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Abstract
Protein language models have emerged as pow-001
erful tools for sequence generation, offering002
substantial advantages in functional optimiza-003
tion and de novo design. However, these mod-004
els also present significant risks of generating005
harmful protein sequences, such as those that006
enhance viral transmissibility or evade immune007
responses. These concerns underscore critical008
biosafety and ethical challenges. To address009
these issues, we propose a Knowledge-guided010
Preference Optimization (KPO) framework that011
integrates prior knowledge via a Protein Safety012
Knowledge Graph. This framework utilizes an013
efficient graph pruning strategy to identify pre-014
ferred sequences and employs reinforcement015
learning to minimize the risk of generating016
harmful proteins. Experimental results demon-017
strate that KPO effectively reduces the likeli-018
hood of producing hazardous sequences while019
maintaining high functionality, offering a ro-020
bust safety assurance framework for applying021
generative models in biotechnology.022

1 Introduction023

Protein language models (PLMs) have significant024

impact on biological research, providing powerful025

tools to uncover relationships between protein se-026

quences, structures and functions [Nijkamp et al.,027

2023]. By leveraging extensive protein sequence028

datasets, PLMs capture hidden patterns and corre-029

lations that are challenging or impossible to dis-030

cern using traditional methods. For example, in031

enzyme engineering, pretrained models predict mu-032

tations that enhance catalytic efficiency or substrate033

specificity, significantly accelerating the iterative034

design process [Madani et al., 2023; Zhou et al.,035

2024]. Similarly, in antibody discovery, PLMs036

facilitate the rapid identification of high-affinity037

candidates, enabling swift responses to emerging038

pathogens [He et al., 2023; Wang et al., 2024].039

Despite that PLMs have transformative potential040

in advancing biological research and biotechnol-041
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Figure 1: Existing PLMs often overlook safety consider-
ations, leading to the generation of potentially harmful
protein sequences. In contrast, our KPO framework en-
sures that PLMs are fine-tuned to prioritize safety.

ogy, they also pose unique and significant safety 042

challenges. Unlike text-based large language mod- 043

els (LLMs), where harmful outputs are typically 044

ethical or social in nature, the biological domain of 045

PLMs entails risks with direct and far-reaching con- 046

sequences for ecological and human health. The in- 047

advertent generation of harmful sequences—for in- 048

stance, those enhancing viral transmissibility, evad- 049

ing immune responses, or developing drug resis- 050

tance—could lead to ecological imbalances, public 051

health crises, or even the creation of bioweapons if 052

disseminated or misused. Current PLMs prioritize 053

functional and generative performance, with little 054

emphasis on safety considerations, as illustrated 055

in Figure 1. Addressing these challenges requires 056

a paradigm shift from traditional performance op- 057

timization to safety-aware design. A promising 058

approach involves fine-tuning PLMs to minimize 059

the generation of harmful proteins while retaining 060

their ability to produce functional and beneficial 061

outputs. While current efforts largely focus on 062

introducing safety-enhancing mutations to known 063

protein sequences [Li et al., 2024], they fail to ad- 064

dress the higher risks inherent in the generative 065

phase of protein design. This underscores the criti- 066

cal need for rigorous frameworks that proactively 067

mitigate potential hazards during protein genera- 068

tion while preserving the functional and beneficial 069

capabilities of PLMs. 070
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To address the biosafety challenges of protein071

