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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) has proven effective in aligning002
large language models with human intentions,003
yet it often relies on complex methodologies004
like Proximal Policy Optimization (PPO) that005
require extensive hyper-parameter tuning and006
present challenges in sample efficiency and sta-007
bility. In this paper, we introduce Inverse-Q*,008
an innovative framework that transcends tradi-009
tional RL methods by optimizing token-level010
reinforcement learning without the need for011
additional reward or value models. Inverse-012
Q* leverages direct preference optimization013
techniques but extends them by estimating the014
conditionally optimal policy directly from the015
model’s responses, facilitating more granular016
and flexible policy shaping. Our approach re-017
duces reliance on human annotation and exter-018
nal supervision, making it especially suitable019
for low-resource settings. We present exten-020
sive experimental results demonstrating that021
Inverse-Q* not only matches but potentially022
exceeds the effectiveness of PPO in terms of023
convergence speed and the alignment of model024
responses with human preferences. Our find-025
ings suggest that Inverse-Q* offers a practical026
and robust alternative to conventional RLHF027
approaches, paving the way for more efficient028
and adaptable model training approaches.029

1 Introduction030

Reinforcement Learning from Human Feedback031

(RLHF, Christiano et al., 2017) is a mainstream032

approach for aligning large models to human inten-033

tions, demonstrated in applications such as Chat-034

GPT (Ouyang et al., 2022) and Llama3 (AI, 2024).035

The RLHF framework involves modeling a reward036

function from preference data and learning an op-037

timal policy through PPO (Schulman et al., 2017),038

which also estimates expected returns, translating039

language modeling into an MDP problem. This040

method provides nuanced supervision over training041
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Figure 1: Existing model alignment approaches require
preference data for reward modeling. However, Inverse
Q* utilize reward imitation from superior strategies to
achieve token-level credit assignment, making model
alignment more efficient without preference data.

samples, proving effective in tasks like instruction 042

following and safety (Ramamurthy et al., 2022; 043

Ouyang et al., 2022; Glaese et al., 2022). Nonethe- 044

less, PPO’s high performance depends on com- 045

plex code optimization and hyper-parameter tuning, 046

with ongoing concerns about its sample efficiency 047

and stability. 048

As an efficient alternative to PPO, Direct Pref- 049

erence Optimization (DPO, Rafailov et al., 2024b) 050

aligns large models from the perspective of contex- 051

tual bandits, not token-level decisions (Yue et al., 052

2012, Dudík et al., 2015). DPO optimizes pref- 053

erence reward loss directly through reward model 054

loss, affecting the probability margins of prefer- 055

ence pairs. Similar methods like RSO (Tripathi and 056

Singh, 2020), ReST (Gulcehre et al., 2023), and 057

ReST-em (Singh et al., 2023) train policies to fit 058

optimal prior distributions on predefined response 059

sets, avoiding the need for a critic model. How- 060

ever, these methods still require additional supervi- 061

sory signals, such as a reward model, to enhance 062

response quality, leading to trade-offs in labeling 063
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costs and accuracy. While direct optimization meth-064

