Numerical results for symmetric tensor decomposition using PM-P versus nSPM-P. The
shaded areas indicate plus/minus one standard deviation. The experiments are described in Section 5.

∆̃A < ∆0 and when we apply Algorithm 1 to T̂ each run of projected gradient ascent converges to a
point with functional value at least ℓ(∆̃A). Then, letting (âi, λ̂i)i∈[K] be the output of Algorithm 1
applied to T̂ , there exist a permutation π ∈ Perm(K) and signs s1, . . . , sK ∈ {−1,+1} with

∥siaπ(i) − âi∥2 ≤

√
2∆̂A

n
and

∣∣∣∣ smi
λπ(i)

− 1

λ̂i

∣∣∣∣ ≤ 2
√
m/n

σK(M)

√
∆̂A +

4

σK(M)
∆̂A ∀ i ∈ [K].

In particular, in the noiseless case (∆M = 0), Algorithm 1 returns the exact CP decomposition of T .

We conclude that the Subspace Power Method, with an initialization scheme for nSPM-P that gives
x ∈ RD where FÂ(x) > ℓ(∆A), is a guaranteed algorithm for low-rank tensor decomposition.

5 Numerical experiments

Here we present numerical experiments that corroborate the theoretical findings of Section 4. We
illustrate that SPM identifies exact tensor components in the noiseless case (in contrast to PM), and
that SPM behaves robustly in noisy tensor decomposition. We use the implementation of SPM of the
first and third authors, available at https://github.com/joaompereira/SPM, which is licensed
under the MIT license. All of our experiments presented below may be conducted on a standard
laptop computer within a few hours. For further numerical experiments, we refer the reader to [25],
where SPM was tested in a variety of other scenarios, justifying it as a possible replacement for
state-of-the-art symmetric tensor decomposition methods such as FOOBI [14] or Tensorlab [40].

Global optimizers and noise robustness. In the first set of experiments, we are interested in the
recovery of individual tensor components ai for different D, K and m from noisy approximately low
rank tensors. With m = 2n as the tensor order, we create noiseless tensors with ai ∼ Unif(SD−1))
as the tensor components and λi =

√
Dm/K λ̃i as the tensor weights, where λ̃i ∼ Unif([1/2, 2]).

This way, the variance of each entry of the tensor is about 1. We construct noisy tensors T̂ ≈ T
by adding independent copies of ϵ ∼ N (0,m!σ2) to each entry of the tensor and then project onto
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Sym(T m
D ). The entries with all distint indices of the projected noise tensor have variance σ2; the

variance of the remaining entries is also a multiple of σ2 and the number of such entries is o(Dm).

After constructing the tensor, we sample 10 points from Unif(SD−1) as initializations for projected
gradient ascent applied to PM-P and nSPM-P. We iterate until convergence and record the distance
between the final iterate and the closest ±ai among the tensor components. Averages and standard
deviations (represented by shaded areas) over 1000 distances (10 distances per tensor, 100 tensors)
are depicted in Figures 4a and 4b. In Figure 4a, we use noiseless tensors with σ = 0, while in
Figure 4b σ ranges from 10−5 to 1, and the plots for 4th and 6th order tensors are superposed. We set
D = 20,K = 100 for the 4th order tensor (n = 2) and D = 10,K = 100 for the 6th order (n = 3).

Figure 4a illustrates that projected gradient ascent applied to nSPM-P always converges to the global
maxima in the noiseless case (up to numerical error), provided the scaling is K = O(D⌊m/2⌋) =
O(D2) and the constant adheres to the rank constraints pointed out in [25, Prop. 4.2]. This is in
agreement with Theorem 16, which shows local maxima with sufficiently large objective have to
coincide with global maximizers. In the noisy case, Figure 4b illustrates the robustness of nSPM-P,
giving an error of O(σ). In contrast to nSPM-P, the PM-P objective suffers from a large bias and
does not recover exact tensor components. The effect of the bias even dominates errors induced by
moderately-sized entrywise noise.

Deflation with SPM. In the second experiment, we recover complete tensors by using the deflation
procedure described in [25]. We are mostly interested in the noisy case, since deflation with exact
ai’s, as identified by nSPM-P in the noiseless case, does not induce any additional error.

We test 4th order tensors (n = 2) with D = 40,K = 200 and 6th order tensors (n = 3) with
D = 15,K = 200, vary the noise level σ, and construct random tensors as in the previous experiment.
Figure 4c plots the average error over 100 repetitions of successively recovered tensor components,
where the x-axis ranges from the first recovered component at 1 to the last component at index 300.
The figure illustrates that nSPM-P combined with modified deflation allows for recovering all tensor
components up to an error of O(σ). Surprisingly, we do not observe error propagation, despite the
fact that noisy recovered tensor components are being used within each deflation step.

6 Conclusion

We presented a quantitative picture for the optimization landscape of a recent formulation [25] of the
non-convex, high-dimensional problem of symmetric tensor decomposition. We identified different
assumptions on the tensor components a1, . . . , aK and bounds on the rank K so that all second-order
critical points of the optimization problem SPM-P with sufficiently high functional value must equal
one of the input tensor’s CP components. In Theorem 7 the assumptions were deterministic frame
and low-rank conditions, while in Theorem 16 the hypotheses were random components and an
overcomplete rank. Our proofs accommodated noise in the input tensor’s entries, and we obtained
robust results for only by analyzing the program nSPM-P. Our analysis has algorithmic implications.
As the Subspace Power Method of [25] is guaranteed to converge to second-order critical points, by
combining with analysis of deflation, it follows that SPM (with sufficient initialization) is provable
under our assumptions. In Theorem 18 we gave guarantees for end-to-end decomposition using SPM.

Compared to the usual power method functional, the novelty of the SPM functional is the de-biasing
role played by the inverse of a Grammian matrix recording correlations between rank-1 tensors (recall
Eq. (8)). This Grammian matrix is responsible for many of the SPM functional’s desirable properties,
but it also complicated our analysis. We showed that there are theoretical and numerical advantages
in using the SPM functional for tensor decomposition over its usual power method counterpart.

This paper suggests several directions for future research:

• What are the average-case properties of the Grammian matrix Gn? We formulated Conjec-
ture 15 about the minimal eigenvalue of Gn. How about the other eigenvalues?

• In the random overcomplete setting, if we assume no noise (∆A = 0) then can we dispense
with the superlevel condition in Theorem 16? This would give a fully global guarantee.

• Why do we see no error propagation when using deflation and sequential solves of nSPM-P
for CP decomposition? Can errors accumulate if we choose the noise deterministically?
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