language models, we propose Knowledge-guided072

Preference Optimization (KPO), a novel framework073

that integrates domain-specific safety knowledge074

into the generative process of PLMs. Central to075

KPO is the construction of a Protein Safety Knowl-076

edge Graph (PSKG), which encodes critical bio-077

chemical properties and intrinsic relationships of078

both benign and harmful proteins. By leveraging079

the PSKG, KPO incorporates safety-oriented prior080

knowledge to impose biologically meaningful con-081

straints during sequence generation, ensuring the082

production of safer proteins. To manage the com-083

putational complexity inherent to the PSKG, we084

developed a weighted metric-based pruning algo-085

rithm, which efficiently trims the graph by retaining086

key nodes essential for structural and informational087

integrity. This pruning strategy significantly re-088

duces computational overhead while preserving the089

graph’s representational capacity. Through this sys-090

tematic integration of safety knowledge and com-091

putational optimization, KPO not only mitigates092

the risks of generating harmful proteins but also093

establishes a rigorous and scalable framework for094

the responsible application of generative models in095

biotechnology.096

The key contributions of this work can be sum-097

marized as follows:098

• We introduce the first Protein Safety Knowl-099

edge Graph (PSKG), a comprehensive re-100

source that encapsulates rich biochemical101

knowledge on both harmful and benign pro-102

teins.103

• We develop Knowledge-guided Preference104

Optimization (KPO), a novel algorithm that105

seamlessly integrates safety-oriented prior106

knowledge from the PSKG into protein lan-107

guage models, enabling the generation of safer108

protein sequences.109

• By applying the KPO framework, we signif-110

icantly enhance the safety of existing gener-111

ative PLMs, ensuring the production of bio-112

logically safe proteins while maintaining their113

functional efficacy.114

2 Related Works115

Protein Language Models PLMs [Vig et al.,116

2020] have emerged as powerful tools in computa-117

tional biology, leveraging natural language process-118

ing methodologies to analyze and predict protein119

properties. These models have demonstrated their 120

potential in a variety of applications, ranging from 121

structural annotation to functional prediction. For 122

example, the ESM series [Lin et al., 2022; Rives 123

et al., 2021] pioneered the use of masked language 124

modeling for capturing long-range dependencies 125

and inferring structural and functional relationships 126

in protein sequences. MSA-Transformer [Rao 127

et al., 2021] and Co-volution Transformer [Zhang 128

et al., 2021] incorporate evolutionary information 129

through multiple sequence alignments, enhancing 130

functional insights. ProtT5 [Pokharel et al., 2022] 131

adapts the T5 architecture to learn protein repre- 132

sentations, while ProtGPT2 [Ferruz et al., 2022] 133

and ProGen2 [Nijkamp et al., 2023] leverage au- 134

toregressive objectives to predict subsequent amino 135

acids, making them well-suited for generative tasks 136

such as de novo protein design. Additionally, LM- 137

GVP [Wang et al., 2022] integrates graph repre- 138

sentations from protein 3D structures with trans- 139

former architectures to capture spatial relationships 140

between residues. Despite these advancements, 141

the potential risks associated with PLM-generated 142

sequences, such as unintended toxic or harmful 143

properties, remain a critical area for exploration. 144

LLM Safety Ensuring the safety of LLMs has 145

been a primary focus of research, leading to the 146

development of various alignment techniques [Bai 147

et al., 2022]. A key approach is Reinforcement 148

Learning from Human Feedback (RLHF) [Ouyang 149

et al., 2022], which fine-tunes model behavior 150

using human-provided feedback to align outputs 151

with specific objectives. Building on RLHF, other 152

methods, such as Direct Preference Optimization 153

(DPO) [Rafailov et al., 2024], further refine LLM 154

fine-tuning by incorporating ranking information, 155

helping models distinguish the quality of different 156

outputs. Similarly, Reward Ranking-Based Rein- 157

forcement Learning (RRHF) [Yuan et al., 2023] 158

enhances alignment by introducing adjusted loss 159

functions that amplify learning signals from ranked 160

feedback. Contrastive learning [Yang et al., 2023] 161

has also shown promise in alignment tasks, improv- 162

ing sample efficiency and model quality by guiding 163

the model towards producing high-quality outputs 164

while discouraging low-quality ones. 165

LLM unlearning [Kassem et al., 2023; Lu et al., 166

2022] has emerged as another important technique 167

to enhance model security, enabling models to “for- 168

get” sensitive or inappropriate data to avoid harm- 169

ful predictions. Common forgetting techniques in- 170
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clude Gradient Ascent methods [Jang et al., 2022],171

which work by maximizing the prediction loss for172

forgotten data, and input perturbation methods,173

which substitute potentially harmful responses with174

neutral outputs, such as “I don’t know” [Ishibashi175

and Shimodaira, 2023]. Another approach is re-176

training, which involves retraining the model from177

scratch while explicitly excluding the data to be for-178

gotten [Bourtoule et al., 2021]. More recent tech-179

niques, such as context-based unlearning [Pawel-180

czyk et al., 2023], use specific instructions to guide181

models to forget certain knowledge without alter-182

ing its weights. Despite these advancements, there183

is currently no method specifically tailored to fine-184

tuning PLMs to ensure the safety of generated pro-185

tein sequences, leaving a critical gap in the field.186

3 Preliminaries187

3.1 Generative PLMs188

Generative PLMs learn the language-like struc-189

ture of protein sequences, similar to how text190

models predict the next word [Verkuil et al.,191

2022]. By predicting the next amino acid in a192

sequence based on previous ones, PLMs capture193

functional patterns crucial for tasks like generat-194

ing novel proteins. Given an unlabeled corpus195

D = (p(1), p(2), ..., p(N)), each sample p(i) =196

(p
(i)
1 , p

(i)
2 , ..., p

(i)
Wi

) is a protein sequence, and the197

goal is to train a language model θ to maximize the198

log-likelihood estimate of the training data:199

L(θ) =

N∑
i=1

Wi∑
w=1

logP (p(i)w |p(i)1 , ..., p
(i)
w−1; θ),200

where N is the total number of sequences in the201

corpus, Wi is the length of the i-th sequence, and202

P is the conditional probability given by PLMs.203

3.2 Direct Preference Optimization204

DPO fine-tunes language models by directly align-205

ing their output with preference data, such as hu-206

man feedback. Unlike RLHF, which involves con-207

structing a reward model and training the language208

model within an RL framework, DPO simplifies209

this process into a single optimization problem.210

By bypassing the complexities of reward model-211

ing, DPO offers an efficient and scalable approach212

to aligning language models with user preferences.213

Given a set of generated pairs ŷw, ŷl conditioned on214

an input x, where ŷw is the preferred response and215

ŷl is the dispreferred response, DPO maximizes216

the ratio of probabilities assigned to the preferred 217

responses. The DPO loss is defined as: 218

L = −λlogσ(log
πθ(ŷw|x)
πref (ŷw|x)

− log
πθ(ŷl|x)
πref (ŷl|x)