ods generally overlook token-level preference mod-065

eling, some efforts (Chan et al., 2024) have ex-066

plored using reward assignment to refine feedback067

signals, though these enhancements mainly bolster068

method stability rather than guide updates.069

A crucial observation is that direct optimization070

methods still require the logits of entire response071

sequences to construct the loss function due to072

the need for differentiability in back-propagation.073

Lacking corresponding advantage function mod-074

eling, such constructions cannot naturally gener-075

alize to token-level process supervision. Based076

on this insight, we hypothesize: Is there a special077

trajectory estimation whose feedback signal can078

naturally generalize to dense reward function mod-079

eling within the token MDP, thereby automatically080

constructing advantage function interpretations for081

each token?082

Similar properties were demonstrated in083

r2Q*(Rafailov et al., 2024a), where DPO training084

could implicitly learn the optimal Q-function085

and mimic controllable decoding, but it required086

pre-labeled preference data for obtaining the087

reference distribution under the optimal policy.088

In this work, we estimate the conditionally089

optimal distribution for current inputs on single090

dialogue data without additional labeling or091

external supervision. We introduce Inverse-Q*,092

an algorithm that optimizes the same objective as093

PPO (maximizing the advantage function) with094

enhanced flexibility and easier implementation.095

Our method, an inverse problem of DPO training,096

assigns token-level reward feedback via an097

estimated policy, optimizing the large model online098

within the MDP framework.099

Overall, Inverse-Q* exhibits similar sample uti-100

lization efficiency and supervision granularity as101

PPO, providing token-level RL training across all102

sampling outcomes without relying on additional103

reward models or value models, thus performing104

excellently in terms of labeling and computational105

resource demands. The process of Inverse-Q* is106

illustrated in Figure 1, and we have conducted ex-107

tensive experiments to demonstrate the efficacy108

of our framework in low-resource RLHF training.109

Inverse-Q* has shown the capability to achieve or110

even exceed the effectiveness of PPO training. Our111

contributions can be summarized as follows:112

1. We introduce Inverse-Q*, a novel framework113

that estimates the optimal policy under current114

problems, offering improved convenience and 115

flexibility. 116

2. We demonstrate the reliability of our frame- 117

work through rigorous proofs, and provide a 118

corresponding practical algorithm based on 119

Inverse-Q*, which performs token-level rein- 120

forcement learning without preference label- 121

ing or external supervision. 122

3. Empirical studies show that our method sig- 123

nificantly improves the alignment of large lan- 124

guage model responses with human prefer- 125

ences compared to other RLHF methods, and 126

achieves faster convergence relative to PPO 127

and DPO training. 128

2 Related Works 129

2.1 Reinforcement Learning from Human 130

Feedback 131

Aligning policy models with objectives is crucial 132

in reinforcement learning. RLHF algorithms, par- 133

ticularly those using the PPO algorithm with a KL 134

penalty, are mainstream for aligning language mod- 135

els. These methods optimize a reward model on 136

preference data and employ on-policy reinforce- 137

ment with PPO, which also trains a critic model 138

(value model) to estimate future rewards. This ap- 139

proach has improved response accuracy, reduced 140

harmful content, and adjusted response styles but 141

faces challenges like optimization instability and 142

high computational demands (Christiano et al., 143

2017; Ouyang et al., 2022). 144

2.2 Credit Assignment 145

Exploration with sparse rewards is challenging. 146

Credit Assignment methods distribute supervisory 147

signals sentence-wise and optimize with PPO, en- 148

hancing training stability and learning speed. At- 149

tention Based Credit (ABC, (Chan et al., 2024)) 150

redistributes rewards token-wise using attention 151

weights from the reward model. Reinforced To- 152

ken Optimization (RTO, (Zhong et al., 2024)) and 153

r2Q* (Rafailov et al., 2024a) derive DPO at the 154

token-level MDP, demonstrating effective credit 155

assignment. 156

2.3 Self-Improvement 157

Obtaining high-quality human data is resource- 158

intensive. RL from AI Feedback (RLAIF, (Bai 159

et al., 2022b)) uses model-generated synthetic data, 160
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drastically cutting costs by requiring minimal hu-161

man supervision. Reinforced Self-Training (ReST,162

(Gulcehre et al., 2023)) and ReST-EM (Singh et al.,163

2023) iterate on policy-sampled data, refined by a164

reward function, for enhanced model training. Our165

method can also be viewed as a self-improvement166

approach, but it neither relies on external feedback167

nor requires an additional trained reward model to168

delineate the optimal strategy. Instead, it optimizes169

based on the model’s own estimation of the optimal170

strategy.171

3 Preliminaries172

In this section, we first introduce the classical173

RLHF framework in LLM alignment, followed174

by a description of how this modeling is tied to175

direct alignment methods (in the case of DPO).176

Given a prompt x∗ sampled from the dataset D =177

{(xi,yi)}Ni=0, policy model provides a multi-token178

response y∗ = (y0, . . . , yT ) to complete a full in-179

teractive dialogue process. To align with the output180

format of language models throughout this chapter,181

we use yt−1 = (x∗, y0, . . . , yt−1) to denote the182

current state at time t in the RL context, where yt183

represents the policy action at token level.184

Most RLHF algorithms require training a reward185

function from human preference data to provide186

online feedback on model outputs. A preference187

data pair (x, yw, yl) typically begins with the same188

initial prompt and receives a corresponding reward189

score at termination, and the probability of prefer-190

ring τw over τ l is given by:191

p∗
(
yw ⪰ yl

)
=

exp (r (xw,yw))

exp (r (xw,yw)) + exp (r (xl,yl))
,

(1)

192

where r(x,y) denotes the reward function for193

state-action pair.194

This modeling is subsequently used to optimize195

the generate policy of LLMs by improving the pre-196

ferring probability of model responses over older197

ones. However, human preference annotations typi-198

cally only exist at the response or sentence level, so199

the reward model cannot directly provide gradient200

signals action by action for optimization. PPO ar-201

tificially defines token-level rewards with entropy202

bonuses to adhere to the Bradley-Terry preference203

modeling (Bradley and Terry, 1952) as follows:204

r (yt) =

{
β log πref (yt | yt−1) , if not end
r(yt) + β log πref (yt | yt−1) , if end

(2)

205

Based on the above definition, PPO aims to max- 206

imize the expected reward at each token while en- 207

suring that the learned policy does not diverge sig- 208

nificantly from a reference model. For a given input 209

ys, the optimal policy is represented as: 210

argmax
π

Eπ

[
T∑

t=s

(
r (yt)− β · log π (yt | yt−1)

πref (yt | yt−1)

)∣∣∣∣∣ ys

]
(3)

211

where β is a parameter that balances reward and 212

entropy bonuses, and π (yt | yt−1) is the policy’s 213

probability of choosing tokens. 214

On the contrary, DPO utilizes a contextual ban- 215

dits setting to circumvent token-level reward allo- 216

cation issues. Assuming an implicit reward model 217

r that scores all potential responses {y∗
i }mi=1 under 218

prompt x∗, the closed-form solution of the policy 219

model under a KL-constrained contextual bandit 220

optimization problem can be expressed as: 221

π∗(y | x) = 1

Z(x)
πref(y | x) exp (r(x,y)) ,

(4)

222

where Z(x) is a partition function. Reversing 223

this conclusion, we obtain the reward modeling in 224

current policy optimization (DPO) as: 225

r(x,y) = β log
π∗(y | x)
πref(y | x)

− Z(x), 226

This modeling is subsequently used to compute 227

standard reward model losses for updating policy 228

distributions. 229

4 Methods 230

We have analyzed the reward modeling of model 231

responses in PPO and DPO in the previous section. 232

In this section, we aim to develop a novel strategy 233

optimization method that can provide fine-grained 234

supervision for token-wise MDP problems without 235

relying on external feedback. 236

Our derivation starts from the optimization ob- 237

jective of PPO in Eq. 3, which can be viewed as 238

Monte Carlo sampling from any state ys, aimed 239

at estimating the value function under given state. 240

We first demonstrate that fitting a superior policy 241

on the reply space with complete reward function 242

annotations can enhance expected returns, thereby 243

inducing better alignment. Subsequently, we in- 244

troduce the process of generalizing this approach 245

from complete responses to the token level. 246
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4.1 Policy Optimization Through Reward247

Imitation248

For clarity, let’s isolate the part related to the cur-249

rent policy from equation Eq. 3, and the alignment250

objective under the KL constraint can be expressed251

as:252

V (π;ys) = Ey∼π(·|ys)