). 219

4 Methodology 220

To address the critical challenge of aligning PLMs 221

for safety, we introduce a Knowledge-guided Pref- 222

erence Optimization framework, as illustrated in 223

Figure 2. The safety alignment process relies on 224

constructing preference pairs that differentiate be- 225

nign proteins from harmful ones by capturing their 226

nuanced similarities and differences. To enable 227

the generation of high-quality preference pairs, 228

we construct a Protein Safety Knowledge Graph, 229

which systematically encodes biochemical relation- 230

ships between harmful and benign proteins. To 231

enhance computational efficiency without compro- 232

mising the quality of information, we incorporate a 233

weighted metric-based pruning algorithm. This al- 234

gorithm refines the PSKG by retaining the most 235

informative nodes and edges, thereby reducing 236

computational complexity while preserving its core 237

structure and utility. Finally, we identify benign 238

proteins within the PSKG that share properties with 239

harmful proteins. These proteins are then used to 240

create preference pairs for fine-tuning PLMs. The 241

fine-tuning process aligns the model’s generative 242

capabilities with the safety constraints defined by 243

the PSKG, ensuring the generation of protein se- 244

quences that are both biologically relevant and safe. 245

4.1 Protein Safety Knowledge Graph 246

We construct PSKG to capture the intricate rela- 247

tionships between harmful and benign proteins. 248

Drawing from the Uniprot database, we curate a 249

comprehensive dataset of harmful proteins by re- 250

trieving experimentally validated protein sequences 251

annotated with the keywords “toxin” and “antigen”. 252

To collect benign proteins, we filter out harmful 253

proteins from the Swiss-Prot database and select 254

only those proteins verified as benign. A detailed 255

description of the construction process is in Ap- 256

pendix A.1. The biologically meaningful graph 257

offers a robust framework for the interplay analysis 258

between harmful and benign proteins. 259

Let the set of harmful proteins be denoted as 260

PH = {p1H, p2H, ..., pnH}, and the set of benign pro- 261

teins as PB = {p1B, p2B, ..., pnB}. To capture these 262

intricate distinctions, we define indirect relation- 263

ships between PH and PB mediated through GO 264
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Figure 2: Overview of the proposed KPO framework, which consists of three key stages: (1) PSKG Construction:
A Protein Structure Knowledge Graph (PSKG) is built by integrating labeled protein sequence data (benign and
harmful proteins) with Gene Ontology (GO) annotations, capturing biochemical relationships between proteins,
GO terms, and their interactions. (2) Node Pruning: A weighted pruning algorithm is applied to refine the PSKG.
Key nodes and edges are identified based on statistical scores to ensure computational efficiency while retaining
critical structural and functional information. (3) PLM Fine-tuning: Preference pairs are generated by identifying
benign proteins that are structurally or functionally similar to harmful proteins within graph and latent spaces. These
preference data are then used to fine-tune PLMs using methods such as Direct Preference Optimization (DPO).

terms. Specifically, a harmful protein piH ∈ PH265

and a benign protein pjB ∈ PB are considered re-266

lated if they share a common GO term gz ∈ G =267

{g1, g2, ..., gZ}, forming an indirect connection268

represented as (piH, gz, p
j
B). The inclusion of hi-269

erarchical Gene Ontology relationships enables the270

PSKG to capture both direct and nuanced associ-271

ations between harmful and benign proteins. For272

instance, a broad GO term like “binding activity”273

may group various harmful and benign proteins,274

while more specific terms such as “DNA-binding275

transcription factor activity” can reveal finer dis-276

tinctions. This integrative framework ensures that277

the PSKG is not merely a collection of protein278

annotations but a robust foundational resource ca-279

pable of supporting downstream analyses. It facili-280

tates the identification of key nodes that represent281

critical biological properties and uncovers latent282

patterns that differentiate harmful from harmless283

proteins. Consequently, the PSKG serves as a piv-284

otal resource for advancing safe and biologically285

informed protein generation.286

4.2 Node Pruning with Weighted Metrics 287

The constructed PSKG contains hundreds of thou- 288

sands of protein nodes and requires prolonged com- 289

putation time for sampling informative proteins for 290

downstream analysis. To address the challenges 291

posed by the large scale and redundant information, 292

we propose a weighted metric-based node pruning 293

method. This method focuses on identifying and re- 294

taining the most informative benign protein nodes, 295

PB, while preserving the essential biological rela- 296

tionships within the graph. For each benign protein 297

node pjB ∈ PB, we compute a weighted importance 298

score, S(pjB), that balances two critical factors: its 299

connections to high-scoring GO nodes and its de- 300

gree centrality within the graph. The importance 301

score is defined as: 302

S(pjB) = α · CGO(p
j
B) + β · CDeg(p

j
B), (1) 303

where CGO(p
j
B) is the GO association factor, 304

CDeg(p
j
B) is the degree centrality factor, and α and 305

β are hyperparameters controlling their weights. 306

GO association factors evaluate the extent to 307

which a benign protein node is indirectly connected 308
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to harmful protein nodes, PH, through high-scoring309

GO nodes. A GO node gz ∈ G is considered high-310

scoring if it demonstrates strong bridging proper-311

ties between harmful and benign proteins, charac-312

terized by two key metrics. The first is the harmful-313

benign bridging degree, R(gz), which measures314

the number of unique (piH, p
j
B) pairs bridged by gz ,315

calculated as:316

R(gz)=
∑

piH∈PH

∑
pjB∈PB

1((piH, gz)∈E)·1((gz, pjB)∈E),

(2)317

where 1(·) is an indicator function that evaluates318

to 1 if the specified edges exist in the edge set E.319

The second metric is the neighbor breadth, O(gz),320

which counts the number of benign protein nodes321

directly connected to gz , defined as:322

O(gz) =
∑

pjB∈PB

1((gz, p
j
B) ∈ E). (3)323

The overall significance of a GO node, gz , is:324

C(gz) = γ ·R(gz) + δ ·O(gz), (4)325

where γ and δ are weighting parameters. The GO326

association factor evaluates the importance of a327

benign protein node by measuring its connections328

to the top-Q of high-scoring GO nodes, denoted as329

Gĥ ⊂ G. Gĥ are selected based on their overall330

significance scores C(gz), calculated using Eq. (4):331

CGO(p
j
B) =

∑
gz∈Gĥ

1((pjB, gz) ∈ E). (5)332

Degree centrality factors assess the prominence333

of a benign protein node within the graph based on334

its degree centrality:335

CDeg(p
j
B) =

∑
v∈V

1((pjB, v) ∈ E), (6)336

where CDeg(p
j
B) counts the total number of edges337

connected to pjB. Nodes with a higher degree of338

centrality are more likely to be influential within339

the graph, as they are involved in more interactions.340

Using the computed weighted importance scores,341

we prune the graph by retaining only the top-K be-342

nign protein nodes with the highest scores. The re-343

sulting pruned subgraph, G
′
= (V

′
, E

′
), is defined344

as: V
′
= {pjB ∈ PB | S(pjB) is among the top-K},345

E
′
= {(u, v) ∈ E | u, v ∈ V

′}. For specific346

settings, see Appendix A.2. This pruning strategy347

significantly reduces the size of the PSKG while348

preserving its most biologically relevant nodes and 349

edges, thereby accelerating the construction of pref- 350

erence pairs and improving the overall efficiency 351

of the fine-tuning process. By balancing the im- 352

portance of structural prominence and functional 353

relevance, our method ensures that the retained sub- 354

graph continues to provide a rich and meaningful 355

representation of the original graph for safe protein 356

generation. 357

4.3 Fine-tuning PLMs with KPO 358

To enhance PLMs with domain-specific safety 359

knowledge, we incorporate the PSKG into the train- 360

ing process. The PSKG serves as a medium to in- 361

ject knowledge about protein safety into the model, 362

enabling it to understand and perceive the latent re- 363

lationships between generated proteins and known 364

harmful proteins. This integration allows the model 365

to recognize similarities between generated pro- 366

teins and potentially harmful proteins, thereby im- 367

proving the safety of the generated sequences. 368

To capture the potential relationships between 369

harmful proteins and benign proteins, we analyze 370

the graph structure at multiple levels. At the struc- 371

tural level, we measure the proximity between 372

harmful and benign proteins using the shortest path 373

distance, denoted as dis(piH, p
j
B). A benign protein 374

pjB is considered relevant to a harmful protein piH 375

if dis(piH, p
j
B) ≤ τ , where τ is a predefined hop 376

threshold. This selection criterion enables us to 377

identify benign proteins that are structurally close 378

to harmful proteins, capturing potential functional 379

or biological similarities. 380

At the embedding level, we leverage the TransE 381

algorithm to learn low-dimensional representations 382

of nodes in the PSKG. Each node vi ∈ V
′

is em- 383

bedded into a vector space as ei ∈ Rd, where d is 384

the embedding dimension. The TransE algorithm 385

optimizes the following objective function: 386

L=
∑

(vi,r,vj)∈E

[∥ei+r−ej∥2+
∑

(v
′
i ,r,v

′
j)/∈E

max(0, η−∥e′i+r−e
′
j∥2)],

(7) 387

where r ∈ Rd represents the embedding of the 388

edge relation, and η is a margin hyperparameter. 389

This formulation ensures that embeddings reflect 390

the structural relationships in the graph, such that 391

semantically similar nodes are embedded closer 392

together. By combining structural proximity and 393

embedding-based similarity, we identify benign 394

proteins pjB that are closely related to harmful pro- 395

teins piH in both the graph structure and the embed- 396
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ding space. For each harmful protein piH, we select397

the top-M benign proteins based on a combined398

similarity score:399

s(piH, p
j
B) = µ· 1

dis(piH, p
j
B)

+(1−µ)·cos(epiH , epjB),

(8)400

where cos(·, ·) denotes the cosine similarity be-401

tween embeddings, and µ ∈ [0, 1] is a weighting402

hyper-parameter.403

Using these selected pairs of harmful and be-404

nign proteins, we construct preference pairs for405

fine-tuning the PLM. Each preference pair (pjB, p
i
H)406

encodes the notion that the model should prefer407

generating sequences similar to the benign protein408

pjB over the harmful protein piH. The fine-tuning409

process is guided by Direct Preference Optimiza-410

tion, which optimizes the following objective:411

LKPO=− logσ
(
φ ·

[
logPθ(p

j
B|x)−logPθ(p

i
H|x)