[
T∑

t=s

r (yt) + βH (πθ) | ys

]
, (5)253

where the definition of r follows Eq. 2, and254

H(π) denotes the entropy of the distribution π. We255

propose the following lemma:256

Lemma 4.1 (Reward Imitatioin). Considering two257

policies πa and πb where πa is superior, meaning258

V (πa;ys) > V (πb;ys), for any imitation policy259

πθ = (1 − δ) · πb + δ · (πb − πa), where δ is any260

real number in the interval (0, 1), it holds that261

V (πθ;ys) > V (πb;ys).262

Proof. Clearly, πθ is a probability distribution over263

the same state space as πa and πb. Continuing from264

Eq. 5, since the entropy of policy π is independent265

of the actual sampling of generated results, we266

have:267

V (πa;ys)− V (πb;ys)268

= β(H(πa)−H(πb)) +

∫
Y
(πa(y)− πb(y))r(y)dy269

≤ 1

δ

(
β(H(πθ)−H(πb)) +

∫
Y
(πθ(y)− πb(y))r(y)dy

)
270

=
1

δ
(V (πθ;ys)− V (πb;ys)),271

The second transformation utilizes the concavity272

of the entropy function. Lemma 4.1 states that273

when training towards a distribution direction given274

by a superior strategy, the model always yields275

better outcomes on in-domain data.276

This optimization process is similar to DPO with277

similar reward modeling provided under the com-278

parison between the policy model and the reference279

model, which is shown in Eq. 4. The distinction280

is that while DPO attempts to maximize the dif-281

ferences in generation probabilities between pref-282

erence data to optimize the policy model, Reward283

Imitation uses a pre-estimated superior distribution284

to allocate confidence to given responses, subse-285

quently adjusting the current policy’s distribution286

to align with it. We naturally hope that Reward287

Imitation can automatically generalize to decision-288

making processes on individual tokens, thereby289

allowing us to directly use supervised fine-tuning290

to optimize the policy model (using the estimated 291

token probabilities as soft labels). The optimized 292

loss function would then be the value function cor- 293

responding to each token. However, as described 294

in Eq. 2, the reward feedback in large model align- 295

ment tasks is delayed, thus requiring extensive sam- 296

pling, or an additional critic model to obtain value 297

estimates for process tokens. 298

To address this issue, the optimal strategy is to 299

select a class of reward function whose output pro- 300

cess precisely equals the expected future return, i.e., 301

r(yt) = Ey∼π(·|yt)[π(y)r(y)]. In the next section, 302

we will explain how our reward modeling naturally 303

satisfies the above requirements, thus enabling RL 304

training on individual tokens without value models. 305

4.2 Reward Imitation Performs Auto Reward 306

Assignment 307

In the previous section, we presented our optimiza- 308

tion algorithm called Reward Imitation, which es- 309

timates a superior strategy to allocate generation 310

probabilities for current trajectories, thus aligning 311

preferences on non-preference data. When extend- 312

ing this process to any intermediate step rather 313

than just the termination state (i.e., EOS token), 314

consistency between the reward function and the 315

Q-function must be maintained. We now demon- 316

strate that, when using a specific form of reward 317

modeling, our estimated trajectory generation prob- 318

abilities can naturally extend to any of their pre- 319

fix sequences. Rafailov et al. (2024a) and Chan 320

et al. (2024) have discussed the automatic construc- 321

tion of implicit Q-functions when preforming DPO 322

training with paired preference data. Our operation 323

can be viewed as the reverse of their process, which 324

uses a temporarily estimated superior strategy on 325

the current prompt to directly provide value scores 326

for specific prefixes. 327

Given an arbitrary reply prefix yt−1 and an esti- 328

mated superior strategy π∗(· | x) for that state, we 329

define 330

V (π∗(· | x),yt) = β

t∑
i=1

log
π∗ (yi | y<i)

πref (yi | y<i)
,

(6)

331

where β is the weight of the KL constraint, and πref 332

serves as the baseline model to provide a measure 333

of the extent of policy changes. 334

since both π∗ and πref are probability distribu- 335

tions over any response sequence and its prefixes, 336

when sampling from the distribution πref to esti- 337
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mate the value function using Monte Carlo meth-338

ods, we have:339

β

t∑
i=1

log
π∗ (yi | y<i)

πref (yi | y<i)
(7)340

= β log
π∗ (yt | y0)

πref (yt | y0)
+ β logEπref (y>t)

π∗ (y>t | yt)

πref (y>t | yt)
(8)

341

= β logEπref (y>t)
π∗ (y>0 | y0)

πref (y>0 | y0)
(9)342

= β logEπref (y>t) exp(
1

β
V (π∗(· | x),y>0)), (10)343

The value V (π∗(· | x),y>0) equals the reward of344

the complete sequence y. When yt is a terminal345

state, all subsequent rewards are zero, and Eq. 7346

converges to the original reward function.347

Therefore, under the premise defined in 6, we348

can use the exponential expectation of the complete349

trajectory reward function as the value function for350

procedural supervision, thereby generalizing the351

optimization process from response level to token352

level. This only requires a pre-estimated superior353

strategy for the given input. Some work has al-354

ready been done to improve the performance of355

large models on specific inputs through temporary356

capability enhancements, such as in a contrastive357

manner.358

π̂(yi|y<i, x)359

=softmax(α log πw(yi|y<i, x) + (1− α) log πl(yi|y<i, x))360

, where πw can be a model prompted with principle361

or an aligned model, and πl can be the original SFT362

model.363

Algorithm 1 Optimization Algorithm

1: Input: Estimation of optimal policy π̂, initial
policy µ, policy to be optimized πθ, context
dataset D = {x}N , number of iterations M ,
number of samples per iteration m, learning
rate γ.