])
,

(9)412

where Pθ(·|x) is the probability assigned by the413

PLM to a sequence given an input prompt or con-414

text x, σ(·) is the sigmoid function, and φ is a415

scaling factor. By fine-tuning the PLM with these416

preference pairs, the model learns to distinguish417

subtle differences between harmful and benign pro-418

teins. This process integrates the rich biological419

information in the PSKG into the generative model,420

significantly enhancing its ability to generate safe421

and biologically meaningful protein sequences.422

5 Experimental Results423

5.1 Experimental Settings424

Safety Evaluation Metrics In evaluating the425

harmfulness of generated protein sequences, we426

employed a comprehensive approach that incor-427

porated sequence similarity analysis, functional428

domain characterization, and toxicity prediction.429

This allowed us to rigorously assess the potential430

risks of the generated proteins, ensuring a robust431

evaluation of their safety and biological relevance.432

For sequence similarity analysis, we utilized433

BLAST [Madden, 2013] and MMseqs2 [Steineg-434

ger and Söding, 2017], two widely adopted tools in435

bioinformatics. To quantify this similarity, we com-436

puted the average alignment score, normalizing437

it by the average sequence length, which allowed438

for a fair comparison across proteins of varying439

lengths.440

In the functional domain analysis, we turned to441

Pfam [Finn et al., 2014], a database that provides442

Hidden Markov Models (HMMs) [Eddy, 1996] for 443

identifying protein domains. Each generated pro- 444

tein sequence and the harmful protein test dataset 445

were analyzed for functional domain content. For 446

domains identified in both the generated sequences 447

and harmful proteins, we employed two distinct 448

strategies to evaluate the significance of these do- 449

main matches. The first strategy used dynamic E- 450

value thresholds, where we compared the E-values 451

of functional domains in the generated proteins 452

to those in the harmful protein database. This ap- 453

proach accounts for the unique statistical charac- 454

teristics of each domain[Mistry et al., 2021]. The 455

second strategy employed a fixed E-value threshold 456

of 0.001[Finn et al., 2014], a commonly accepted 457

cutoff for statistically significant domain matches. 458

See Appendix B for specific reasons for this setting. 459

In addition, we incorporated Toxin- 460

Pred3 [Rathore et al., 2024], a machine learning 461

classifier to predict the toxicity of the generated 462

proteins. ToxinPred3 outputs a probability score 463

indicating the likelihood of a protein being toxic. 464

Proteins with toxicity scores above a predefined 465

threshold were classified as toxic. The number of 466

toxic predictions before and after fine-tuning was 467

compared to assess the success of our approach 468

in reducing the generation of potentially harmful 469

proteins. 470

Functional Evaluation Metrics To assess if the 471

functional capabilities of the pre-trained model 472

remained intact after fine-tuning using the KPO 473

method, we employed a set of well-established pro- 474

tein datasets: GB1 [Wu et al., 2019], PhoQ [Pod- 475

gornaia and Laub, 2015], UBC9 [Knipscheer et al., 476

2008], and GFP [Zimmer, 2002]. For each of 477

these datasets, we compared the performance of 478

the pre-trained model and the fine-tuned model 479

by calculating the generation probability score for 480

each mutation. We computed the scores for the top 481

96 mutations with the highest probabilities gener- 482

ated by both the pre-trained and fine-tuned mod- 483

els. To ensure that fine-tuning did not compromise 484

the model’s ability to generate functionally rele- 485

vant mutations, we calculated the average fitness 486

of these top 96 mutations. Specific implementation 487

details are provided in the Appendix B. 488

5.2 Main Results 489

Performance Comparison The performance of 490

our KPO method, applied to three different base 491

models published in top-tier journals or con- 492
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Table 1: Performance of KPO on the top of different base models.

Models
Safety Evaluation Metric Functional Evaluation Metric

BLAST↓ MMseq2↓ Pfam_D↓ Pfam_E↓ ToxinPred3↓ GB1↑ PhoQ↑ UBC9↑ GFP↑

ProtGPT2 0.269 0.325 0.2933 0.2701 0.07 0.030 0.015 0.138 1.526
ProtGPT2+KPO 0.138 0.149 0.2613 0.1819 0.024 0.041 0.315 0.129 2.204

Progen2 0.155 0.170 0.1079 0.2630 0.029 0.144 0.027 0.068 1.683
Progen2+KPO 0.128 0.117 0.0922 0.0645 0.007 0.024 0.017 0.231 1.562

InstructProtein 0.410 0.285 0.1662 0.0835 0.031 0.030 0.016 0.459 1.983
InstructProtein+KPO 0.086 0.079 0.1189 0.0385 0.003 0.191 0.814 0.451 2.319

ferences—ProtGPT2 [Ferruz et al., 2022], Pro-493

gen2 [Nijkamp et al., 2023] and InstructPro-494

tein [Wang et al., 2023]—was evaluated across both495

safety and functional metrics. The results demon-496

strate that KPO significantly enhances the safety of497

generated protein sequences, while preserving or498

even improving the functional capabilities of the499

models. This balance between safety and function-500

ality highlights the efficacy of KPO in optimizing501

protein sequence generation.502

From Table 1, we can observe that the proposed503

KPO method consistently reduced the risk of gen-504

erating harmful proteins across multiple metrics.505

Additionally, the functional domain-based harm-506

fulness assessment using Pfam also showed im-507

provements. The ToxinPred3 toxicity classifier also508

showed a sharp reduction in predicted toxicity. One509

of the reasons for the observed functional improve-510

ments after applying KPO is that the fine-tuning511

process effectively guides the model away from512

harmful sequence spaces, which can be biologically513

unproductive, and toward regions of the sequence514

space that are more likely to produce functional515

and high-adaptability proteins. By minimizing the516

generation of harmful proteins, the model avoids517

the regions that might be associated with harmful518

or suboptimal structural configurations. As a result,519

the model can explore the most promising areas of520

the protein sequence landscape, where the gener-521

ated proteins exhibit higher fitness and functional522

relevance. This allows the protein model to focus523

better on generating sequences that are not only524

safe but also biologically advantageous, improving525

its ability to optimize for functions without com-526

promising safety.527

Embedding Result Analysis To further investi-528

gate the impact of KPO on the generated protein529

sequences, we analyzed their embeddings using the 530

ESM-2 [Verkuil et al., 2022] model. This analy- 531

sis aimed to visualize how the fine-tuned models’ 532

generated sequences compared to known harmful 533

protein sequences in the embedding space. Specifi- 534

cally, we selected 100 protein sequences from each 535

of the following categories: harmful proteins, and 536

proteins generated by the KPO fine-tuned models 537

(ProtGPT2, Progen2, and InstructProtein). These 538

sequences were then processed through the ESM- 539

2 model to obtain their respective embeddings, 540

which were subsequently visualized using the t- 541

SNE [Van der Maaten and Hinton, 2008] algorithm 542

for dimensionality reduction. 543

Figure 4 demonstrates a significant divergence 544

between the harmful protein embeddings and those 545

of the generated proteins from the KPO-fine-tuned 546

models. The sequences generated by the KPO- 547

optimized ProtGPT2, Progen2, and InstructPro- 548

tein models form distinct clusters that are well- 549

separated from the cluster representing the harm- 550

ful protein embeddings. This separation indicates 551

that the fine-tuning process effectively steered the 552

models away from generating sequences that share 553

structural or functional similarities with known 554

harmful proteins. This shift in embedding space 555

aligns with the improvements observed in safety 556

evaluation metrics, such as BLAST, MMseqs2, and 557

ToxinPred3, further validating the effectiveness of 558

the fine-tuning process. 559

5.3 Ablation Study 560

To validate the effectiveness of our PSKG and the 561

proposed graph pruning strategy, we conducted 562

an extensive ablation study. This study compared 563

KPO with three alternative methods: DPO, KPO- 564

random, and KPO-community. Each alternative 565

serves as a variation in the use of PSKG or sam- 566
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Figure 3: Ablation study results for three PLMs: ProtGPT2 (left), InstructProtein (middle), and ProGen2 (right).
Each plot compares the performance of different optimization methods across five safety evaluation metrics.
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pling strategies during the fine-tuning process, en-567