2: Output: Optimized policy πθM .
3: πθ0 ← µ
4: for j = 1 to M do
5: Sample y(i) ∼ πθi−1

(·|x(i)), i = 1, . . . ,m,
x(i) ∼ D

6: Lθj =
∑

i,t

(
log

π̂(y
(i)
t |y(i)<t,x

(i))

πθj
(y

(i)
t |y(i)<t,x

(i))

)2

7: θj+1 ← θj − γ∇θj−1
Jθj

8: end for

5 Experiments 364

To demonstrate the efficacy of our approach, we 365

trained various models using our method, achieving 366

significant improvements in both helpfulness and 367

harmlessness. 368

5.1 Experimental Settings 369

Datasets and Backbone Model To demonstrate 370

improvements in helpfulness and harmlessness, 371

we utilized the Anthropic-RLHF-HH dataset (Bai 372

et al., 2022a) for our training data. Our method 373

does not require preference-pair data, hence for 374

each entry, we retained only the identical con- 375

versation prefixes from each chosen/reject pair 376

and discarded the differing responses from the fi- 377

nal interaction. For a more comprehensive eval- 378

uation of harmlessness, in addition to the test 379

split from Anthropic-RLHF-HH, we employed the 380

BeaverTails-Evaluation dataset (Ji et al., 2024). 381

This dataset focuses on harmlessness and includes 382

a wide range of harmful query types. 383

Backbone Model Our experiments spanned sev- 384

eral models with varying sizes and architectures, 385

including Zephyr-7B-SFT, Zephyr-7B-beta (Tun- 386

stall et al., 2023), Vicuna-7B-v1.5, and Vicuna- 387

13b-v1.5 (Chiang et al., 2023). The Zephyr-7B- 388

SFT model was fine-tuned on the UltraChat dataset 389

(Ding et al., 2023) based on Mistral-7B-v0.1 (Jiang 390

et al., 2023), while Zephyr-7B-beta was further 391

trained on UltraFeedback (Cui et al., 2023) using 392

DPO method. The Vicuna-v1.5 models were fine- 393

tuned from LLaMA2 (Touvron et al., 2023). 394

Baseline Methods we benchmark our method 395

against several well-established methods. This sec- 396

tion provides a concise overview of each baseline 397

technique, outlining their operational frameworks 398

and their relevance to our study’s objectives. 399

• PPO (Proximal Policy Optimization): This 400

method incorporates a Kullback-Leibler (KL) 401

divergence penalty on every token, which 402

helps constrain the policy model from deviat- 403

ing too far from the reference model. 404

• DPO (Direct Preference Optimization): 405

This technique optimizes the model directly 406

using preference data, eliminating the need 407

for reward and value model training associ- 408

ated with PPO. 409

• Prompting: This method involves crafting 410

specific system messages to guide model re- 411

sponses in adherence to designated principles, 412

5



0% 20% 40% 60% 80% 100%

PPO

DPO

Prompting

SFT

49.6%

55.8%

53.2%

57.0%

3.8%

6.6%

8.2%

5.6%

46.6%

37.6%

38.6%

37.4%

Ours Win Tie Ours Lose

(a) Ours vs. baselines on Zephyr-7B-SFT
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(b) Ours vs. baselines on Vicuna-7B
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(c) Ours vs. baselines on Vicuna-13B