abling a comprehensive evaluation of KPO’s core568

components and their contributions.569

For the DPO baseline, the PSKG was not utilized.570

Instead, benign proteins were randomly sampled571

from the Uniprot database to construct the prefer-572

ence dataset, and the standard DPO method was573

applied for fine-tuning. This evaluates the bene-574

fits of incorporating structured domain knowledge575

into the fine-tuning process. For the KPO-random576

method, the PSKG was utilized but reduced in scale577

by randomly pruning nodes and edges. The re-578

duced graph was then used to select benign pro-579

teins for fine-tuning with DPO. This method tests580

the effectiveness of random graph reduction com-581

pared to structured pruning. In contrast, the KPO-582

community method used a community detection583

algorithm to reduce the scale of the PSKG. By clus-584

tering nodes based on their structural relationships,585

this approach preserved local community structures 586

within the graph while reducing its overall size. Be- 587

nign proteins were then selected from these commu- 588

nities for DPO fine-tuning. This method evaluates 589

the impact of structural preservation during graph 590

reduction on model performance. The experimen- 591

tal results, summarized in Figure 3, show that the 592

KPO method consistently outperformed the alter- 593

native methods across nearly all safety evaluation 594

metrics, including BLAST, MMseqs2, Pfam_D, 595

Pfam_E, and ToxinPred3.The results also highlight 596

the effectiveness of the graph pruning strategy used 597

in KPO. Both KPO-random and KPO-community 598

served as benchmarks to test the validity of our 599

pruning method. The ablation study confirms that 600

the proposed graph pruning algorithm in KPO is 601

not only effective in reducing the graph’s scale but 602

also preserves essential biological relationships. 603

6 Conclusion and Future Work 604

In this study, we proposed Knowledge-guided Pref- 605

erence Optimization (KPO), a method for fine- 606

tuning protein language models to ensure the safety 607

and functionality of generated sequences. By con- 608

structing a comprehensive dataset of Protein Safety 609

Knowledge Graph and integrating it with pruning 610

strategies and reinforcement learning, KPO reduces 611

the risk of generating harmful proteins while main- 612

taining or enhancing functional performance. This 613

work provides a framework for incorporating safety 614

knowledge into PLMs, enabling responsible appli- 615

cations in protein engineering. Future work will 616

focus on extending KPO by integrating structural 617

safety constraints, scaling to larger PLMs, and dy- 618

namically updating the PSKG with new safety in- 619

sights, ensuring adaptability to evolving biological 620

challenges. 621
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Limitations622

While the KPO framework demonstrates promising623

results in aligning PLMs with safety constraints,624

several limitations should be addressed in future625

work. First, the fine-tuning process in this paper626

focuses primarily on sequence-level safety con-627

straints. Structural-level constraints, such as en-628

suring generated proteins avoid toxic 3D confor-629

mations, are not directly incorporated and rely on630

downstream evaluation tools. In addition, while631

reinforcement learning enables nuanced optimiza-632

tion, the computational overhead for training large633

PLMs remains significant, limiting its scalability634

to larger datasets or more complex safety objec-635

tives. Addressing these limitations will be critical636

for advancing the robustness and applicability of637

KPO in real-world scenarios, such as therapeutic638

development and environmental biotechnology.639
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A More Details for Methods 837

A.1 Construction of PSKG 838

The PSKG leverages the structured biological knowledge encoded in the Gene Ontology, which provides a 839

hierarchical vocabulary of GO terms describing biological processes, cellular components, and molecular 840

functions. These GO terms G = {g1, g2, ..., gZ} serve as nodes within the graph, connected by GO-GO 841

triples, (gi, r, gz), where r represents relationships such as “is-a” or “part-of”. These triples define 842

hierarchical and associative relationships between terms, forming the backbone of the graph. The PSKG 843

also incorporates associations between proteins and GO terms through Protein-GO triples, (p, r, g), where 844

p ∈ PH ∪ PB represents harmful or benign proteins and g ∈ G is the associated GO term. These triples 845

encode functional annotations that link proteins to their biological roles, establishing indirect relationships 846

between PH and PB. The harmful protein PH dataset was curated from UniProt by searching for sequences 847

annotated with the keywords "toxin" (approximately 10,000 entries) and "antigen" (approximately 8,000 848

entries). After removing duplicates, the remaining sequences formed the harmful protein set. The 849

benign protein dataset PB was collected from Swiss-Prot by excluding proteins identified as harmful. By 850

integrating these two layers—GO-GO relationships and Protein-GO associations—the PSKG models 851

complex dependencies across the biological network. For instance, harmful proteins PH and benign 852

proteins PB may share overlapping functional annotations, such as catalytic activity or molecular binding 853

specificity, but harmful proteins often exhibit additional properties that contribute to harmful effects. 854

A.2 Pruning threshold selection 855

Figure 5 presents the distribution of importance scores for both GO nodes and protein nodes within the 856

PSKG. The importance scores were computed using the weighted metrics described in the methodology, 857

which integrate structural and functional relevance factors to quantify the significance of each node. The 858

figure clearly illustrates that the importance scores are highly unevenly distributed, with a significant 859

proportion of nodes exhibiting low scores, while a smaller subset of nodes has substantially higher scores. 860

To optimize the pruning process, we selected the top-Q = 50% of GO nodes and top-K = 50% of 861

protein nodes based on their importance scores. This threshold ensures a balance between retaining 862

the most biologically significant nodes and reducing the size of the graph to improve computational 863

efficiency. The decision to use the 50% threshold is grounded in the observed score distributions. For 864

GO nodes, the distribution shows a steep decline in the frequency of nodes with higher scores, indicating 865

that the top-scoring nodes capture the majority of the functional and structural relevance in the graph. 866

Similarly, for protein nodes, the score distribution exhibits a long-tailed pattern, with the top 50% of nodes 867

containing the majority of high-impact nodes based on the computed importance metrics. The choice of 868

the 50% threshold is further justified by the diminishing returns observed in the importance scores beyond 869

this point. Nodes with scores below the median contribute marginally to the biological relationships within 870

the graph, as their connections to key proteins or GO terms are sparse or weak. Retaining these nodes 871

would unnecessarily inflate the graph size without providing meaningful contributions to downstream 872

tasks. The importance scores for GO nodes are calculated using weighting parameters γ = 1.0 and 873

δ = 0.5, while the protein node scores are determined using α = 0.7 and β = 0.3.These values were 874

empirically selected to balance the contributions of key structural and relational factors in the graph. 875

B Experimental setup 876

Baseline We consider three foundational models and conducted a comprehensive comparative analysis. 877

• ProtGPT2 ProtGPT2 is a generative PLM based on the GPT-2 architecture, designed specifically for 878

protein sequence generation. The model is pre-trained on a large corpus of protein sequences from 879

databases like UniProt and SwissProt, using an autoregressive objective to predict the next token 880

in a sequence. This approach allows the model to capture sequential dependencies and generate 881

biologically plausible protein sequences with high fidelity. ProtGPT2 excels in creating diverse 882

sequences with well-formed primary structures, making it a widely adopted baseline for protein 883

generation tasks. 884
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Figure 5: Visualization of importance scores of GO nodes and protein nodes.

• Progen2 Progen2 is a PLM pre-trained using a transformer-based architecture, leveraging a large-885

scale masked language modeling (MLM) objective. Unlike autoregressive models like ProtGPT2,886

Progen2 focuses on learning bidirectional contextual representations, making it particularly effective887

in capturing long-range dependencies within protein sequences. This capability allows Progen2 to888

perform well in tasks requiring an understanding of global sequence context, such as predicting889

functional domains or secondary structures.890

• InstructProtein InstructProtein is a specialized PLM designed for instruction-based generation891

tasks. It incorporates a pre-training strategy that combines supervised fine-tuning with reinforcement892

learning from human feedback (RLHF), enabling the model to follow specific generation instructions893

provided during inference. The instruction-based approach enhances the model’s controllability and894

makes it particularly suited for applications requiring specific functional or structural characteristics895

in generated proteins.896

Evaluation indicators897

• Safety Evaluation Metrics. In our evaluation, BLAST (Basic Local Alignment Search Tool)898

was employed to align the generated protein sequences with a curated testing harmful protein899

dataset for evaluation. Key metrics such as sequence identity, E-values, and alignment length were900

analyzed, as high sequence identity and low E-values often indicate strong functional or evolutionary901

relationships. Such relationships suggest a higher likelihood that the generated protein might share902

harmful properties with known harmful proteins. Complementing this, MMseqs2 was utilized903

for high-throughput sequence similarity searches and clustering. MMseqs2 provided additional904

insights by grouping similar sequences and uncovering potential functional associations between the905

generated proteins and harmful sequences.906

To further assess potential harmfulness, we analyzed domain-level similarities using two approaches907

within the Pfam database. In the dynamic threshold method, a match was considered significant908

if the E-value of a domain in the generated protein was lower than the threshold E-value of the909

corresponding domain in the harmful protein database. This approach accounts for the unique910

statistical characteristics of each domain, as each hidden Markov model (HMM) in Pfam has its911

own noise model. By tailoring the significance criteria to individual domains, the dynamic threshold912

method provides a more precise and domain-specific evaluation of potential harmful associations.913
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In contrast, the fixed threshold method applied a standardized E-value cutoff across all domains, 914

which we set to 0.001. This method simplifies the evaluation process by enforcing a consistent 915

significance level, ensuring robust and highly significant matches are prioritized. To be considered 916

a match under this method, both the E-value of the domain in the generated protein and the corre- 917

sponding E-value in the harmful protein database had to fall below the fixed threshold. This ensures 918

consistency while maintaining high statistical confidence in the results, allowing for a systematic 919

evaluation of domain overlap across protein families. 920

• Functional Evaluation Metrics. The GB1, PhoQ, UBC9, and GFP datasets represent diverse protein 921

families, each with distinct functional roles in biological processes, providing a robust framework 922

for evaluating the fine-tuned model’s performance. By assessing these datasets, we ensured that 923

the fine-tuning process using KPO improved safety by reducing harmful protein generation without 924

compromising the model’s ability to predict biologically relevant and functionally advantageous 925

mutations. The evaluation relied on two key metrics: the generation probability score, which reflects 926

how likely the model is to generate a particular mutation based on its learned patterns, and fitness, 927

which measures how well a mutation preserves or enhances the protein’s intended function. By 928

comparing the average fitness of the top-ranked mutations generated by both the pre-trained and 929

fine-tuned models, we assessed whether KPO fine-tuning shifted the model’s capacity to identify 930

mutations that optimize protein functionality. 931

The use of the GB1, PhoQ, UBC9, and GFP datasets validated the dual objectives of the KPO 932

method: improving safety while maintaining or enhancing functionality. This comprehensive 933

evaluation framework demonstrated that KPO fine-tuning effectively aligns the model’s outputs with 934

biological safety and functional integrity, ensuring the generation of proteins that are both safe and 935

biologically meaningful. 936

Implementation Details Our method was implemented using the PyTorch deep learning framework. 937

To support reinforcement learning during the fine-tuning process, we integrated the TRL [von Werra et al., 938