Figure 2: Win-rate against baselines on Anthropic-RLHF-HH dataset

offering a straightforward way to enhance413

model performance (Chen et al., 2023).414

Evaluation Evaluating model responses presents415

a challenging task. After comparision among all416

versions of GPT-4 (Achiam et al., 2023), we have417

selected GPT-4-turbo as our evaluation model. In418

our setup, GPT-4 is provided with the context and419

the response pairs from two different models. It420

assesses these responses by selecting the more ap-421

propriate one and providing justifications for its422

choice. Utilizing GPT-4 for scoring is a widely423

accepted and applied method that serves as an alter-424

native to manual scoring. To avoid any prior bias425

of the GPT-4 model towards the order of responses,426

we employed a method of randomly swapping the427

two responses. The template used for the GPT-4428

evaluation prompt is provided in Appendix B.429

5.2 Main Results430

In order to ascertain whether our method could431

enhance the quality of responses in terms of harm-432

lessness and helpfulness across models of different433

sizes, architectures, we conducted experiments on434

Vicuna-7B-v1.5, Vicuna-13B-v1.5 and Zephyr-7B-435

SFT. The optimal policy is estimated by contrast-436

ing models prompted with principles against those437

without. The win rate of models trained with our438

method against baseline methods is illustrated in439

Figure 2. Learning rate is set to 1e-6 for all models.440

And α is 1.2, 1.4, 1.5 relatively. All models are441

trained for 15 epochs and the number of samples442

for each epoch is 500.443

From the results, it can be seen that our method444

has achieved significant improvements over the445

SFT model base and has outperformed all the base-446

lines. Additionally, unlike PPO and DPO, our447

method does not require preference pair data and448

complex parameter tuning, demonstrating the sim-449

plicity and efficiency of our approach.450

5.3 Analysis Experiments 451

To test the flexibility of the optimal strategy es- 452

timation method, we conducted experiments on 453

the Zephyr-7B-beta model. This model has been 454

aligned using DPO on the UltraFeedback dataset. 455

Tests show that the model’s performance in harm- 456

lessness and helpfulness surpasses that of the pre- 457

aligned Zephyr-7B-SFT model. We use the con- 458

trast between these two models to estimate the op- 459

timal strategy. Initially, the model is initialized as 460

Zephyr-7B-beta. Figure 3 shows a comparison of 461

our method with Zephyr-7B-beta and Zephyr-7B- 462

SFT experimental results. 463

0% 20% 40% 60% 80% 100%

Prompting

beta

54.8%

58.0%

0.2%

0.4%

45.0%

41.6%

Ours Win Tie Ours Lose

Figure 3: The win-rate of our method on Zephyr-7B-
beta against the original Zephyr-7B-SFT and the one
prompted with positive principle.

To validate the generalizability of our method, 464

we conducted tests on the BeaverTails-Evaluation 465

dataset. The tested models included those previ- 466

ously trained using our method on the Anthropic- 467

RLHF-HH dataset, along with their corresponding 468

original models. Additionally, we included the 469

Llama3-8B-instruct model as an anchor for refer- 470

ence. 471

Table 1 lists the Elo ratings of these models 472

(Boubdir et al., 2023). The progression curve of 473

the Elo rating is also displayed in Figure 4. From 474

cross-model comparisons, it is evident that on this 475

dataset, the original Vicuna-13B and LLaMA3- 476

8B models are roughly equivalent and perform 477

the best; whereas Vicuna-7B and Zephyr-7B-SFT 478
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Model Elo Rating
Zephyr-7B-SFT(ours) 899
Zephyr-7B-SFT 794
Vicuna-7B(ours) 1064
Vicuna-7B 980
Vicuna-13B(ours) 1126
Vicuna-13B 1055
Zephyr-7B-beta(ours) 1037
Zephyr-7B-beta 992
LLaMA3-8B 1053

Table 1: Elo ratings for different models on BeaverTail-
Evaluation dataset.
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Figure 4: Elo rating curves obtained using Gaussian
smoothing with a smoothing parameter σ = 10.

are comparable and relatively poorer in perfor-479

mance; with Zephyr-7B-SFT being the worst. After480

training these models on the Anthropic-RLHF-HH481

dataset using our method, all models showed signif-482

icant improvements on the BeaverTails-Evaluation483

dataset, with the performance of the Vicuna-7B484

model even surpass the original Vicuna-13B and485

LLaMA3-8B. This indicates that our method in-486

deed enhances the capabilities of the model, and487

this improvement demonstrates good generalizabil-488

ity.489

Additionally, using the query categories pro-490

vided by the BeaverTails-Evaluation dataset, we491

calculated the fine-grained win-rate changes in492

harmlessness for the Vicuna series models and dis-493

played these in Figure 5. The win rate here is the494

composite win-rate calculated during the Elo pro-495

cess in comparison with other models. For ease of496

display in the graph, we abbreviated the labels of497

these categories while preserving their core mean-498

ings.499

For the Vicuna-13B model, there was an im-500

provement in all harmful categories, especially in501

self-harm, adult content, and injustice. Vicuna-7B502

animal_abuse

child_abuse

politics

injusticebanned_substance

property_crime
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Figure 5: Radar chart illustrating the win rates
across various harmful query types on the BeaverTail-
Evaluation dataset.

slightly differed, with significant improvements in 503

hate speech and laws, but slight declines in poli- 504

tics, animal abuse, and violence. We speculate that 505

this might be due to minor numerical fluctuations 506

caused by the randomness of the evaluation, and 507

partly because Vicuna-7B has weaker discernment 508

for harmful topics in these three categories, leading 509

to inaccurate credit assignment. 510

5.4 Ablation Studies 511

Convergence of Our Method For a good opti- 512

mization algorithm, its convergence and stability 513

are quite important. To test the convergence of our 514

algorithm, we chose the ArmoRM-Llama3-8B-v0.1 515

(Wang et al., 2024) model as the reward model. As 516

of the writing of this paper, this model ranks first 517

on the Reward Benchmark Leaderboard (Lambert 518

et al., 2024). We only used this model to score 519

responses generated from test set checkpoints dur- 520

ing each epoch of training for the Vicuna-7B and 521

Vicuna-13B models. Both models were trained on 522

the Anthropic-RLHF-HH dataset for 15 epochs, 523

with 500 data samples per epoch, a learning rate of 524

1e-6, and alpha=1.4. 525

The x-axis represents the epoch of model train- 526

ing, with 0 corresponding to the original model. 527

The y-axis represents the average score increment 528

of the reward model relative to the original model, 529

normalized by the standard deviation to scale their 530

values to the same level for easy display. The fig- 531

ure also includes two dashed lines indicating the 532

PPO baseline, processed in the same way as the 533

corresponding models. It can be observed that 534

the model training generally surpasses the PPO 535

baseline around 2 epochs and converges around 6 536

epochs, remaining stable thereafter. 537
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Figure 6: The reward increments for the vicuna-7b and
vicuna-13b models during training, scaled to a common
metric by dividing by their standard deviation across
epochs. The PPO baseline is indicated with a dashed
line.

Choice of Hyper-parameter α Our method intro-538

duced a hyper-parameter α. We have conducted539

a study on how this parameter affects the final540

evaluation metrics, namely the difference between541

the win-rate and lose-rate on the test set against542

the original SFT model. The larger this value,543

the greater the improvement to the model. We544

conducted experiments using the Vicuna-7B and545

Vicuna-13B models on the Anthropic-RLHF-HH546

dataset. The models were trained for 15 epochs547

with a learning rate of 1e-6, sampling 500 items548

per epoch. The values of alpha ranged from 1.0 to549

1.5, in increments of 0.1. Figure 7 shows how the550

metrics vary with α.551
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Figure 7: Plot of win-rate minus lose-rate against the
SFT model as a function of hyper-parameter α for
Vicuna-7B and Vicuna-13B. The value of α ranges from
1.0 to 1.5 with an interval of 0.1.

For the Vicuna-7B model, the metric peaked552

at alpha=1.4, then decreased at alpha=1.5. For 553

the Vicuna-13B model, the metric increased with 554

alpha, this trend slowed after 1.3, and peaked at 555

1.5. In summary, the value of alpha should not be 556

too high; about 1.4 is appropriate. To achieve the 557

best performance, the right alpha can be selected 558

through small-scale experiments. 559

5.5 Discussions 560

Figure 8: Visualization of token-level credit assignment
in Vicuna-7B’s response to the query ’Can I put Vick’s
balm on a baby?

Case Study In the case study, the user inquires 561

about the safety of applying Vick’s Balm on a 562

baby, known for its toxicity. Our method’s token- 563

level credit assignment effectively highlights the 564

response’s advice against using such potentially 565

harmful products for infants, emphasizing safer 566

alternatives and professional consultation. Spe- 567

cific phrases like "I would suggest that you," "do 568

not," "is not safe for infants," "could cause serious 569

harm," "use other baby-safe," and "consult with a 570

pediatrician or dermatologist for advice" are identi- 571

fied and awarded high credit for directly contribut- 572

ing to the response’s harmlessness and helpfulness, 573

illustrating our model’s ability to enhance the qual- 574

ity of guidance provided, focusing on user safety 575

and informed decision-making. 576

6 Conclusion 577

In this article, we propose the Inverse-Q* algo- 578

rithm, which has demonstrated comparable sample 579

utilization efficiency and supervision granularity 580

to PPO, achieving token-level reinforcement learn- 581

ing across all sampling outcomes without the need 582

for additional reward or value models. This effi- 583

ciency significantly eases the demands on labeling 584

and computational resources. Extensive experi- 585

ments validate the effectiveness of the Inverse-Q* 586

framework in low-resource RLHF training, show- 587

ing its potential to match or even surpass the per- 588

formance of PPO training. Our method has proven 589

to significantly enhance the alignment of large lan- 590

guage model responses with human preferences, 591

achieving faster convergence compared to tradi- 592

tional RLHF methods such as PPO and DPO. 593
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7 Limitations594