2020]. All experiments were conducted on an Ubuntu server with 8 NVIDIA A100 GPUs, each with 40GB 939

of memory. The fine-tuning process was performed on protein language models with varying parameter 940

scales: ProtGPT2 (738M parameters), ProGen2 (764M parameters), and InstructProtein (1.3B parameters). 941

Training each epoch on our A100 GPUs required approximately 2 hours, with the learning rate set around 942

0.00005 to ensure stable and effective optimization. The dataset of harmful protein sequences, curated 943

from UniProt, was split into training and testing sets in an 8:2 ratio. The training dataset was used to 944

construct the PSKG, forming the harmful protein nodes that guide the fine-tuning process. The testing 945

dataset served as the benchmark for evaluating sequence similarity and other safety-related metrics in the 946

experimental results. 947

Three-dimensional Structure Analysis To evaluate the impact of the KPO fine-tuning method on 948

the structural characteristics of generated proteins, we conducted a comparative analysis of the three- 949

dimensional structures of proteins generated by the pre-trained and KPO-fine-tuned models. we employed 950

ColabFold [Jumper et al., 2021; Mirdita et al., 2022] to predict the corresponding structural conformations 951

of the generated proteins. For each selected protein, the predicted structure’s confidence was evaluated 952

using the mean predicted Local Distance Difference Test (pLDDT), which serves as a metric to quantify 953

the reliability of the structural predictions.Meanwhile, we assessed the structural similarity between the 954

generated proteins and known harmful proteins using Root Mean Square Deviation (RMSD). Figure 6 955

illustrates the comparison between harmful proteins and proteins generated by both the KPO-fine-tuned 956

ProtGPT2 model and the pre-trained ProtGPT2 model. Each row of the figure corresponds to one of four 957

harmful proteins with distinct functional and biochemical properties.The first harmful protein analyzed is 958

a beta toxin that binds to sodium channels (Nav) at site-4 in a voltage-independent manner. By shifting 959

the activation voltage to more negative potentials, this toxin enhances spontaneous and repetitive neuronal 960

firing, which is lethal to mammals, including mice. The second beta toxin shares a similar mechanism 961

of action but exhibits a broader specificity, affecting crustaceans and insects while being non-lethal 962

to mammals. It also competitively displaces other beta toxins from mammalian sodium channels at 963
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Beta-toxin Cb1    pLDDT=93.9 pLDDT=95.1      RMSD=7.951 pLDDT=90.1    RMSD=1.419

Toxin Css39.8     pLDDT=84.9 pLDDT=95      RMSD=4.146 pLDDT= 94.7      RMSD=0.128

               

  
pLDDT= Mu-scoloptoxin(15)-Ssm1a  pLDDT=82.3 pLDDT= 92.4 RMSD= 12.05 90.2 RMSD= 3.949

Toxin Lqh4     pLDDT=97.4 pLDDT= 90.1    RMSD=6.533 pLDDT=91.6   RMSD=3.709

 (c) (b) ProGPT2+KPO ProGPT2(a) Harmful Protein

Figure 6: Comparison of 3D RMSD Values Between Harmful Proteins and Proteins Generated by Pre-trained and
KPO-Fine-Tuned Models.

14



higher concentrations. The third protein is an alpha toxin, binding to site-3 of sodium channels and 964

inhibiting channel inactivation, leading to sustained neuronal activity. This toxin is highly harmful to 965

both insects and mammals, causing convulsions and death upon injection into mice. Lastly, the fourth 966

protein is a potassium channel blocker that targets the pore domain of Kv7 channel family members, 967

disrupting ion transport and inducing severe physiological effects, including acute hypertension, coronary 968

vasospasms, and seizures. In all four cases, the KPO-fine-tuned ProtGPT2 model consistently generated 969

proteins with significantly higher RMSD values compared to the pre-trained ProtGPT2 model. For 970

example, when compared to the first beta toxin, the KPO-generated protein exhibited an RMSD of 7.951 971

Å, substantially higher than the 1.419 Å RMSD observed for the pre-trained model. Similar trends were 972

observed across the remaining toxins, with RMSD values from the KPO-generated proteins exceeding 973

those of the pre-trained model by approximately 50% in most cases. These results indicate that the 974

structural characteristics of the proteins generated by the KPO model diverge significantly from those of 975

harmful proteins. By integrating safety knowledge from the PSKG, the KPO fine-tuning approach actively 976

learns to generate proteins with sequence and structural features that diverge from those associated with 977

harmfulness. This structural divergence is particularly critical as protein 3D structures are closely linked 978

to their functional and interaction properties; reducing structural similarity to harmful proteins minimizes 979

the risk of generating proteins with harmful biological activities. 980

In conclusion, the three-dimensional structure analysis provides strong evidence that the KPO fine- 981

tuning approach significantly enhances the safety profile of protein generation models. By producing 982

proteins with greater structural differences from harmful proteins, as evidenced by higher RMSD values, 983

KPO fine-tuning ensures that the generated proteins are not only sequence-safe but also structurally 984

distinct, advancing the biological safety and reliability of protein language models. 985

C Potential Risks 986

The curated dataset of harmful protein sequences, although essential for constructing the PSKG and 987

fine-tuning the model, could potentially be misused if accessed by malicious actors. Such misuse might 988

involve training models specifically designed to generate even more harmful or weaponizable proteins, 989

amplifying the risks to public health and ecological stability.To address these concerns, we have decided 990

to either withhold public access to the harmful protein dataset or release it under strict guidelines and 991

controlled conditions. By limiting its availability, we aim to balance the scientific value of this research 992

with the imperative to minimize potential misuse, ensuring that the advancements introduced by KPO are 993

applied responsibly in biotechnology and synthetic biology. 994
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