Model Scale Limitation Our experiments were595

conducted exclusively on models of 7B and 13B596

sizes. The applicability and effectiveness of our597

method on larger-scale models remain unexplored598

and may behave differently due to increased com-599

plexity and different learning dynamics. Further600

investigations are needed to understand how our601

approach scales with model size.602

Language Specificity The training and testing of603

our method were solely performed on datasets in604

English. Consequently, its effectiveness in cross-605

lingual or multilingual contexts is yet to be de-606

termined. Future work should include testing the607

method’s robustness and adaptability across differ-608

ent languages, which could help in understanding609

its global applicability.610

Potential Risks This research introduces advance-611

ments in reinforcement learning for language mod-612

els, promising substantial benefits. However, it613

also presents potential challenges. The enhanced614

alignment of models with human preferences could,615

if not carefully managed, pose concerns regarding616

the subtle influence on user decisions. Additionally,617

deploying these models without thorough valida-618

tion might inadvertently reinforce existing biases,619

particularly in sensitive contexts. It is essential620

for ongoing research to address these challenges621

by balancing technical enhancements with consid-622

erations for ethical deployment to ensure that the623

applications remain responsible and beneficial.624
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A Training Efficiency and GPU Usage 783

The hardware used was a computing server with 784

8 * A800 GPUs. For the 7B size model, with a 785

setting of sampling 500 data points per epoch, the 786

max_new_token during the sampling phase was set 787

to 1024, with a batch size of 64, using LMDeploy 788

(Contributors, 2023) for inference sampling, which 789

took an average of about 80 seconds; the micro 790

batch size during the training phase was 2 on each 791

GPU, and with ZeRO-3 (Rajbhandari et al., 2020) 792

optimization enabled, it took about 5 minutes; the 793

total duration per epoch was approximately 7 min- 794

utes. For the 13B size model, under the same set- 795

tings, the average duration of the sampling phase 796

was about 2 minutes, the training phase took about 797

6 minutes, and the total duration per epoch was 798

about 8 minutes. Therefore, the total duration for 799

training 15 epochs is approximately two hours. 800

B GPT-4 Evaluation Prompt Template 801

Please act as an impartial judge and evaluate the 802

quality of the responses provided by two AI assis- 803

tants to the user question displayed below. You 804

should choose the assistant that follows the user’s 805
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instructions better and provides more helpful re-806

sponses to the user’s questions. A helpful response807

should directly address the human questions with-808

out going off-topic. A detailed response is only809

helpful when it always focuses on the question and810

does not provide irrelevant information. A helpful811

response should also be consistent with the conver-812

sation context. For example, if the human is going813

to close the conversation, then a good response814

should tend to close the conversation, too, rather815

than continuing to provide more information. If the816

response is cut off, evaluate the response based on817

the existing content, and do not choose a response818

purely because it is not cut off. Begin your evalua-819

tion by comparing the two responses and provide a820

short explanation. Avoid any positional biases and821

ensure that the order in which the responses were822

presented does not influence your decision. Do not823

allow the length of the responses to influence your824

evaluation. Do not favor specific names of the assis-825

tants. Be as objective as possible. After providing826

your explanation, clearly state your conclusion. If827

you believe Assistant A is better, output [[A]]. If828

you believe Assistant B is better, output [[B]]. You829

have to choose one of them. Please make sure to830

conclude with your final verdict. –User Question–831

{prompt} –The Start of Assistant A’s Answer– {an-832

swer_a} –The End of Assistant A’s Answer– –The833

Start of Assistant B’s Answer– {answer_b} –The834

End of Assistant B’s Answer–835

C Positive Principle836

Please adhere to the following principles. Avoid837

factual inaccuracies as much as possible. Refrain838

from providing answers if the user’s request poses839

potential security concerns,and provide relevant ex-840

planations and guidance instead. If the previous841

context did not address the user’sissue, continue842

attempting to answerand resolve it. Stay on track843

with the original discussion and avoid introduc-844

ing unnecessary off-topic information. Enhance845

answers by incorporating additional background846

information to assist users in understanding and847

grasping the content.848
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